

ARR NO. 3GU7

IAN 20 1941

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WARTIME REPORT

ORIGINALLY ISSUED

July 1943 as Advance Restricted Report 3G07

PORPOISING

A COMPARISON OF THEORY WITH EXPERIMENT

By Kenneth S. M. Davidson with F. W. S. Locke, Jr., and Anthony Suarez Stevens Institute of Technology

N A C A LIBRARY

LANGLEY MEMORIAL AERONAUTICAL LABORATORY Langley Field, Va.

WASHINGTON

NACA

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

W-65

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ADVANCE RESTRICTED REPORT

PORPOISING

A COMPARISON OF THEORY WITH EXPERIMENT

By Kenneth S. M. Davidson with F. W. S. Locke, Jr., and Anthony Suares

SUMMARY

This report makes a direct comparison between the observed and the calculated longitudinal dynamic stability of a particular dynamic model of a flying boat moving on the water.

Good agreement was obtained between experiment and theory (using Glauert's statement of the theory) for trim angles in the vicinity of the lower limit, at one speed a little above the hump. The agreement is shown in the following tabulation, which gives the experimental and theoretical values of the aerodynamic component of the pitch-damping derivative $M_{\rm q}$ required for stability at various trim angles, at the speed in question.

Required Aerodynamic M_q for Stability at Various Steady-Motion Trim Angles at One Speed

Steady-motion	Required aerodynamic M _q					
(deg)	Experiment	Theory				
5.8	-21.1	-21.5				
6.4	-17.6	-16.2				
7.1	-12.0	-11.3				
8.3	-5.8	-5,3				
11.0	-,5	-2.0				

Data are given in an appendix from which similar trials of the correspondence between experiment and theory might be made for trim angles in the vicinity of the upper limit at the same speed, and for a higher speed. The calculations have not been completed for these cases, however, because it became apparent that the calculated stability could not be expected to be as reliable for upper-limit trim angles as for lowerlimit trim angles, and because the theory had not particularly recommended itself in the initial trial.

The theoretical method in its present form is laborious; it depends for its application upon experimental constants which are not more easily determined than a direct experimental determination of stability, and it has not yet shown itself capable of pointing out design trends tending to reduce instability to any greater extent than the direct experimental method.

INTRODUCT ION

Previous attempts to determine the reliability of the classical method of calculating the longitudinal dynamic stability of flying boats moving on the water by comparing observed and calculated stabilities in specific cases have generally suffered from a lack of adequate data. This is particularly true of the work described in reference 1 and 2, where neither the observed stability nor the test information required for the stability calculation was known to better than a first approximation for the cases in question. It is much less true of the work described in reference 3, but an exact quantitative comparison was not attempted in that instance.

The study here considered was restricted to a particular dynamic model for which all three of the necessary components, namely,

the observed stability, the basic hydrodynamic dorivatives needed for the calculation, and the basic acrodynamic dorivatives needed for the calculation,

could be determined with sufficient exactness to insure a reliable comparison between experiment and theory. This

restriction eliminates all questions regarding the relationship between flying boat and model in respect to form and particulars, the correspondence of speed, applied moment, or pure scale effects. It reduces the problem to comparing two results (observed and calculated), both of which are based upon accurate determinations for precisely the same combinations of model, forces, and moments.

The study was further restricted to one speed - both because of the labor involved in the actual testing and computations necessary to deduce the calculated stability, and because the study was intended primarily to be exploratory.

The model selected represents an actual flying boat in its original experimental form. Porpoising had been experienced in the full-size flying boat over a range of speeds intermodiate botween the hump and the get-away. In particular, the following approximate information was supplied in advance by the manufacturors:

	(mph)
Planing	35
Porpoising	43-62
Take-off	78

The speed selected for the comparison was about 48 miles per hour. (See p. 4.)

The tests for observed stability were made by the method developed at this Tank for experimental investigations of perpoising, in which predetermined aerodynamic forces and moments, and their derivatives, are applied mechanically to a dynamic model of the hull alone. This method is described in reference 4. Steady-metion tests to provide the necessary data for computing the hydrodynamic derivatives were made by ordinary towing-tank methods.

The particulars and specifications used are given on pages 11 and 12, which show also the acrodynamic characteristics of the hydrofoil which was substituted for the wing in the porpoising tests.

This invostigation, conducted at Stevens Institute of Technology, was sponsored by and conducted with financial assistance from the National Advisory Committee for Aeronautics.

TESTS

Porpoising tests were first made to determine the stability limits for the entire range of speeds between the hump and the get-away. The results of these tests are shown in figure 1, from which it will be seen that the range of speeds within which the lower limit lies above the free-to-trim track is in generally good agreement with the approximate range within which the builder reported perpensing in the actual flying beat; it may therefore be inferred that the actual perpensing was of the lower-limit type. The speed selected for the comparison of observed and calculated stabilities - 15.89 feet per second (corresponding to $C_{\rm V}$ = 4.30, or about 48 miles per hour in full size) - lies within this range.

The next step was to extend the perpensing tests at the selected speed to provide a broader basis of observed stability for comparison with the calculated stability. The principal requirement in this respect was a wider range of values of the aerodynamic pitch-damping derivative M_q . The results, covering values of M_q from 0 to -20.0 (the latter value resulting in stability at the lowest steady-motion trim engle considered, 5.8°), are shown in figure 2. The values given correspond to the aerodynamic M_q applied by the tail only. The total M_q present was greater by the amount contributed by the model hull itself. A separate measurement of the latter, in air, gave -0.55.

Finally, the model was tosted in steady motion, at the same speed by the ordinary towing tank procedure, to determine the relationships in steady motion between water-borne lead, memont, heave, and trim, as a basis for deducing the hydrodynamic derivatives needed in the stability calculations. The results, covering fairly wide ranges of the variables, are shown in the form of a grid in figure 3.

CALCULATIONS

That which is here referred to as the "classical" method of calculating the longitudinal dynamic stability of a flying beat moving on the water was first proposed by Perring and Glauert (reference 1).* This method may be said to involve two *Hereafter referred to as Glauert. ossentially separable parts: 1) the purely theoretical equations of motion leading to the conditions for stability, and 2) the ovaluation of the required derivatives. The first part is straightforward rigid dynamics (which was applied some years ago to the parallel problem of the stability of an airplane in flight) with some reconsideration of the relative importance of the various derivatives. The second part is inhorently less simple than for the airplane in flight because the required derivatives represent the summation of aerodynamic and hydrodynamic components and, although the aerodynamic components follow the lead of the older mothed, the hydrodynamic components are more troublesome.

