NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WARTIME REPORT

ORIGINALLY ISSUED
 November 1943 as
 Advance Reatricted Report 31504

CHARTS FOR CAICULATION OF THE CRIIICAL SITRESS FOR
LOCAL INSTABIIITY OF COLDMIS WIIH I-, Z-,
CHANITEL, AKID RECTANGULAR-TUBE SECTION
By W. D. Kroll, Gordon P. Fisher, and George J. Heimerl

Iangley Memorial Aeronautical Laboratory
Langley Field, Va.

WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

NATIONAL ADVISORY COMMITTHE FOR ATRONAUTICS

ADVANOE RESTRICTBD REPORT

OEARTS FOR CALCULATION OF THE GRITICAL STRESS FOR

 LOCAL INSTABIIITY OF COLUMNS WITH Im, Z-, CHANNEI, AND RECTANGUIARMTUBE SECTIONBy W. D. Kroll, Gordon P. Fisher, and George J. Heimerl

SUMMARY

Charts are presented for the calculation of the critical stress for local instability of columns with I-, $Z-$, channel, and rectangular-tube section. These charts are intended to replace the less complete charts published in NACA Technical Note No. 743. The values used in extending the charts are computed by moment-distribution methods that give somewhat more accurate values than the energy method previousiy used and also make it possible to determine theoretically which element of the cross section is primarily responsible for instability.

An experimental curve is included for use in taking into account the effect of stresses above the elastic range on the modulus of elasticity of 34 SW aluminum alloy.

A determination of the dimensions of a thin-metal column for maximum critical stress with certain given conditions is presented.

INTRODUCTION

One of the important requirements in the design of thin-metal columns for aircraft is the determination of the critical compressive stress at which locai instability occurs. Local instability of a column is defined as any type of instability in which the cross sections are distorted in their own planes but are not translated or rotated.

The critical stress for local instability can usually be given in terms of the geometry of the section, the properties of the material, and a coefficient. Reference 1 presented charts for the determination of such coefficients for columns of I-, Z-, channel, and rectangular-tube sections. These charts, however, contained relatively few curves and in some cases required interpolation over a wide range.

In order to make the charts of reference 1 more nearly complete and to reduce the necessary range of interpolation, each chart has been extended to include eight intermediate curves. The values used in extending the charts are computed by moment-distribution methods that give somewhat more accurate values than the energy method previously used and also make it possible to determine theoretically which element of the cross section is primarily responsible for instability.

The present report includes the extended charts, along with tables of the values used in preparing the charts, and is intended to supersede reference l. an experimental curve is included for use in taking into account the effect of stresses above the elastic range on the modulus of elasticity of 24 Sm T aluminum alloy. A determination of the dimensions of a thin-metal column for maximum critical stress with certain given conditions is presented.

SXMBOLS

A cross-sectional area
$b \quad$ width of end or narrower wall of rectangular tube or of plate element of $I-, Z-$, or channel section
\bar{D} effective flexural stiffness of plate per unit length $\left[\frac{\eta E t^{3}}{-12\left(1-\mu^{2}\right)}\right]$

Ee modulus of elasticity
h width of side or wider wall of rectangular tube
k nondimensional coefficient dependent upon relative dimensions of cross section
$k_{\text {sec }}$ section coefficient
t thickness
$S^{I I I}$ stiffness in moment-distribution analysis for far edge free (no support ana no restraintagainst rotation)
stiffness in moment-distribution analysis for far edge supported and subjected to sinusoidally distributed moment equal and opposite to moment applied at near edge
$\epsilon \quad$ restraint coefficient, a measure of relative resism tance to rotation of restraining element at edge of plate
$\lambda \quad$ half wave length of buckle
$\mu \quad$ Poisson's ratio
$\sigma_{c r}$ critical compressive stress
η nondimensional coefficient that takes into account reduction of modulus of elasticity for stresses above the elastic range. Within the elastic range, $\eta=1$.

