

NACA ARR No. L5G23
NATIONAL ADVISORY COMMITTTEE FOR AERONAUTICS

ADVANCE RESTRICTED REPORT

THE RESISTANCE OF THREE SERIES OF FLYING-BOAT

HULLS AS AFFECTED BY LENGTH-BEAM RATIO

By Norman S. Land, Jerold M. Bidwell, and David M. Goldenbaum

SUMMARY

Data obtained from several independent length-beamratio investigations were correlated in order to determine the general effect of length-beam ratio on the resistance characteristics of three series of flying-boat hulls. The study involved length-beam ratios ranging from 5.07 to 10.5 for a large range, of loading conditions. Analyses were made at the best-trim hump, the free-to-trim hump, and a high-speed condition near get-away.

Compariscns were made by use of coefficients based on beam, length-beam product, and length-beam product. An optimuin length-beam ratio was found beyond which no further reduction in hydrodynamic resistance occurred. This optimum varied with the hull lines of the series.

INTRODUCTION

The trend in the design of flying boats has been toward higher length-beam ratios. It is inferred from experience with flying boats that an improvement in hydrodynamic characteristics is obtained with increasing length-beam ratio; otherwise, the heavier loadings now used at the higher length-beam ratios. would not have been acceptable.. Investigations of the degree and extent of improvement of the hydrodynamic characteristics with higher length-beam ratios than conventional length-beam ratios would therefore be advantageous.

Data for the investigations were obtained from model tests conducted at the Deutsche Versuchsanstalt fif Luftfahrt (DVL), the Langley Leiboriatory of the NACA, and Stevens Institute of Technology (references 1 to 4). The data were analyzed and compared to determine trends for each serles. The over-all effect of length-beam ratio on the resistance characteristics of flying-boat hidls was then determined from the trends.

MODELS

The Series

Inasmuch as the three series involve a total of 11 models representing variations of three basic designs, data pertinent to a comparison of the series are presented in table I.

DVL series.- The basic model of the DVL series was evclved by Sottorf (reference 1). The models of this series (table I) were developed from the basic form by starting at the step and increasing the spacing of the stations of the forebody and afterbody along the tangent to the keels at the step in proportion to the length (fig. l). In thls manner the values of beam, angle of dead rise, angles of forebody and afterbody keels, and depth of step remain constant. The three DVL models had length-beam ratios of 6.04, 7.50, and 9.19; Langley tank model 184 (reference 2), which is a continuation of the DVL series, had a length-beam ratio of 10.5 .

NACA series.- The basic form of the NACA series was similar to NAC4 model 84-AF (reference 5) except for a greater depth of step to conform with current practice in obtaining good landing stability. The series was evolved by maintaining constant products of length and beam and by making corresponding trensverse sections of the bottom surfaces geometrically similsr (fig.2). Constant values were also maintained for angle of dead rise, angles of forebody and afterbody keels, height of hull, and depth of step in inches. The three NACA models had length-beam ratios of $5.23,6.53$, and 7.84 (table I).

Stevens Institute series. - The hull of the XPB2M-1 flying boat was used as the basis of the stevens Institute
series. The models were developed in the same manner as the DVL models; that is, by expanding the station spacing along' a taingent to the forebody and afterbody keels at the step (fig. 3). Four models. having length-beam ration of $5.07,6.19,7.32$, and 8.45 were used in the investigation (table I).

Variations in Hull Form

A comparison of the plan forms of the bottom surfaces of the three series for a selected langth-beam ratio and beam is made in figure 4: This figure facilitates a comparison of the differences in forebody-afterbody length ratios and in the huli lines themselves.

As seen in figure 4, the NACA series has the largest ratio of forebody length to afterbody length; whereas little difference exists in the forebody-afterbody length ratios of the other two series. The lines of the afterbodies of the DVL series and the Stevens Institute series are fuller than the lines of the afterbody of the NACA series, especially near the sternpost.

A tail extension may contribute to decreasing the trimming moment at low speeds. The DVL models had no tail extension inasmuch as they were designed as. seaplane floats rather than as flying-boat hulls. The NACA series and the Stevens Institute series, both models of flying-boat hulis, had tail extensions.