The eight hydrodynamic derivatives which have to be considered may be grouped under two headings:

Displacement dorivatives

Z _z	rate change of Δ per unit mass	with rospect	to	H,	т	constant,
Ζθ	rate change of ∆ per unit mass	with respect	to	т,	Ħ	constant,
M _z	rate change of M por unit moment	with respect of inertia	to	H,	τ	constant,
Μθ	rato change of M por unit moment	with respect of inertia	to	τ,	Ħ	constant,
Veloci	ty dorivatives					
7.	rate change of A	with respect	to	а.	noi	r unit mess

 Z_{w} rate change of Δ with respect to w, per unit mass M rate change of M with respect to q, per unit mass M_{w} rate change of M with respect to q, per unit mass M_{w} rate change of M with respect to w, per unit mass

Glauert derived tentative algebraic expressions for all of these, with empirical constants, from steady-motion test data on planing surfaces.

Later, Klomin, Pierson, and Storer (reference 2)* and others (in unpublished reports) noted: 1) that the displacement

*Hereafter referred to as Klemin.

derivativos could be deduced directly from a "general" tank test of the hull, and 2) that in Glauert's expressions the velocity derivatives were dependent on the displacement derivatives. They therefore substituted the experimentally determined displacement derivatives - retaining, in principle, Glauert's transformations to the velocity derivatives.

Since the calculations considered in this report were based on displacement derivatives determined from a "general" test, the detailed stops were first carried through in accordance with Klemin's analysis (reference 2). Subsequently, in comparing Klemin's and Glauert's analyses, a difference was noted in the expressions for $Z_{\rm W}$ which, upon examination, was found to result from a difference in the definitions of $Z_{\rm T}$ and $M_{\rm T}$. (See p. 14.) Since this difference evidently might affect the results materially, all necessary stops in the calculations were repeated using Glauert's analysis (reference 1). Both sets of results are included here.

Considoring the calculations in dotail:

1. Five steady-motion trim angles were covered, embracing a range from well below the lower limit of stability to well above it. Figure 4 is a chart of all the steady-motion conditions, which are spotted also on other pertinent charts. The five trim angles corresponded to substantially equal differences of applied moment.

2. The first step in carrying out the calculations was to determine the hydrodynamic displacement derivatives from the steady-motion test data. These were read from various cross plots of the data shown in the general grid in figure 3. The derivatives are shown in figure 5 and in the tabulation on page 15.

3. The hydrodynamic velocity derivatives were then computed, the acrodynamic derivatives deduced in the ordinary way and, finally, the resultant values of all derivatives added up and tabulated for ready reference in computing Routh's discriminants.

4, All computations are given in detail on pages 15-27, from which it will be seen that three values of the acrodynamic M_q were considered, for both Klomin's and Glauert's analyses. These were, respectively, 0, -4.39 (the normal value according to the table of particulars), and -20.0 (the amount determined experimentally as necessary to cause stability at $T = 5.8^{\circ}$).

5. A summary of all Routh's disoriminants is given on page 28.

COMPARISON OF OBSERVED AND CALCULATED STABILITY

A. Following is a comparison of the limiting trim angles for stability at fixed values of M_{c} as determined

1) from the limit curve in figure 2 in the case of the observed,*

2) by interpolation from the summary of Routh's disoriminants on page 28 in the case of the calculated.

Total aerodynamic Mg	Limiting trim angle					
	Obsorvod**	Caloulat				
		<u>Klemin</u> .:.	Glauort			
o	(Indotorminate					
-4.39	8.6	9.1	8.7			
-20.0	6.0	7.4	6.0			

Limiting Trim Angles for Stability at Fixed Damping

Apart from the indcterminate (and inconsequential) result for $M_{\rm q}$ = 0, this comparison shows

. .1) a reasonably satisfictory general agreement between theory and experiment,

2) a decided proforence for Glauert's analysis over that of Klomin.

*The limit curve on this figure is for a sweep of 0° in trim angle for the perpeising cycle, as opposed to the sweep of 2° proviously used on figure 1.

**Corrected for contribution of model hull to total acrodynamic M_o. B. Anothor, and so mowhat more adequate, precedure is to compare the limiting values of M_{c} for stability at given values of trim instead of the limiting trim angles for stability at fixed values of M_{c} .

Stoady-motion	Roquired acrodynamic Mq					
(dog))bsorvod*	Calcul	Latod			
		Klomin	Glauort			
5.8	-21.1	+ (?)	-21.5			
6.4	-17.6	+ (?)	-16.2			
7 . l	-12.0	+ (1)	-11.3			
8,3	₩5 .8	-7.5	-5.3			
11.0	5	-2.0	-2,0			

Roquired Damping for Stability at Givon Trim Angles

In this form the comparison emphasizes much more strongly the good agreement between theory and experiment, provided that Glauert's analysis is employed. It emphasizes also the apparent inadequacy of Klemin's analysis; for the three lower trim angles (see p. 28) the results by Klemin's analysis indicate increasing instability as the damping is increased, so that positive M_{α} would apparently be necessary to cause stability.

DISCUSSION

The difference between Klomin's and Glauert's analyses arising, as noted on page 6, through a difference in the definitions of Z_T and M_T , brings out clearly an essential difficulty with the method of calculation as it now stands. There is nothing in Klomin's account to indicate that he purposely departed from Glauert's analysis. Whether the departure was intentional or accidental is of small moment because, in fact, Glauert's definitions of Z_T and M_T cannot easily be shown to be fundamentally more correct than Klomin's; both *Corrected for contribution of model hull to total accodynamic $M_{\rm Q}$. are approximations open to some question. Hence, the fact that Glauert's definitions were more successful in the present limited instance cannot be given too much weight.