Subscripts:
F flange
W web
b end or narrower wall of rectangular tube
$h \quad$ side or wider wall of rectangular tube

FORMULAS FOR CRITICAL STRESS

For an I-, Z-, or channel section, either of two formulas given in reference l, may be used for calculating the critical compressive stress. The two formulas are

$$
\begin{equation*}
\frac{\sigma_{c r}}{\eta}=\frac{k_{H T^{2} E t_{n}^{2}}}{12\left(1-\mu^{2}\right) b_{W}^{2}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sigma_{c r}}{\eta}=\frac{k_{F}{ }^{2} E t_{F}^{2}}{12\left(I-\mu^{2}\right) b_{F^{2}}^{2}} \tag{2}
\end{equation*}
$$

The corresponding formula for a rectangular-tube section is given in reference 1 as

$$
\begin{equation*}
\frac{\sigma_{c r}}{\eta}=\frac{k \pi^{2} E t_{h}^{2}}{12\left(1-\mu^{2}\right) h^{2}} \tag{3}
\end{equation*}
$$

In using formulas (1), (2), and (3) when the stresses are above the elastic range, $\sigma_{c r} / \eta$ is first evaluated, and $\sigma_{c r}$ is determined from this value by means of the curve of figure 6. The relationship between $\sigma_{c r}$ and $\sigma_{c r} / \eta$ will be further discussed in another section of this report.

DISCUSSION OF CHARTS

All of the quantities on the right-mand side of equation (1), (2), or (3) are known except the value of the coefficient $k W, k F, \quad o r k$. This value may be read from the appropriate chart (figs. I to 5) after the necessary dimension ratios are computed and applies whenever the length of the column is greater than several (3 or 4) times the width of the widest plate elements.

In general, when a column of $I-, Z-$, channel, or rectangular-tube section fails by local instability, one of the two elements (web and flange or end wall and side wall) of the cross section may be said to be primarily responsible for the instability; that is, as the load approaches its critical value, this one element is no
longer capable in itself of supporting the loads imposed on it without buckiling and requires a certain anount of restraint from the other element of the cross section in order to delay buckling untill that load for which the cross section as a whole becomes unstable is reached. The charts show which element of the cross section is being restrained against buckling by the other element. A dashed line is drawn on each of the charts (figs. 1 to 5) connecting the points for which the two elements are equally responsible for the instability of the section. This line divides the chart into two regions: In one retion the web (or side wall) is primarily responsible for instability and in the other region the flange (or end wall) is primarily responsible for instability. A column with a given cross section will fall into one of these two regions, depending on the values of the various dimension ratios.

RELATIONSHIP BETVEEN $\sigma_{c r}$ AND $\sigma_{c r} / \eta$

Figure 6 shows the relationship between $\sigma_{c r}$ and $\sigma_{c r} / \eta$ as determined from tests of $24 S T$ aluminum-alloy columns of $Z, H-$, and channel section, either formed from flat sheet or extruded. This figure was 'prepared by plotting the experimentally determined values of ocr as ordinates against the values of $\sigma_{c r} / \eta$ as abscissas. The values of $\sigma_{c r} / \eta$ were computed according to equation (I) and the chart of figure. 1 or. 3. The results of the tests are discussed in more detail in referencé 2 .

Similar experimental data for materials other than 24S—T aluminum alloy are not now available, and further study of this subject seems desirable.

METHOD OF PREPARING CHARTS

 charts (figs. $\begin{aligned} & \text { to 5) were computed by an application of }\end{aligned}$ the principles of moment distribution to the stability of thin plates. This method is presented in detail and one example of its application is given in reference 3.

An alternate procedure, which makes use of the charts presented in references 4 and 5 , was used in computing some of the values for the charts of figures 1 to 5. An example of the application of this method follows:

It is desired to determine the value of the coefficient $k_{\text {a }}$ for a colunn of the oross-sectional dimensions show in figure 7. It is necessary to nredict which element of the cross section will be rrimarily responsible for the instability. The calculations will then show whether this orediotion is correct. For a section with a relatively wide flange, such as that shown in figure 7 , the flange will nrobably be prinarily responsible for failure. On this assumption, the detailed nrocedure for determining k_{W} or k_{F} is as follows:

