NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WARTIME REPORT
 QRIGINALLY ISSUED
 December 1941 as
 Memorandum Report

ITFT AND DRAG CHARACTHRTISTICS OF A LOW-DRAG AIRFOIL WITH SLOITHD FIAP SUBMITTIED BY CURIISS-WRIGHT CORPORAIION

By I. H. Abbott

Langley Memorial Aeronautical Laboratory Langley Field, Va.

WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. 'They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

IEMMORANDUM REPORT

for
Materiel Division, Army Air Corps
LIFT AND DRAG CHARACTERISTICS OF A LOW-DRAG AIRFOIL WITH SLOTTED FLAP SUBMITTED BY CURTISS--WVIGITM CORPORATION

By I. H. Abbott

INTRODUCHTON

A 2 l-inch chord wooden model equipped with a slotted flap and submitted by Curtiss Wright Corporation was tested in the Langley two-dimensional tunnel by request of the Materiel Division, U. S. Army Air Corps. The model represented a wing section of the P-60A airplane and was of, or approximately of, the NACA $66,2-118$ section. The model was equipped with a 0.25 c slotted flap with the lip on the upper airfoil surface at approximately 90 percent of the airfoil chord. This flap deflected in such a mannor as to keep the slot closed until a doflection of over 15 degrees was obtained. The maxinum flap deplection was nominally 30 degrees with an actual limit of 32.5 degrees set by the model construction. The nodel was equipped with pressure distribution orifices.

The tests reported herein were limited to measurements of lift and drag at various flap deflections because these measurements could be obtained quickly as compared with
pressure distribution measurements. Most of the data were obtained at a Reynolds number of about 6,000,000, Drag coefficients were obtained by the wake-survey method.

Lift coefficients were obtained by means of an integrating lift manometer which integrated the lift reaction on the floor and ceiling of the windmtunnel test section. ${ }^{1}$

RESULTS AND DISCUSSION

Lift characteristics obtained at flap derlections of 0, 5, 10, 15, 20, and 30 degrees are shown in figure 1 for a Reynolds number of about $6,000,000$. A few points obtained near maximum lift are included for a flap deflection

Flap deflection δ_{f} $($ deg $)$	K
0	0.001
5	.006
10	.013
15	.017
20	.032
30	.032
32.5	

of 32.5 degrees. A maximum lift coefficient of 1.51 was obtained with the rlap retracted, and of 2.58 with the flap derlected 30 degrees. Increasinc the flap deflection to 32.5 degrees increased the maximum lift coefficient to 2.67 . Tests at other values of the Reynolds number showed practically no variation of the marimun lift coofficient with Reynolds number betweon 3.0 and 7.5 million for a flap deflection of 30 degrees.

Drag coofficients are plotted in rigure 2 against lift coofficient over the low-drag ranges for the various flap derlections. The data show that this flap is useful in extending the low-drag range to hicher lift coefficients. All drag data presented for flap deflections of 5 and 10 degrees, and the lowest drag curve presented for a flap deflection of 15 degrees were obtained without any modification of the gap which appeared in the lower surface as the flap was deflected. At a flap deflection of 15 degrees, this gap increased in size to such an extent as to pemit errors to appear in drag measurements made by the wakesurvey method because of possible spanwise flow of low-energy air within the gap. Dams were accordingly inserted in the gap on each side of the survey station to prevent such spanwise flow, and check points were obtained at the high-lift end of the low-drag range. The drags thus obtained were
sonewhat higher than those originally obtained. The gap was then completely filled and faired over. The drag in this condition was somewhat higher than that obtained in either of the other conditions. It is believed that the highest drags should be taken as the conservative ones for this flap deflection. Dams were placed in the slots to prevent sponwise flows for all higher flap deflections.

LancleJ Memorial Aeronautical Laboratory, National Advisory Committee Por Aeronautics, Lameley field, Virginio, December 2, I94i.

