which the air is turnod by tho blades. A yaw survey with no blados in tho tunnol and with straight walls showod that, in tho rogion botwoon tho socond and the fgirth blacics, the air anglo was constant to within $1 / 2$.

It was found in thoso tosts that tho static prossuro in tho survoy plano ono-half chord bohind tho airfoils was alvays close to atmospheric prossuro and this fact is usod lator to simolify tho analysis.

SYMBOLS

α_{1} anglo botwocn initial air and tangent to concave surface of blades
α_{0} angle botween mean air and tangent to concave surface of blanes
q local dynamic pressure
q_{1} dynamic pressure of initial air
q_{2} dynamic pressure of air one-half chord behind blades
qo dynamje pressure of mean air
q_{f}.final dynamic pressure of air after idealized mixing
p_{1} static pressure measured by row of orifices ahead of blades
$p_{a} \quad$ static pressurc one-half chord bohind the blades, equal to atmospheric pressuro
Δp pressure rise across cascade ($p_{2}-p_{1}$)
p_{f} İinal static pressure after idealized mining
u_{1} velocity of initial air
$u_{a x}$ velocity in arial airection
u_{z} velocity of air behind olades
$u_{z_{0}}$ velocity of air outside vake in plane of A_{z}
u_{0} mean volocity
$\Delta u \quad$ vector difference of velocities ($u_{1}-u_{2}$)
u_{f} final velocity of air aftor idealized mixing
S arca of blade
s solidity, chord of blades divided by gap between them
$C_{I_{I}}$ lift cooificient (Iift/ $a_{I} s$)
$C_{I_{0}}=\frac{\text { Iift }}{q_{0} s}=\frac{q_{0}}{q_{I}} C_{I_{I}}$
$A_{1} \quad$ crossmsectional area of initial air stream that passes between adjacent blades
A_{z} area of air stream botwoon adjacent blades one-half chord behind blades
θ anglo through which air is turnod by blados
$\rho \quad$ air density
$\Delta H \quad$ total-hoad defoct
β stagecer
F force on blades

DATA ATD ATA工YSIS

Turning effectivoncss of the blados.- The anglo θ through which tho air was turned by the blades is plotted in figurc 2 against α_{1}, the anglo botwoen tho initial air and the tangont to tho concave surfaco of the blados. Tho anglos givon aro avorages takon ovor tho air in tho contral vortical plano botween tho socond and the fourth blados with tho rogion in tho blade wakes excluded. It will bo noticod that $d \theta / d_{1}$ is closc to unity, which illustratos that tho bohavior of tho cascado with a solidity of linity is much closor to tho infinite-solidity caso $\mathrm{d} \theta / \mathrm{d} \alpha_{1}=1$ than to tho isolatod-airfoil caso $\mathrm{d} \theta / \mathrm{d} \alpha=0$.
tomary to base blade characteristics on "meanmair" conditions. A mean-velocity vector u_{0} (fig. 3) halfway between the initial alr vector u_{1} and the firmi air vector u_{2} is used as the basis for determining q_{0}, α_{0}, and $C_{I_{0}}$. In figures 4 and 5 the pressure distributions obtained from orifices in the contral airfoil are given. The quantity plotted is the difference between initial impact pressure q_{1} and local static pressure divided by q_{0}, which is equal to the local dynamic pressure q divided by q_{0}. The values of atmospheric pressure p_{2} and the static pressure ahead of the blades p_{1} are also indicated on the graphs as differences in total head dim vidad by q_{0}.

The valuos of lift coefficionts ${ }^{C} I_{0}$ givon in figures 4 and 5 wore obtained from the pressure distributions by the use of a planimetor. They are plottod as circles in figuros 6 and 7 . In ifgurc 7 tho lift coofficionts $C_{I_{1}}$ and anglos of attack α_{1} aro basod on initial air conditions.

