WARTIME REPORT

ORIGINALLY ISSUED
March 1942 as
Advance Restricted Report

WIND-TUNNEL INVESTICATION OF CONTROL-SURFACE CHARACTHEISTICS
V - THE USE OF A BEVELED TRAIIING EDGE TO REDUCE
THE HITVGE MOMENT OF A CONIROL SURFACE
By Robert T. Jones and Milton B. Ames, Jr.

Langley Memorial Aeronautical Laboratory
Langley Field, Va.

WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite generala distribution.

Y - TEE UST OF A BETELHD TRAIEING EDGE TO RHDUCE
THE GIEGE MOMENT OR A CONTROL SURTAOE
Ey Robert T. Jones and Miltor Bo Ames, Jio

Stumari

Wind-bunnel tests kare been made to investigate the possitility of reduefing the hinge moments of a contron surface by tevelang the trailing edge. The tests were made with o ghpercentmhick airtoil having a 30-percent-chord plain flape A faires bevaled shape, 5 percent of the airfoil chordin width and haring a thickness of $2 \frac{1}{c}$ percent of the eirioil chord, was found to give approximately 50percent reduction in the hinge moment caused by a given deflection of the flap and 80 -percent reduction in the hinge moment due to the angle or attack oi this airioil . for a wije rang of angles. A blunter beveled portion of the same thackness gave orerbalance ard reversal of the floating tendency oter a small angulaz raige. alliptical trailing-edge shages ver: aiso trisd but were found to be somevhat less effectite than the shapes ending in an acute angle. A semicircular trailing ecige produced only a slight change an the hinge momentis but caused a drag increment much greater than thet of an efficient beveled shape.

INTR ODUOII IOIT
rive hinge monents obtained in tests of airfoils with pla:n flaps have oftcn been observed to fall considerakly below the values predicted by the potential-flov theory. It has also bcen noted that the hange monents obtainec in diferert tests shov wider discrepanofes than do other airfoil charecteristien.

Several years ago the NACA had occasion to test a flap with a particularly thin, shamp trailing edge。 In this case the hinge moments weie higher than usual and agreed better with the theowy. Thus, it appeared that the discrepancies in the hinge moments obtained in the usual tests might have been duc to minor differonces in the shapes of the trailing
edge，Thts plenomenon led to specuiation conceritng the nature of tise flow neax the traitine eufe pme thu effect of small departures from the Katta conditionn

Xn the ideal flow，tire Kutta oondition requires that the ajr leariug the trailing edge maintain the direction of the mean combez for a siort distance downstreenn Tho velooities on the upper and lower suxざeces approach the same value with the result that the pressure difierence or lift vanishes at the trailing edGe．mhe curve marked ra： in ísure 2 shows the lift cistribution orer en airtuil
 The gu＊ding action ot a slightly blunt or beveled trasiing edge will not be perpect，houererg anu in suon a case a re－ IEtively great ncgative lift will to dcrelopad across the ed天e，as shown by ouvve thr in figure ic A doliderate thickonigg of the alrfoils $\overline{\mathrm{c}} \mathrm{G}$ sishet to pemmit＝urthar
 the type of pressure distribution represented by curve lb＂ In figure $1 . \quad$ It wss thought that tha effact might be used to movide aerodynamic badance for a control surfaco and in onder to test this theory a series of wind－tunnei exper－ tnents was planned．these testa have recently been made and form the su＂jest of the present pepes．

TESTS

Apparatus and Models

In figure 2 are shown the shepes tested．These shapes are or two types－beveled and ejlipticai．In the ease of the beveled flep，the point at vhith the beveling of the flap began res ieired into an arc in ozder to allow smocth flou．The goxtion of the flep extendirg from the center of tijs aio to tie trailing edge will te reserred to jere．． inatiter as the Hbevel．＂fucause the action of the binut trailing edge is in some waxs similyr to that cesem autom matio balancing taio（sce fig．3），tic beveicd shapes were
 balancing position。 the 20mpercent bevel cozresponds to a 20－percent cy tab deflected Io 。 The elliptical shapes aie of somevhat simijar proportions．A flap having a bulged portion near the hinge was also tried．with the exeeption of the bulged flap，all shepes tested rere cbtained by in－ terchanging trailingwedge blocks having these shapes on a
 mahogany．

