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APPLICATION OF A NUMTRICAL PRO(XUXJRETO STRESS

ANALYSIS OF STRINGER-R%INPORCEDPANELS

By Joseph Kempner

SU??MARY

A numerical procedure, ag well as the underlying theory
and assumptions, Is presented for the calculation of the
strln~er 9tre?5es and shear stresses in reinforced panels.
The method may be applied to all panel problems in which
the loads may be considered acting in the plane of the sheet.

Examples are given to illustrate the use of the
method for axially loaded panels with and without rectan-
gular cut-outs and for the covers of box beams with and
without rectangular cut-outs.

The results of this procedure are co~nparedwith the
experimental data and the annroxlmate enpineerinp methods
of-analysis of previous NACk-papers fi=om’whichthe problems
are obthined.

INTROi)UCTION

Several naners have been written on the stress analysis
of sheet-stri~g~r panels loaded axially or as the cover bf
box beams. (See references1 and 2.) The solutions
presented In these papers .aregenerally sufficiently
accurate for most practical cases of construction and
loadin~ but are not ~eadily applicable to more &eneral
cases In which the cross section vartes and the loads
are arbitrarily distributed.

In the present paper a numerical procedure for the
stress analysis of flat-sheet and strlr~er combinations
of arbitrar~ construction and loading is presented and
applied to axially loaded panels and to the reinforced
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covers of box beams. The basic theory of the procedure
was originally developed in reference 3. Comparisons are
given of the results obtained by the numerical procedure
of the present report and the results obtained by the
approximate analyses and experimental results of
references 1 and 2.

The numerical procedure parallels that of Southwell?s
relaxation method and Crossts moment-distribution method
(references 4 and 5) but is so given In the present report
that the reader need have no pr6vious %nowledCe of these
techniques. The equations obtained in reference 3
are solved by a relaxation procedure, whereas in the
present paper a direct solution of simultaneous equations
is used.

SYMBOLS

A, B, C,... stringers; also used.as subscripts

AA, AB,... total effective cross-sectional area of
stringers A, B,..., respectively, square
inches

E Young?s modulus of elasticity, ksi

F internal direct force in stringer, kips

G shear modulus of elasticity, ksi

P external applied load or force, kips

R reaction at fixed ends of stringers, kips

s shear force, kips

x total internal force in x-direction, kips

a length of panel unit, inches

b width of panel unit, inches

t average sheet thickness of panel unit, inches

u displacement in x-direction, 10‘5 inch
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Au . elongation of stringer segment, 10‘5 inch

x distance along stringer, Inches.... .- ..

Y average shear strain ..

a- averagc stringer stress, ksi

T average shear stress, ksl

Subscripts:

1, 2, 3,... transverse stations; also indicate structural
unit when used with a and b

Forces acting on the structure and displac~ments of the
structure in the positive x-direction are positive.

BASTC TFEORY AND ASSUMPTIONS

Any structure may be considered composed of a nwber
of smaller units and, if suitable expressions are obtained
relating the deformations due to forces acting on these
units, the deformations of the entire structure can be
obtained b“

i
satisfying the conditions of’static equilib-

rium and t e continuity of the deformations of the units
of the loaded structure. For a stringer-reinforced panel,
the unit considered is a flat rectangular sheet bounded
on its longitudinal edges by stringers and on its trans-
verse edges by ribs. Such aunlt Is shown in figure l(a).
All the structures analyzed herein are symmetrical and
are loaded In the direction of the axis of symmetry. For
such problems the transverse displacements of the ribs
can be neg16cted, which is equivalent to assuming that
the ribs are rigid. As a consequence of this assumption,
the ribs bounding the edges of the unit need not be
those of the actual structure but”can be fictitious ribs
assumed to exist at the transverse edges of the units.
The procedure is not limited to symmetrical structures
but can be readily extended to more ~eneral problems
which involve displacements of the ribs (reference 6).