The DVL float had no chine flare on the afterbody whereas the NACA series had chine flare over the entire length of the afterbody. The Stevens Institute series had ehine flare near the sternpost accompanied by a small "breaker" step just forward of the sternpost. All three series had approximately the same amount of chine flare on the forebody.

The included angle between the forebody and afterbody keels was 7.0° for the DVL and the Stevens Institute series and was 6.8° for the NACA series. This difference in included angle is considered negligible.

The depth of step (percent beaml was the same for the DVL and the Stevens Institute series but was greater for the NACA series.

Each of the three series of models was tested about a center of moments that was thought to be reasonable. These centers of moments are not in the same location with respect to the step but they are olose enough to preclude ony differences in the trends of the seriles.

RESULTS

Standard coefficients.- The results of the tests were reduced to the usual coefficients based on Froude's law to make them independent of size. In these coefricients, the beam was chosen as the characteristic dimension. The nondimensional coefficients are defined as follows:
C_{Δ} load coefficient (Δ / wb^{3})
C_{V} speed coefficient ($\mathrm{V} / \sqrt{\mathrm{Bb}}$)
$\mathrm{C}_{\mathrm{M}} \quad$ trimming-moment coefficient ($\mathrm{M} / \mathrm{wb} \mathrm{b}^{2}$)
$\Delta / R \quad$ load-resistance ratio
where
$\Delta \quad$ load on water, pounds
w specific weight of water, pounds per cubic foot (63.4 for these tests; usually taken es 64 for sea water)
b beam, feet
R resistance, pounds
V speed, feet per second
g acceleration of gravity ($32.2 \mathrm{ft} / \mathrm{sec}^{2}$)
M trimming moment, pound-feet
Any consistent system of units may be used. The moment data are referred to the centers of moments shown in figures 1 to 3. Tail-heavy moments are considered positive. Trim is the angle between the base line of the model and the horizontal.

Special coefficients.- The beam of the hull is usually considered as the characteristic dimension in the coefficients based on Froude's law. In reference 3, however, Bell discusses length-beam product as being fundamental in eliminating size; in reference 6, Parkinson considers length ${ }^{2}$-beam as being a fundamental quantity controlifing forebody spray.

In an effort to determine the comparative effects based on the foregoing considerations, nondimensional coefficients having characteristic dimensions of the square noot of length-beam. product and cube root of length ${ }^{2}$-beam product have been used in this report in addition to the standard coefficients used. These "special" coefficients are not proposed as substitutes: for the standard ones but are used merely to facilitate this analysis.

These special coefficients are defined as follows:
Load coefficients:

$$
\begin{gathered}
c_{\Delta_{1}}=\frac{\Delta}{w(L b)^{3 / 2}} \\
c_{\Delta 2}=\frac{\Delta}{w L^{2} b}
\end{gathered}
$$

Speed coefficients:

$$
\begin{aligned}
c_{v_{1}} & =\frac{V}{\sqrt{g} \sqrt[4]{L b}} \\
c_{v_{2}} & =\frac{V}{\sqrt{g}-\sqrt{2_{b}}}
\end{aligned}
$$

Triming-moment coefficients:

$$
\begin{gathered}
C_{M_{1}}=\frac{M}{w(L b)^{2}} \\
C_{M_{2}}=\frac{M}{w\left(L^{2} b\right)^{4 / 3}}
\end{gathered}
$$

where I is length from stem to sternpost measured in feet.

In comparing hulls of different length-beam ratios by means of the standard coefficients, the beam is constant and hence the hull of the model'with the highest length-beam ratio is obviously much larger than the hull of the model with the lowest length-beam ratio. If coefficients based on length-beam product are used, comparable hull sizes (reference 3) are maintained as the length-beam ratio is changed. If coefficients based on length ${ }^{2}$-beam product are used, models with high length-beam ratio.s have smaller length-beam products than models with lower lengthbeam ratios but the spray characteristics are more nearly comparable (reference 6).

The special coefficients therefore are employed to make the resistance characteristics of models having various length-beam ratios comparable when the size and spray are comparabie.