The forco on tho blados can also be computed from momentum considerations. Thore is a forco parallel to tho stagger line owing to tho fact that tho air has boon turnod, por blade

$$
\begin{equation*}
\rho u_{a x} \Delta u S / s \tag{1}
\end{equation*}
$$

Thoro is a forco porpondicular to tho staggor lino owing to tho prossuro risc across tho cascado, por blado

$$
\begin{equation*}
\Delta \mathrm{ps} / \mathrm{s} \tag{2}
\end{equation*}
$$

Tho squaro of tho force on tho blados is thon

$$
\begin{equation*}
\mathbb{F}^{2}=\left(\rho u_{a x} \Delta u S / s\right)^{2}+(\Delta p S / s)^{2} \tag{3}
\end{equation*}
$$

If tho drag forcos aro nogloctod, this forco can be rolatod to tho lift coofficiont $\mathrm{C}_{\mathrm{I}_{1}}$ to givo

$$
\begin{equation*}
C_{I_{I}}=\frac{F^{2}}{\left(\frac{1}{2} \rho u_{I}{ }^{2} S\right)^{2}}=\left(\frac{2 u_{a x} \Delta u^{2}}{u_{1}{ }^{2}{ }_{s}}\right)^{2}+\left(\frac{\Delta p}{q_{1} s}\right)^{2} \tag{4}
\end{equation*}
$$

From figure 3

$$
\begin{aligned}
& \frac{u_{a x}}{u_{1}}=\cos \beta \\
& \frac{\Delta u}{u_{1}}=\frac{u_{a x}}{u_{1}}[\tan \beta-\tan (\dot{\beta}-\theta)]
\end{aligned}
$$

Then

$$
C_{L_{1}} 3=\left[\frac{2 \cos ^{a} \beta[\tan \beta-\tan (\beta-\theta)]}{s}\right]^{2}+\left(\frac{\Delta p}{q_{1} s}\right)^{2}
$$

or in tho caso covorod by thoso tosts $\beta=45^{\circ}$ and $s=1$, so that

$$
\begin{equation*}
C_{I_{1}}{ }^{2}=[1-\tan (\beta-\theta)]^{2}+\left(\frac{\Delta p_{1}}{q_{1}}\right)^{2} \tag{5}
\end{equation*}
$$

Tho valuos of $C_{I_{1}}$ and $C_{I_{o}}$ obtainod from oquation (5) aro plottod ageinst α_{1} and α_{0}, rospoctivcly, as crosses in figuros 6 and 7 . Tho agrocment botwoen the two mothods of calculatiag may bo tokon as a moasure of the acouracy of tho proscnt invostigation. In figuro $8, \mathcal{C}_{I_{0}}$ is plottod against a_{1} to sorvo as a corrolation botwoon tho two mothods of cxprossing tho data.

Pressuro riso across tho cascado.- The pressure rises across the cascade - that is, the differences between the static pressure measured ahead of the blades and the atmospheric pressure - divided by the initial dynamic pressures are plotted as circles in figure 9. This.plot can be compared with the pressure rise that would have been obtained. if no energy losseshed occurred. In the absence of energy Losses, the prossure rise cn be determined from figure 10 . From the figure and the fact that the fluid may be considerod incompressible.

$$
\begin{equation*}
\frac{u_{2}}{u_{i}}=\frac{\cos \beta}{\cos (\beta-\theta)}=\sqrt{\frac{q_{2}}{q_{1}}} \tag{6}
\end{equation*}
$$

and Erom Bernoulli's theorem

$$
\begin{align*}
& p_{2}-p_{1}=q_{1}-q_{2} \tag{7}\\
& \frac{\Delta p}{q_{1}}=1-\frac{q_{2}}{q_{1}}=1-\left[\frac{\cos \beta}{\cos (\beta-\theta)}\right]^{2} \tag{8}
\end{align*}
$$

Points obtained from equation (8) and tho measured values of θ are plettod as squares in figure 9. It can be scon from figure 9 or figure 1 that the blades continue to tura the air evon aftor they are completely stalled. The pressure rise that might be expected to accompany the increase in the area of the stream produced by the turning, however, does not occur.

Iosses in the cascade.- The difference between the curves oi figure 9 indicated by circles and those indicated by squares must be attributed to energy losses in the flow through the cascade. In order to aeasure the part of this discrepancy that should be ntiributed to the drag of the blade, a rake of totel-head tubes was used to survey the wake in the contral vertical plane one-half chord length behind the central blade. A first approximation to the blade-drag losses con be found from a simple totel-head integral. The energy defect (assuming constant static pressure) is

$$
\begin{equation*}
\text { Energy defect }=\int_{A_{2}} u_{2} \Delta H d A_{2} \tag{9}
\end{equation*}
$$

where ΔE is the total-head defect in the element of area dAz. If the total-head defoct is not very lareo anywhere in the woke $u_{z} \cong \bar{u}_{2}$ (the average of u_{z} over A_{z}) and the onergy defect may be written