The hit problem.- If the corner B2 of the rec-

tangular unit of figure l(a) is displaced a distance
u in the positive x-direction while the remaining
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corners are held fixed as shown in figure l(b), internal
forces are created that tend to restore the structural
unit to its original rectangular shape~ These restoring
forces, which are assumed to be concentrated at the
corners, act in the directions indicated by the arrows
in figure l(b). From consideration of etatlc equilibrium,
the sum of the forces at the fixed corners A

~J ‘2‘
and

B1 must be equal to the force at the displaced’corner Hz ●

Because of the relL1.lvemotion of B2 with respect

to Bl, a direct force is dev610p6d in stringer B and

a shear force 1s developed in the sheet. The direct force
in the stringer is,from Ho~ke?s law,

E%
F=~u (1)

where F is the force acting in stringer E in the positive
x-direction and AB and a are the total effective
area and length, respectively, of string~r B.

The shear force in the sh~et can be assumed ~qual to
the product of th6 averaFe shear stress and the sheet
area and can be assumed equally divided between the poin~s
El and B2. From the static equilibrium of the sheet,

an equal force must exist at the other stringer and can
also be asspmed equally dlvlded between the points
Al and A~. .

If for the unit considered the ,s%ressis pssumed ~
constant al~ng a stringer, the average displacement of the
points on stringer B is u\2 and’the average shear
strain is u/2b ●whe.reb is the width of th6 panel. If
y is the avera e shear strain in the sheet and G is

fthe shear modu us of elasticity of the sheet, the
averape shear stress in the sheet is

T =yG”
.,

‘3 .

Consequently, if the averare sheet thiclmess Is t,
the total shear force U acting alc)n~etrlnger B is

(2)

u= ##ta (3)
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The sh6ar force assumed acting at each of the four corners
is then

. . . . . . .

s
+ ma

=
“ -m”

The total forces X
Als ‘~s %ls ‘d ‘B~ are

assumed to act on the four corners and are expressed
as follows:

XA =xA=g
1 2
. -u

4b
1

x--=F-~ I

(4)

(5)

Equations (5) constitute the solution of the unit problem.

Combinations of the unit problem.- The fundamental
consideration In he unit problem and in the three combi.
nations of it is the evaluation of the internal restoring
forces, which are assumed to act at the corner paints of
the structural units, when one corner point is displaced
a prescribed amount with all other corner points held
fixed. In figure 2, a displacement u. of any one of the
corner points ‘1s CIS A3s or C3 with all other points

held fixed results in elementary equations similar to
those of equations (5). The three combinations of the
unit problem are obtained as follows:

(1) If a.point such as ~ is moved while the
other points are fixed, the direct forces induced in
the two stringer segments *1% and JL2A3 must be

considered, as well as the shearing forces in the two
fields ad~acent to these sements
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(2) When B1 1s”displaced, a direct force occurs In
one stringer segment B1B2 hd shearing forces occur in
the two fields adjacent to this segment

(3) The most general combination of the unit problem
considered herein is that of.the displacement of a point
such as B2 Involving a direct force in the two stringer
se~ents B1B2 and B2B3 and shearing forces in the
four fields adjacent to these segments

Equations for the Internal forces for the most general
combination of he unit problemo- B~ isplace~
a dIstance uB2 In the positlve x-direction: the following
nine internal restoring forces X arise, which are assumed
to act at the corners of the structural units indicated
by the subscripts on X:. .

‘Gtal

()
— uB2
4b1

L( )1GtEtl +Gtq‘B . .. . — W&
F.“1

L* 4b1 4b2

?)

tal
~ ‘B2

C&-!)%
c-*B + ‘B Gtal + Gtal + Gta2

)

Gta2
—+—

al a2 4b1 ~ ~ ‘~”E

t)ta2~ ‘B2

()Gta2~ %2

>(6)



l?ACAARR MO. L5C09a 7

Calculation of displacements, stresses; and reactions.-

Conslder the general sheet-stringer structure shown in
figure 3. As each corner of the various structural units
B2, C2.&., B3, CS..., etc. Is displaced a distance

uB2# uc2D~osuB3J UC3””S etc”8 respectively, in the poeltive
x-direction with the remaining corners held fixed, the
internal restoring forces that result are given by a set
of equations sim$lar to equations (6). The total internal
restoring force caused by these displacements at any
potnt t3uchas B2 Is obtained by adding the values XB2 .

