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THE EFFECT OF CONCENTRATED LOADS ON FLEXIBLE RINGS
IN CIRCULAR SHELLS
By Paul RKuhn, John E. Duberg, and. George E. Griffith

SUMMARY

The standard method of analyzlng fuselage rings has
been known for some time to be considerably in error when
the rings are flexible, as 1s usually true of secondary
rings in large fuselages. In order to provide a basais
for a more accurate analysis, strain measurements were
made on a series of clrcular cylinders with reinforcing
rings, subjected to concentrated loads, in which the
bending stiffness of the rings was varled systematically
over a wlde range. The results are presented and compared
with the results obtalned by theoretical methods. A
method proposed by N. J. Hoff for analyzing rings sub-
Jected to vertical loads, extended in the present paper
to cover all baslc cases, was found to glve satlisfactory
agreement with the test results. A method proposed by
Wignot, Combs, and Ensrud was found to be conslderably
in error when used 1n the originally published form. A
modification of thils method was developed with the rela-
tive stiffness parameter redefined, and the accuracy of
the method was thereby improved appreclably. Thls modi-
fled method, although less accurate than the method of
Hoff, retains the advantage offered 1n the original
method of Wignot, Combs, and Ensrud of greatly reducing
the time of analysis through the use of graphs.

INTRODUCTION

The so-called secondary rings in fuselage shells are
usually analyzed on the basls of the assumptlon that the
shear stresses in the skin which balance the load applied
to the ring are distributed in accordance with the
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standard engineering theory of bending. For a radial
load appllied to a2 ring in a shell of circular cross sec-
-.tlon, for instance, thls theory glves a shear stress that
18 zero at the load and increases to a maximum at the
neutral axis 90° from the load. It has been recognized
for some time, however, that thls basic assumption may
not agree very well with the facts. The secondary rings
are relatively flexible, and Intuitlon aslone is suffl-
clent to 1ndicate that a concentrated load applled to a
flexible ring will cause local concentratlons of stress
neer the load. Some designers consequently assume a
triangular distribution of the skln shears; others, a
uniform dlstribution, which is between the trlangular
distribution and that given by the standard theory. This
uncertainty about the distribution of the shear stresses
causes a corresponding uncertalinty in the calculation of
the maximum shear stresses in the skin, In addition, it
causes an even greater uncertalnty In the calculation of
the bending moments ln the rings., Straln measurements on
the rings of actual large fuselages have shown ring bending
atresses that were only a small fraction (less than one-
fifth) of the values calculated by the standard method.

The investigatlon reported herein was undertaken in
order to provide a more secure basls for the analysls of
rings. S8Systematlic straln measurements were made on a
number of cylinders having rings with widely differing
flexlibllitles and were compared with the analytical
regults obtalned from two theorles. The theorles were
extended to lncrease thelr usefulness or modified to
increase thseir accuracy.

SYMBCLS

A, B coefficlents defined in table |

C, D Fourler coefficients for distributed load
E Young's modulus, psil

shear modulus, psl

axial force 1in ring, pounds

moment ol inertia of cross sectlon, 1nchesh

o - H @

shear-stiffness constant used in reference 3
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L spacing of rings, inches (note that in equations (3),
- -~ (4), and-. (5), the. symbols .L and. L, have

speclal meanings ard definitions dlscussed in
connectlion with tlese equations)

M bending moment in ring, inch-pounds
radial load, pounds

Q statlic moment about neutral axls of cross-sectional
erea lylng between extreme filber and plane under
consideration

R radlus of cylinder

T tangentlal force acting on ring, pounds

U internal work, inch-pounds

v shear force, pounds

Cy - goefficlent of bending moment in ring (M/PR) ar(M/TR)

Cq coefficient of shear flow in skin (QR/P)

a, b Fourler coefficlents for Cy, Cq, and o

d relative stiffness parameter used in reference 3;
see equations (2), (4), and (4a) for discussion
end definltion

general number of bay or ring

general number of Fourler coefficient

shear flow (running shear), pounds per inch

thickness of skin, Iinches

¢ o QO B =

! thickness of all materlal carrying bending stresses
in cylinder 1f uniformly distributed around
perimeter, inches :

x distance from tip of cylinder, lnches

¥  shear strain

o longitudinal normal stress in skin, psi
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T shear stress in skin, psi

® angular distance of given point on ring from point
) of application of concentrated load

Subscript:

R rigld

TEST SPECIMEKNS AND PROCEDURES

Test specimens.- The test specimens were four cir-
cular cylinders of 24S-T aluminum alloy reinforced by
four equally spaced rings. The main dimensions are given
in table 1. Cylinders 1, 2, and 3 formed a series in
which all dimenslons were nomlnally equal except the
moments of inertia of the rings, which were varled
approximately as 1:10: 100. Cylinders la, lb,. and 1lc
were modifications of cylinder 1, Cylinder L had rings
of the same cross section as cylinder 2 but twice the
skin thickness. Pertinent detaills of constructlon are
shown In figures 1 and 2. It wlll be noted that the
cross-sections of the rings were made symmetrical about
the skin in order to avold conslderation of the amount
of skln working with the rings.

Test procedures.- The maln tests conslsted 1n
applying a radial loed to each ring in turn and measuring
the bending stresses in the loaded ring as well as in the
two adJacent rings. Shear stresses were measured in the
skin ad jacent to the tip ring and to the middle ring. In
one test, a tangentlial load was applied to the tip ring
of a shortened cylinder. On cylinder 1, the radlal load
was outward and was produced by dead welghts. On all
other cylinders, the radlal load was inward and was pro-
duced by a hydraulic jJjack used in conjunctlon with a
dynamometer accurate to sabout 1/2 percent. Careful check
tests made on cylinder 1 with both methods of loading
showed no measuraeble difference, as was expected.

The bendlng stresses in the rings were computed from
measurements with Baldwin-Southwark SR-l} electric strain
gages, types A-1l and A-5 (gage lengths 13/16 and 1/2 inch, -
respectively). The shear stresses in the skin were com-
puted from measurements with Baldwin-Southwark SR-l elec-
tric gage rosettes, type AR-1l. All gages were used in
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pairs back-to~back. For convertlng stralns to stresses,

“Young's modiulus wds taken as 10: 6 x-105 ksl -and- the - shear

modulus as L..00 x 107 ksi.

From preliminary reedings of the gages near the
point of load applicatlon, an estimate was made of the
load necessary to produce a maxlmm atress of about
20 ksl in the ring. In the actual test, the chosen load
was applied in flve equal increments. Load-strain plots
were made for the gages noar the load and for all rosettes.
It was found that all polnts except the ons at zero load
fell very close to a stralght line in each case; the
deviation of the zero load polnt from the stralght line

was never larger than about 1 X 10 ->. The strain readings
are believed to be accurate to better than 2 percent in
all cases.

