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NATI ONAL ADVISORY COMMITTEE FOR AERONAUTICS 

ADVANCE CONFIDENTIAL REPORT 

EFFICIENCY TESTS OF A SINGLE-STAGE IMPULSE TURBINE HAVING 

AN 11 . 0-INCR PITCR-LI~~ DIAMETER WHEEL 

WI TH AIR AS THE DRIVING FLUI D 

By David S . Gabriel and L. Robert Carman 

SUMMARY 

Results are presented of efficiency tests on a single-stage 
im.pulse turbille having an 11.0-inch pitch-line diameter vrheel and 
a fabricated nozzle diaphragm us i ng air at moderate temperatures 
as the driving fluid . Efficiency curves are shown for turbine 
pressv.re ratios from 1. 2 to 5 . 2 . The maximum efficiency occurred 
at a blade-to-jet speed ratio of approximately 0.4 and was about 
0 .615 for turbine pressure ratios from 3 .0 to 4.6. Additional 
curves of the air--flow data are pr esented . 

I TRODUCTION 

Research is planned by the Cleveland laboratory of the NACA 
t o determine the ef'ic1ency of turbines, turbosuperchargers, and 
jet-pTopulsion units . One of' the first requirements of the turbine­
resea.:t'ch program is to develop a tentative standard method ,of test­
inf) the se tt;;rb nes and an accurate and convenient means of pre­
senti.ng the data . Before a tentative standard method can be 
recommended, i t is necessary to collect data under a wide variety 
of op9~ating conJitions and with various types of test instal ­
lation. 

Superheated steam, high -temperature combustion products of an 
e~~aust-gas pr oducer, and engine-exhaust gases have been used as 
the driv ing fluid in tests of exhaust-gas turbines . The use of 
steam and combustion products, however, results in high operating 
temperatures with accompanying thermal stresses and expansions in 
equipLent . As a result, the gas ducting must be desiGned for these 
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factors and corros on·-resistant materials must be specified . 'rhe 
twe of hot fa s requires specIal equipment for obtaj ning the t empo3ra­
t ure of the driving flujd and increase s the diff iculty of handling 
it, '!?articular ly 'V1Den flmo[ surveys and observations are des i red . 

When [,i1' in, tead of hot gases is used as the drivjng fl uid, 
a vrider r ange of turbln8 blade - '~o - jet speed ratio:) may be investi ­
gated at high turbine pr essure rati os 'Vli thout. exceeding trfG maximum 
,.,heel speed . 'r'he use of cool air as a driving medium, however, may 
result i n different values of turbine effi cienc;y than the va lue s 
obtained vTj th hot exhanst Bas b8ca llse of t he difference in the 
physt cal propertle.s of t he gases , " n t.he effect of temperature on 
the structure , aud in the heat 10SSGs . In add.ltion, complications 
may be intr oducod by the condensa tion of' 'Vrater vapor and f ormation 
of' ice during the exraneion . 

ful investigation of turbine effidencies 'VTUS conducted at the 
NACA laboratory i n ClevelD.nd , OhiO , using ail' at room temperature 
as tl,e dr i ving fluid a~ purt of a program to determine whether the 
turbine performance characterist:i.cs obtained in such tests accurate ly 
r eproduce the r e sults of tests using products of combustion at 
engine-exhaust temperatur es . 

APPARATUS AND METHOD 

The equipment t e sted 'VTaS a s inGle-stage impulse turbine ha ving 
an 11. O-inch pitch-lin~ d iameter 'VTheel wHh 'lnsert e d buckets and 
a farJI'icat ·,d nozzle diaphra!;'IIl . Bucket-to-nozzle clearance was 
se t at o.n to 0 . 12 inch . The turb ine was driven by atmosphertc 
air .dravm thr ough it by the l aboratory altitude·-e:X:haust system . A 
high-speed bydraulic dynamometer wa s coupled t o tho turbine shaft 
to absorb the powE.. r delivered . The arrangemont of the apparatus is 
shovm in figures 1 and 2 . 

