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BENDING AND SHEAR STRESSES DEVELOPED BY THE INSTANTANEOUS 

ARREST OF THE ROOT OF A MOVING CANTILEVER BEAM 

By Elbridge Z . Stowell, Edward B. Schwartz 
and John C. Houbolt 

SUMMARY 

A theoretical and experimental investigation has been 
made of the behavior of a cantilever beam in transverse 
motion when its root is suddenly brought to rest . Equations 
are given for determining the stresses, the deflections, and 
the accelerations that arise in the beam as a result of the 
impact. The theoretical equations, which have been confirmed 
experimentally, reveal that, at a given percentage of the 
distance from root to tip, the bending stresses for a 
particular mode are independent of the length of the beam 
whereas the shear stresses vary inversely with the length . 

INTRODUCTION 

When an airplane lands, the vertical component of the 
velocity is rapidly reduced to zero . In the absence of a 
thorough analysis of the stresses that arise from such 
shocks, it is customary for engineers to assume that the 
landing loads are static and independent of the elastic 
properties of the structure . As an initial step in the study 
of elastic structures under shock loads, an investigation has 
been made to determine the effect on a simple structure of 
the sudden arrest of its motion and the effect of the 
geometry of the structure on the stresses that result . The 
particular case treated in this report covers the basic 
problem of the instantaneous arrest of the root of a moving 
cantilever beam . The solution of this problem gives the 
energy consumed in exciting the different modes of vibration 
and the stresses , deflections, and accelerations that resu l t 
throughout the beam . 

This investigation is based on the usual engineering 
beam theory in which the deflections are considered to be the 
result of bending alone and shear deflections are neglected . 
The theory, as applied to ordinary beams, gives reasonab l y 
good results as long as the distance between inflection 
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points is greater than a few times the depth of the beam. 
Vvhen thi s theory for beam ac tion is used in vi bra tion 
problems, such as the problem in the present paper, the 
results are satisfactory for those modes of vibration for 
which the nodes are not too close together. This report 
sillmnarizes the results of a theoretical solution, given in 
the appendix, and presents an experimental verification 
of these results. 

Sl'MBOLS 

E modulus of elasticity 

Y weight density of material 

~ coefficient of equivalent viscous damping of 
material 

c (JEyg) velocity of sound in material \v-
g acceleration of gravity 

L length of beam 

I moment of inertia of cross section of beam about 
neutral axis 

A. cross-sectional area of beam 

p 

x 

Y 

t 

p 

n 

(JAIl) radius of gyration of cross section of beam \VA 
coordinate along beam measured from root 

distance from neutral axis of beam to any fiber 

time, zero at impact 
1 0 \ 

opera tor (._) 
\ot 

integers 1, 2, 3, etc. designating a particular 
mode of vibration 

8n nth positive root of 1 + cos 8 cosh 8 = 0 

Wn undamped natural angular frequency of nth mode, 

radians per second ~c 8L~2) 
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v 

w(x,t) 

wn(x,t) 

a(x,t) 

damped natural angular frequency of nth mode, 

radians second E I A
2

W
n

2 ) per wn 1-
4E2 

( ",2(j) 2 
~hen n > 1, the "frequencyll is defined 

4E2 

by 

velocity of beam prior to impact 

deflection of beam at station x and time t 

deflection of beam at station x and time t 
for nth mod e of vibration 

acceleration of beam at station x and time t 

acceleration of beam at station x and time t 
for nth mode of vibration 

a(x,y,t) bending stress in beam at station x, distance 
from neutral axis y, and time t 

On(x,y,t) bending stress in beam at station x, 
from neutral axis y, and time t 
nth mode of vibration 

distance 
for 

T( X,t ) average shear stress over cross section of beam 
at station x and time t 

average shear stress over cross section of beam 
at station x and time t for nth mode of 
vi bration 

bending-stress coefficient 

shear-stress co efficient 

deflection coefficient 
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RESULTS AND CONCLUSIONS 

Theoretical 

When a cantilever beam under uniform translation in 
a direction perpendicular to its length has its root 
instantaneously brought to rest, there is excited a 
theoretically infinite number of modes of vibration. 
With each successive mode, damping has an increasing 
influence upon the frequencies and amplitudes of vibration 
and, for sufficiently high modes, even changes the type 
of motion from oscillatory to nonoscillatory motion . In 
the lower modes, however, damping has little effec~ and 
only terms of the first order in damping need to be included 
in the equations . Only the equations applicable to the 
lower modes, which alone are of importance in any practical 
case, are pres e nted in this section of the paper. For a 
more complete treatment of damping, see the appendix. 