NOTATION

The following symbols are used:

- Δ_{\sim} static displacement, pounds
- Z, \triangle load on the water, pounds
- θ, T trim angle, angle botwoon forobody keel and undisturbed water surface
- H heave of contor of gravity, referred to static displacemont and zero trim, foot
- z hoight of contor of gravity above froe water surface, feet
- M applied moment, pound-foot
- m mass in vertical oscillation, slugs (corrosponding to static displacement)
- Ip pitching moment of inertia about conter of gravity, slug-feet square
- v forward volocity of modol, foot por second
- w vortical velocity of model, foot per second
- q angular velocity of modol, radians por second
- p hoight of contor of gravity above keel at main stop, feet
- r distance of contor of gravity forward of main step, fost
- draft of koel at main stop bolow froo wator surface, foot
- R_o resistance in steady motion, pounds

See also figure 6.

Stevens Institute of Tochnology, Hobokon, N. J., August 1941.

REFERENCES

- 1. Perring, W. G. A., and Glauort, H.: The Stability on the Water of a Seaplane in the Planing Condition. R. & M. No. 1493, British A.R.C., 1933.
- Klomin, Alexandor, Pierson, John D., and Storer, Edmund M.: An Introduction to Scaplane Porpoising. Jour. Aero. Sci., vol. 6, no. 8, June 1939, pp. 311-318.
- Benson, James M., and Lina, Lindsay J.: The Effect of Dead Rise upon the Low-Angle Type of Porpoising. NACA A.R.R., Oct. 1942.
- Davidson, Kenneth S. M., and Locko, F.W.S., Jr.: Some Systematic Model Experiments on the Porpoising Charactoristics of Flying-Boat Hulls. NACA A.R.R., June 1943.

PARTICULARS

The following particulars were used:

_ ___

I

• • • • •	Full-size	Model
Drawing		. (See fig. 7)
Stevens Model No.		• • 294-9
Scale	1	1/20
<u>Dimensions</u>		
Beam at main step, in Angle between forebody keel	102	5.10
and base line, deg Angle between afterbody keel	0	0
and base line, deg	7.5	7.5
in	4.00	0.20
main step, in	71.1	3.55
line, in.	112	5.62
Gross Weight, A ₀ , 10	40,000 (sea water)	5.00 (fresh water)
Load coefficient, C _A (sea wate Moment of inertia in pitch,	r) 1.02	
slug-ft lb in ²	² 1.813×10 ⁵ 8.40×10 ⁸	262
Wing enen, ft	118	5 90
Wing area, S, sq ft Mean serodynamic chord (M.A.C	1405	3.51
in.	154	7.70
Aspect ratio (geometric)	9.91	9,91
Horizontal tail area. sq ft	216	0.541
Elevator area, so ft	63.6	0.159
Distance, center of gravity t 35 percent M.A.C. horizonta	0 1	
tail (tail length), ft	- 43.8	2.19
main step, in	172.8 to	8.64
base line, deg	1.0	1.0

<u>Note</u> - No allowances made for difference between fresh and sea water densities.

Ratios, $\frac{full-size}{model}$ of speed, $\lambda^{1/2}$	20 20 400 ,000
of moment of inertia, A	,000
Aerodynamic characteristics Full size	Model
$C_{\rm L}$ at $\tau = 5^{\circ}$ (relative to base line) 1.337	1.337
L at $\tau = 5^{\circ} \cdot \cdot$	$5.59 \times 10^{-3} v_m^2$
αØ _L /ατ	0.0975
dL/dτ(dZ/dθ), 1b/deg	0.407 × 10 ⁻³ v _m ⁸
dL/dw (dZ/dw), 1b sec/ft $\left(\frac{dL}{d\alpha} \times \frac{1}{v}\right)$ 0.163 v_{g}	$0.407 \times 10^{-3} v_{m}$
$dC_{M_{c.g.}}/dc_{b.l.} = dC_{M_{c.g.}}/dT (av.) 0.0229$	0.0229
$dM_{c.g.}/d\tau$ ($dM/d\theta$), 1b ft/deg (av.) 0.491 vg ⁸	0.614 × 10 ⁻⁴ vm ²
dM/dq,lb ft sec/rad 2500 v _s	1.562 x 10 ⁻⁸ vm
dM/dw, 1b sec (av.)	0.333 x 10 ⁻² vm
dN/dq + (dN/dw) ft/rad	4.69
dM/dq ÷ (dM/dw)/tail length, 1/rad 2.14	2.14
Hydrofoil characteristics	
Area, sq ft	. 0.00942
Aspect ratio (circular plan form)	. 1.27
$dO_{\rm L}/d\alpha$ (av.)	• 0.0350
dL/da , lb/deg (av., fresh water)	$0.320 \times 10^{-3} v_{m}^{8}$
đa/đ T	1.27
$dL/d\tau$ ($dZ/d\theta$) (= $dL/d\alpha \times d\alpha/d\tau$), lb/deg	0.406 × 10 ⁻³ vm ²
dL/dw (dZ/dw), lb sec/ft $\left(=\frac{dL}{d\alpha} \times \frac{1}{\pi} + apparatus\right)$	0.406 × 10 ⁻³ vm

_ _

-

12

- ---

FORMAL STATEMENT OF CALCULATIONS

1. For stability, Routh's discriminant and A, B, C, D, and E must be positive.

 $R = B C D - A D^{2} - B^{2} B$ where R = Routh's discriminant A = 1 $B = - (Z_{W} + M_{Q})$ $C = - (Z_{E} + M_{Q} - Z_{W}M_{Q} + Z_{Q}M_{W})$ $D = Z_{E}M_{Q} - Z_{Q}M_{E} + Z_{W}M_{Q} - Z_{Q}M_{W}$ $B = Z_{E}M_{Q} - Z_{Q}M_{E}$ 2 Derivatives in basis form

2. Derivatives in basic form

Aerodynamic

. .