Leakage of air from the atmos phere through the turbine into 
the lC",v-prClssure exhauBt WetS preveLlted by a bou8ing arc' Ll!ld tl'!e 
turbine -boarinG assembly and plUGS we l ded in 'o the annnlo,r S}J.:l.0eS 
bet.reen t he nozzle 1)ox and tho nc zzle -box baffle . Leaka,ge of air 
into the housing was pr8vcnted by equalizIn3 the pressure across 0. 

l u.:byrint h seal gland installed around the t urb i ne shaft between tho 
housing and a chumber evacuated by a controllable . .JE.. t pump . 

The turb1ne dischar ged into a pl enum chamber, tho static prp.~­
sure of which was taken as the bucket discharge pr0ssure Pd ' '1'110 

bucket dis<.:barge pre ssure was varied by r egulating the altitude 
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ey~aust pressure. The static-pressure tap for measuring the dis­
charge pressure ",as 10catod about 1/2 inch behind the external 
cooling cap, as shown in figure 2(a) . The end of the pressure -tap 
tube was plugr:;ed and a hole WaS drilled about 1/4 inch from the 
end of the tube on the downstream side . The cooling caps were 
installed to reproduce the conditions for turbine tests with hot 
gases but \'I'erc not needed for cooling in the air tests . 

Dynamometer torque measuremonts were made with a calibrated 
beam scale . The turbine speed was measured with a balanced ,. 

3 

bridge condenser-type tachometer driven from the standard turbine 
take·-off . The details of the t ur'bine inlet pipe are shown in 
fi gure 2(b ). An orifice plate vlaS used to measure the air flow . 
The air temperature, assumed to be the total temperature at the 
nozzle-box inlet, was measured "lith a quadruple-shielded chromel­
alumel thermocouple and a self -balancing potentiometer . The static 
pressure at the nozzle-box inlet was measured from a manifold con­
nect~d to four pressure taps in tho same cross section of the inlet 
pipe . 

Turbine -sbaft torque VIas measured to the nearest 0 . 1 foot ­
po~nd . The turbine-speed measurements Vlere accurate to ±20 rpm. 
'rhe probable error of the air-flo'\o' measurements was ± 1 percent. 
The nozzle-box-temperature measurements ",ere accurate to "Tithin 
3° F. All pressures Vlere measured Vlith mercury manometers to the 
neareot millimoter of mercury . The locations of the various pres­
sur e taps are shown in figure 2 . 

Effici&ncy tests wer e made over the following ranBe of condi­
tions : The ratio of the nozzle -box inlet pressure to the discharge 
pressure VIas varied from approximately 1. 2 to approximately 5 . 2; 
at each pressure ratiO, tho turbine sp8ed VIa s varied from approx­
imately 2000 to approximately 21,000 rpm to give bladc-to-jet speed 
r~tios of 0 . 1 to 0.7 . 

The follmring measurements were taken: 

(a) Turbine torque 
(b) T'H'~)ine epeed 
:: c) M.:::-< :=l fl l') \{ of air 
(d) I-J1):,:zle-'uox total temperature 
(e ) Nuzzle-box inlet static pressure 
(f ) Stat ic pressure in the plenum chamber 
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SYlVlBOLS 

discharge a r ea of the theoretical conver gent nozzle, ( sq ft ) 

effective nozzle area, ( sq ft). 

acceler ation due to gravity, 32 . 2 (ft )/( sec)2 or dimensional 
constant, 32 . 2 ( lb )/(slug) 

mass flmT of air, (slugs )/( sec ) 

turbine speod, (rpm) 

stat.ic Ilressure of turbine discharge at plenum chambtr, 
( i n . Hg absolute ) 

t otal pr oss ure at nozzle-box inlet, ( in . He; absolute ) 

turbine shaft power , (ft -lb) /( sec) 