1. Compute the ratios $t_{T i} / t_{N / W}$ and b_{W} / b_{F}.
2. Assume a value of λ / bN, where λ is the half wave length of the buckle.
3. Compute λ / b_{F} from the equation $\frac{\lambda}{b_{F}}=\frac{\lambda}{b_{W}} \frac{b_{W}}{b_{F}}$.
4. Assume several values of k_{W}. In order to avoid the necessity for interpolation in the tables of reference 6 , the values of k should be assumed for the part that is not primarily resoonsible for instability because these values are the ones that must be used to enter the takles. Unless previous exnerience has revealed the apnroximate range of such values to be assumed, this range may be estimated by the use of the relation between the values of k for the two parts of the cross seotion given in step 5 and by the fact that the value of K for the part which is primarily responsible for instability will be sonewhere between that for simple support and that for fixed edses.
5. For each value of k_{W}, compute k_{F} from the equation

$$
k_{F}=\frac{k_{\text {iW }}}{\left(\frac{t_{F}}{t_{W}} \frac{b_{W}}{b_{F}}\right)^{2}}
$$

which was obtained from equations (1) and (2) and the assumption that stress is uniform across the section.
6. Using the assumed values of λ / b_{W} and k_{W}, evaluate the quantity $S^{I V}, W /(\bar{D} / b)_{W}$ from the tables. of reference 6, where

$$
\bar{D}_{W}=\frac{\eta E t_{W}^{3}}{I 2\left(1-\mu^{2}\right)}
$$

7. Compute $\epsilon=\frac{4 S^{I V} W_{F}}{\bar{D}_{F}}$ (see reference 4), where

$$
\bar{D}_{F}=\frac{n E t_{F}^{3}}{12\left(1-\mu^{2}\right)}
$$

The formula is

$$
\epsilon=4 \frac{S^{I V} W}{\left(\frac{\bar{D}}{D}\right)_{W}} \frac{\left(\frac{D}{D} / W\right.}{\left(\frac{D}{b}\right)_{F}}=\frac{S^{I V} W}{\left(\frac{D}{b}\right)_{W}} \times 4\left(\frac{b_{F}}{b_{W}}\right)\left(\frac{t_{W}}{t_{F}}\right)^{3}
$$

8. With the values of ϵ from step 7, determine k_{F} from the chart of figure 3 , reference 4 .
9. Plot k_{F} from step 5 and k_{F} from step 8 as ordinate against either or the two values as abscissa. The intersection of the two curves gives the correct value of k_{F} for the particular value of λ / b_{F}.

10. Plot the values of $x_{\mathbb{F}}$ from step 9 against $\lambda / b_{F_{F}}$ The minimum of this curve gives the required value

If the calculations indicate that $S^{E V} W$ is negam tive, the prediction that the flange is the primary cause of instability is wrong. In such a case, the calculation must be carried out with $S^{I I I}$ instead of $S^{I V} W$ in step 6, and with the chart of figure 3, reference 5, in step 8. In addition, all the subscripts F will become W, and vice versa.

The results of the procedure outlined herein as applied to the problem of figure 7 are given in table I. The values of $k_{\text {pi }}$ in the lest column of table I were determined accorâing to step 9 . If these values of $k_{\vec{H}}$ are plotted egainst $\lambda / b_{\mathbb{F}}$, the minimum value is found to be about 0.73 . The value of k_{W} can be computed from the formula given in step 5.

Tables II to $V I$ give the minimum values of k_{W}, k_{F}, and k used inthe preparation of figures lo 5. All of the values of k and $k W$ in these tables except those marked a were computed either by the method just outlined or by the moment-distribution method discussed in reference 3 . The values of $k y$ were then computed by the equation given in step 5. The values marked a are those computed by the energy method and used in the preparation of the charts of reference 1.

DIMENSIONS OF THINMETAI COLUMNS FOR

MAXIMTM CRITICAL STRESS

Equation (i) gives the critical stress for an I-, $Z-$, or channel column in terms of the width and the thickness of the web. The effect of the presence of flanges is taken into account in the evaluation of the coefficient $k_{\text {W. For }}$ the purpose of studying the dimensions that give maximum critical stress, the form of equation (I) is preserved but the concept of certain terms is generalized.

The ratio b / t of a plate may be called the aspect ratio of the plate. A corresponding quantity that expresses the "section aspect ration for a thin-metal column is the area of the section divided by the square of some thickness. If, thereiore, equation (I) is written

$$
\begin{equation*}
\frac{\sigma_{C T}}{\eta}=k_{\sec } \frac{\pi^{2}}{12\left(1-\mu^{2}\right)}\left(\frac{\hbar^{2}}{A}\right)^{2} \tag{4}
\end{equation*}
$$

then the value of the section coefficient $k_{\text {sec }}$ is a measure of the effect of the shape of the section $b / b W$ on $\sigma_{c r} / \eta$ for a given section aspect ratio A / t^{2} and a given value of t_{W} / t_{F}. In order to show that $k_{\text {sec }}$ is dependent on only b_{F} / b_{W} and t_{W} / t_{F}, equation (I) is set equal to equation (4), with the result that

$$
\begin{equation*}
k_{W}\left(\frac{t_{W}}{b_{W}}\right)^{2}=k_{\sec }\left(\frac{t_{W}^{2}}{A}\right)^{2} \tag{5}
\end{equation*}
$$