Hydrodynamic

Displacement derivatives

		Z _z	from	test	data	r	<u>م د</u>		34		
	un al a familie al		.	.	da ba	ZT	ਸ਼ੂ +	Zt		(reference	1)
40	predetermined	<i>2</i> 0	I LOT	test	uata <	ZT	$\frac{d\tau}{d\theta}$ +	zζ	<u>at</u> a6	(reference	2)
		Mz	from	test	data	<i>c</i>			ат		
						MT	$\frac{d}{d\theta}$ +	Mt		(reference	1)
м _θ	predetermined	μ θ	from	test	data <	Ж.	dī +	м.	đ٢	(reference	2)
						("'	d 0 '	-ς	đθ	1	

Velocity derivatives

- $Z_{w} = Z_{\theta} \frac{d\theta}{dw} \qquad \qquad Z_{w} = Z_{T} \frac{dT}{dw}$ $Z_{q} \text{ negligible} \qquad \qquad Z_{q} = \frac{\partial Z}{\partial u} \frac{du}{dq} + \frac{\partial Z}{\partial w} \frac{dw}{dq}$
- M_{W} negligible $M_{W} = M_{T} \frac{d\tau}{dw}$
- M_q predetermined $M_q = \frac{\partial M}{\partial u} \frac{\partial u}{\partial q} + \frac{\partial M}{\partial w} \frac{\partial w}{\partial q}$
- Note T and θ are the same angle. T is used here to inducate a less complete derivative. In the calculations (p. 15) T is used for the trim angle in degrees; θ for the same angle in radians.

5. Derivatives Reduced for Computation

Aerodymanic

 $\begin{array}{c} \underline{\text{Displacement derivatives}}\\ \hline \\ \underline{\text{Displacement derivatives}}\\ \hline \\ Z_{\theta} \text{ predetermined}\\ \hline \\ Z_{\theta} \text{ from test data}\\ \hline \\ M_{\theta} \text{ predetermined}\\ \hline \\ W_{\theta} \text{ predetermined}\\ \hline \\ W_{\theta} \text{ from test data}\\ \hline \\ W_{\theta} \text{ or n test data}\\ \hline \\ W_{\theta} \text{ or n test data}\\ \hline \\ W_{\theta} \text{ or n test data}\\ \hline \\ Z_{W} = \begin{cases} \frac{1}{V} & Z_{\theta} - Z_{g} & (-p \ \theta + r - \frac{S}{\theta}) & \text{Ref. (1)}\\ \frac{1}{V} & Z_{\theta} - Z_{g} & (-p \ \theta + r) & \text{Ref. (2)}\\ \hline \\ Z_{q} & = \frac{2}{V} \frac{Z_{0}}{V} & (p - [s - r] \ \theta) - Z_{W} & (p \ \theta + [s - r] \ \theta)\\ \hline \\ M_{W} & = \begin{cases} \frac{1}{V} & M_{\theta} - M_{g} & (-p \ \theta + r) & \text{Ref. (1)}\\ \frac{1}{V} & M_{\theta} - M_{g} & (-p \ \theta + r) & \text{Ref. (2)}\\ \hline \\ M_{W} & = \begin{cases} \frac{1}{V} & M_{\theta} - M_{g} & (-p \ \theta + r) & \text{Ref. (2)}\\ \hline \\ \frac{1}{V} & M_{\theta} - M_{g} & (-p \ \theta + r) & \text{Ref. (2)}\\ \hline \\ M_{Q} & predetermined\\ \hline \\ M_{Q} & = \frac{2}{V} \frac{M_{0}}{V} & (p - [s - r] \ \theta) - Z_{W} & (p \ \theta + [s - r] \ \theta) \\ \hline \end{array}$

Hydrodynamic

4. Difference between Z; and N; in References (1) and (2)

14

۰.

BASIC DISPLACEMENT DERIVATIVES FOR ALL CALCULATIONS (See fig. 39) Model No. 294-9 Wm = 15.89 f.p.s. $m = \frac{5.00}{32.2} = 0.1554 \qquad \qquad \frac{1}{m} = \frac{32.2}{5.00} = 6.44$ $\mathbf{mk^2} = \frac{262}{32.2 \times 144} = 0.0568 \qquad \frac{1}{\mathbf{mk^2}} = \frac{32.2 \times 144}{262} = 17.68$ 5.8 6.4 7.1 8.3 J deg. 11.0 +0.512 +0.271 +0.031 -0.202 M. 1b.ft. -0.412 $Z_{g} = \left(\frac{\partial \Delta}{\partial H}\right)_{J=k} \times 12 \times 6.44 = \left(\frac{\partial \Delta}{\partial H}\right)_{J=k} \times 77.28$ -305.0 -320.0 -346.0 -406.0 -614.0 Z_z $Z_{\theta} = \left(\frac{\lambda \Delta}{\lambda 3}\right)_{H=k} \times 57.3 \times 6.44 = \left(\frac{\lambda \Delta}{\lambda 3}\right)_{H=k} \times 369$ -234.0 -221.0 -208.0 -190.0 -162.0 Z_A $M_z = \left(\frac{\partial M}{\partial H}\right)_{x=k} \times 17.68$ +430 +316 +144 -149 ¥, +532 $\mathbf{M}_{\Theta} = \left(\frac{\partial \mathbf{M}}{\partial \mathbf{J}}\right)_{\mathrm{H}=\mathbf{k}} \times \frac{1}{12} \times 57.3 \times 17.68 = 84.4 \times \left(\frac{\partial \mathbf{M}}{\partial \mathbf{J}}\right)_{\mathrm{H}=\mathbf{k}}$ -72.9 -65.0 -59.9 -59.9 Me -166 CALCULATION OF VELOCITY DERIVATIVES ACCORDING TO KLEMIN, REFERENCE (2) Model No. 294-9

vm = 15.89 f.p.s.

	$Z_{w} = \frac{1}{v}$	$(z_{\theta} - z_{z})$	- p 0 + r])	
p =	$\frac{5.62}{12} = 0.46$	18	$r=\frac{3.55}{12}$		
$\theta = \frac{3}{57.3}$	+0.101	+0.112	+0.124	+0.145	+0.192
$\begin{bmatrix} -p \theta + r \end{bmatrix}$	+0.249	+0.244	+0.238	+0,228	+0.208
$z_{\mathbf{z}} \begin{bmatrix} z_{\theta} \\ -p \\ \theta + r \end{bmatrix}$	-234.0 -75.9 -156.1	-221.0 -78.1 -142.9	-208.0 -82.3 -125.7	-190.0 -92.6 -97.4	-162.0 -126.5 -35.5
2	-9,95	-8.99	-7.91	-6.13	-2.25

(Continued)

У deg. 5.8 6.4 м. т. 1 (Ма. т. Г. р. 6

.