METHODS OF ANALYSIS

Standard method.~ The analysis of fuselage rings 1ls

usually based on the assumption that the skln shears
balancing the applied loads are distributed ln accordance
with the elementary theorles of structures, In the spe-
cific case of a radial load, the skln shears are assumed
to follow the familiar V/I formula, which glves for
the clrcular cylinder

P
Tt = =55 8ln o (1)

When the skin shesrs have been computed by formula (1),
they may be consldered as external loads applied to the
ring, and the ring can be analyzed by any applicable
method of dealing with statically indeterminate structures.
For a number of basic cases that are encountered fre- .
quently, the results of such analyses have been published
in the form of tables or graphs of coeffilclents; graphs

for the circular ring with a radial load have been glven,
for instance, in reference 1. Tables and graphs of this
kind are of very material ald in reducing the labor of

ranalysis.,
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Hoff's method.- The use of formula (1) for computing
the skln shears limplies the assumption that the stiffness
of the ring 1s very large ccmpared with the stiffness of
the skin., Secondary fuselage rings, however, are often
relatively flexible and deform to such an extent that the
shear stresses in the supporting skin are altered; the
standard method of analysis consequently becomes lnaccu-
rate. A more precise method of analysis must take into
account the Interaction between a flexible ring and the
supporting skin. 0ne solution of this problem was given
by Hoff In reference 2. Hoff considered the actlon of a
circular cylinder, cantilevered from a rigld base, with
two equal vertical forces equidlstant from the vertical
diameter applied to the tip ring. He assumed that the
Important stresses are the bending stresses in the ring,
the shear stresses in the skin, and the longitudinal
stresses in the skin, including stringers 1f present.

All three of these stress systems were expressed by
related Fourler serles, and the coefficlents of the
Fourler serlies were obtalned by the principle of Ieast
Work. An extension of Hoff's method to the cases of a
radial loed, a tangential load, or a moment load applied
at any ring 1s glven in the appendlx.

Hoff's method gives a falrly complete and entirely
rational anawer to the problem. The slight lack of
completeness resulting from the simplifylng assumptions
ls unlikely to be of practical Ilmportance. More serious
1s the objectlon that the method requires computations
that are very tedious, at least compared with the
standard method.

Method of Wignot, Combs, and Ensrud.- The most essen-
tlal features of the method of Wignot, Combs, and Ensrud
(reference 3) may be described briefly as follows. Only
the ring directly subjected to an external load was
assumed to be affected. The shear stress 1n the skin
aedJacent to this ring was assumed to be proportional to
the tangential deflection of the ring with respect to a
fictitlous ring some distance away that does not deform.
On the basls of these assumptlons, a differentlial equation
for the bending moments 1n the ring was derlved and solved.
The final results were presented In the form of graphs as
functions of a parameter d that relates the shear stiff-
nessa K of the skin to the bendling stlffness EI of the
ring by means of the expression

3
- ERZ
4 =F7 (2)
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The curves of Wise (reference 1) computed by the standard

. method appear on.these graphs as the l;miting case of

rigld rings or d =0, ~

The method has the very deslrable feature of sim-
plicity of application; the enalyslis by means of ths
graphs given ls essentlally as simple as the analysis by
the standard method with the ald of the graphs of refer-
ence 1. It has, however, two obvlous defects: one 1is
that 1t gives no stresses in the rings adjJacent to the
loaded ring, and these stresses may be of appreclable
magnitude; the other 1s that the theory leaves the
numerical value of 4 1indeterminate, because 1t does not
contalin any method for deriving the valus of K which
appears 1n expresslion (2). It 1s stated in reference 3

"The evaluation of d depends upon the accurate
determlination of X, for which further development,
supplemented by tests, is clearly needed.!

Pending such development, thls reference suggests that
"K may be approximated as

RtG
L

where T 1s the dlstance along the shell to a
sectlion which i1s not distorted from a circle.h

With this approximation for KX, the expression for 4
becomes

K = (3)

\ .
a =2 (1)

This expreossion, however, still does not constitute
the solution of the problem of determining d, because
the theory 1tself glves no clue as to the magnitude of L.
In reference 3, this difficulty was overcome by making an
assumption as follows:

"R/L 1s assumed to be never less than unity . . .
This approximation for K seems Jjustified for any
large fuselage comparable wlth that of the Lockheed
Constellation or Boelng Model XB-29 slnce 1t glves
good test agreement for those alrplanes.!

Strictly speaking, of course, the inequallty B 21

does not define L. The next expression given in refer-
ence 3 indicates, however, that R/L was actually
assumed to be equal to unlty and with this assumptlion
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expression (l;) defines the relative stlffness parameter d
as

3
a = &2 (La)

EI

A detalled comparison of the ring theory as developed
in reference 3 reveals that 1t 1s the limltling case of the
theory of reference 2, in whilch only one ring 1s con-
sidered and the stringers relnforcing the shell are
agssumed to be Infinltely stiff. The assumption of rigid
stringers mekes it posslble to sxpress the shear stresses
as proportional to the tangential deflectlons of the ring.
In cylinders of practlcal proportlions, however, the
deformations of the stringers havée a large influence in
defining the shear stresses 1n the skin and iIn general
tend to decrease them. The amaller shear stresses result
in larger maximum bending moments in the ring.

Modifled method of reference 3%.- The speed with
which an analysls can be made by means of the graphs in
reference 3 makes this method highly desirable 1ln prac-
tical applications. The objectlon that the method glves
no stresses in the rings adjacent to the loaded ring
could perhaps be overcome sufficiently to satisfy the
demands of practical stress analysis by some empirical
or semliemplirical msethod. A prelimlnary comperison of the
test results obtalned in the present investigation with
the results obtained by use of reference 3 showad, however,
a lack of agreement that supported the objections to the
assumptions of thls theory mentloried in the last paragraph
of the preceding section. The statement 1n reference 3
that there was good test agreement for two large ailrplanes
could not be checked because the teat evlidence was not
presented. The good test agreement might have been
achleved in spite of the defects of the theory by use of
an incorrect amount of skln working with the ring. Very
little 18 known at present about the amount of skin
working with an actual fuselage ring and conslderatlon of
thls factor might have an appreciable effect on the calcu-
latlon of the stresses. In the present investigation,
this difficulty was not encountered because the rings
woere symmetrical about the skin.

FPurther study of the test results presented hereln
and of the graphs of refercnce 3 showed that 1t was
generally posslble to match any experlimental curve with
a curve from the proper graph. This observation led to
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the thought that closer correlation between test and cal-
culation might be achleved 1f the method of determining 4
were modified. Such a modification would bé in lire with
the remark in reference 3 quoted previocusly that “further
development, supplemented by tests, 1s clearly needed."