f
iven by the successive sets of equations. This force Is
herefore the sum of all forces at B2 caused by the
unknown displacement of B2 and the points surrounding
B2 and can be conveniently obtained by use of MaxwellFs
reciprocal theorem. If the equations for the most general
combination of the unit problem are written for any
corner point and”if the force and displacement subscripts
are interchanged, all the internal restoring forces
acting at the corner point considered are obtained; for
example, the total internal restoring force at B2
(fig. 3) can be obtained from equations (6) by inter-
changing subscripts on the X-force and u-displa”ce-
ment in each equation and adding the nine values of
‘B2 that result. When this total internal restoring

force is obtained for each corner point and equated to the
load or force applied externally at that point in accord-
ance with the prlnclplcs of statics, a system of simultan-
eous equations is obtained that establishes the eorner-
point displacements. With the distorted shape of the
structure known fr~m the solution of the simultaneous
equations for the displacements u, the ~tresses consist-
ent with the distortion are readily obtained.

If UAl and UA2 are the displacements obtained for

adjacent points Al and A2 on stringer A (see fig. 2),
the stress in this stringer is

( )~aAlA2 = uAl - ‘A2 al (7)

The stress thus calculated is the average stress for the
stringer segment ‘1%!“ Also, if UA1 and UBl are the

displacements obtained for Al and Bl, which are adjacent

— .— ——
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“point% on the cbordwise station 1, the shear stress T
in the panel at this statl~n between stringers A
and B iS .

If the structure Is fixed at one end, the reactions
R at the ends of tbe stringers are obtained by finding
the sum of’the forces transmitted to the fixed points
because of the displacements of the points surrounding the
fixed po~nts. If in flpure 3 the station at 4 is fixed,
then for point B4, I

Gta3

?

B Gta3

)

Gta3
RB4 =

Gta3
‘UA3 + —-— -
4b1 83 4b1

— u~3
4b2 + ~3 (9)

The stresses at the fixed ends are found by dividin~ each
reaction by the stringer area at the reaction.

General remarks.- In order to apply the numerical
procedur6 to a sh6et-stringer panel, the structure Is
divided into a convenient number of units. The number
of unknown displacements and equations is entirely
dependent upon the number of units chosen. If many
stringers are present, the combination of two or more into
a substitute “stringerwill ai& in the r~dtictionof the
unknowns. When the sheet thicknessand/or strln er area

fvaries,.the elastic properties of th6 Wits EA a
and Gta/4b are calculated with the average values for
each unit. If the structure is divided into equal units
and if the sheet or stringer dimenmons do nab vary,
only one set of elastic constmts need be calculated.

The displacement equations.may b6 solved by two
differ6nt m6thods: a relaxation procedure explained and
util.lzedin reference 3 or a direct solution of
simultaneous equations. A numerical example of the
application of the procedure is given in appendix A and
the displacement equations obtained are solved by a
simple direct method in appendix“B,

,.
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DESCRIPTION OF PANELS AND LOADINGS USED IN ANALYSIS

,,. , ,.
--A-s””a”check of’the applicability of the method of

analysis “tothe more complex problems of stress dlatri-
butlon, four problems are solved by use of the numerical
procedure.

Problems 1, 2, and 3.- The first three problems are
Goncerned with the calculation of stresses in the panel
with tapered stringers shown In figure 4(a).. This-panel
was used in the analysis and experiments of reference 1.
Beoause of the s~etry about the longitudinal axis, In
all three cases only one-half of the structure was
conslder6d In the analysis. The distlnguishinF features
of each problem are as follows:

Problem 1 - The end of the panel having the larger
cross-sectional area was rigidly fixed, while at the
other end two concentrated loads of 1.2 klps each acted
on the two outer stringers.

Problem 2 - By the addition of shear webs and com-
pression flanges, the panel was converted into the cover
of a cantilever box beam, the cross section of which is
shown In figure 4(b). The beam was loaded with four
equally spaced loads of 0.225 kip each on each web as
shown in fi~ure 4(c). The end of the panel with the
larger cross-sectional area was at the root of the beam.

Problem 3 - Two rectangular cut-outs w6re then made
in the panel. These cut-outs were located symmetrically
with respect to the longitudinal center line of the beam
and extended from the flanges to the second stringer
from the flanges. The ends of the cut-outs were 24 and
36 inches from the tip of the beam. A load of 0.6 kip
was applied to the tip of each shear web.