	$\mathbf{M}_{\mathbf{w}} = \frac{1}{\mathbf{v}} \left(\mathbf{M}_{\mathbf{\theta}} - \mathbf{M}_{\mathbf{g}} \left[-\mathbf{p} \mathbf{\theta} + \mathbf{r} \right] \right)$					
м _ө м ₋ Г-рө+т]		-72.9 +132.0	-65.0 +105.0	-59.9 +75.2	-59.9 +32.8	-166 -30,7
	Diff.	-204.9	-170.0	-135.1	-92.7	-135.3
M _w		-12.89	-10.70	-8,50	-5.83	-8.51

. .

....

••

.....

•

7.1 8.3

•••

11.0

Calculation of Center of Pressure Position										
$\mathbf{M}_{\mathbf{O}} = -\mathbf{Z}_{\mathbf{O}} \ ($	$\mathbf{M}_{\mathbf{O}} = - Z_{\mathbf{O}} \left(\mathbf{p} \ \theta + [\mathbf{s} - \mathbf{r}] \right) + \mathbf{R}_{\mathbf{O}} \left(\mathbf{p} - [\mathbf{s} - \mathbf{r}] \ \theta \right)$									
$\begin{bmatrix} \mathbf{s} - \mathbf{r} \end{bmatrix} = \frac{\mathbf{M}_{\mathbf{o}} + \mathbf{Z}_{\mathbf{o}} \mathbf{p} \mathbf{\theta} - \mathbf{R}_{\mathbf{o}} \mathbf{p}}{-\mathbf{Z}_{\mathbf{o}} - \mathbf{R}_{\mathbf{o}} \mathbf{\theta}}$										
$\Delta = Z_0, 1bs.$ R ₀ , 1bs.	-3.51 -0.57	-3,45 -0,55	-3,37 -0,54	-3.25 -0.53	-2.97 -0.60					
Mo (Zope)	+0.512 -0.165	+0.271 -0.179	+0.031	-0.202 -0.221	-0.412 -0.267					
(R _o p) (a)	+0.347 -0.267 +0.614	+0.092 -0.257 +0.349	-0.164 -0.253 +0.089	-0.423 -0.248 -0.175	-0.679 -0.281 -0.397					
$\begin{array}{c} - Z_{O} \\ - (R_{O} \theta) \end{array} $ (b)	+3.51 +0.058 +3.568	+3.45 +0.062 +3.512	+3.37 +0.067 +3.437	+3.25 +0.077 +3.327	+2.97 +0.115 +3.085					
[a - r] = (a)/(b)	+0.172	+0.0994	+0.0259	-0,0526	-0.1287					
$Z_{q} = \frac{2 Z_{p}}{V} ($	[p - [s - r]] 0) - Z _w ((p 0 + [s -	r])						
2 Zo x 6.44	-2.845	-2.797	-2.732	-2.634	-2,407					
(p - [s - r]0)	+0.451	+0.457	+0.465	+0.476	+0.495					
$ \frac{2Z_0}{v} \times 6.44 (p - [s - r]) \\ Z_w \\ (p \theta + [s - r]) \\ - Z_w (p \theta + [s - r]) $	-1.283 -9.95 +0.219 +2.179	-1.278 -8.99 +0.151 +1.357	-1.270 -7.91 +0.084 +0.664	-1.254 -6.13 +0.015 +0.092	-1.187 -2.23 -0.039 -0.087					
Zq	+0•896	+0.079	-0.606	-1.162	-1.274					

16

•

•••

....

.

...

- -

5.8 6.4 7.1 8.3 11.0

$$M_{q} = \frac{2M_{0}}{v} (p \sim [s - r]\theta) - M_{w} (p \theta + [s - r]\theta)$$

$$\frac{2M_0}{v} \times 17.68 +1.139 +0.603 +0.069 -0.449 -0.917$$

$$\left(\frac{2M_0}{v} \times 17.68\right) \left(p - [s - r] \theta\right) +.514 +.276 +.032 -.214 -.452$$

$$M_w -12.89 -10.70 -8.50 -5.83 -7.89$$

$$-M_w \left(p \theta + [s - r]\right) +2.823 +1.616 +.714 -.087 -.308$$

$$M_q +3.337 +1.892 +.746 -.301 -.760$$

Aerodynamic Derivatives

- $z_{\theta} = \frac{dL}{d\tau} \times 57.3 \times 6.44$ --37.92 $M_{\theta} = \frac{dM}{d\tau} \times 57.3 \times 17.68$ --15.71 $z_{w} = \frac{1}{v} z_{\theta}$ -2.386
- $M_{q} = \frac{dM}{dq} \times 17.68$

- ---

					SUMMAI	Y OF DERIV	AT IVES					
						(KLEMIN)						
	J deg.		5.8		6.4		7.1		8.3		11.0	
	Aero	Hydro	Σ	Hydro	۲	Hydro	E	Eydro	٤	Hydro	Σ	
z,	0.0	-305	-305	-320	-320	-346	-346	-406	-406	-614	-614	
z _e	-37.92	-254	-271.9	-221	-258.9	-208	-245.9	-190	-227.9	-162	-199.9	
Z,	-2.386	-9 .95	-12 .34	-8.99	-11.5 8	-7.91	-10.30	-6.13	-8.516	-2.23	-4.616	
Zq	0.0	+0.896	+0 .896	+0.079	+0.079	+0.606	-0.606	-1.162	-1.162	-1,274	-1.274	
Mg	0.0	+532	+532	+430	+430	+316	+316	+144	+144	-149		
Me	-15,7 1	-72.9	-88.6	-65 .0	-80.7	-59.9	-75.6	-59:9	-75.8	-166	-181.7	
Ж. W	0.0	-12 .89	-12.89	-10.70	-10.70	-8,50	-8.50	-5.83	-5.83	-7.89	-7.89	
Mg	-4.388	+3.337	-1.051	+1.892	-2,496	+0.746	-3.642	-0.301	-4.689	-0.760	-5.148	

.