Figure 5 illustrates the relation between the standard and special coefficients.

Table of results, Comparisons of the series were made at the best-trim hump, the free-to-trim hump, and a high-speed condition; the results are summarized in table II. No results are given in this table at best-trim hump or the high-speed condition for the Stevens Institute series because data were unavailable.

No data are presented for speed coefficient C_{V} at the free-to-trim hump because of very indefinite resistance humps in references 1 to 4 .

.DISCUSSION

Best-trim hump:- Best-trim hump is only of academic interest because, with the length-beam ratios used at present, it is seldom attained. The control moments involved are often unavailable and the best trim is usually below the lower trim limit of stability. A comparison of the three series at the best-trim hump is given, however; because with high length-beam ratios the stability characteristics may be such that best-trim hump may be attained in practice. If the best-trim hump is attainable, analyses of the

DVL series (figs. $6(\mathrm{~b}), 7(\mathrm{~b})$, and $8(\mathrm{~b})$) indicate definite advantages in going to higher length-beam ratios than are used in presennt design practice. For the DVL series, at all coefficient bases considered, the load-resistance ratio Δ / R increases with increasing length-beam ratio and attains an optimum at a length-beam ratio of approximately 9.

An analysis of the NACA series (figs. 6(a), 7(a), and 8(a)) does not indicate so clear a conclusion as the analysis of the DVL series. On the basis of constant beam loading, load-resistance ratio increased with increasing length-beam ratio as far as the tests extended. With constant length-beam product, an opitimum length-beam ratio of about 6.5 is shown. When the NACA series of hulls is loaded in proportion to length ${ }^{2}$-beam product, the resistance increases slightly as the length-beam ratio is increased.

The speed at which the hump occurs increases. with increasing length-beam ratio. If small changes in thrust with speed are assumed, a higher hump speed may be favorable in that at higher speeds more load is supported by the wing; hence, less load is on the water.

Although, in general, the load-resistance ratio increases with increasing length-beam ratio, the best trim decreases with an accompanying rise in trimming moment.

For either the DVL or the NACA series, loading proporitional to length ${ }^{2}$-beam product decreases the effect of length-beam ratio on resistance and trim. This trend leads to the conclusion that, as length-heam ratio is increased for a given gross load, a smaller hull (smaller length-beam product) could be used with no increase in hydrodynamic resistance.

Free-to-trim hump.- At the free-to-trim hump, for the three coefficient bases considered, Δ / R increases. with length-beem ratio to an optimum length-beam ratio of about 9 for the DVL series (figs. 9 to 11). The NACA series has an optimum length-beam ratio of about 7 if compared on a basis of constant beam and an optimum of about 6 if compared on a basis of constant length-beam product. Comparison of the NACA series on the basis of constant length ${ }^{2}$ beam product results in a reversal of trend; that is, Δ / R decreases with increasing length-beam ratio: No optimum was attained for the Stevens Institute series on any basis
but the indication is that one might have been found if the series had been extended to higher length-beam ratios.

Exicept for the comparison made at constant length ${ }^{2}$ beam product, the trim at the hump for the three series of models decreases with increasing length-beam ratio. The comparison at constant length 2 -beam product indicates a slight increase in trim with length-beam ratio, for the NACA and DVL: series and a slightly varying trim with length-beam ratio for the Stevens Institute series. Perhaps the least slope occurs somewhere between the constant length-beam product and the constant length ${ }^{2}$-beam product.

Loadings proportional to length ${ }^{2}$-beam decrease the effect of liength-beam ratio on the free-to-trim-hump. resistance and trim.

High-speed characteristics.- From take-off consider. attion, it was desirable to ascertain the effects of lengthbeam ratio at a high-planing-speed condition. The condition chosen was one in which the angle between the forebody keel and the water was 7° and the speed coefficient C_{V} based on beam was 6.0 at a length-beem ratio. of 6.04 . Inasmuch as a difference in size is implied when changing from one basis of comparison to another, a difference must also occur in the speed. The relation between speed coefficients beised on beam, length-beam product, and length ${ }^{2}$ beam product for this condition is shown in figure 5.