Ra gas const .nt, 53 .35 (ft - lb)/ ( lb )( oF ) 

Tl total temperature at nozzle-box inlet, (oF absolute ) 

u bl ade pitch- line ve l ocity, (fps ) 

v theoretical jet spoed, (fps ) 

Wth avaHablc,energy, (ft··J.b)/(lb) 

r atio of specific heat at constant pressur e to specific heat 
at constant vo l ume, 1 .40 

turbine effi ciency 

density based on nozzlo-box inlGt total pr essure and temperature, 
( sluC)/( cu ft) 

disch;u~ge density at the theoretical cqnvergent nozzle, 
( r:,J.ug )/( cu ft) 

METHOD OF CALCULATION 

The energy avai lable for turbine 'fOrk .18.S calculated from the 
total pres:JUre Pi ana temperature Ti at t he nozz le-box inlet 
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and the static pressure in the discharge pipe Pd ' VelocHy head 

at the nozzle -box inlet was calculated from the inlet static pres­
sure) the inlet total temperature) the mass-flow measurements) and 
the compressible-flow equations. The velocity head was added to 
the measured static pressure to give the nozzle-box inlet total 
pressure . 'rhe turbine pressure ratio was then defined as the ratio 
Pi/Pd . The available energy is g iven by the expression 

r 
Wth = -L._ R T· 11 

y-1 a II ( 1) 

The turbine efficiency ~ is the ratio of the measured turbine 
power output to the calculated rate of available energy input: 

(2) 

In the computation of turbine blade-to-jet speed ratiO, the theo­
retical jet speed v is the velocity equivalent of the available 
energy . The blade speed was taken as the turbine pitch-line 
velocity u. The blade - to-jet speed ratio may be expressed as 

u u - -
v ,J-g I-

I I 
- - R T · ) 1 y.l a 1 

(3) 

CUT "es of the air flow through the turb ine are also necessary 
for the computation of U e turbine power, The principle variables 
involved in the mass flow are revealed by a cons ideration of the 
continuIty equation of the isentropic flow through a convergent 
nozzle 

or 

/-- .. -.- --- .~.-----

I r )'_1] 
AV 2g L RaTi 1 _(:d0 y 

y-l if 
- -

M 
a J@T: = a 1 

Pi 

(4) 
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An additional var:i.able is introduced by the interference of 
t.he turbine whee l with the flow . A r easonable assumption is that 
t1l s interfer ence i s a function of the blade - to-jet speed rc tio . 
Consideration of equatIon (3 ) shows that the only new variable intro -· 
duced -uy 'che blade - to-jet speed rati o is the turbine speed N. 'rhe 
blade - to - jet speed ratj.o for a given pressure ratio is propor tlonal 

to the factor N /s19-iT . The mass - fimY da ta will be presented by a 
i 

plot of the factor 
M 

a J---" - rrR T­p . a a J. 
1 

against and NJ 5i97T~ . 

An effective area can be defined as the a r ea of a convergont 
nozzle, vThich gives the measured mess flow for the measured values 
of J't ) Til and Pd ' Ab0ve the c:;:oitical pressllre ratio the mass flow 
thr,"")U{jh a convergent n<""lZzle is independent of the preEJsure ratio . 
The effective nozzle area can be defined for pressure ratios above 
cri.t::'cal by t~le foLLowing reJ.at .~ on : 

1 

'Y- i fl'-.. 2 \ I "I 
( --I Ae 2 - -
. "1+1 / "1+1 

( 5 ) 
M" __ _ 
~JgR T · = 
n D. 1 
r-; 

RESULTS AND DISCUSSION 

Fic ure 3 shows tho variati,:m of turbine e ficiency 'vi t h blade ­
t o -.jet speed ratio ovei:' a range of turbine JJressure r atios Pi/Pd 

from 1. 23 to 5.22 . The curves of figure 3 are pa·!'abolic . The 
maX.i.r:mlU efficiency occurred at blade -to - jet speed Tatios of approx ­
imately 0.4 for all turbine pr essure Tatios . Slight -rariations 
fl'om the r e quired turbine -pressure r atio at each blade-to-jet Sl)eed 
ratio were corrected by cross-plottinB the data against turbine 
·pre.ss\~re ratio for constant -blade-to - jet speed ratto . The correc·­
tion wa s found to be negligible in mo'st cases and was used for only 
tt.6 l:ighest t rbine pr e ssure ratio of 5 . 22 . 