From the geometry of the section (Z- or channel), $A=b_{W} t_{W}+2 b_{F} t_{\mathbb{F}}$. If this value of A is substituted in equation (5) and the equation is solved for $k_{\text {sec }}$, the result is:

$$
\begin{equation*}
k_{\text {sec }}=k_{W}\left(1+2 \frac{b_{F} / b_{W}}{t_{W} / t_{F}}\right)^{2} \tag{6}
\end{equation*}
$$

The value of k_{W} depends on only $\cdot b_{F} / b_{W}$ and t_{W} / t_{F}, and the value of $k_{\text {sec }}$ therefore also depends on only these two ratios.

In figure 8 the values of $k_{s e c}$ as determined by equation (6) are plotted for channel and z -section columps, and in figure 9 similar values are plotted for Isection columns.

A method exactly analogous to the foregoing method can be applied to rectangular tubes. In this case, aqua lion (4) is written...

$$
\begin{equation*}
\cdot \frac{\sigma_{c} r}{\eta}=k_{\operatorname{scc}} \frac{H^{2} \pm}{i B\left(1-\mu^{2}\right)}\left(\frac{t_{h}^{2}}{A}\right)^{2} \tag{7}
\end{equation*}
$$

and the formula for $\mathrm{k}_{\text {sec }}$ becomes

$$
\begin{equation*}
k_{\text {sec }}=4 k\left(1+\frac{b}{h} \frac{t_{b}}{t_{h}}\right)^{2} \tag{8}
\end{equation*}
$$

In figure 10 are plotted the values of $k_{\text {sec }}$ for rectangular tubes, as determined by equation (8).

As a practical problem in the determination of the dimensions of a thin-metal column for the development of maximum critical stress, consider a flat strip of metal of constant thickness which is to be formed into a Z - or channel section. In the formed section, $t_{W} / t_{F}=1$. The section aspect ratio $A / t W^{2}$ is equal to the vidth of this strip, or the developed length of the final cross section, divided by the thickness. When bent to form a channel- or Z-section column, this strip of metal of constant thickness develops the highest $\sigma_{c r} / \eta$ for local instability if the bends are so located that the ratio of flange width to web width b_{F} / b_{W} is equal to about 0.41 , which is the maximum of the curve for $t_{W} / t_{F}=1$ in figure 8 .

Regardless of the thickness used in the definition of the section aspect ratio, the maximumalue of $\sigma_{c r} / \eta$ for a given value of the section aspect ratio will occur at the same values of b_{F} / b_{W} for a particular value of t_{W} / t_{F}. The maximum for each tw/tF ratio therefore reveals the shape - that is, the value of bs/bw - that the I-, $Z-$, or channel section should have if maximum $\sigma_{c r} / \eta$ is desired. The same reasoning holds for the rectangular tube. (Seefig. 10.)

Equations (1) to (3) and figures 1 to 5 are probably more useful to practical designers than the more general equations (4) and (7) and figures 8 to 10 . The curves of figures 1,3 , and 5 have therefore been redrawn in figures 11 to 13 with dashed lines added to show the percentage of the maximum value of $\sigma_{c r} / \eta$ that can be developed for given values of t_{W} / t_{F} and A / t_{W}^{2} when b_{F} / b_{W} is varied. The position of these lines is independent of the thickness used in the definition of the section aspect ratio. It is of interest to observe, by comparison of figures 2, 4, and

5 with figures 11 to 13 , that the line of maximum values bears no apparent relation to the line that shows the dimension ratios for which the web and flange (or end wall and side wall) are equally responsible for the instability of the section.