- Up to a length-beam ratio of 7.5 (see figs. 12 and 13) the Δ / R trends, of the DVL and the NACA series are similar. Small differences may be attributed to the fairing. of the curves inasmuch as the, number of test'points were few. An optimum Δ / R. value for the DVL series occurs at about 9 regardless of the basis used for comparison.

At high planing speeds, length-beam ratio has the least effect on load-resistance ratio when the hulls are loaded in proportion to the length-beam product.

GOMCLUSICNS

A comparison of data obtained from three series of flying-boat hulls investigated at the Deutsche Versuchsanstalt fïr-Luftfahrt (DVL), the Langley Laboratory of the NACA, and Stevens Institute of Technology and incorporating
length-beam ratios ranging from 5.07 to 10.5 indicate the following conclusions:-

1. An optimum length-beam ratio was found beyond whioh no further reduction in resistance oocurred. The optimum ratio depended upon the hull lines of eny given model :series.
2. The least change in the resistance characteristics with length-beam ratio occurred when:

> Con (a) Best-trim hump was considered on the basis of constant length 2 -beam product.
(b) Free-to-trim hump was considered either on the basis of constent length-beam product or constant length ${ }^{2}$-boom product.
(c) A high-speed condition was considered on the . basis of cons.tant length-beam product. -
3. The small change in hydrodynamic characteristics with length-beam ratio, when compared on the basis of constant length ${ }^{2}$-beam product, seemed to indicate that at high length-beam ratios smaller hulls could be used without sacrificing resistance characteristics.

[^0]
REFFCRENCESS

1. 'Sottorf, N.: The Design of Floats, NACA TM NO'. 860, 1938°
2. Bidwell, Jerold M.,.and Goldenbaum, David M.: Resistance Tests of Models of Three Flying-Boat Hulls with a Length-Beam Ratio of 10.5 . NACA ARR No. L5Gl19, 1945.
3. Bell, Joe W., Garrison, Gharlie C., and Zeck, Howard: Effect of Length-Beam Ratio on Resistance and Spray of Three Models of Flying-Boat Hulls. NACA ARR NO.: $3 \mathrm{~J} 23,1943$.
4. Davidson, Kenneth S. M., and Locke, F. W. S., Jr.: General Tank Tests on the Hydrodynamic Characteristics of Four Flying-Boat Full Model's of Differing Length-Seam Ratio. NACA APR NO. 4 Fl5, 1944.
5.' Parkinson, John B., Olson, Roland E., Draley, Eugene C., and Luoma, Arvo A.: Aerodynamic and Hydrodynamic Tests of a Family of Models of Flying-Boat Hulls Derived from a Streamline Body - NACA Model 84 Series. NaCa Rep. No. 766, 194.3.
5. Parkinson, John B.: Design Criterions for the Dimensions of the Forebody of a Long-Range Flying Boat. NACA ARR NO. $3 \mathrm{KO}, 1943$.