Table J gives the orininates of the standard section （derjved from the NACA OOOS airfoil by drawing straight lines from the fjwpercent station back to the removable tail biock）．The dimensions of the removable tail portions are shown in tifrure 2 and the ordinates of the bulged．flap are given in terle II As shown in figuro 2 ，the flap wes of the plain unbalanced tipe，to percent of the airioil chord in wideh．The tests were made with the gap both sealed and open。

The procedure of the tests wes similer to that followed in reference 1．They were made in the NACA 4－foot by＇6－foot vertical tunnel：modified as described in reference 2．The Iift，the drag，and the pitching moments were measured on a thzeemcomponezt kalence．Jhe r jnge moments were measured electrically with a calibzated toroue rod built into the model．The model exteried completely across the ciosed test section of the turneis so that the flow was very nearly two－dimensional．The tests were made at a dynamje pressure of 15 pounds per square foot corresponding to a velocity of rbout $1 / 6$ miles per hoyr and a tost Reynolds number of 1，450．000．The flछw defiection war varied in 50 increments from 00 to soo．Jn some cases ciock points at ± 20 fom neutral were obtainedo Lift，drag：airfoil pitching moment， and flap hirge momeats were measureu throughout the angle－ of $-a t t a c k$ range，froin positive to negative stall of the airfoil，at 2° intervals of angle of attack。

Precisjon

The maximum error in the angle of attack or in flap setting appears to be about 士0． 2° ．An experimentally detecmined cortoction has been applied to the lift but not to the hinge momerts．The hinge moments are probabiy slightiy higher than would be obtained in free air．It sho：1ld be ncted that the ditag of the basio 0009 airfoil is somewhat higher than is obtained in other tests at the same Reynolds number．

RESULTS AND DISCUSSION

Symbols
$c_{\text {q }}$ airfoil section lift coefficient（i／qc）
c_{0} airfoil section profile－drag coefficient（do／qo）
c_{m} airfoil section pitching－moment coefficient（m／qca）
c_{h} flap section hinge-moment coefficient (h/qc ${ }_{f}{ }^{2}$)
α_{0} angie of attack of infinite aspect ratio
δ_{f} flep angle with respect to airfoll
l airfoil section lift
d_{0} aixfoil section profile drag
m airroil section pitching moment about quarter-chord point of airfoil
h flap section hinge moment
c chond of afrefot with fleps neutral
$\mathrm{C}_{\mathrm{f}} \mathrm{flip}$ chord
c_{b} chord of beveled portion of flap
Fsotion data are plotted in figure 4. Figures 5 and 6, cyosw-piotiol from the section data, shou tyoicai variam tions of ifft and hinge monent and slituatrate the inegnitude of the effect obtatimble with a moderite and with an extiemely blunt vevel. It whll be anted thet the reduction in hinge momerit cutwefghs the logs Ir_{1} lirit and also that the reduction in $\partial c_{h} / \partial x_{0}$ is geater than the reduction in $\partial c_{h} / \partial \delta_{f}$.
The lift of the airfoil with the control free is therefore actuaily gieater for the biunt trailing edge than for the plain fiap. The results for the plain flap are taken from ref'erence 1, part I.

The resulta given for the flap with beveled trailing edge are for the gap-sealed condtion. The deta obtained from the testa with the gep open are prosented in reference 3.

Table III sumarizes several important characterlatics of the ghapes tested. The values given in the table apply to a fairly wide angular range. An idea of the devtations from linearity may be obtained by inspection of ifgure 4.

The recults show an interesting difference in the behavior of the ellipticel and the beveled trailing edges. The bluntest elliptical shape, which was simply a circular
rounding, increased the floating teadercy and the drag but
 this case the carvature of the surfaco is so great that the 5 jow apparently $+e a v e s$ the astioil as if tho end had beon cut off squaxe. The increment of drag coerificient in this gese is apyroximately $0.00 \varepsilon 8$. Whe moderately bereled or taperad shapes the 0.20 ce and 0.15 ce bevels, on the, Giher hand, showod less than 0.0004 increase in arag coefficient, indieating faisly complete closure of the flow berind the eiriuil. Ehis small dras increase, together with the recuiarity or the hinge-moment variation, indicates that the balaneing action of the roderate shapes does not depend on a pronouresu separation of flow but on more or less pregressive changes in the boundery …leyer thichness on the two sides of the barcl. fs the afgie of the bevel vecomes stcaper: the closure of the tilow becomes less complete and the lajancing action becomss more pronounced, though sonewhat irremiar, ard may involve cocaplate separam tion on one side or the other, The eritical angle in the present tests was thas of the 0.j.3 eq bevel.