CONCLUSIONS

1. The critical compressive stress at which crosssectional distortion begins in a thin-wall column of I_{-}, Zn, or channel section is given by either of the follow,
ing formulas:

$$
\frac{\sigma_{c r}}{\eta}=\frac{k_{W} \pi^{2} E t_{W}^{2}}{12\left(1-\mu^{2}\right) b_{W}^{2}}
$$

or

$$
\frac{\sigma_{C r}}{\eta}=\frac{k_{F}{ }^{2} E_{E} t_{F}^{z}}{12\left(1-\mu^{z}\right) b_{F} z}
$$

where
b_{W} width of web
$b_{F} \quad h a l f$ width of flange for I-section, total width of flange for Z - and channel section
k_{W} and k_{F} nondimensional coefficients read from the appropriate chart

E and $\mu \quad$ Young ${ }^{\prime}$ s modulus and Poisson's ratio for the materiel, respectively
t_{W} and t_{g} thickness of web and flange, respectively
η nondimensional coefficient that takes into account reduction of modulus of elasticity for stresses above the elastic range. Within the elastic range, $\eta=1$.

For a rectangular-tube section

$$
\sigma_{\underline{c} r}=\frac{k}{12\left(1-\mu^{2}\right) h_{h}^{2}}
$$

where
k nondimensional coefficient read from appropriate chart
h and t_{h} width and thickness, respectively, of side or wider wall of rectangular tube
2. For stresses above the elastic range, the critical compressive stress is determined from a curve that gives the relationship between $\sigma_{c r}$ and $\sigma_{c r} / \eta$ for 24 Sm alum minum alloy.
3. The charts of values of k are divided into two regions: In one region the web or side wall is primarily responsible for instability and in the other region the flange or end wall is primarily responsible for instability.
4. The equations for critical stress are also presented in general form with the ratio b / t replaced by the section aspect ratio A / t^{2}, where b is the width and t the thickness of an element of the cross section, and A is the area of the cross section. From these general equa-. tions, charts have been prepared that reveal the effect of shape alone on the critical stress for local instability. The shapes that five maximum critical stress bear no apparent relation to the proportions for which the web and flange (or end wall and side wall) are equally responsible for the instability of the section.

Langley Memorial Aeronautical Laboratory, National Adviscry Committee for Aoronautics, Langley aided Va,

REFERENCES

1. Stowell, Elbridge 2., and Lundquist, Eugene E.: Local Instability of Columns with I-, Z-, Channel, and Rectangular-Tube Sections. NACA IN No. 743, 1939.
2. Heimerl, George J., and Roy, J. Albert: Preliminary Report on Tests of $245-T$ Aluminum-Alloy Column of $\mathrm{Z}-\mathrm{z}$, Chamel. and H-Section Thet Develop Local Instability. INACA kB No: 3J27, Oct. 1943.
3. Lundquist, Eugene E., Stowell, Elbridge Z., and Schuette, Ivan H.: Principles of Moment Distribution Applied to Stability of Structures Composed of Bars on Plates. NACA ARR No. 3K06, 1943.
4. Iundquist, Eugene E., and Stowell, Elbridge Z.: Critical Compressive Stress for Outstanding Flanges. NACA Rep. No. 734, 1942.
5. Lundquist, Eugene E., and Stowell, Plbridge Z.: Critical Compressive Stress for Flat Rectancular Plates Supported along all Edges and Mlasticaliy Restrained against Rotation along the Unloaded edges. NACA Rep. No. 733, 1942.
6. Kroll, W. D.: Tables of Stiffness and Carry-Over Factor for Flat Rectangular Pletes under Compression. NACA ARR No. 3 K 27 , 1943.
TABL: I

TABLE II
CALCULATED MINIMUN VALUES OF k_{W} FOR I-SECTIONS

	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0	${ }^{2} 4.00$				----	$a_{4} 4.00$					${ }^{1} 4.00$
. 05	${ }^{2} 6.05$					a 4.49					$\mathrm{a}_{4}^{4} .06$
.10	${ }^{2} 6.46$					${ }^{4} 4.82$					${ }^{4} 4.09$
. 15	${ }^{1} 6.61$					a4.98					4
. 20	a6.68	6.46	6.12		5.26	2. 4.81	4.32	3.99	3.79		
. 30	6.72	6.49	6.15	5.59	5.05	4.62	3.94	3.59	3.34		2.97
. 35		6.51	6.09	5.31	4.64	4.12	3.49	3.07	2.78	2.54	2.23
.40	6.74	6.52	5.74	4.74	4.07	3.58	2.97	2.55	2.25	1.98	1.72
		6.46	5.04	4.16	3.52						
. 50	6.75	5.51	4.31	3.54	3.02	2.61	2.12	1.76	1.50	1.30	1.10
. 52	6.75										
	6.39 6.21										
. 775	5.95										
. 60	5.54	4.11	3.22 2.46	2.63	2.23 1.71	1.48	1.54 1.17	26	. 07	. 90	. 76
. 80	3.30	2.47	1.94	1.58	1.35	1.18	. 91	. 75	.61	. 51	4
2.00	2.19	1.65	1.29	1.07	. 90	.78	. 61	. 49	. 40	. 33	28