DIMENSIONS OF MODELS

Geometric dimensions	$\begin{aligned} & \text { DVL series } \\ & \text { (references } 1 \text { and } 2 \text {) } \end{aligned}$				NACA series (reference 3)			Stevens Institute series (reference 4)			
	12	8	7	Langloy tonk model 184	1.4	145	146	339-22	339-1	339-23	339-46
Over-all length, in.	71.33	88.58	108.53	124.12	114.85	128.41	140.67	-----	--	-....-	-----
Length to sternpost, in.	71.33	88.58	108.53	124.12	83.33	93.17	102.06	27.37	33.45	39.53	45.61
Length of forebody, in.	39.36	48.87	59.92	68.48	50.10	56.02	61.36	15.22	18.60	21.98	25.36
Length of afterbody, in.	31.97	39.71	48.61	55.64	33.23	37.15	40.70	12.15	14.85	17.55	20.25
Maximum beam, in.	11.81	11.81	11.81	11.81	15.92	14.24	13.00	5.140	5.40	5.40	5.40
length-besm ratio	6.04	7.50	9.19	10.5	5.23	6.53	7.84	5.07	6.19	7.32	8.45
Forebody-afterbedy length ratio	1.231	1.231	1.231	1.231	1.507	1.507	1.507	1.253	1.253	1.253	1.253
Angle of dead rise excluding chine flare deg	20	20	20	20	20	20	20	20	20	20	20
Angle of afterbody keel, deg	5.0	5.0	5.0	5.0	5.5	5.5	5.5	7.0	7.0	7.0	7.0
Angle of forebody keel, deg	2.0	2.0	2.0	2.0	1.3	1.3	1.3	0	0	0	0
Depth of step, percent beam	5.0	5.0	5.0	5.0	6.28	7.02	7.70	5.0	5.0	5.0	5.0
c.g., forward of step, in.	5.4	5.4	5.4	5.4	7.2	7.2	7.2	1.89	1.89	1.89	1.89
c.g., height above keel at step, in.	16.56	16.56	16.56	16.56	17.94	17.94	17.94	4.86	4.86	4.86	4.86
Chine flare, forebody	Yes	Yes	Yes	Yes	Yes	Yes	Yos	Yes	Yes	Yes.	Yes
Chine flare, afterbody	No	No	No	No	Yes	Yes	Yes	\longmapsto Near sternpost only \longrightarrow			

TABLE IT
SUMMARY OF COMPARISOHS OE THE SERIBS

Series	Bases(constant $)^{\text {, }}$	Beat-trim hunp					Free-to-trim hump			Hish speed	
		Fig.	Trim	Speed coefficient	Δ / R	Trimming-moment coerficient	Fis.	$\begin{gathered} \text { Trim } \\ (\mathrm{Tdeg}) \end{gathered}$	Δ / R	Fig.	Δ / R
DVL	Beam	6(b)	Decreases with increase in L / b.	Increages with in- creasine maximum value ac talined.	Incressea with increast.18 L/b to optimum value of about 9.5.		$9(\mathrm{a})$	Decreases yith in- cresse in L/b	Increases with in- creasing L/b to opti- mum value of about y.5.	12(a)	Incresses with Increasing l/b at heavy load to ortimum of about 9.25 . Little change about 4.25 . Little change with L/b at light loads.
	Lengthbean product	7(b)	Decreases with in crease in L / b. Slopes of curves less than those at constant beam.	Increases with increasing L / b to extrapolated maximum value at L/b of about 9.5 . Slopes of curves less than those at constant beam.	Increases with increasing L / b to optinum value of about 9.0. Slopes of curves less than those at constant bean.	Increases with incressing L / b. Moment proportional to L/b.)	10(a)	Very slifht decrease with increas ine L/b. Minimum attained at L / b of about 9.5 .	Slight increase with increasing L/b. Optimum value at L / b about 9.0 .	12(b)	Increases with Increasing L / b at all losds to optimum of about y. 25 .
	Length ${ }^{2}$ beam product	8(b)	Decreases with in- crease 1 In $1 / 10$ to a minimum Lh of Least change of trin with L / b.	Increases with increasine L / b to extrapol ated maximun value slopes of curves less than those at constant length-beam product.	Very slight increase with increasing L/b to optimum value at a L / b of about 8.5, after which it drops off rapidly.	Increases with increasing L/b. Moment decel erates with increasing L / b.	11(a)	Slight increase with increasing L/b.	Neglistble change with increasine L / b. Falls off after L / b of about $y .5$.	12(c)	Increases with1ncreasing L/b at all loads to optimum of about 9.25.
naca	Веam	6(8)	Decreases mith increase in L / b.	maximum value attained.	Steady increase with prosech an optimum but no optimum value attained.		9(b)	Decreases with in- crease in L/b. crease in L/b.	Incresses with increasing L/o to optinum value et L / b of about 7.5 .	13(8)	Snall decrease with increas1ng L/b for all loads.
	Lengthbean product	7(a)	Decreases with in- crease in L/b. Slopes of curves less than those at constant beam.		Increases with L/b to opicum value at ho of approximately 6.5.	Incresses with increasing L/b.(Sligh deceleration in moment Lith.)	10(b)		No change with $1 / b$ to a value of 7.0 , сresse日.	13(b)	Small increase with increasing L/b at the heeyier load. No change at the lighter load.
	$\begin{aligned} & \text { Length }{ }^{2} \\ & \text { bean } \\ & \text { product } \end{aligned}$	8 (a)	Decreases with Increese in L/t ratio. least change of trim with L/b.	Increases with increasing L/b. Slopes of curves less than those at constant length-bean product.	$\begin{aligned} & \text { Slight decrease } \\ & \text { with increasing } / \mathrm{b} . \end{aligned}$	Increases with increasing L/b. (Moment decel erates with increasing L/b.)	11(b)	Slight increase with increasing L/b to maximum at L / b of 7.0 .	$\begin{aligned} & \text { Decreases with in- } \\ & \text { cressing } \mathrm{L} / \mathrm{b} \text {. } \end{aligned}$	13(c)	Small increase with inereasing L/b at all loads.
$\begin{array}{\|l\|} \hline \text { Stevens } \\ \text { Institute } \\ \hline \end{array}$	Beam		Ho data,	No data.	No data.	No data.	9(c)	Sharp decrease with increasing L/h.	Increases with incressing L / b. No optimum value attained.		No date.
	Lengthbeam product		No data.	Ho data.	No data.	No data.	101c)	Slight increase with L / b to L / b of 6.0; marked decrease thereafter.	Small increase with increasing L / b. No optimut value attained.		Ho data.
	Leng th ${ }^{2}$ bean product		No data.	No date.	No data.	No data.	11(c)	Increases with in- creasing $1 / 6$ to L/b of 6.0 de creases inereafter	Yery slisht increase with increasing L/b. No optimum value attained.		No date.