As will ie noted in table III, the airfoil pitching moments follow the rariation tiat might be expected from the hinge monsmis. In the most extrene case (0.10 ce berel), the aeroayramic center was shizted 0.0510 ahead of the cuarter-chord point.

From a pracizan standpoint the most interesting results are those obtainca with the moderately weveled and 6lliptical shapes ($0.15 \mathrm{c}_{\mathrm{f}}$ to $0.20 \mathrm{c}_{\mathrm{f}}$ bevels). Thus the 0.20 ct bevel shows natarly 50 -percent reduction in deh/ ofs and more than 50-percent reduction in $\mathrm{dch} / \mathrm{da}_{0}$, as comparea with the plain flap. The drag increments are not so great as those obtained in comparable tests (xeference l) of the convontional inset-hinge balance with the mediun or baxeres nose but are greater than those obtainca witin tine blunt nose balance. Inasmuch as the beveled tratuing edze is effecilve in redreing the floating moment, the lifs of the airfoil is grcatar with the control free than with the plain or the inset-hinge flap.

It is frequentiy found that full balance cannot be obtained in a satisfactory manner by the use of a single device; for erample, a large degree of balance with the
: - Insetminge type of ciontrol surface requires such a long overhang that the perrissible doflection of the flap is limited. Ene usc of a large horn balence introduces structural difticulties. It is helpful, therefore, to

Nate avaincole severai indepandent mesns of reducinc゙ hinge
 usectal in comisastlon wish otner trpes of beiance；because it irvolves no addificuà Iinwagen．Also：it is occasion－

 edro．

The present tests are too limited to furatsh more then weny fenengl anformetion on the eficocts of trajijng－ edge sinape tives，the raviadiors with zatu ohorde feynojds nomber：or airfoil section beve rot jean expiored．Jn añ event，íh is to be sxpected thes the eftoct of trailyngmedge
 rediced－θ fact thai notef it necestar to Employ e ceatain ainovnt of caze in the coratruction of the trajivigeage．

GOMOLTSSIONS

The bereled tweiling edge provides a cuntenient moans of recuciag the hiuco moments of cortiol surcaces．In the picsent tests．a medercte bevel on a 3o．percust－cinoxi flap
 by a given ditilection of the fixp．Tnis balencinceffect extendec over a ride angular rexge and showed e snooth variacior with angle of ettact and with flap cefiection． The protilemarag coefiticient showed an incresse of 0.0004 ．

Ovenbairnce and reversal of tre alcatins tenancy over a cuall argulen range were ontained wiea rafker blunt bevels weic tentsd．Hho effect of trailingーEfge shaps is expected
 duced，trdicciting the necessity for ceisful construoticil ot narrow flaps．

Metionel Ayvシsorv Comm＊tae for derorixutics，

RGHARENCES

1. Wegrs, Rjchard Io: Wind-munnel Investigation of Contucl- Eurface Oharsoteristics. I - tifect of Gap on tiae Ac.odynamic Gharzoteristics of an NAOA 0000 Alrioti with a 30-Peicent-Chow Flain Flap. NaOA Aor.R \quad, June 19Al.

Sears, Richerd I. and Hogeard, Ho Eage, Jro: WindTunnel Investigation of Ocntrul-gurface Characteristics. TI-A Jarge Aerodynamle Balance of Vazious Nose Shapes with a 30-Pazcent-Chord Flap on an NACA 0000 Airfoil. NACA AFRoRo: AUg: 194.

Ames, Miltor Bo, Jro; bindmpunoj Invostigation of Controinsurface Cherectersotics. III - A samil Aerccynamic Balance of Various Nose Shapes with a 3O-Parcent-Chord flap on an NACA 0009 Airfoil. NACA A.R.RO: Aug. 1941.