Th~ maximum efficiency is cross -plotted against turbine pres ­
sure ratio in figur e 4. The curve rises gradual l y between :pressure 
ratios from 1. 0 to 3 . 0, is fla t from 3 . 0 to 4.6) and falls off 
shbi1.tly beyond 1 . 6 . The maximum eff"l.ciency of 0 . 615 is reached 
1)etwecn pressure ratios of 3 . 0 and 4 . 6 . The familIar pin-wheel 
diagram of turbine pr es sure ratio' plotted against blade-to - ,iet 
s peed ratio fo r vari ous ei'ficienctes 1S shown in figure 5 . 
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Ma 
A pl ot of the air -flow f actor Pi \/gRaTi against th~ ratio 

N~/519 /Ti for var inus tur bine pressure ratios Pi/Pd is shown in 
figur e 6 . The wheel - speed e.ffect is appar ent at low pressure ratios 
but disappeRrs at pressure ratios above 2.3 . A cross plot of fig ­
ur e 6 is shown in figure 7. The a i r-flml factor is plotted against 

the pressure ratio for vari nus values of N'I/519/T .• The air-flr,w 
1 

factor becomes constant at a value of 3 . 04 for pressure ratios 
between 2 . 3 and 5 . 2 . 

The effective area A e calculated from equation (5) and the 

data shown in figure 6 gives a value of 9 . 02 square inches for 
pressure r atios greater than 2 . 3 . This area is 82.8 percent of 
the measured nozzle discharge area . 

Unpublished results of NACA tests using compressed air as the 
driving fluid have shown thRt icing of the Quckets may cccur at 
turbine pressure ratios of 1 . 6 . N unusual operating characteris­
tics indicating progressive icing of the turbine buckets were 
observed during the tests reported herein . Subsequent unpublished 
NACA test results have shown that nozzle -box inlet pipes may influ­
ence the turbine efficiency to a considerable degree. 

SUMMARY F RESULTS 

Tests of a single - stage impulse turbine having an 11.0-inch 
pitch-line diameter whAel with insertAd buckets and a fabricated 
nozzle diaphragm using air at moderate temperatures as the driving 
fluid showed that : 

1 . Maximum effi iency occurred at a blade-to - jet speed ratio 
of approximately 0 .4 for pressure ratios from 1 . 2 to 5.2 . 

2 . ~~ximum efficiency was approximately 0 . 615 for turbine 
pressure ratios from 3 . 0 to 4 . 6 . 

3 . The ratio of the effective area of the turbine (considered 
as a convergent nozzle) to th true area is 0 . 828 for pressure 
ratios above 2 .3 . 

Aircr aft Engine Research Laboratory) 
National Advisory Committee for AeronautiCS) 

Cleveland ) Ohio . 



NACA ACR No. E5C30 Fig. I 

'-... 
/I) 
Q) .... 

'-~ 
~ 
::s -I 
~ I 

lJ 



l 

Fig. 2 a HACA ACR No. E5C30 

IE : ~I- orifice 

Tj ---H-----~ 

Nozzle-box inlet 
pressure Pi----

To exhaus t 

To exhaust 

cool ing caps 

c:: 

Detail at A 

/ 

""- Labyr i nth 
seal gland 

(a) General test setup. 

NATIONAL ADVISORY 
COMMITTEE FOR AERONAUTICS 

Fieure 2. - Schematic diagram of test apparatus. 
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