Problem 4.- The fourth problem solved by the numerical
procedure was the 16-stringer tension panel of reference 2.
A transverse cross section of the panel is givm in
figure‘4(d). The panel was 144 inches long and contained
a rectangular cut-out at its oenter. The cut-out
analyzed herein had a total length of 30 inches parallel
to the longitudinal axis of the panel and cut four
stringers on each side of this axis. The panel was
axially loaded by a tensile force of 15 kips uniformly
distributed to the ends of the stringers. Because of

— —— .— —-— -—. —— — . .— — . . .—
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the double symmetry of the p~elj only one-fourth of
the structure was considered.

DEZAIL9 OF ANALYSIS

In the”four problems solved, the entire width of
sheet was assumed-effective‘In tension and thetiifore
added to the stringer areas with the exception of a local
region n6ar the sl~le concentrated load of -p”rob.lem1.

Problem l.- Tn order to apply the numer,lcalpro-
cedure to the tapered-stringer tension panel the structure
was assumed divided into six bays of equal length. For
each of the twenty-four points resulting from the inter-
section of a station line and a stringer, a displacement
equation was obtained. Because the str!ng~rs tapered,
the area at the.midpoint of e~h stringer se~ent waa
used to obtain the displacement coefficients. The half
width of sheet adjacent to the loaded stringer In the
structural unit nearest to th~.appl.ledload was assumed
ineffective in tension since this region”was evidently
too near to the concentrated load for.a bui}d-up of
appreciable forcecsin it. “ .,-,

At ‘eachpoint of the’sti?ucturecon~lder~d, an “eq~tion
was written re.latinpthe internal”and external forces.
The solution of this”sys”temof 24 simultaneous equaklons
gave the.displacement of each point relative to.$ts
original.position. “From these displacements, thestregses
‘hnd reactions of the structure were obtdned. The span-
wiee stringer stress.distrlbutionl~~swell as the..st~esses
computed by:“thesubstitute single-stringer method an

t
the

experimental data of r~ference 1 is given in figure ..
In appendix A & ‘simplifiedanelysl$ of this problem .,
involving but-six equations i$ presented in detail.

Problem 2~= ficept”for”thase equ~tions confa:ning
. coefficients dependent upon the.fla~e area, the equations

used for the solution of the previous problem were
utilized for the stress analysis of the box beam with four
concentrated loads: For each of the six bays, the
effective area of the shear web was added.to the area of
the flange of the tension panel. This additional area
was the sum of one-sixth the ar~a of the shear web and
the area of the flanged portion of the web sheet
(fig. 4(b)). The running shear in the web was assumed
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to act as loads concentrated at the six statlone along
the flange. In figure 6 the stringer ‘stressdlstrl-
butlon-obtained tnom -thenumer~cal procedure Is compared
with the experimentally obtained “stressesand with the
stresses obtained from the substitute single-stringer
method of analysis.

Problem 3.- The box beam with two rectangular cut-
outs In ts cover was dlvlded into five bays, three
12-inch bays toward the tip and two 6-inch bays near the
root. As in the preceding beam problem, the running
shear in the web was assumed to act as concentrated
loads at the points of intersection of the flange and
station lines. The computed and the experimental
stresses are plotted In figure 7.

Problem 4.- In order to reduce the number of
6quations required for the stress analysis of the
uniformly loaded 16-stringer tensim panel with cut-out,
th6 actual structure was simplified. Instead of the
full half-length of the panel, only 40 inches of the
pan61 on either side of th~ cent6r line of the cut-out
was used and the external loads w6rtjassumed to be
Introduced at the new end station. In addition, the
area of th6 out6r string6r and the adjacent strlnpcr
wer(~combined and the resultant substitute stringer
placed at their centroid. The three strinpers nearest
the longitudinal center llne of the parlelwere also
combined. The simplified structure consisted then of
five stringers instead of the eight of the actual struc-
ture. A unit 17.5 Inches long was chosen at the tip.
The length”of each of the remaining three units along the
span was 7.5 inches. The strln~er stress distribution
Is plotted In figure 8, along with the exp~rlmental str6sses
and the str6sscs obtained from the m6tklodsof analysis of
reference 2. It should be noted that the forces on the
substitute stringers were assumed uniformly divided
among the actual stringers comprising the substitute
stringers.