The angular frequencies (2rr times the frequencies 
in cps) are given by the equation 

8 2 
wn = pc L~ ( 1 ) 

where 8n has the following values for successive modes 
of vibration: 

81 = 1.875104 85 = 14.137168 

82 = 4.694098 86 =: 17. 278759 

8
3 = 7. 8 54757 en t:: ~ (2n-l)rr, n > 6 

84 = 10.995541 

The e nergy that the beam possesses before impact is 
consumed in exciting the various modes of vibration a nd 
is distributed among the modes as follows: 

~------------------------------------------------------------------------------~ 
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Mode, n Percentage of energy 

1 61.3 
2 18.8 

t 7.4 
3·2 

g 1.9 
1.3 

7 to co 6.1 

This distribution of energy among the different modes of 
vibration is presented graphically in figure 1. 

All stresses, deflections, and accelerations are 
damped sinusoidal functions of time and vary along the 
length of the beam. The bending stress on(x,y,t) and 
the average shear stress ~n(x,t), associated with the 
nth mode of vibration, are given by the equations 

f..W 2 
I.l. t 

on(x,y,t) = An ~ ~Ee-~ sin wnt (2) 

A.W n2 
v p -~t 

Tn(X,t) = Bn c tEe E sin wnt 

The variation of the dimensionless coefficients An 
and Bn with x/L is given for n = 1, 2, and 3 in 
figures 2 and 3 . The highest values of An and En, 
and hence the highest stresses, occur at the root of the 
beam. These values, for the first six modes, are 

Mode, n An at root En at root 

1 1. 566 2 .146 
2 .868 1+ .144 ~. . 504 ~ ·99 .36 .00 

g .283 4.00 
.231 4.00 

The foregoing values of An and En at the root are 
presented graphically in fi g ure 4. 

The maximum values with respect to time of on(x,y,t) 
and Tn(X,t) associated with the nth mode of vibration, 
when the effects of damping are n e glected, are 
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- v EE Tn(X) = En c L 

The deflections wn(x,t) for the nth mode of 
vi bration are given by the equation 

A(JJ 2 
v L2 -~t 

wn(x,t) = Cn c p e cE sin wnt 

The accelerations an(x,t) for the nth mode, when 
damping is sufficiently small, are given by 

an(x,t) = -wn2 wn(x,t) 

The variation of the dimensionless coefficient Cn 
with X/L is given for n = 1, 2, and·3 in f±-gure 5. 

The equations (4) to (7) for stress, deflection, 
and acceleration give the values associated with the 
nth mod e of vibration. Since all modes of vibration 

( 6 ) 

occur Simultaneously, the net results are the superposition 
of the effects of all modes. This superposition gives 
the following equations: 

For bending stress, 

a(x,y,t) 

( 8) 

For average shear 

T(X,t) 
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For deflection 

w(x,t) 

(10) 

For acceleration, when damping 1s sufficiently small, 

a(x,t) 

sin (11) 

The equation fo r bending stress (equation (4)) 
revea l s that, at a given percentage of the dis t ance from 
root to tip, the bending stress for a particular mode is 
independent of the length of the beam and depends only 
on the velocity before impact. The equation for shear 
stress (equation (5)) reveals that the shear stresses at 
any station vary inversely with the length of the beam . 
These results are contrary to those that might be 
expected on the basis of experience with the static 
behavior of structures . For this reason an experimental 
investigation was made. 