ł

(KLENIN)

•

Design Aerodynamic M_q = -4.368

		-	•		
T deg	5.8	6.4	7.1	8.3	11.0
A	+1	+1	+1	+1	+1
Zw	-12.34	-11.38	10.30	-8.516	-4.616
Ng	-1.051	-2.496	3.642	-4.689	-5.148
B	+13.391	+13.876	+13.942	+13.205	+9.764
Z _x	305	320	346	406	-614
Me	88.6	80•7	75•6	75.6	-181.7
Z _q M _w	-11.5	0.8	+5•2	+6.8	+10.1
-Z _w M _q	-13.0	28•4	37•5	39.9	-23.8
O	+418.1	+429•9	+453•9	+514.7	+809.4
Z _z M _q	+320	+799	+1260	+1904	+3161
Z _q M _x	-1477	34	+191	+167	-190
+Z _W M ₆	+1093	+918	+779	+644	+839
Z _θ M _w	-3505	2770	-2090	-1329	-1577
D	-2569	1087	+140	+1386	+2233
Ζ _Σ Ν _Θ	+27,020	+25,820	+26,160	+30,690	+111,560
-Ζ _G Μ _Σ	+144,650	+111,330	+77,700	+32,820	-29,790
Σ	+171,670	+137,150	+103,860	+63,510	+81,770
BCD	-14,383,000	6,484,000	+885,960	+9,424,000	+17,647,000
~AD ⁸	-6,599,800	1,182,000	19,600	-1,921,000	-4,986,000
~B ² B	-30,784,000	26,407,000	20,188,000	-11,074,000	-7,796,000
R (10 ⁶ x)	-51.77	-34.07	-19.32	-3.57	+4.87

1

.

CALCULATION OF ROUTH DISCRIMINANT									
(KLENIN)									
	Aerodynamic Mg = 0								
			_						
J deg.	5.8	8.4	7.1	8.3	11.0				
A	+1	+1	+1	+1	+1				
Z _w	-12.54	-11.58	-10,30	-8.516	-4.616				
×q	+ 3,337	+ 1,892	+0.746	- 0.301	-0.760				
3	+ 9.00	+ 9,488	+ 9.554	+8.817	+5.376				
Z,	-305	-320	-346	-406	-614				
Xe	- 88.6	- 80.7	- 75.6	- 75.6	-181.7				
Z X	- 11.5	- 0,8	+ 5.2	+ 6.8	+ 10.1				
-2, Xa	+ 41.2	+ 21.53	+ 7,683	- 2.563	- 3,6				
•	+363.9	+379.97	+408.72	+477.36	+789.1				
Z _z N _q	-1018	-605	-258	+122	+466.6				
$-2q$ M_{z}	- 477	- 34	+191	+167	-190				
+ 2w 16	+1093	+918	+779	+644	+839				
Z8 Mar	-3505	-2770	-2090	-1329	<u>-1577</u>				
D	-3907	-2491	-1378	- 396	-461.4				
Z _z M _O	+27020	+25820	+26160	+30690	+111560				
-Z ₈ M ₂	+144650	+111330	+77700	+32820	- 29790				
B	+171670	+137150	+103860	+63510	+ 81770				
BCD	-12-796.000	-8,980,000	-5.381.000	-1.667.000	-1.954.000				
_AD2	-15 265 000	-6 205 000	-1 909 000	- 157 000	- 223 000				
		-12 547 000	-1,058,000	- 494 000	- 509 000				
-0-5	-10,900,000	-10,011,000	-3,400,000		- 008,000				
R (10 ⁶ x)	~41.97	-27.53	-16.76	-2,32	-2,69				

CALCULATION OF ROUTH

_

~

••

.

(KLEMIN)

.

Aerodynamic $M_q = -20.0$

J	deg.	5 .8	6.4	7.1	8.3	11.0
A		+1	+1	+1	+1	+1
	Z,	-12.54	-11.38	-10,30	-8,516	-4.616
	M ₂	-16.66	-18.11	<u>-19.25</u>	-20.301	-20.76
B		+30.00	+29.49	+29.55	+28.817	+25,376
	Zz	-305	-320	-346	-406	-614
	Ne	- 88.6	- 80.7	- 75.6	- 75.6	-181.7
	Zq W	- 11.6	- 0.8	+ 5.2	+ 6.8	+ 10.1
	Z _w Mq	-205.6	-206.1	-198.3	-172.9	- 95.8
C		+610.7	+607.6	+614.7	+647.7	+881.4
	Z _z Nq	+5081	+5795	+6661	+8242	+12746
	-Zq Mg	- 477	- 34	+ 191	+ 167	- 190
	+ Zw Me	+1093	+ 918	+ 779	+ 644	+ 839
	-2 ₀ M	-3505	-2770	-2090	-1329	- 1577
D		+2192	+3909	+5541	+7724	+11818
	Z _z M _∂	+27020	+25820	+26160	+30690	+111560
	-26Mg	+144650	+111330	+77700	+32820	- 29790
E		+171670	+137150	+103860	+63510	817 70
BØ	מ	+40,160,000	+70,042,000	+100,650,000	+144,166,000	+264,326,000
	₽ [₽]	- 4,805,000	-15,280,000	- 30,703,000	- 59,660,000	-139,665,000
-8	2 _E	-154,505,000	119,274,000	- 90,691,000	- 52,740,000	52,655,000
R	(10 ⁶ x)	-119.15	-64.51	-20,74	+81.77	+72.01

CALCULATION OF VELOCITY DERIVATIVES ACCORDING TO GLAUERT, REFERENCE (1)

<u>Model No. 294-9</u> v = 15.89 f.p.s.