DISCUSSION

Examination of figures 5 through 8 reveals that the
stresses calculated by the numerical procedure are in
good agreement with the experimental and computed stresses -
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of references 1 and 2 for all conditions and loadings
of the tapered-stringer panel as well as for the
16-stringer tension panel.

In figure 6 the stresses computed by the numerical
procedure for the central stringers C, D, and E of
the approximately uniformly loaded bsx beam are In better
a~reerrentwith the stresses obtained from the experi-
mental data than are the stresses found by the substitute
single-stringer method of reference 1, particularly in
the region near the root. Shilar results are observed
for the center stringer D of the tip-loaded box beam
(fig. 7). Although for these cases the stresse~ near
the longitudinal center line of the be~ covers are of
minor importance, for box beams with cambered covers
they may be significant.

For the 16-strSnger tension panel the assumption
that the loads were introduced at a station 40 Inches
from the transverse center line of the structure caused
discrepancies at this station between the results of
the procedure and those of experiment. (See fig. 8.)
Tnese stresses, hawever, are of minor importance com-
pared with the high stre~ses that exist near the cut-
out. For the cut stringer nearest to the longitudinal
e@e of the cut-out, considerably better agreement with
the experimental stres~sq 1s plven by the numerical pro-
cedure than by the simplified three-stringer method.

If a very detailed stress analysis is not required,
the use of a small number of stations and stringers is
helpful in considerably reducinF tinenumber of’equations
needed. This reduction Is readily accomplished if
substitute stringers and large bays are used for the
portions of the structure that are some distance from
Isolated concentrated loads or dlscontinuities. In
this mann~r the more important stresses may be obtained
with but a relatively small amount of computation
(see appendix A).

Although the structures considered in the present
paper had no chordwise variations in stringer area, no
difficulties are encountered when the numerical proce-
dure is applied to problems having such variations.
This fact is in contrast to the method of reference 1
which is based upon the assumption of a reasonably
uniform chordwfse distribution of the stringer area.

-———— - , .,. .. . m
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.. ----

Beoause all formulas utilized in the numerloal
prooedure are elementary, no C!iffioultyshould be
encountered in solvlng successfully panel problems
similar to those discussed herein. The solution of the
equations, whloh constitutes by far the largest part of
the computations, can be readily made by a oomputer
using a slide rule, if slide-rule accuracy is sufficient,
or a calculating machine, If greater accuraoy is desired.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va.

— — —. — . _— — ——
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APPENDIX A

NUMERICAL IHCAMPIX,PROBLEM 1

A detailed application of the numerical procedure
as applied to tl?ecomplete solution of problem 1 is
given in this appendix. As mentioned previously in
the discussion of problem 1, only half of the structure
is considered because of its symmetry.

In order to simplify the actual structure for
analysis, a substitute strin~er composed of half the
center-line stringer and the adjacent stringer was
assumed to act at the centroid of the combination.
In~tead of consideri

%
six bays as in the section

‘iDetailsof Analysis, only two were chos~n: a 1~-inch
bay at the tlo and a Z2-inch bay at the root. The
resulting simplified structure is s.~ownin figure 9.

In table 1 the average effective areas of the
stringer segments and the resulting elastic constants
are tabulated. The areas are those &t the center of the
stri~er segments and include strin~er area, effective
sheet area, and, for the loaded str!nger, the small area
of sheet to the left of the center line of this stringer.
The effective area of sheet for ti.~substitute stringer
was equal to tb.atof the original structure.

ELASTIC CCNWANTS F’GR‘3TR1NGF3?S

i li~A

33
F.AB

Bay AA
‘c

‘r! ‘c a -ii- ‘—a T

1-2 0 ● 184 C.21O 0.315 16 124 142 213
2-3 .251. .275 .413 Z2 84.8 92.9 139

The value of G (4,320 ksi) used for the calculation
of the shear coefficients was obtatned by using values

ofE= 10,800 ksi and $ = 0.4, which were the values
.
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used in reference 1. Because the value of ~ = 0.4
E

amroximate value, the resulting value of G should

15

ia an

be
o~nsidered @s”a-.flc-t-lt-louaone that does not correspond
to actual material properties.