On the basis of general physical conslderations, 1t was
decided to retain expreseion (L) for determining 4 but,
instead of assuming L to be equal to R, to use a

value of L defined by '

GtLo2
L =Ly(1 + 2 (5)

In this expression, L, 1s the distance from the loaded

ring to the actual rigld base,. and t' 1s the thickness
of a fictitious "stringer-skin® with a cross-sectional
area equal to the sum of the astringer areas and tiae part
of the skln area that 1s effective in resisting longi-
tudinal stresses,

RESULTS AND DISCUSSION

General remarks.- The.results of the investigation

are presented in figures 3 through 30 in the form of
plots ‘of moment coefficient or sikin shear coeffilcient
against developed perimeter of the cylinder. Bacause of
the syrmetry of the.structure, only one-half of the
perimeter .needed to be shown. For the moment coefficients,
each test point shown represents the average. of the two
points taken in the left and right side of the cylinder;
the two corresponding polnts always agreed so closely

that 1t was lmpractical to show them separately. For the
shear coefflclents individual test points.are shown.
Computed curves are shown for three of the methods diss.
cussed under "Methods of Analysis:" the standard method,
Hoff's method (extended where neceasary), and the modified
method of reference 3. No curves are shown for the unmodi-
fled method of reference 3 because the agreement with the
experimental data 1§ very poor compared with the results
obtalned by the modified method or by Hoff's methpd. On
all figores ‘showing data on cylinders 1, la,. 1b, and 1c,
the load 1s shown acting inward although 1t was actually
actilng outwerd as discussed In the sectlon "Test Proce-
dures." This change was .made.in order. to have- all results




10 NACA ARR No. LSH23

simllarly presented without being in conflict with the
slgn conventions glven in the appendix. The change should
not be objectlionable because the check tests showed no
difference between an Inward-acting and an outward-acting
load. (See section on "Test Specimens and Procedures,')

Bending-moment coefficlent.- The bending-moment
coefficlent Cy shown in flgures 3 to 21 is defined
by the equation

M = C,FR (6)

Inspection of the figures shows that the curves computed
by Hoff's method with slx Fourler coefficlents are, on

the whole, in very satlsfactory agreement with the experi-
mental results i1f the immedlate vicinity of the load is
disregarded temporarily. The modified method of refer-
ence % shows poorer agreement with the test data than
Hoff's method in some cases (note, for instance, magnl-
tude and location of the sccondary maximum on figures 7,
11, and 15).

Because the curves for the tests with radial load
are very steep 1in the neighborhood of the mexlimum moment
at the load, 1t 1s difficult to make comparisons on small-
scele flgures. A comparison in tabular form 1s therefore
provided in table 2 for these tests. The experimental
values of meximum Cy given in this teble were obtained

from the curves falred through the experimental polnts
and extrapolated to the positlon of the load. The steep-
ness of the curves combined with the scatter of the test
points results in some uncertalnty about the maximum
values of Cy. Every possible effort was made to reduce

thls uncertalnty by careful cholce of scales and accurate
plotting, and it 1s belleved that the maxlmum values of
experimental Cy are accurate to withlin *5 percent.

If the experimental values of maximum Cy are

assumed to be accurate, the errors by Hoff's method range
from 20 percent unconservative to 7 percent conservative
and the errors by the modified method of reference 3 from
20 percent unconservative to 18 percent conservative.

The moment coefficlents computed by the standard theory
are more than three times as high as the experimental
values 1n the worst case; the coefflcients computed by
the unmodified method of reference 3 on the other hand,
are as low as one-half of the experimental values.
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The results of the test made with a tangentlal load
“are shown in figure 22,  -‘The - agreement.-wlth - Hoff's theory
and with the modified theory of reference 3 1s again
quite satisfactory. '

No tests were made with a concentrated moment load.
Inspection of the theoretical curves for this loading
case shows that the moment decreases very rapldly with
increasing distance from the load; and the experimental
check 1as consequently very sensitive to small errors in
locatlon of the gage or of the concentrated moment. Fur-
thermore, 1t 1s wvery difficult to lntroduce a moment in
truly concentrated form. Inspection of the moment curves
glven In reference 3 led to the conclusion that the
probable experlmental errors would obscure the effect of
ring flexibllity to such an extent that the test would
not be worth whille. '

The theory indicates that the bending-moment coeffl-
cient in an actual structure 1s always less than that
glven by the standard elementary theory. In a qualitative
way, 1t may be stated that thls coefficlent approaches
that given by the standard theory as the stiffness of the
ring relative to the surrounding part of the shell
Increases. Experimental results bear out this theo-
retical conclusion. A comparlson of the experimental
coefficlents in table 2 shows, for Instance, that the
loaded tip rings (ring 1) of cylinders 1, 2, and 3 have
consecutlvely higher coefflclents because the moments of
Inertia increase in this order. Simllarly, the coeffi-
clent for the tip ring of cylinder 4 1s less than that
for the rip ring of cylinder 2, because cylinder l has
the same slze ring but a thicker skin than cyllinder 2;
relative to the surrounding structure, then, the ring in
ocylinder | 18 more flexible than that in cylinder 2.
Agaln, for any given cyllinder the maximum moment coeffl-
clent decreases as the load 1s moved closer to the root
of the cylinder, because the reglon of the shell nearer
the root 1s stiffer than the reglon farther away from the
root, and a given ring is therefore relatively more
flexlble i1f 1t 1s located close to the root. The highest
of all moment coefficients was therefore found on the tip
ring of cylinder 3%, which had the stiffest rings. The -
value of the experimental moment coefficlient for thils
case was only 3 percent below the standard value of 0.2%9.
This result indicates that the stresses in rings of
practlical proportions may approach qulte closely the
values predlcted by the standard theory; however, the
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bending stiffness of this ring 1s probably representative
of main rather than secondary rings. _

Figures 3 through 22 may be used to obtain quickly
some ldea of the stresses experlenced by unloaded rings
located near a loaded ring. Tne fact that such stresses
exist 1s well known. Not so well known appears to be
the necessary corollary that, 1f several adjacent rings
are loaded simultaneously, the stress conditions in the
center of the group approach the conditlons assumed by
the standard theory; that 1s, the ring bendlng stresses
are higher and the skin shear stresses lower than they
ere when only one rinz is loaded at a time. Some tests
were made wlth loads applied similtaneously to three rings,
and the stresses were found to agree within the experi-
mental error with the stresses predicted by superposing
the results obtalned wlth individual load application.