Energy defect $=\bar{u}_{2} \int_{A_{2}} \Delta H \partial A_{2}$
Equation (10) was made nondimensional by dividing by the total kinetic energy entering the cascade to obtain
$\frac{\text { energy defect }}{\text { inftial kinetic energy }}=\frac{\bar{T}_{a} \int_{A_{2}} \Delta \text { HaA }_{2}}{q_{1} u_{1} A_{1}}=\frac{\int_{A_{2}} \Delta H a A_{3}}{q_{1} A_{2}}$

This quantity is plotted in figure 11.
The pressure rise across the cascade will now be corrected for these measured blade-drag losses. Since the static pressure was nearly constant cverywhere,

$$
\Delta H=\frac{1}{2} \rho u_{z_{0}}^{2}-\frac{1}{2} \rho u_{z}^{2}
$$

or

$$
u_{z}=\sqrt{u_{z_{0}}{ }^{2}-\frac{\Delta H}{\frac{1}{2} \rho}}
$$

and from continuity

$$
u_{1} A_{1}=\int_{A_{z}} u_{2} d_{2}=\int_{A_{2}} \sqrt{u_{z_{0}} z-\frac{\Delta H}{\frac{1}{2} \rho}} d A_{z}
$$

hence

$$
I=\frac{A_{2}}{A_{1}} \int_{A_{2}} \sqrt{\frac{u_{2}{ }_{0}}{u_{1}{ }^{2}}-\frac{\Delta H}{q_{1}}} \frac{d A_{2}}{A_{3}}
$$

Now since ${ }^{W} z_{0}$ is the volocity outside the wake

$$
\frac{1}{2} \rho u_{1}^{2}+p_{1}=\frac{1}{2} \rho n_{2}^{2}+p_{2}
$$

and

$$
\frac{\Delta p}{q_{1}}=1-\frac{u_{2}{ }_{0}}{u_{1}}
$$

hence

$$
\begin{equation*}
I=\frac{A_{2}}{A_{I}} \int_{A_{2}}^{0} \sqrt{\frac{\Delta p}{q_{I}}-\frac{\Delta_{H}}{Q_{1}} \frac{d_{2}}{A_{2}}} \tag{12}
\end{equation*}
$$

The pressure rise across the cascade can be determined from equation (12) by a trial-and-error procedure if the total-head losses are known. In cases where $\Delta H / q_{1}$ is
always small compared with $1-\frac{\Delta p}{q_{1}}$, the squaro root in oquetion (12) can bo cxpanded by the binomial thoorcm and roducod to a form thet is casior to solvo for $\Delta \mathrm{p}$. If only the first two torms in tho oxpansion aro retainca, equation (12) bocomes

$$
\begin{equation*}
\left(1-\frac{\Delta p}{q_{1}}\right) \frac{A_{2}}{A_{1}}-\sqrt{1-\frac{\Delta p}{q_{1}}}-\frac{1}{2} \frac{A_{2}}{A_{1}} \int_{A_{2}} \frac{\Delta E}{q_{1}} \frac{d A_{2}}{A_{2}}=0 \tag{13}
\end{equation*}
$$

The pressure rise across the cascade may then be found from equation (IJ) when $\Delta E / q_{1}$ is small. These pressure rises ore calculated from equations (12) and (13) and are plotted as the midile curve in figure 9. Equation (13) was used for tha low-arag region where the wakes were not very duop.

It vill be seen that a large part of the difforences betwoen tinoory and experimont aro not attributable to the crac of the blades in the contral plane. It was thoroforo dociado to survoy the cntiro aroa A_{z} (on ono side of tho ceatral plano at a singlo anclo of attack, $\alpha_{1}=$ 12 ${ }^{\circ}$, to dotomine the causo of tho renaining discropancy. Tho rosults of tho total-hend survoy aro shown in figuro 12. Tho figuro is titho planc of A_{2} ono-half chord longth bohind tho contral airioil. Tho lincs in the figurc arc contours of cqual total-head defect and the numbers on the contours are the percentages of initial total head lost. The losses along the walls are seen to be very importent.

The pressure rise across the cascade was then determined by evaluating the integral in equation (12) from the general surver shown in figure 12. The value obtained was $\frac{\Delta p}{q_{1}}=0.281$. The agrecment between this value and the experimental point 0.2 yl is now within experimental error.