The shear coefficients are “

x In3 x O.nls x 16

4x4

64.8

4.32 X 103 X0.015 X 16
4 X 5,20

49.8

4.32 X 103X 0,015 X 32
4x4

129.6

4.S2 x 103X 0.C15 X 32
4 X 5.20

95.6

(Al)

The displacement equations can now be obtained; for
example, if the equilibrium ef the forces at point Al 1s
considered, the followinp equat~.onresults:

which, upon substitution of the proper values for the
coefficients from table 1 and equations (Al), yields
the equation

- 188.8uA1 + 64.8UBl + 5g.2UA2 + 64.8uB2 + 1.2 X 105 = O

in which the displacements are In hundred-thousandths of
an inch. This equation states that the sum of the
internal forces at point Al due to the unknown displace- “
ments of the points, the motions of which directly affect
the equillbriumat potnt Al, and the external load
acting at this point is equal to zero. If the equilibrium
of each point is considered, the six equations for the
solution of this problem are obtained and are as given
in table 2.
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TABLE 2

SIMULT~.OUS EQUATIONS AND DISPLACEMENTS

[
Coefficients of displacements I

u~
1

llB1
% ~ ‘A2 %2 W2

-188.8 64.8 59.2 .64,8

64.8 -256.6 49.8 64.8 27.4 49.8

49.8 -262.8 4gea 163.2
—— —

59,2 64.8 -40Z.2 3.94.4

64.8 27.4 49.8 194.4 -578.7 149.4

49.8 163.2 — 149.4 -501.4

Constants II
=3=---l

--=---l
--Q

o I
o I

Dlsplacevmrits

1120 I 575.01 376.8! 457.91 417.11 304.11

A discussion of the method of solutlon with Its appli-
cation to these equations Is given in appendix B.

With the displacement? from table 2, the elastZc
constants in tc~ble1, and the shear coefficients cal-
culated In equations (Al), the loads St the fixed end
may be calculated from equations similar to equation (9).
Thus,

)(-129.6 45?.9XKJ-~A3= @4.8 ,
9+12’= ’@’70’ “o-?

= -0.205 + 0.540

= 0.335 kip

RB3= 129.6(457.9XIO-G>@2.9- 129.6- Q9.Cj@7.1X IO-~

( )+93.6 304.3.X 10-5

=0.594 - 0.569 + 0.303

=0.328kip

%3 ( )[ )( )= 99.6 417.1 x10-5 + 39.0 -99.6 304.1 X 10-5

=0.416 + 0.120

=0.536 kip
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The corresponding

-. .m. . . . . .

The stringer
se”~ents

stresses at the

-0.335aAk~=
3*

-=

‘B3 = 0.318

stresses at the
are obtained by

reactions

1;136 ksi

1.031 ksi

1.124 ksl

mld~olnts

17

are

stringer the-use of equations
similar to equation (7) and are ~omputed in table 3.

TABLE 3
CALCULATION OF STRINGER STRESSES

Displacement
Elongation of Average stress

StatIon segment
u Au (k%)

Stringer A I
J

1 1120

662.1 4.470

2 45’7.9

457.9 1.550

3 0
i

Stringer B——
1 575.0 -

157.9 1.070

2 417.1

417.1 1.410

3 0

Strlmer C

1 I 376.8 I I
I I 72.9 I 0.491

2 304.1
304.1 1.030

3 0

——
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The shear stresses are computed in table 4 with the
ald of equations similar to equation (8).

TABLE 4

CALCULATION OF WEAR STRESSES

1 544.6

21 40.0

Shear stres
between

stringers A
and B

(k:i)

5.@80

@.433

o

Relative dis-
placement of
stringers B

and C
(UB - @

198.2

113.0

0

Shcm stress
between

stringers B
and C

(k;l)

1.650

0.939

0 I
If the stringer stresses computed in table 3 are

comared with the curves of fi~ure 6, which were obtainsd
froh the solution of 24 equatl~ns, It is apparent that
there is little difference between the rimpl~ 6-point
solution and the more detallcd 24-point solutlm.
Evidently for the probl~m of tho slmpl.e-tensionpanel
only a e~.allnumber of cquatlons is required to compute
the maximum rtress~s.
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SOLUTION ‘OF”ZlQUATION!3- - -

Of the several numerical methods available for the
solution of stiultaneous algebraic equations, the method
which appears to be most satisfactorily applied to the
equations arising from the numerical procedure is
Doolittlets method as piven in reference ‘7. This method
for the solution of systems of normal linear equations
(llnear simultaneous equations symmetrical about the
principal diagonal) is the Gaussian substitution m~th~d
shortened by taking advantage of the symmetrical
distribution of the coefficients in the equations.