Skin shear coefficlents.- The slkin shear coeffl-
clents Cq shown in figures 23 tc 50 are deflned by the

equation

= o &
The agreement between the experimental values and the
curves calculated by Eoff's thoory with slx to twelve
Fourler coefflcients 1s again quite good except 1r the
vicinity of the maximym, where the agreement 1is somewhat
poorer than for the moment coefficisents. A comparison
of the maximum values of Cq is given in table 3. The
experimental values of Cq glven in thils table were
obtained by fairing a curve through the experimental
points 1n the vicinity of the maximum, the curve computed
by Hoff's method being used as an aid In falring where
necessary.

It may be noted from the figures and from table %
that the standard theory 1s generally more serlously in
error for the skin shear stresses than for the ring
bending moments. On cyllinder 3, for 1instance, which has
the stiffest rings, the maxlmum bending moment measured
was 97 percent of the value predlcted by the standard
theory; the maxirmum measurcd shear stress on thls cylinder,
however, was 155 percent of the value predicted by the
standard theoryn In cylinderl with the most flexible rings,
the bending moment was 32 percent of the value predicted by
the standard theory, whille the meximum shear stress 1in the
same cylinder was 533 percent of the value predicted by

— 1




NACA ARR No. I5H23 13

the standard theory. A study of figures 23 to 30 also
shows.that.the .standard theory 1s. very mlsleading in that
the location of the maximum shear stress is glven as 90°
from the load, whlle it 1s actually located somewhere
between 15 and L5° from the load.

CONCLUSIONS

From the comparisons presented of experimental data
and calculated results, obtained by several methods, of
the bending stresses in circular fuselage rings and of
the shear stresses in the sklin between the rings, the
followling conclusions are drawn:

1. The maximum bending moments in the rings are less
and the maximum skin shears are more than those predlcted
by the standard theory which assumes, 1n effect, rigld
rings. In the stiffest rings tested, the maximum bending
stresses were 97 percent of those predicted by the
standard theory; in the most flexible rlngs they were
only 32 percent. Corresponding values for the shear
stresses 1n the skin were 155 percent and 533 percent,
reSpectivelg. The maximum shear stresses occur, very
roughly, 30° from a radial load instead of 90° as pre-
dicted by the standard theory.

2. The method of Wignot, Combs, and Ensrud used in
its original form may give large errors opposlte In sign
to those of the standard method.

3. The method of Hoff, extended where necessary,
glves satlsfactory agreement wlth the test results in
most cases.

i. The method of Wignot, Combs, and Ensrud modified
by redefining the “relative stiffness parameter" used by
these authors glves somewhat less accuracy than Hoff's
method but offers a considereble saving 1in time by the
use of graphs.
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Attention 1s called tn the fact that the stress cen-
ditions resulting when a number of adjacent. rings are

loaded in a similar manner approach those defined by the
standard theory.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Fleld, Va.
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APPENDIX

THEORETICAL FORMULAS

The good agreemont obtained between the experlmen-
tally determined moments 1n a flexlble skin-supported
ring witn a radial load and the theory developsed by Hoff
_in reference 2 justified the extenslion of the theory to
other types of loadings. Baslcally, only three types of
load need be consldered 1n order to construct any load
dlstribution; namely, the concentrated radlal force, the
. concentrated tangential force, and the concentrated
moment. The solution for fthe stresses caused by the con-
centrated radial load can be obtalned as a limiting case
of the solution of reference 2 but 1s given herein for
the sake of completeness and unlty of presentation. New
solutions are developed for the strasses caused by a
tangentlial force as well as hy a concentrated moment.

Baslc Assumptlions and Theory

The theory used herein defines the stress dlstrl-
butlion in a circular cylinder stiffensd 1n the cilrcum-
ferential direction by rings and In the longltudinal
direction by stringers. The cylinder 1is cantilevered
from a rigld support. It 1s assumed that the shear flow
In each sheet bay between rings does not vary in the
longitudinal direction but may vary in the circumferential
directlon. Whatever materlal in the cross sectlon of the
cylinder is capable of resisting bending of the cylinder
as a cantilever beam 1s assumed spread around the cylinder
In a fletitlous stringer sheet of thickness t!'. Each
reinforecing ring 1s of constant moment of lnertia I and
1s capable of reslsting only forces in 1ts own plane.

The notation used 1n numbering the sheet bays and rings
and the positlive dlrections of forces, moments, and
stresses are glven in flgure 31.

on the basis of the assumptlons made the shear
flow q in the ith bay can, for any loading, be expressed
as .

[« ]
q; = ag *+ %; 84 5in no + 2; by, €OS nQ (Al)
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in which qp represents the shoar flow that 1s usually

calculated on the basls of rigld rings and the two trigo-
nometric series represent statically self-balancing shear
flows. These self-balancing shear flows are also con-
slstent with a self-balancing set of normal stresses in
the stringer sheet., Only the sine serles occurs if a
symmetrical load 1s applled and only the cosine series
occurs 1f the loading 1s antlisymmetrical. The coeffi-
-clents 83, &and Dby, are to be defined by a minimum of

strain energy of the entire structure.
The moments, shear forces, and tangential forces in
the reinforcing rings that are consistent with the shear

Ilows in the sheet bays adjacent to rings and that also
gatlsfy the condiltions of contlnulty of the rings are:

- ]
a - 8frg
My = My + RZZ in (i-1)n cos ng
3 n(n® - 1)

- Razbin - P(1-1)n sin ne (A2)
5 n(n® - 1)

oo
Bs,, - 8
Vy = Vg - R:Z' in (1-1)n o, ne
2

* (n® - 1)
~ bPin - b(i_1)n _ :
- R:E R cos no (43)

2

o) A _
Hy = Hp + Rzn( in > Z(1-1)n) cos no

5 (n= - 1)

5 (n= - 1)

The stringer sheet stresses can be obtalned from
the shear flows and, because these stresses vary linearly
along any cylindrical element, need only be defined at
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the rings. If the stresses at the flrst ring ar% assumed
to be zero, the stringer sheet stresses at.the 1th
are

Oy =Op + Rz':-—'-gelnl.l + “'2n12 + .. 9'(1-1):11‘(1-1)) cos nQ
- E:_'Z(blnLl + boplp + 4. b(i-l)nL(i-l)) sin n@ (A5)
2

vhere Og 1s the streas glven by the simple engineering
theory of the bendling of the cylinder.

If the total straln energy of the structure 1s
minimized with respect to the coefflclents of the terms
of the serles, sets of simultaneous equations wlll be
obtalned for the coefficlents. (See reference 2.) A
gset of slmultaneous equatlions will result for each wvalue
of n for the coefflclent a4, and a separate set for

each value of n for the coefficlent bin' Each set of

equations will contaln as many equations as there are
bays.