•

(Displacement, derivatives same as before)

	$z_w = \frac{1}{v} (z_e)$	θ - Ζ _z [-pθ	+ r - ^{\$} /0])	_	
p	- 0,468		r = 0.296	-	
ζ deg.	5.8	6.4	7.1	8.3	11.0
$ \begin{array}{l} \begin{array}{l} \mathfrak{g} \\ \mathfrak{f} \\ \mathfrak{g} \\ \mathfrak{p} \\ \mathfrak{g} \\ \mathfrak{p} \\ \mathfrak{g} \\ \mathfrak{p} \\ \mathfrak{g} \\ g$	+0.101 +0.0858 +0.850 +0.0473 -0.601 -234 +165.3 -417.3	+0.112 +0.0808 +0.721 +0.0524 -0.477 -221 +152.6 -373.6	+0.124 +0.0747 +0.602 +0.0580 -0.364 -208 +125.9 -383.9	+0.145 +0.0669 +0.461 +0.0679 -0.233 -190 + 94.6 -284.6	+0.192 +0.0545 +0.284 +0.0899 -0.078 -162 + 47.9 -209.9
v = 15.89 f.p.s.	-		- •		
Z _w	-26.26	-23.51	-21.01	-17.91	-13.21
$\frac{M_{\theta}}{M_{z}} \left[-p\theta + r - \frac{5}{\theta} \right]$ Diff.	-72.9 -319.7 +246.8	-65.0 -205.1 +140.1	-59.9 -115.0 + 55.1	-59.9 -33.6 -26.3	-166 + 11.6 -177.6
v = 15.89 f.p.s					
¥.	+15.53	+8.82	+3.47	-1.66	-11,18
$Z_q = \frac{2}{\nabla}$	Zo (p- [s-r	•] •) - z (p 0 + [s-r])	
2 Zo x 6.44	-2.845	-2.7 97	-2.732	-2.634	-2.407
$(p - [s - r] \theta)$ 2 Zo x 6.44	+0.4506	+0.4569	+0.4648	+0 - 4756	+ 0.4927
$\frac{z}{v} (p-[s-r]\theta)$ $\frac{z}{(p\theta + [s-r])}$ $\frac{z}{(p\theta + [s-r])}$	-1,282 -26,26 + 0,2193 + 5,759	-1,278 -23.51 + 0,1518 + 3,569	-1.270 -21.01 + 0.0839 + 1.763	-1.253 -17.91 + 0.0153 + 0.274	-1,186 -13,21 - 0.0388 - 0.513
Z Sum of Products	+ 4.477	+2,291	+ 0.493	- 0.979	- 1,699

τ deg.	5.5	6.4	7 .1	8.3	11.0
$M_q = \frac{2M_0}{T}$ (p	~ [s ~ r]	6) - X Y	(p0+)	[s ~ r])	
2M → × 17.68	+1.139	+0.6030	+0,069	-0.4495	-0.9167
2M ₀ × 1.65 (p - [s - r] 0)	+.513	+.276	+.032	,214	452
Хw	+15.53	+5,82	+3.47	-1.66	-11.18
M _w (p 0 + [8 → r])	+3.406	+1.339	+,291		43
M _q diff. of products	-2.89	-1,06		-,189	862

.

•

Aerodynamic Derivatives

Z _Q	₽	at × 57.3 × 6.44	-37•92
₩ _θ	=	dn × 57.3 × 17.68	-15.71
Z _w	\$	$\frac{1}{v} \mathbf{z}_{\theta}$	2.386
м _q	Ħ	<u>d∎</u> × 17.68 dq × 17.68	4,388

•

•

-

•

23

- -

2	deg.	1	5.8	e	5.4	(GLAUERT) _{7.1}	4	8.3		11.0
	Aero	Hydro	Σ	Hydro	Σ	Hydro	Σ	Hydro	Σ	Hydro	Σ
Z _z	0.0	-305	-305	-320	-520	-346	-346	-406	-406	-614	-614
z,	-37.92	-234	-271,9	-221	-258.9	-208	-245.9	-190	-227.9	-162	-199.9
Z,	-2.886	-26.26	-28.65	-28.51	-25.90	-21.01	-23.40	-17.91	-20.80	-13.21	-16.60
zq	0.0	+4.477	+4.477	+2,291	+2 .291	+0,493	+0,493	-0,979	-0.979	-1.699	-1,699
M	0.0	+532	+532	+480	+450	+316	+316	+144	+144	-149	-149
M ₀	-15.71	-72.9	-88.6	-65.0	-80.7	-59.9	-75.6	-59.9	-75.6	-166	-181.7
N W	0.0	+15,53	+15.53	+8.82	+8.8+	+3.47	+3.47	-1.66	-1.66	-11.18	-11.18
Mg	-4.388	-2.89	-7.278	-1.06	-5.448	-0.259	-4.647	-0,189	-4.577	-0.882	-5.270
	•										

.

2

SUMMARY OF DERIVATIVES

.

24

-

(GLAUERT)

Design Aerodynamic $M_q = -4.588$

J deg.	5.8	6.4	7.1	8.3	11.0
A	+1	+1	+1	+1	+1
Z	-28.65	-25.90	-23.40	-20.30	-16.60
Я	<u>- 7,278</u>	<u>- 5.448</u>	- 4.547	-4.577	- 5.27
B	+35.93	+31.55	+28.05	+24.88	+20.87
+Z	-305	-320	-346	-406	-614
+14	- 88.6	-80.7	- 75.6	- 75.6	-181.7
+2_ N_	+ 69.53	+ 20.21	+ 1.71	+ 1.63	+ 19.0
-z, ¥	-208.5	-141.1	-108.7	- 92.9	- 82.2
C	+532.6	+521.8	+528.6	+572.9	+858.9
+Z M_	+2219.8	+1743.3	+1607.9	+1858.3	+3235.8
-2, 1	-2381.8	- 985.1	- 155.8	+ 141.0	- 253.2
+Z ^Q X	+2538.4	+2090.1	+1769.0	+1534.7	+2834.5
-Z N	+4222.6	+2283.5	+ 853.3	- 378.3	-2234.9
D	+6599.0	+5132.0	+4074.0	+3156.0	+3582.2
+Z_ M_	+ 27023	+ 25824	+ 26158	+ 30694	+111564
-Z 4	+144651	+111327	+ 77704	+ 32818	- 29785
E	+171670	+137150	+103860	+ 63512	+ 81780
+BCD	+126,278,000	+83,919,000	+60_406_000	+44_985_000	+64,212,000
-AD ²	- 43.547.000	-26.557.000	-16,597,000	- 9,960,000	-12.832.000
2	_223 828 000	-184 704 000	_91 717 000	-59 515 000	-35 620 000
-0 L	-661,000,000	-104,108,000		-08,010,000	
$R (10^6)$	x) -138.90	-77.21	-37.91	-4.29	+15.76

ļ

•

۰

÷

(GLAUERT)