The solutlon of the six simultaneous equations
obtained in table 2 of appendix A Is given in table 5..
Only those coefficients to the right of the prlncip.aL--- ..
diagonal are piven in the equations In rows (1) to (6)
of the table. The numbers in the column at the extreme
right of each row are the algebraic sums of all the
coefficients and the constant terms that appear in the
actual equations conta!ned In the rows and are used to
provide a continuous arithmetic ch~ck. Fccallseof the
sy~metrical form of the original equations, these
summations (including the t~r~ls not W1’~tlXn) can be
obtain6d by addin~ the numbers from right to left in the
rows as far as the main dla~onal and then continuing
the addition upward. In each row thu same arithmetical
operations arc p~rformed on the sn?””?nationterms ds are
pGrformed on the actual t~rms of the ‘,quationsand the
summation thcr~fore provides a continual check on the
arithmetical work.

The equations are solved systematically in thG
following manner, as indicated by the operations given
at the right in table 5X The first equation is enter~d
In row (7) and the coefficients of the displacements
other than the first one are placed In brackets to
facilitate reference. It should b6 noted that the
summation term Is also entered. In the next step
(row (8))the equation Is divided through by the negative
of the

‘Al
coefficient, giving in effect a solution Of

‘Al
In terms of the remaining unknowns and the constant,

. .-.

.—



‘1

20 NACA ARR No. LsCOga

A double line is drawn to indicate that the equation 1s
in its modified form. Evidentl~ the summat!on term checks
the arithmetic for It 1s equal to the sum of the quanti-
ties to Its left. The second equation is written in
rcw (9). In order to repreqent UF1 in terms of the

remaining variables, lt fs now necessary to ellminate the

‘Al term from this equation. Because of the form of

th~ equations, this elimination is readily accomplished
by multiplying the coefficients in row (E?)by the
coefficient of %1 In row (7) and addin~ the products

to the equatim rr;rescnted by row (9) in arder to
obtain row (11). The heevy hcri~ontal line ?ndicates
that row (n) is the result of adding rows (9) and (10).
In row (12) the dis~,lacemenh U31 is given in terms
of the remaining variables and a constant. A check on
the preceding calculations is obtained by conparin~
the summation term with the sum of all the values to
its left.

Each cycle generally consists af 5ringin~ down ths
next equation to be cons~dered and eliminating from It
the un’knowndisplacements previously considered. The
elimination i~ accor,pl:shedsfstemutlcally by addin~
to this equation the products of the brack~ted terms
in the column above the first term that appears h the
equation and the nurbers In the row Immeciiatelybelow
and to the ri~ht af each bracketed number. Ry dividing
the sums by the ne~atlve coefficient of the f’irst
number in the row of sins, an equation is obtatned that
in effect ~xpressee the dominant term of the equat?.on
considered In terms of the rema!.nirgvariables and a
constant. This pZIOCCFS IS contin~ed until the last
unknown Uc2 fS determined in terms of a constant

only. The remaining unknowns ~:aybe comFuted by
substitution in the double-und~rlined equations. In
rows (3’7)to (43) this substitution is done system-
atically. The terms from left to right in row (37)
are the constants in the double-underlfrwd equatlms
obtained by starting at row (5) and &oing down to
row (36). Thc quantities In row (3F) ar~ tliepraducts

‘f %2 and the coefficients of %2 from the

double-underlined equations and are enterec?in a
-. manner similar to the constant terms. The value of

uB2 1s obtained by adding the numbers in rows (37)
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and (38) in the ‘B2 column* With u= available

the values In row (39) are calculated as were those in
row.(3.8).. The process is.continued until the last
unknown Is determined as in row (43).

The solution of the six equations indicates that
the computations may be carried out readily on a
slide rule If slide-rule accuracy is sufficient. In
addition th6 practically mechanical procedure and the
constant check ensure a rapid and accurate solution
of simultaneous equatlone. If the system of simultaneous
equations is to be solved by a computer using a
calculating machine, more rapid solutions can be obtained
by using the Crout method which is described In detail
in reference 8.
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TASLS 5

SOLUIIQN OF EC-OATIOMS

,.