Concentrated Radlal Force

If a radial force P 1is applled to any ring of the
cylinder at the location ¢ = 0°, the shear flow q 1in

the 1th bay, when the 1P bay 1s between the loaded ring
and the root, 1l1s

q, = -J% sin @ +:2;a1n sin no (A6)

end, when the 1'P vay 1s between the tip and the loaded
ring, 1s simply

q4q =j§:ain sin no (Aba)
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The moments, shear forces, and tangentlal forces in
the loaded ring are

[+-]

W - 5%[1 + 222-2- (v -0) atn "0] + RaZ"i:(;;-(-i;;.)n cos n® (A7)

vy o= ;;E—:"-g-g- (v - @) cos c‘_l:l - Z‘ir(ln; ‘j(i;l)n sin n® (48)

B = -Z%En - @ sin @+ %cos q:] + Rin(ai?n; ;G;l)i cos ng (49)
_ 2

and 1f the 1tB ring 15 unloaded, only the series terms
of the equations occur.

If the assumptlion 1s made that the cylinder 1is of
constant eross-section and all rings have the same moment
of inertla and are equally spaced, minimizing the straln
energy 1n the structure results in a simple set of
equations defining the coefficients a4,. For instancs,
if a cylinder with six rings and bays is loaded at the
second ring, the second equation of the set of slx equa-
tions 1s cobtalned by setting equal to zero the partial
derivatlive of the total straln energy with respect
to 8oy This procedurse ylelds

0U
6a2n

= (2702 - Av)aj, + (2én2 + 24y + Blas,

+ (21n2 - ‘A"Y)B’Z.n + 15n2a.)_"n + 9n2a5n + 3n2°‘6n + P—::Rﬂ =0

The notation used is that of reference 2; that 1is

6r6t 1
117

_ 6Et'R?
B= =5
GtL

1
r.z(na - 1)2
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The genaral form of the six equations 1s given in teble l,
but thé "load term ' PAyn/mR-  is placed on the right-hand
slde of the equation. The load term also occurs with a
negative sign in the second equation and with a positive
s8lgn in the first equation. If the radial load had been
applied in some ring other than ring 2, the load term
would have appeared with the negative sign on the right-
hand side of the equation having the same number as the
loaded ring and with a positive aign on the right-hand
side of the equation precedlng 1t. Zeros would have
appeared on the right-hand side of the other equations.

Concentrated Tangentiel Force

If a tangentlal force T 1s agplied to any ring of
the cylinder at the locetion © =0 the sheer flow q

in the 1th bay between the loeded ring and the root 1s

(o]
qq = _“%e'- + cos cp) + Ea:bin cos no ((AlO)

and 1f the 1'R bay 1s between the loaded ring and the tip
the shear flow may be exzpressed as

o0
q = Zbin cos no (Al0a)

If the 1'P ring 1s loaded, the moments, shear forces
and tangentlal forces are

¥ = [(rr - o)1 - cos @) - a:ln q] - Rngin - b(i-l)n sin n® -(.All)
n(n2 - _

V- lEﬂ' -Q) ein® - 29%2- ]] - zb:ln ~ (i-1)n cos nQ® (A.12)

2w 2 - 1
- 2
-oqsine oo - R n(bin - B(1-1)n)
Hy 2"[ = (v - 9) oosq;J RZ 21 sin no (A13)

2
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For the rings not loaded the moments are expressed only
in terms of the serles. Ir the assumptlion 1s agaln made
that the cylinder has slx bays and 1s of constant cross
sectlion and that the rings have equal stiffness and are
equally spaced, the sets of equatlons defining the coef-
ficlents b,, are the same as those defining the coeffi-
clents a4, for the radial load, except that the value
of the load term on the right-hand slde of the equation
18 now TAy/nR. The load term appsars with the negative
8lgn on the right-hand slde of the equation having the
same number as the locaded ring, and with the positive
slgn in the equatlon preceding 1t. Zeros occur 1n the
right-hand side of all other equations.

Concentrated Moment

If a concentrated moment M, 1s applled to any
ring of the cylinder, at the location ¢ = 0°, the shear
flow in the 1th bay when the bay 1s between the loaded
ring and the root 1is

M 00
qi = - 02 + Z.bin cOos nY (Al}-I-)
2

end when the 1th bvay 1s between the tip and the loaded
ring the shear flow 1s

(2]

qi = Zbin co8 no (Alia)

The moments, shear forces, and tengential forces in
the loaded ring are

2\ Pin-P(1-1)
2" [1" o) -2 sin cp] R z z(nZL n sin no (Al15)

My

bin - D(1.1)n

M
Vy = -—2(1 + 2 cos @) - Rz cos no (A16)

2nR n2 -1
(-]
M n(b - by
Hy =--ﬁ_§- sin ¢ - RZ ( 1nn2 (i l)n) sin no (Al17)

2
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. .... In the unloaded rings the moments and forces are
glven by the series éxpressidha., ~If a cylinder-of con-- -
stant cross sectlion stiffened by six equally spaced rings °
of constant moment of inertla 1s consldered; the set of
equations given in table L epplies agaln except that the

M
value of the load term is —gég(nz - 1l). The load term

appears with the positive sfﬁ% on the right-hand side of
the equation having the sameé number as the loaded ring,
and with the negative sign in the equation preceding 1it.
Zeros occur on the right-hand slde of all other equatlons.

Rules for Wrlting Equations

The left-hand side of the equations defining the
coefficients a4, or by, can be written for a cylinder

of constant cross sectlon having any number of bays
between equally spaced rings of squal stiffness 1if the
following features are cobserved in the scheme of equations
in table 4. All the elements lying along the main diagonal
that runs from the upper left to the lower right-hand
corner contaln the term (24Ay + B) except the one in the
lower rlght-hand corner for which the coeffliclent of As
l1s unity. The elements to the left and rignt of the ele-
ment on the main dlagonal contaln the term -Ay. All the

elements contalin the term n2, the coefficlents of which

follow a slmple pattern. The coefficlents of n® 1in the
elements in the maln dlagonal start with 2 in the lower
right-hand corner and increase by 6 in each element lying

above and to the left. The coefficlent of n? 1in any
6lement 1n the column above an element on the main dlagonal
or 1n the row to the left 1s one more than the coefficlent

of n? in the element on the main dlagonal.

The right-hand side of the equations can be easlly
written as follows: For the equatlion bearing the same
number ss the loaded ring and the equation preceding it,
the appropriate load term 1s written down as shown in
. table {j. For all other equatlons, zeros are put down.

