Provided by NASA Technical Reports Server

 INC. 2-74

RB Dec. 1942

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESTRICTED BULLETIN

TEST DATA ON THE SHEAR STRENGTH OF MACHINE-COUNTERSUNK RIVETED JOINTS ASSEMBLED BY AN NACA FLUSH-RIVETING PROCEDURE

523

4

By Robert Gottlieb

SUMMARY

· • .

Load-displacement curves for use in establishing allowable-load values for riveted joints assembled by an NACA flush-riveting procedure are presented. Comparative data are also given to show the effect of variations in the procedure on the yield and maximum shear loads for the rivets.

When the manufactured round head of the rivet is driven with a vibrating gun while the shank end is bucked into the countersunk hole with a bar and the portion of the formed head that protrudes above the skin surface after the rivet is driven is removed with a flush-rivet milling tool, it is concluded that:

1. The variations of rivet-head angle investigated $(45^{\circ} to 82^{\circ})$ have no consistent effect on the yield and maximum shear loads

2. The yield load is almost independent of countersunk depth

Interchanging the vibrating gun and the bucking bar in the foregoing method of driving does not change the yield and maximum shear loads for the rivets.

When the hole is countersunk at both ends, a headless rivet insorted, and countersunk heads formed at both ends of the rivet, there is no change in the yield and maximum shear loads from the values obtained by the preceding methods of driving.

INTRODUCTION

The structural quality of a riveted joint must involve a consideration of both the tightness and the strength of the joint. A joint is tight when the parts joined by the rivets are not permanently displaced with respect to each other until loads approaching the maximum strength of the joint are applied. A suitably defined yield strength, based upon the load-displacement curve, therefore affords a good basis for numerical comparison of the structural quality of riveted joints.

In the previous experimental studies of flush-riveting methods, reported in references 1 to 4, the emphasis was placed on the development of methods for increasing the tightness and flushness of machine-countersunk rivets. This report presents load-displacement curves suitable for use in establishing allowable-load values for riveted joints assembled by one of the flush-riveting procedures described in references 1 and 2. In addition, comparative data are given to show the effect of two variations in this procedure on the yield and maximum shear loads for the rivets.

SPECIMENS, RIVETING METHODS, AND TEST PROCEDURE

The specimens for this study consisted of two sheets of 24S-T aluminum alloy assembled into a lap joint by two Al7S-T aluminum-alloy rivets as shown in figure 1.

The method of riveting used for most of the tests and the two variations of this method are as follows:

<u>Vibrating gun on manufactured head of rivet</u>.- This method, which was designated method E in references 1 and 2, is illustrated in figure 2. The manufactured round head of the rivet is driven with a vibrating gun while the shank end is bucked into the countersunk hole with a bar. After the rivet is driven, the portion of the formed head that protrudes above the skin surface is removed with a flush-rivet milling tool similar to that described in reference 3.

<u>Vibrating gun on shank end of rivet.</u> This method, illustrated in figure 3, differs from the foregoing method in that the gun and the bar are interchanged in the driving of the rivet.

<u>Rivet countersunk on both ends.</u> This method is illustrated in figure 4. The hole is countersunk at both ends and a headless rivet is inserted. Countersunk heads are then formed in driving at both ends of the rivet. ----

Loads were applied to the specimens through Templin grips with a hydraulic testing machine accurate within one-half of 1 percent. Displacements of one sheet with respect to the other were measured on the edges of the sheets opposite the center of the riveted joint by means of two 18-power microscopes with filer micrometers. Both the displacement under load and the permanent displacement after removal of the load were measured for successively increasing loads until failure occurred.

RESULTS

Vibrating gun on manufactured head of rivet .- Loaddisplacement curves for different combinations of rivet diameter, sheet thickness, countersunk depth, and rivethead angle are presented in figures 5 to 16. The yield load and the maximum load are plotted in figures 17, 18, and 19 against the rivet-head angle, and in figures 20, 21, and 22 against the countersunk depth, for varying values of the other dimensions. For purposes of plotting, the yield load is here arbitrarily defined as the shear load per rivet at which the sheets are permanently displaced with respect to each other a distance equal to 4 percent of the rivet diameter. Figures 17, 18, and 19 show, as in figure 10 of reference 1, that within the normal scatter of test data the variations of rivet-head angle investigated had no consistent effect on the yield and the maximum loads. Figures 20, 21, and 22 bear out the conclusion drawn from figure 4 of reference 2 that, for rivets of the type used in this investigation, the yield load is almost independent of countersunk depth.