Aerodynamic $\mathbf{M}_{\mathbf{q}} = 0$

J	deg.	5.8	6.4	7.1	.8.5	11.0
A		+1	+1	+1	+1	+1
	2 W M_	-28.65 - 2.89	-25.90 - 1.06	-23.40 -0.259	-20.30 - 0.189	-15.60 - 0.88
B	q	+31,54	+26.96	+23.66	+20.49	+16.48
C	+Z +M ² +Z ⁰ M -Z ¹ M -Z ¹ M	-305. - 88.6 + 69.53 - 82.8 +406.9	-320. - 80.7 + 20.2 - 27.5 +408.0	-346. - 75.6 + 1.7 - 5.9 +426.0	-406. - 75.6 + 1.6 - 3.8 +483.8	-614. -181.7 + 19.0 <u>- 13.7</u> +790.4
	$\begin{array}{c} +Z \\ -Z \\ +Z \\ +Z \\ -Z \\ -Z \\ -Z \\ -Z \\$	+881.5 -2381.8 +2538.4 +4222.6	+339.2 -985.1 +2090.1 +2283.5	+ 89.6 -155.8 +1769.0 + 853.3	+ 76.7 +141.0 +1534.7 - 378.3	+540.3 -253.2 +2834.5 -2234.9
D	• •	+5260.7	+3727.7	+2556.1	+1374.1	+ 886.7
	+Z _E M ₀ -Z ₀ M _E	+ 27023 +144651	+ 2582 4 +111327	+ 26158 + 77704	+ 30694 + 32818	+111564 - 29785
E		+171670	+137150	+103860	+ 63512	+ 81780

+BCD -AD ² -2-	+67,514,000	40,993,000	+25,763,000	+13,622,000	+11,550,000
-BE R (10 ⁶ x)) -130.93	-72.59	-38,140,000	-14,93	-11.45

.

l

.

(GLAUERT) Aerodynamic M_q = -20.0

J deg.	5.8	6.4	7.1	8.3	11.0
A	+1	+1	+1	+1	+1
Z M	-28.65 -22.89	-25.90 -21.06	-23.40 -20.26	-20.30 -20.19	-15.60 -20.88
В	+51.54	+46.96	+43.66	+40 ,49	+36,48
+Z +Mg +Zq M -Zw Na	-305.0 - 88.6 + 69.53 -655.8	-320.0 - 80.7 + 20.2 -545.5	-546.0 - 75.6 + 1.7 -474.1	-406.0 - 75.6 + 1.8 -409.9	-614.0 -181.7 + 19.0 -325.7
C	+979.9	+926.0	+894.0	+889.9	+1102.4
+Z M -Z M +Z N -Z M -Z M	+6981.5 -2381.8 +2538.4 +4222.6	+6739.2 - 985.1 +2090.1 +2283.5	+7010.0 - 155.8 +1769.0 + 853.5	+8197.1 + 141.0 +1534.7 <u>- 378.3</u>	+12920.0 - 253.2 +2834.5 -2234.9
D	+11360.7	+10127.7	+9476.5	+9494.5	+13166.4
+Z_M ₀ -Z_M_	+ 27023 +144651	+ 25824 +111327	+ 26158 + 77704	+ 30694 +32818	+ 111564 - 29785
E	+171670	+137150	+105860	+63512	+ 81780

R (10 ⁶	x)	-11.26	+35.38	+82.11	+147.84	+247.31
-AD -B ² E	- <u>455</u>	,956,000-10 ,956,000-30	02,449,000-19	9,804,000 7,978,000	-104,124,000	-108,852,000
+BCD	+678,	,761,000-44	10,403,000+36	9,887,000	+342,107,000	+529,495,000

_

87

----- -

SUMMARY OF ROUTH DISCRIMINANTS

-

τ deg.	5 ₊8	6.4	7.1	8 . 3	11.0
M _q (KLEMIN)					
0	-41.97×10 ⁶	27•53×10 [€]	-16.76x10 ⁶	-2.32x10 ⁶	-2.69×10°
-4.388	51.767×10 ⁶	-34.073×10 ⁶	-19.322x10 ⁶	-3.486x10°	+4.865×10°
20.00	-119,15×10 ⁶	-64.51×10 ⁸	20.74×10 ⁶	+31.77×10°	+72.01×10 ⁶
(GLAUERT)					
0	-130.933×10 ⁶	-72.589x10 ⁶	-38.911×10 ⁶	-14.93×10 ⁶	-11.45×10°
-4.388	-138.895x10°	-77.212x10 ⁶	-37.908x10 ⁶	-4.290x10 °	15.760x10 ⁸
-20.00	-11,261×10 ⁶	+35.384×10 ⁶	+82.105x10 ⁶	+147.837×10 ⁶	+247.309×10°

Figure 1. - Stability limits and free-to-trim track for model used in investigation, showing the graphical records of the porpoising cycles. The region for which the calculations were made is enclosed by a neavy circle.

Figure 2. — The lower stability limit, at the speed investigated in the calculations, snowing required tail damping as a function of trim angle, with the graphical records of the porpoising cycles. This is a more detailed investigation of the region inclosed by a circle in figure 1.

Figure 3.- Steady-motion test data Model No. 294-9.V_m = 15.89 fps

NACA

I

--

Mga. 4,5

HAOA

Figure 6.- System of axes employed in stability calculations.

Figure 7.- Model No. 294-9.

Fig 7

APPENDIX

This appendix presents additional steady-motion test data for higher trim angles at the original speed and for a higher speed.

The data were obtained after the work described in the body of the report had been completed, and with the expectation of extending the number of comparisons between experiment and theory, particularly for trim angles in the vicinity of the upper limit. This plan was abandoned when it was found that the sharp curvatures in the moment curves, occurring at trim angles in the region of upper-limit porpoising, made it extremely difficult to deduce accurate values for the displacement derivatives in this region. If the displacement derivatives were inaccurately defined, it was obvious that the velocity derivatives depending on them would be inaccurate also and that the final values of Routh's discriminant would certainly be open to question. Thus it appeared that reliable comparisons between experiment and theory would be difficult to obtain. The data are presented in toto (figs. 8 to 19), however, so that any one desiring to do so may carry through the calculations.

Figure 15.- Model 294-9, steady-state characteristics, equilibrium for assumed aerodynamic characteristics.V_m = 21.18 fps, H₂30.

ALL C CALOR COLORS CALIF.

•

An in the second se

.

.

ے ا

.