nATIONAL ADVISORY COMMITTEE FOR AEROMAUTICS

Figure 1.- Profile and plan views of the DVL series including Langley tank model 184.

NATIONAL ADVISORY
COMAITTEE FOR AERONAUTICS

Figure 2.- Profile and plan views of the NACA series.

rational advisory
con mite roe niomaution
COMMITTEE FOE NROMAUTKS

HACA series
Stevens Institute sories - _-_
DVL series \quad nATIONAL ADVISORY $\begin{array}{ll}\text { DVL series } & \text { NATIONAL ADVISORY } \\ \text { COMmITEE FOR AEROWAUTICS }\end{array}$

Figure 5.- Variation of relation between special and standard coefficients with length-beam ratio.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

Figure 6.- Best-trim hump characteristics for two series of models about their respective center-of-gravity positions. Constant beam.

(b) DVL series.

Figure 7.- Best-trim hump characteristics for two series of models about their respective center-of-gravity positions. Constant length-beam product.

(a) NACA models $144,145,146$.
(b) DVL series.

Figure 8.- Best-trim hump characteristics for two series of models about their respective center-of-gravity positions. Constant length ${ }^{2}$-beam product.

(a) DVL series.

(b) NACA models $144,145,146$.

Figure 11 .- Free-to-trim characteristics at the hump for three different series of models about their respective center-of-gravity positions. Constant length ${ }^{2}$-beam product.

(a) Constant beam; ($\mathrm{C}_{\mathrm{V}=6.0)}$.

(c) Constant length ${ }^{2}$-beam product; ($C_{V_{2}}=3.27$).

Figure 12.- High-speed characteristics
of models of DVL series about their
respective center-of-gravity positions. $\mathrm{C}_{\mathrm{V}}=6.0$ at length-beam ratio of 6.04; angle between forebody keel and horizontal, 70 .

(c) Constant length ${ }^{2}$-beam product; $\left(\mathrm{C}_{\mathrm{V}_{2}}=3.27\right)$.

Figure 13.- High-speed characteristics of models of NACA series about tneir respective centerof gravity positions. $\mathrm{C} \mathrm{V}=6.0$
at Iength-beam ratio of 6.04 ; angle between forebody keel and norizontal, 70 .

[^0]: Langley Memorial Aeronautical Laboratory National Advisory Committee for Aeronautics Langley Field, Va.