If the air leaving the cascade were allowed to mix without net loss of momenturn, a greater pressure rise would be obtained (rentioned later). The measured pressure rise will depend, in eeneral, upon the distance that has been allowed for the vake to mix with the surrounding air. In order to obtain a comparison with the perfect-fluid pressure rise that would be indopendent of the arbitrary
chöicc of the survey plane. A_{2}, the pressure xise due to idealizod mixing will now bo addod to p_{z}.

Consider that the stream leaving the cascade is allowod . to mix vith tho total momentum and with the crossmectional area A_{2} unchanged. Tho final velocity u_{f} and the final pressuro p_{f} can then be found from continuity

$$
\begin{equation*}
u_{1} A_{2}=\int_{A_{2}} u_{2} a A_{2}=u_{T} A_{2} \tag{14}
\end{equation*}
$$

and consorvation of momentur

$$
p_{A^{\prime}} A_{2}+p_{f} u_{f}^{2} A_{z}=\int_{A_{2}} p u_{2}^{2} d A_{2}+A_{2} p_{z}
$$

Sinco $\int_{A_{z}} \rho u_{z}{ }^{2} d A_{z}$ is always largor than $\rho u_{1}{ }^{2} A_{z}$,
thore will alvays bo a pressuro riso accompanying the mixIng procoss. This prossure rise is

$$
\begin{equation*}
\frac{p_{f}-p_{z}}{q_{1}}=\frac{2}{A_{z}} \int \frac{q_{z}}{q_{1}} d A_{z}-2 \frac{q_{f}}{q_{1}} \tag{15}
\end{equation*}
$$

The integral in equation (15) was obtainod by fincing the arcas unaer the various contours of figure 12 with a planimitor. The value of q_{f} / q_{2} was obtainod from equation (14), the first and the scond torms yiolding 0.656 and 0.662 , rospectively. The inaccuracy of the measuremonts is indicated by this aiscropancy. By use of $q_{f} / q_{1}=$ 0.659, it was found that $\frac{p_{f}-p_{2}}{q_{1}}=0.020$. Adding this value to the experimental value of $\Delta p / q_{1}$ gives $\frac{p_{f}-p_{1}}{q_{1}}=$ 0.291 . This value is plotted as a plus sign in figure 9. Adding tho idoalizodmixing prossuro riso to tho valuo of $\Delta p / q_{1}$ obtained theoretically by taking account of tho complete oxit survey givos 0.301 . This valuo is plotted as a cross in figuro o. Comparison with the plus point shows a satisfactory agromont with the experimental results also correctod, ior ldalizod mixing.

Tho pressure rise found is thus frocd from the arbitrary choice of the survey station. It is the maximum pressure rise that could be obtained by adding an idealized mizing channel after the cascede.

APPIICATION AND FUTURE PROGRAN

Two of the results of this worls would appear general enough to be useful while further cascade worlis in progréss.

It rill be noticed from ifgure 2 that $d \theta / d \alpha_{1}$ is close to unity; that is, close to the value that would be expected for infinite solidity. It would seem, as a reasonm able summise, that this result would apply genesally for solidities of the order of 1 or greater. A test of a single blade in the cascade set-up showed that the angle of zero lift is nearly unaffected by the presence of the other blaces. This result might also bo presumed to apply genm crally when the solidity and the camber of the cascode are not too lnrgo. It scoms Iikoly, thorofore, thet thore is a solidity range near unity obeying a simple relation of tho form

$$
\theta=k\left(a_{1}-a_{1}\right)
$$

where k is an empirical factor that is botween 1.0 and 0.9 for the conditions of theso tosts and $\alpha_{1} o_{0}$ is the anglo of zoro lift of tho isolated airfoil. This equation can bo usoc togethor with a relation of tho form of equan tion (8) to approximate the pressure rise across a cascade in tho abscnce of lossos.

The genoral survey (fig. I2) rande at $\alpha_{1}=12^{\circ}$ showod that a large part of the onorgy losses aro due to poor flow near the wells. The vall boundary leycr noar the convex surface of the blado was greatly thickened, as might bo oxpectod, for two roasons: First, this air had to flow against noarly the somo unfavorable pressurc gradionts as the air that passod ovor the blade, whereas the wall air started with a devolopod boundary layor; socond, tho lowpressure region near tho blede probably accumulated air from the boundary layor of tho adjacont wall. Similarly, tho high-prossuro region noar the concave surface of the blado appoarod to repol its boundary layor, producing a
thin-wall boundary layor near this surface. It would be cxpoctod that thoso effocts would increaso with incroasing lift coosficiont.