<u>Vibrating</u> on shank end of rivet. Results of the tests of rivets driven with the vibrating gun on the shank end of the rivet are compared with results of similar tests of rivets driven by the first method in figure 23. From this figure, allowing for normal scatter, it is concluded that interchanging the vibrating gun and the bucking bar in driving the rivets does not change the yield and the maximum loads.

<u>Rivet countersunk on both ends.</u>- Results of tests of rivets countersunk on both ends are compared with results of similar tests of rivets driven by the first method in figure 24. From this figure, allowing for normal scatter, it is concluded that countersinking the rivets on both ends also does not change the yield and the maximum loads.

CONCLUSIONS

When the manufactured round head of the rivet is driven with a vibrating gun while the shank end is bucked into the countersunk hole with a bar and the portion of the formed head that protrudes above the skin surface after the rivet is driven is removed with a flush-rivet milling tool, it is concluded that:

1. The variations of rivet-head angle investigated $(45^{\circ} to 82^{\circ})$ had no consistent effect on the yield and maximum shear loads

2. The yield load is almost independent of countersunk depth

Interchanging the vibrating gun and the bucking bar in the foregoing method of driving does not change the yield and maximum shear loads for the rivets.

When the hole is countersunk at both ends, a headless rivet inserted, and countersunk heads formed at both ends of the rivet, there is no change in the yield and maximum shear loads from the values obtained by the preceding methods of driving.

Langley Memorial Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va.

REFERENCES

- Lundquist, Eugene E., and Gottlieb, Robert: A Study of the Tightness and Flushness of Machine-Countersunk Rivets for Aircraft. NACA R. B., June 1942.
- 2. Gottlieb, Robert: Effect of Countersunk Depth on the Tightness of Two Types of Machine-Countersunk Rivet. NACA R. B., Oct. 1942.
- 3. Gottlieb, Robert: A Flush-Rivet Milling Tool. NACA R. B., June 1942.
- 4. Gottlieb, Robert, and Mandel, Merven W.: Comparison of Tightness of 78° Machine-Countersuch Rivets Driven in Holes Prepared with 78° and 82° Countersinking Tools. NACA R. B., Sept. 1942.

Figure 1. - Test specimen.

Countersunk sheet

Rivet before driving

Rivet after driving

Vibrating gun

Figure 2. - Successive operations in the flush-riveting procedure.

-1-523

Fig. 3

Rivet before driving

Countersunk sheet

Protruding portion removed with flush-rivet milling tool

Finished rivet

Figure 3. - Successive operations in the flush-riveting procedure with gun and bar interchanged.

್ರಕ -

> Figure 4. - Successive operations in the flush-riveting procedure with the rivet countersunk on both ends.

θ = 45°

60**°**

Figure 5. - Load - displacement curves, t=0.025 in.; d= 32 in.

L-523

,

÷

.

525-1

0

Permanent displacement Displacement under load Maximum load

.0

.004

.0**0**6

0

.004

.008

(L-523

Figure 10.-Load - displacement curves. t=0.032 in., $d=\frac{1}{5}$ in.

NACA

. С76-П

Figure 14. - Load - displacement curves . t = 0.051 in , $d = \frac{5}{32}$ in.

Figure 15. - Load-displacement curves t=0.064 in.; d= 5 in.

Figure 17. - Variation of yield load and maximum load with rivet-head angle for $\frac{3}{32}$ -inch-diameter rivets.

Figure 18.-Variation of yield load and maximum load with rivet-head angle for $\frac{1}{2}$ -inch-diameter rivets.

Figure 19 - Variation of yield load and maximum load with rivet-head angle for $\frac{5}{32}$ -inch-diameter rivets.

Figure 20.- Variation of yield load and maximum load with depth of countersink for $\frac{3}{32}$ -inch-diameter rivets.

•

١

Figure 22.- Variation in yield load and maximum load with depth of countersink for scinch-diameter rivets.

.

Fig.23

Fig. 24