Row
‘Al %1 %1 “4 “% “% C“-t”n” z

0p9rmti0n

(1) -188.8 64.8 59.2 64.8 Iso,mo 120,000

(2) “’ :288.6 40.a 64.0 27.4 49.8 0 0

(3) -262.6 49.6 1ss.2 o 0

(4) -403.2 194.4 0 -84.8

(5) -576.7 149.4 o -92.9

(m .501.4 0 -1s9.0

($) -166.6’ [64.0] ~9.z] @4.6] ,120,000 120, coc (1)

(8) (-1) o .s4s2 0.S1S6 0.3432 ~SS .6 6S5 .6 (7) + -(-186..8)

(9) -256.6 49;8 64.6 27.4 49.0 0 ‘o (2)

(lo) 22.2 20.s 22.2 41,192 4Z,190 (2.)x p4.q from (7)

(11) -234.4 [;9.6] [65.11 l@?.6] [49.8] [ 41,190 41,190 (9) + (10)

(12) (-U 0.== 0.3631 0.2116 0.212s 175.7 175.7 (11) + -(-234.4)

(1s) -262.8 49.s 163.2 0 Q (3)

(14) 10.6 K1.oe 10.6 10.6 0,750 8,750. (12) x [4!3.8] frlm (11)

(15) ~-252.2 [18.02] po.3J ~7s.8] 0,750 8,750 (13) + (14)

(16)
I

(-1) 0.0717 0.2391 0.6891 34.69 34.69 (16) + -(-252.2)

(17) -403.2 194.4 0 -e4.6 (4)

(18) 18.6 20.3 37,630 S7,630 (0) s [59.2] ?mn (7)

(19) 30.9 18.0 18.C9 L4.9s0 14,960 (U) x @5. q from (11)

(20) 1.3 4.3 12.46 627 6S7 (M) x [1S.08] from (15)

(21) -352.4 [237.0] kO.64j 53,210 53,120 (17) + tie) + (19) + (20)

(22) (-1) 0.67t?5 0.0867 151.0 1s0 .7 (21) + -(.352’.4)

(23) -SW .7 149.4 0 -92. v {5!

(24) 22.2 41,190 41,190 (8) x [64.8] fPorn (7)

(25) 10.5 10.5 a,715 8,71s (12) x [49.6] from (11)

(26) 14.4 41.6 2,022 z,092 (16) x [60.3] from t151

(27) 159.4 ZO.5 39,7eo 35,720 (Z2) X [2S7.0] from (21)

(28) -372.3 r222.0] 87,780 87,620 (2S) + (24) + (25) + (26) + (27)

(29) (-11 0.5963 235.0 Z35.3 (Z2J + -(-372.3)

(30) -601.4 0 -139.0 (6)

(s.1) 10.6 6,7S0 8,750 (12) x [49.8] from ( 11)

(32) 119.6 6,029 6,o29 (16) X [173.e] from (15)

(33] 2.7 4,611 4,602 (22) x [30.54] from (21)

(s4) 132.4 62,350 SZ,240 (29) X [222.@ from (28]

(35) -235.9 71,740 71,480 (30) + (31) + (32) + (33) +[34)
.—

(36) (-1) 304.1 30s (35)+. -(-23S.9)

(37) 635.6 175.7 34.69 151.0 233.8 304.1 constant. from (8), (12) , (16), (22), (29), (36)

(36) 64.6 209.6 26.4 161.3 304.1 = ~ W,2 x Coefficient of WZ from (IZ) , (16) , (22), (29)

(39) 143.1 88.s 9,2.7 2S0.5 417.1 = UB ‘B2 x coefficient “f %2 ‘rm ‘e) J ( 12), ‘le. - ’22)

(40) 143.6 166.3 32.8 457.9 = u
“As

x coefficient mf UA2 from (S), (12) , (16)

(41) Sol s76.8 z‘ %1 -~
x Coefficient of * from ( 12)

(42) is.7s S75.O = Usl

(43) 1,120 = UA1

WI x c.efficl*nt of us: frm (S) .
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