Ames, Milton B_{0}, Jro and Pastman, Donald R. Jr.: WindTunnel Investigation cf control-Sirface characteristics. TV - A Medium Aerodymuic Delance of Various Nose Shepes Used with a Eompercent-choid

2. Ames, Milton B. Jr, and Sears, Richaid I.: Pressurew - Distribution investigation of an NA. COA, 0009 A Arfoil with a $30-P e r c e n t-C h o r d ~ P l a i n ~ F i l a p ~ a n d ~ T h r e e ~ T a b s . ~$ T. N. No. rys , NAOA, 1340 。
3. Sears, Riciard I.: Tind-Tunnel Data on the Aerodynamic Chamecteristics of Airplane Control Surfeces. NAGA ACR No. 3508, 1943.

TABLE TT

CRDINATES OF BULGED FLAP
[Stetions and ordinates in percent airfoil chord]

Siations	Ordinates
(from hinge axis)	
0	± 2.90
7.94	± 3.38
4.82	$\pm 3,62$
7.85	± 3.43
10.90	± 3.03
15.25	± 2.37
19.70	± 1.69
25.15	± 1.02
30.00	± 0.10

Mudirications	$\left(\frac{\partial c_{h}}{\partial \delta_{f}}\right)$	$\left(\frac{\partial c_{i n}}{\partial a_{0}}\right)_{S_{f}}$	$\begin{gathered} \binom{\partial c_{2}}{\partial c_{0}}_{\delta_{f}} \\ \left(\begin{array}{c} \text { (control } \\ \text { fixed) } \end{array}\right. \end{gathered}$	$\left\{\begin{array}{c} \left(\frac{\partial c_{2}}{\partial \alpha_{0}}\right)_{c_{h}=0} \\ \text { (Control } \\ \text { free) } \end{array}\right.$	$\left(\frac{\partial \alpha_{0}}{\partial \delta_{i}}\right)_{c_{2}}$	$\left(\frac{\partial c_{m}}{\partial c_{2}}\right)_{\delta_{I}}$	$\left(\frac{\partial c_{m}}{\partial \delta_{f}}\right)_{c_{2}}$	$\begin{aligned} & \mathrm{c}_{\mathrm{o}_{\mathrm{min}}} \\ & \text { (Uncor } \\ & \text { recied) } \end{aligned}$
Elain	-0.012	-0.006	0.098	0.066	0.57	0.001	-0.010	0.0096
$0.20 c_{f}$ bevel	-. 007	-. 003	. 092	. 070	.56	. 033	-. 009	. 0100
0.15cf bercl $\}$	-. 005	-. 001	. 091	. 080	. 56	. 038	-. 008	. 0100
0.13ci $\mathrm{bevel}^{\text {c }}$	-. 003	. 001	. 090	.106	. 54	. 048	-. 008	. 0105
$0,10 c_{f} \text { vevel }$. 000	. 002	. 088	$\begin{gathered} \text { Un- } \\ \text { steble } \end{gathered}$.50	. 051	-. 007	. 0110
(c.20cf elliptical $)$	-. 006	-. 003	. 091	. 068	. 50	. 036	-. 008	. 01.05
(0. $0^{0} c_{f}$ elliptical	-. 011	-. 008	. 099	. 060	. 54	.011	-. 008	. 0118
Semicirnular	-. 012	-. 009	.301	. 059	. 56	. 002	-. 010	. 0124
\int Eulged	-. 010	-. 005	. 095	. 071	. 50	. 016	-. 010	. 0.302

Figure 1.- The effect of flow around the trailing edge on the lift
distribution.

Flaps with elliptical trailing edges

Flaps with beveled trailing edges

Figure 2.- Trailing-edge modifications. Dimensions are in percent of airfoil chord.

Figure 3.- Flow around beveled trailing edge showing similarity to the effect of a balancing tab.
x -464

Figure $40 .-$ Trailins-erne oerel, 0.1 nof.

Figure 5, - Typical variations of lirt and hinge noment with angle of
attack. $\delta_{f}=0^{\circ}$.

Figure 6,- Typical variations on lift and hinge moment with flap
deflection $a=0^{\circ}$.