${ }^{\text {a Computed by energy solution (reference } 1 \text {): }}$

CALCULATED MINIMUM VALUES OF k_{F} FOR I-SECTIONS

${ }^{\text {a Computed }}$ by energy solution (reference 1). ThBLE IV

Calctiated finmmum values of kw for channel and z-sections

	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1. 4	1.6	1.8	2.0
0	$\mathrm{a}_{4} .00$					${ }^{2} 4.00$					$8_{4} .00$
. 050	a 5.46				-...-	$\left.{ }^{4}\right)^{4} .26$					$8{ }^{4} 4.03$
. 100	96.02					a 4.45					${ }^{1} 4.01$
. 130	96. 19										
. 167	86.31					a ${ }^{4}+58$					a ${ }^{4} .00$
. 192	-6.38					a ${ }_{4}$					83.98
. 208						$\mathrm{a}_{4}^{4.59}$					${ }^{2} 3.92$
. 227	${ }^{2} 6.43$					a 4.58					${ }^{3} 3.86$
. 250		6.03 6.10	5.59	5.15	4.79	$4 \cdot 58$	4.19		3.88	3.81	3.76. 3.26
. 300	6.50	6.10	5.59 5.55	5.12	4.69 4.14	4.41	3.98	3.76	3.59	3.48 2.78	3.26 2.41
- 400	6.53	6.13	5.55 5.36	4.92	4.16 4.09	3.71	3.65 3.25	3.36 2.89	3.13	2.78 2.18	2.41 1.87
. 450		6.06	4.93	1.19	3.70						
. 500	6.54	5.86 5.46	4.43	3.74	3.26	2.90	2.40	2.02	1.69	1.42	1.19
- 525	6.5										
. 560	6.46										
- 575	6.07										
. 600	5.70	4.31	3.146	2.91	2.49	2.20	1.76	1.44	1.19	. 98	. 83
. 700	4.45 3.54	3.36 2.68	2.	2. 27	1.93	1.70 1.36	1.32		. 89	. 72	
1.000	3.54 2.39	1.81	1.. λ_{1}	1.6	1.03	1.36 .39	1.65	. 84	$\cdot 67$. 35	. 35

${ }^{\text {a Computed }}$ by enercy so? ution (reference 1).
table V
CALCULATED MINTMUM VALUES OF \mathbf{k}_{F} FOR ChANNEL AND Z-SECTIONS

$\begin{gathered} t_{W} / t_{F} \\ b_{W} / b_{F} \end{gathered}$	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0	${ }^{8} 1.288$					${ }^{\text {a }} 1.288$					${ }^{2} .288$
. 2	-1.28--					${ }^{1} 1.111$	----				
. 4	a. 695					a. 962					3
. 8	a. 621										a ${ }_{1}$. 204
1.0	. 598	0.650	0.706	0.772	0.836	. 890	0.985	1.074	1.134	1.161	$1.19{ }^{\text {a }}$
1.250	. 567	. 617	. 676	. 726	. 791	. 870	. 964	1.056	1.110	1.140	1.152
1.429 1.667	. 545	. 592	. 615	. 712	. 767	. 832	. 934	1.045 1.015	1.110	1.143 1.137	
	. 513	- 559	. 611	. 671	. 727	. 792	. 911	1.015	1.099	1.137	1.195
1.786	. 501										
1.818	. 489										
1.905 2.000	. 451	. 491	. 543	. 598	. 657	. 725	. 864	. 990	1.084	1.147	1.185
2.105		. 475			- -6	. 72		-990	1.084		1.18
2.222	261	.441	. 489	. 542							
2.500 2.857	.261	. 371	. 432	. 4736	. 5312	. 598	. 7448	. 906	12.049	1.131 1.104	1.194
3.333	. 146	. 198	. 247	. 295	. 342	. 397	. 515	. 662	. 828	1.013	1.174
4.000 4.400	--.--3	. 136	. 171	. 206	. 242	.286 0.236	. 377	. 489	. 621	-772	- 0.939
4.800						a. 199					-. 681
5.200	a. 059					${ }^{\text {a. }} 170$					a. ${ }^{\text {a }} 80$
5.600 6.000	a.044					a. 127					a. 2.44

${ }^{\text {a Computed }}$ by energy solution (reference 1). TABLE VI

CALCULATED MINIMUM VALUES OF k FOR RECTANGULAR TUBES

${ }^{\text {a }}$ Computed by energy solution (reference 1).