It can be shown that the scheme of writing the equa-
tions can also be used for the general loading case where
any number of loads are acting on the ring. The load
system 1ls separated Into a symmetrical and an
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antisymmetrical part, and the rigid-ring vending moments
caused by the entlre load system are represented by the
series

[« ] o]
Mp = ch sin np + ZDn co8 ng
2 ' 2

where the Fourler coefflclents C, define the antisym-
metrical part and the coefficients D the symmetrilcal

part of the moment. The load term appearling in the scheme
of equations of table L 1s, then, for antisymmetrical
loads

c

Aynip? - 1)
n R2
and for symmetrical loads,

DnAv?(zz - 1)

For the antisymmetricel loads the sign of the load
term on the right-hand slide of the equation wilth the same
number as the loaded ring ls opposlte to that of Cp;
for symmetrical loads the sign of the load term for the
same equation ls the same as that of Dj.

Numerical Example

Basic deta.- The numerical example chosen 1s test
cylinder 3 with a radlal load applled at ring 3. The
basic data are therefore (from table 1):

Radius, R, Inches . . « o o ¢ ¢ ¢ s s s ¢ ¢« s o o » 15
Spacing of rings, L, inches . . . . « ¢« ¢« « ¢« « . + 15
ThiCIme Ss ’ t = t ' (] 1nch L] L] L] [ L] L] [ ] e L] L L ] [ ] o [ ] 032 0

Moment of 1lnertla, I, inchesh e s s s s s s o o 0357

The value of G/E 1s taken as 0.377. With these numerical
values, the constants A and B appearing in table L

become ¢
1815.4
15.90

A
B
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- Determination. of Fourler coefflclents.~ Because
cylinder 3 has rather stliff rings, a few Fourler coeffi-
clents glve sufficlent accuracy. For thls numerical
example, the coefficlents for n =2, 3, and I, will be
determilned. - :

The cylinder has four bays, whereas table I is set
up for six bays. The left-hand sldes of the equations
are therefore obtained directly from table L by dropping
the excess terms and retalning only the four rows and
four columns appropriate to a four-~bay cylinder, starting
in the lower right-hand corner of the terms on the left-
hand side; that 1s, the filrst two columns and the two top
rows in table li are dropped, and the remaining four
colums and rows are renumbered from 1 to L. The right-
hand sldes of the equatlions are obtalned by putting the
load terms 1n the places appropriate to the positlon of
the load. The final general scheme for an arbitrary
value of n 1s then:

(20n2 + 2Ay + B)aln + (1502 - Av)a,, + 9n2a3n + 3n2°'h.n =0
(1502 = &y)ay, + (Un? + 28y + Blag, + (902 - Av)ag, + 3nle), = oXt
91y + (902 - Avdag, + (802 + 24y + Blagy + (302 - Avey, = -2212

3n23'1n + 3n2a2n + (3n2 - A’f)a}n + (202 + Ay + Blaj, =0

The set of equations for determining the Fourler coeffl-
clents n =2 1s then obtalmned from thls general scheme
by setting n =2 and 1nserting the numerical values

for A, B, and +. The sets of equations for determining
the Fourier coefficients n =3 and n =, are then
obtained in an analogous manner. The three sets of
similtanequs equations are solved by any sultable method,
for instance, the Crout method (reference l.), and the
resulting Fourler coefflcients are

n f1n 82n &3n ®)in

2 | -0.04,820p/R | -0.17368P/R | 0.25394P/R | 0.16T711P/R
3 .020%36p/R | -.08048p/R | .08348P/R | -.00992P/R
L .00622p/R | -.01899P/R | .01902P/R | -.00601P/R
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Determination of moment and shear coefficlents.- The
moment coefficlent Cy 1s definqa by :

_M
Cy = Fﬁ

By the use of the expression (A7) the moment coefficient
for ring 1 can be written as

84n " 8(11
oy = gy + Ty “mZ"izLin

cos ng
5 n(n® - 1)

The coefficlent for the moment at the point of application
of the load (9= 0, 1 =3), for instance, bécomss

. o
- R ?_5_.._'._&.23
Cy = cMP. FZ co8 no
2

or, when terms after n = i are neglected,

¢y = -0.2387 + {0:2539 + 0.1737)

z coa 2(0°)
. {0.0835 -L_O .0805) cos 3(00) + Q.01906+ 0,0190) cos i (09)
2 0

= -0.1600

The shear coefficlent cq i1s defined by

R
Cq q_

By the use of expression (Al) the coefflclient for bay i
can be wrltten as )

[+ -]
- BN agp sin i
cq-ch+P2 a4n Sin no

where the second subscript R agaln denotes the value
for the rigld ring.

The shear stress reaches its maximum
value in bay 3 (1 = 3) at about ¢ = L. The meximum
shear coefflclent 1s therefore glven by

R - .
= + =
Cq C,._IR P EE a.3n_ 8in no
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" or, numerilcally, 1f-terms..bey6nd-. .n =), are dropped

Cq = 0.2211 + 0.2539 sin 2(44°) + 0.083L sin 3(L4O)

+ 0.0190 sin l(4;°)

= 0.5383
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TABLE 1l.- DIMENSIONS OF TEST CYLINDERS

Radius of | Length of | Spacing of | Thickness of | Xoment of ]
cylinder cyliﬁnder cylinder ri?'gs Skti.ln ofiggtfa I
(in.) (in.) (in.) (in.) (in.4)

1 15 60 15 0.0322 0.00421
la 15 60 20 .0322 .00421
1b 15 30 30 .0322 .00421
le 15 15 15 .0322 .002),
2 15 60 15 .0320 . 014001
3 15 60 15 .0320 .35695
ly 15 60 15 .04;8 04526
Lia 15 L5 15 .0648 04526
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TABLE 2.- COMPARISONS OF THECRETICAL AND EXPERIMENTAL MAXIMUM EHENDING MOMENT COEFPICIENTS

(1) 2) (3) (L) (5)

c c.t 4 COnpudt 4 c c.tod ¢ dtod c clc q c CIt 4

® { ] om ompu' ompute omput e
Loaded Oy :cc:g‘llng to|according to accwg‘;ng to ncoorzing tojacoording to ncoorging to| (20| ) .(.,'L). L)
Cylinder| ™'y Experimentel|reference 2 |reforence 3 |reference 3 |reference 3 |reference 3 standard (1) ] )

ng (modified) | (modified) me thod

Radial load
1 0.123 0.12h 10,820 0.071 38,.4 0.12}, 0.239 1.01]0.58 {1.01[1.94
2 .092 095 10,820 o7 820.8 .109 1.03( .77(1.18{2.60
1
3 .083 .086 10,820 071 2156 .092 1.0, .86]1.11]|2.88
L O .076 10,820 .071 7858 075 1.03| .9611.01]3.23
la 1 .128 137 10,820 071 384 .4 12h 1.07| +55! .97(1.87
1) 1 .106 .108 10,820 .07 2156 092 1.02) .67] .87|2.25
le 1 .082 .086 10,820 071 7858 075 1.05| .87} .91{2.91
1 .203 AT 1,132 .103 ho.2 .181 851 .51 .89(1.18
2 2 166 .13% 1,132 .103 85.8 «157 .80 .62{ .95|1.44
3 139 .118 1,132 .103 225.5 «135 851 7] 971,72
L 129 104 1,132 .103 821.9 +109 .81 .80] .8,4|1.85
1 233 207 126.9 JAL7 k.51 226 .89 .63 .97[1.03
5 2 .198 .167 126.9 JA47 9.62 216 ALl Jh(1.09{1.21
3 .183 .160 126.9 147 25.3 .19% .87| .80l1.07{1.31
L .170 A7 126.9 JL7 92.1 «155 86| .86 91|11
1 179 159 2,026 .093 7.0 .163 89| 52| 91{1.3%
L 2 13 .121 2,026 .093 153.6 43 85! .6511.,00{1.67
3 132 .109 2,026 «093 Lo03.6 123 831 .70] .93|1.81
L 122 097 2,026 .093 un .098 Vv .B0| .76 .80{1,96
Tangential load