Tho importanco of wall lossos makes it imporativo that they be considered in the design of blowers for high efficiency. The lift coefficient for optimun efficiency is reduced below that of maximm blade lift-drag ration as can be seen by comparing figures 9 and ll. In the cose covered by these tests a lift coefficient $C_{I_{0}}$ near 0.4 or 0.5 would appear to be most efficient. Under these conditions for the cascade investigated, the air stream is turned through an angle G between 10° and 13°. Wall losses must.be considored to be even more serious in the uso of more highly cambered blades, because the minimum blade drag occurs at highor lift coefficients.

It is to be expected that wall Iosses would be incroesed by tho prosonce of end gros end relative motion betwoen the bIrdes and the adjocont wall; those design conclusions must thorefonc bo considerod only tontative.

CONCIUSIONS

1. Tho anglo through which tho air is turncd by a cascaco of blados with a solidity of 1 and a small cambor is noarly equal to the anglo of attack (with rospect to tho ontoring air) of tho blados minus tho anglo of attack for zero lift of tho isolatod airfoil.
2. A largo part of tho loss in a cascade may bo associatod with tho flow along the channcl walls and particularly with a rogion of slow air noar the juncturos of tho convox sido of tho blados with the walls.

Langley Incmorial Acronautical Laboratory,
National Advisory Comiattee for Acronautics, Iangley Field, Ve.

REPERENCE

1. Jacobs, Eastman \mathbb{N}. , Abbott, Ira H., and Davidson, Milton: Proliminary Low-Drag-Airfoil and Plap Data from Tosts at Ierge Roynolds Numbors and Low Iurbulonco. NACA A.C.R., March 1942.

TABLB I
HACA 65,2-810 AIRFOIL
COMBINED WITH $\quad \Xi=0.0015 x$

Upper surface		Iower surface	
$(\text { percent } c)$	$\text { (percent } c \text {) }$	(percent c)	(percent c)
0	0	0	0
-260	. 913	. 740	-. 513
. 486	1.150	1.014	-. 570
.949	1. 510	1.551	-. 654
2.143	2.274	2.857	-. 786
4.591	3.448	5.409	-. 920
7.072	4.371	7.928	-. 979
9.569	5.149	10.431	-1.013
1.4 .589	6.415	15.411	-1.031
19.629	7.386	20.371	-1.018
24.681	8.139	25.319	-. 979
29.740	8.705	30.260	-. 929
34.804	9.098	35.196	-. 858
39.870	9.339	40.130	-. 771
44.936	9.409	45.064	.. 649
50.000	9.382	50.000	-. 458
55.053	8.950	54.942	-. 190
60.107	8.434	59.893	. 134
65.143	7.744	64.857	. 496
70.164	6.922	69.836	. 854
75.171	6.025	74.829	1.135
80.162	5.024	79.838	1.344
85.137	3.935	84.863	1. 449
90.104	2.810	89.896	1.326.
95.055	1.612	94:935	. 916
100.048	.142	99.952	-. 142
I. \#. radius: 0.666 percent c			

Blower-blade section NACA $65,2-810$

Figure l.-Cascade testing apparatus. Cascade of NACA 65,2-810 sections Stagger: 45°; Solidity: 1

Figure 2.- Angle turned by air in passing through cascade. Cascade of NACA 55,2-810 sections; stagger: 450; solidity: 1.

Cascade of naca 65,2-810 sections

Figure 4.- Section pressure distributions.

Fig. 5

Figuro 6.- Litit couficionts basod on moan air conditions. Cascada of HACA 65,2-810 soctions; Stagerox: 450; Solidity: 1.

Figurc 7.- Lift coofficonts bascd on initial air conditions. Cascade of NAGA 55,2-810 sections; Sta.ggor: 45°; Solidity: 1.

Figure 9.- Pressure rise across cascade. Cascade of ITACA $65,2-810$ sections; stagger, 45°; solidity, 1 .

Figure 10.- Illustration for pressure-rise calculation,
Cascade of NACA 65,2-810 sections;
stagger, 45°; solidity, 1 .

Figure 12.- Contours of constant totalnead defect downstream of caseade. Cascede of NACA 65,2-810 sections; Stager: 450; α_{1} : 120; Solidity: 1.

31176013542213