						57											
			,	-	-	-		\cdots	N	+			-				
						\bigcirc		\%	$\mathrm{tam}^{\text {m }}$	-5			\square				
		-				\bigcirc			$)^{\text {ta }}$								
			uckti	ling	of	web	b	X	入				${ }^{5}$				
		rost	ain	-		for	${ }^{\circ}$	N				b_{w}			-		
			,	-			7	id					\rightarrow	- ${ }^{\text {W/ }}$			
								4									
						,	\bigcirc	X	6								
						\cdots	')	6				\square				
						1	1)	\bigcirc	,				Nimat		matrin		
						-	1		-				1		,		
						\cdots	\cdots	\bigcirc									
									7								
						-	-										
					Bur	ino	off	franoe	rest	tram	ned	b	wat				
						1	\cdots	,	-								
						0	\checkmark										
							,										
							\cdots										
															\bigcirc		
															\square		
				. 2	+		4		. 6			0			¢		
					-												
				gure			,	,	${ }^{*}$	con		,	bad				
				-	-		column	as of I	I-sect	crion							
			11	+	-		Ocr	$\mathrm{km}^{\text {d }}{ }^{2}$	$\mathrm{ETH}_{\text {+ }}$								
							n-	+ ${ }^{(1)} \mu^{2}$) $6_{\text {\% }}{ }^{2}$								

		1							－						，														
													T																
									Tr．		T ${ }^{1}$		サ！	Tr	TT	7 T		1	T		，	T		，		，			
					\bigcirc																								
																											20		
			－						－																	H	－		
									\bigcirc				7														18		
				V									－																
				N					$+$										－								16		
									\square																				
													\pm	－													1.4		
																－													
			，						Lk				15	Side	e V	Whal				11	EO								
														H	＋														
																											12		
														7	－														
															－														
																											1.9		
																	\pm										＋		
	K																										O		
				de	WC	d1													，										
			－	10	WO																								
																			ine			2y							
														5															
		2																											
			－																										
													\square																
																							－	－					
													－																
																								min		sony			
																						mum	年恠	¢		aun			
															1								Φ						
													－		$b+$														
										1			1		17														
						－	－							${ }^{5}$	f	k													
													ye	0.5	Of	KIo			en					laac		20			
															eco	ang								Lior					
					\square								cr．		$\mathrm{H}^{2} \mathrm{E}$	Eth													
			－		\bigcirc	I									（ $1+2$	$\left.a^{2}\right)^{2}$			＋						－				
					！								1	14	（ ${ }^{-\mu}$	1）													

Figure 6. - Experimentally determined relationship between

Figure 7. - Dimensions of Z-section column for illustrative problem.

Figure 8. - Values of $k_{\text {sec }}$ for centrally loaded columns of channol and 7 -soction.

Figure 9.- Values of $k_{\text {sec }}$ tor centrally loaded columns of

Figure 10. - Values of $k_{\text {sec }}$ for centrally loaded symmetrical rectangular. tubes.

Figure 11: Values of kw_{w} for centrally loaded columns of I section $\frac{\sigma_{r}}{\eta}=\frac{k_{w} \pi^{2} E^{2} t_{w}^{2}}{12\left(1-\mu \mu^{2}\right) b_{w}{ }^{2}}$

Figure 13 . Values of k for centrally loaded columns | | 1 | 1 | |
| :--- | :--- | :--- | :--- |
| +1 | | | |
| | | 1 | | of rectangular tube section.

$$
\frac{\theta_{0}}{\eta} \frac{k^{2}+t^{2}}{12\left(1-\mu^{2}\right) h^{2}}
$$

DO NOT REMOVE SLIP FROM MATERIAL

Delete your name from this slip when returning material to the library.

NAME	DATE	MS
Wi Waters	1194	180
	1717	