La ] 1 [ 0.031 0.027 2,026 0.011 153.6 0.027 - 0.06, 0.87]0.36 [0,87[2.06
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TABLE 3,- COMPARISONS BRETWEEN THEORETICAL AND EXPERIMENTAL MAXIMUM SHEAR FLOX COEFFICIENTS FOR RADIAL LOAD

(1) (2) (3) (L) (5)
Cq Cq Cq Cq jf
Cylinder Lg;:ed MOSSured Cq acggggggzdto acgggggggdto acgggggggdto acgg?gggzdto @G U _Lil
g ay Experimental|reference 2 |reference 3 |reference 3 standard (1) (1)} (1) | (1)
(modified) method ;
(1 1 1.2l 1.23 3.36 1.15 0.31 0.99(2.71{0.93 {0.25
. { 1 3 .81 .83 3.36 1.15 1.02{L4.15{1.42 | .38
3 2 9l 87 1.63 92 93]1.73] .98 .33
L 3 3 1,65 1.57 1.73 1.05 95{1.05| .64 .19
(1 1 .78 .70 1.60 .60 .90{2.05] .77 4o
) ) 1 3 37 42 1.60 .60 1.1, (4.32]|1.62 | .84
3 2 55 L7 2 L1 85(1.31] .51 56
L3 3 1.07 .92 .88 .59 '.86 .82{ .55 .29
(1 1 48 L3 .85 .36 «9011.771 75| 65
1 3 .32 3L .85 .36 1.0612.66(1.12¢ .97
? 9 3 2 .27 25 32 .16 «9311.19{ .59 [1.15
L3 3 51 53 .52 37 1.04|1.02] .73 .61
(1 1 .90 .80 1.95 .70 .8912.17| .78 .3l
L 1 3 .48 ’ .50 1.95 .70 1.0414.06{1.46] .65
ﬁ 3 2 .69 55 91 L9 .80{1.321 .71} .45
L3 3 1.13 1.07 1.04 .62 \/ 95] 92| 551 .27
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TABIE lj.- SCHEME OF EQUATIONS FOR CYLINDER OF SIX EQUAL BAYS LOADED AT SECOND RING

[A - 636t'; B = CEE'RZ, Y= 1
. Ll ctLe n2(n2 - 1)°
Left-hand side Right-hand side
COeff%gjents a1, 850 By 8n L 8¢n (Load term)
Equ:iig!;r bln b2n b3n bh.n b'jn b6n Radlal gg‘:!é;.al Moment
1 32n2 + 24y +B| 2Tn2 - Ay 21 15n2 9n2 3n2 PAyn/nR | Tay/mR |-MAy(n@ - 1)/mR2
2 272 - Ay | 26n +2a¢ +H 21n? - Ay 1502 9n 3n2 -PAyn/nR| -TAy/mR| M Ay(n? - 1)/nR?
3 21n? 2102 - Ay | 20n2 +2a¢ +B| 1502 - 2y 9n? 3n2 0 0 0
L 15n2 15n2 1502 - Ay |14n® +2a¢ +B| 902 - Ay 3nc 0 0 0
5 9n2 9n2 9n? 9n2 - Ay |8n2+2a¢+B| 3n® - Ay 0 0 o
6 3n2 302 n? 3n? 3% - Ay |20 + Ay + B 0 0 0
locefficients a apply to radial load; coefficients b to tangential or moment load.
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Figure |. — General over-all cylinder dimensions.
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Figure 2.— Dimensions of rings and rivet sizes for
various cylinders . Rivet spacing ,| inch.
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Figure 3. - Ring bending—moment coefficients in cylinder | for
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Figure 4.- Ring bending —moment coefficients in cylinder | for

radial load at ring 2.
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Figure 5. - Ring bending- moment coefficients in cylinder | for
radial load at ring 3.
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Figure 7.— Ring bending- moment coefficients in cylinder la
for radial load at ringl.
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Figure 9. - Ring bending - moment coefficients in cylinder lc
for radial load at ring |.
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Figure Il. - Ring bending-moment coefficients in cylinder 2 for
radial load at ring 2.
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Figure 12.— Ring bending-moment coefficients in cylinder 2 for
radial load at ring 3.
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Fig. 13 NACA ARR No. L5HZ23

ASNNANAANAN

ANNNS

; Ring 2
05

5 M()\\O\—O/m_i .
Ring 3

© Experimental

Calculated

——- Standard method
—— Reference 2
~— — Reference 3 (modified)

—

-10 N //
| l | ) | |
O 30 60 90 120 150 180
¢ K deg NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS

Figure 13. ~ Ring bending - moment coefficients in cylinder 2
for radial load ot ring 4.
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Figure 14.- Ring bending- moment coefficients in cylinder 3 for

radial load at ring | .
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Figure 15. - Ring bending - moment coefficients in cglinder 3 for

radial load at ring 2 .
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Figure 16.-Ring bending-moment coefficients in cylinder 3 for
radial load at ring 3.
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Fig. 17 _ NACA ARR No. L5HZ23
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Figqure 17. — Ring bending ~ moment coefficients in cylinder 3
for radial load ot ring 4.
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Figure 18.~ Ring bending - moment coefficients in cylinder 4
for radial load at ringl.

18




Fig. 19 NACA ARR No. L5H23
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F_lgure I9. - Ring bending- moment coefficients in cylinder 4 for
radial load at ring 2 .
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Figure 20.- Ring bending—momen+ coefficients in cylinder 4

for radial load ot ring 3.
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Figure, 21.— Ring bending-moment coefficients in cylinder 4

for radial load at ring 4 .
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Figure 22 - Ring bending - moment coefficients in cylinder 4a
' for tangential load ot ring | .




Fig. 23 NACA ARR No. L5H23
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Figure 23.- Shear-flow coefficients in cylinder | for radial
load at ring J.
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Figure 24.— Shear-flow coefficients in cylinder | for radial
load at ring 3.
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Fig. 25 g ' NACA ARR No. LBH23

/%r gage positions

2 2" 7
ﬂl’ 2 31" a Y
' 4
1.0 - i i é
" o o | 23] a ;
p
5 _@ ///’_\\ -
/ > o
/7 i N
// // \\\ —~—
/4 (0] >~ =~
0 s —=o
Bay |
o Experimental
Cq . Calculated
—- Standard method
—— Reference 2
5 —~— Reference 3 (modified)
5 - -
- T
0 e
Bay 3
} | ] [ | 1
0] 30 60 90 120 i50 i80

¢, deg

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure 25.- Shear-flow coefficients in cylinder 2 for radial
load at ring I.



NACA ARR No. L5H23 Fig. 26
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Figure 26.~ Shear-flow coefficients in cylinder 2 for radial
load af ring 3.
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TABLE 1.~ DIMENSIONS OF TEST CYLINDERS

Radius of | Length of | Spacing of | Thickness of Mgﬂggz 1?—
Gylinder cyliﬁnder cylinder rigga skéln of ring, I
(in.) (in.) (in.) (in.) (in.4)

1 15 60 15 0.0322 0.00421
1la 15 60 30 .0322 .00421
1b 15 30 30 .0322, 00421
1o 15 15 15 .0322 0042l
2 15 60 15 .0320 . 04001
3 15 60 15 .0320 35695
L 15 60 1§ .06448 .04526
Lia 15 L5 15 -06,,8 .0l4526
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TABIE 2.~ COMPARISONS OF THECHETICAL AND EXPERIMENTAL MAXINUM BENDING NOMENT COEFPICIENTS

(1) (2) {3) ) (5)
ﬁd;ua - °'m ated ted c elted
oozl % SRS I e iy et i 2 4]
ring |Experimental (modified) | (modified mthod )
Redisl load
1 0.123 0.12}; 10,6820 0.071 384 .4 0.12} 0.239 1.01[0.58 1.01] 1.9
. 2 | .o92 095 10,620 on 820.8 109 1.03| .77/[1.18{2.60
L] +083 .086 10,820 o7 2156 092 1.04| .86(1.11{2.88
y On «076 10,820 o7 7058 075 1,03| .9611.01]3.23
la 1 128 137 10,820 o7 384 012 1,07 55| .97]1.87
b1 1 +106 108 20,820 o7 2156 +092 1.02] 67| .87]2.25
1o 1 082 .086 10,820 o7 7658 075 1.05| .87| .91[2.91
(1 «203 172 1,132 «103 Lo.2 181 85| 51| .69(1.18
2 2 1166 o133 1,132 «103 85.8 «157 80| 62| 95|1.Lh
ﬁ L] 139 «118 1,132 <103 225.5 135 851 | 97{1.72
L 129 .10, 1,132 +103 821.9 109 81| 80| .84(1.85
[ 2 o233 207 12649 247 k.52 o226 89| 63| 97|2.03
2 .198 167 126,9 47 9,62 216 84| h2.09]1.22
> 15 183 160 126.9 7 25.3 195 .87] .80]1.07|1.32
L 170 JO47 126.9 U7 92.1 155 86| 86| .91|1.02
1 1P «159 2,026 «093 72.0 163 09| 52| «91]2.34
L 2 A3 o121 2,026 +093 153.6 A3 85| +65]1.00|1.67 '
3 132 +109 2,026 «093 Lo3.6 123 83| 70| 93[2.81
b 122 «097 2,026 <093 in - «098 \4 80| .76| .80[1.96
Tangential lcad
a 1 0.031 0.027 2,026 0.011 153.6 0.027 - 0.08 0.87]0.36 Io.87 2.06
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TABLE 3.- COMPARISONS EETVEEN THECRETICAL AND EXPERINENTAL MAXIMUM SHEAR FLON COEFFICIENTS FOR RADIAL LOAD

(1) (2) (3) (L) (5)
Oq Oq Cq Oy
Oomputed Computed Computed ted
critate (23008 03I 38 8000 ol seing ol ogerding bolecsimiiog o (8] (21) (41| (3}
(modified method b

1 1 1.2k 1.23 3.36 1.15 0,31 l0.99(2.72]0.93 l0.25

2 1 3 .81 83 3.36 1,15 p.02(4.25{1.42 | .38
3 2 K .87 1.63 92 9311.73] 98] .33

: 3 3 1.65 1.57 1.73 1,05 95{1.05] 641 .19
r1' 1 .78 70 1.60 .60 «9012.05] .77 .40

" ) 1 3 37 A2 1.60 60 1.1 14.32]1.62 | L8,
3 2 55 7 o2 Jid 85{1.31] 75 .56

(3 '3 1.07 92 .88 59 '.96 .82 551 .29

(1 1 48 o3 85 36 90[1.77| .5 | .65

1 3 32 o3 85 .36 N.0612.66|1.12 | .97

5 ﬁ 3 2 27 25 o32 .16 «93]1.19| .59 {1.15
& 3 51 53 W52 37 N.04|1.02] .73] .61

(1 1 90 .80 1.95 «T0 .8912.17] .78] .34
Ik 3 48 .50 1.95 o0 1.0l |L.06]1.46] .65
3 2 .69 55 91 49 : 80{1.32] 72| 45

L3 3 1.13 1.07 1.04 .62 / 95| 92| .55 .27
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PABIE L.~ SCHEWE OF EQUATIONS FPOR OYLIMDER OF SIX RQUAL BAYS LOADED AT SECOND RING

e

5 o b2

p

o2 ' T 22 . na]

Iaft-hand side

Right-hand side

Gostfiotents|  ay, 82n a3n oyn on g (Load torm)

m‘m LT by, L L™ L5 be, Radlal ;::Iu Moment
1 . 320 +20p +B| 2702 - Ay 212 2502 92 32 PAYR/uR |TAv/uR | -Mohy(2? - 1)/uR?
2 2m? - Ay |26e2+2ap+H 2102 - ay 152 o 32 ~PA/R| ~2ap/uR| Modyp(n? - 1)/mR2
3 21n2 21n2 < oy |20 +20p+B| 1502 ~ ay 9n2 302 0 ( ()
L 1502 1502 1502 - ay [Un®+20y+B| 902 - ay s 0 0 0
5 92 o2 gu® [ 92% - ar |Bafv2apeB| 30® -y 0 0 0
6 3n2 2 5 3 n < b 20 + Ay + B 0 0 0

leoeffiolents a apply to radial load; coefficients b to tangential or moment load.
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Figure 31.- Symbols and sign convention used in ring analysis.
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