Experimental 

A circular steel tube of I - inch outside diameter 
and o.028-inch wall thickness was mounted symmetrically 
on the end of fi pendulum to form a pair of cantilever 
beams. (See fig . 6.) The pendulum was permi tted to start 
its swing from a predetermined position and was suddenly 
brought to rest at the bottom of its swing against an 
electromagnet used to prevent rebound. The effect of 
length vias studied by reducing the length of the tube in 
successive tests . The bending and shear strains were 
measured by electrical strain gages that were mounted on 
the tube as shown in figure 7. Each pair of gages was 
incorporated into a Wheatstone bridge circuit as shown 
diagrammatically in figure 8. The outputs of the bridge 
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systems were fed through a strain-gage amplifier into a 
multichannel oscillograph that recorded the strains on 
moving photographic paper. The amplitude of the components 
of strain due to the modes of higher frequency was 
reduced, however, because of the response characteristics 
of the oscillograph . The frequency-response curve for 
the oscillograph used is given in figure 9. 

Typical records for tubes of two lengths are shown 
in figure 10. Inspection of the record for the cantilever 

beam 26t inches long shows the superposition of the 

second and third modes upon the first mode. The record 
shows that, in the case of the bending strain, the 
contribution of the second mode is small ; whereas, in 
the case of the shear strain, the contribution of the 
second mode is large. This observation confirms 
qualitatively the theoretical results shown in figure 4. 
The same effect is not shown, however, in the record for 

the cantilever beam lltt inches long because of the 

combined action of damping and reduced response of the 
oscillograph to the higher frequencies associated with 
this short leng th of tube. 

The bending stresses computed by use of equation (8), 
in which only the first three modes are used, are given 
by the solid-line curve of fi gure 11 for the cantilever 

3 beam 264 inches long. Comparison of this curve with the 

record obtained during the first ~ cycle of the first 
mode (see fig. 10) shows good agreement as regards the 
wave shape . 

Because of the damping present in the tube and the 
response characteristics of the os cillograph, the only 
component of vibration that could be satisfactorily 
recorded for all lengths of cantilever tube was the 
fundamental or first mode. The quantitative results of 
the tests consequently were based upon this mode of 
vibration. This procedure is sound because the effe cts 
of the various harmonics are independent of one another. 
In the analysis of the results, the data had to be 
corrected for the influence of the magnet. 

The observed frequencies are compared with the 
frequencies com~uted from equation (1) for the first 
mode in the following table : 
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Length 
( in . ) 

46t 
362 

4 
262 ! 

16a I 

Frequency ~ 
Observed Comnu ted-- I 

(cps) (cps) 
---.:-----+ 

17·5 

27·9 

52.1 

131 

17·5 

28.2 

53·2 

137 

I -

I 

I 
I 

L-i __ 1_1_t ___ ~_7 __ 2 ___ ----lI ____ 27_7_. ____ .--J 

9 

The experimental values of extreme-fiber bending 
stresses and the shear stresses at the root, for the 
fundamental mode, are plotted in fi gure 12. In figure 12 
are also shown the corresponding theoretical curves of 
equation (4) for bending and equation (5) for shear with 
n taken as 1. It is observed that the experimental 
points follow the trend of and lie close to the theoretical 
curves. 

Lang l ey Memorial Aeronautical Laboratory 
Nati onal Advisory Con~ittee for Aeronautics 

Langley Field, Va. 
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APPENDIX 

THEORETICAL DERIVATION 

General analysis.- Consider a beam of uniform cross 
section in equilibrium. If a portion of the beam is 
suddenly disturbed, as by a shock, in a direction 
perpendicular to its length, the beam is set into damped 
bending oscillations. The equation of motio n for these 
bending oscillations is given by the differentia l 
equation (reference 1) 

(Al) 

The damning term is derived on the 

assU1Y1ption that the longitudinal damping force per unit 
area at any Doint on the cross section of the beam is 
proportional to the rate of change of l ongitudinal strain 
at that Dojnt . (See reference 2.) This type of force is 
analo~ous to ordinary viscous drag, in which the tangential 
force per ~nit area is pronortional to the rate of change 

of shear strain. With the use of the notation c2 = ~ y , 

equation (Al) can be written 

(A2) 

In accordance with the Heavislde onerationa l methods 
(reference 3), equation (A2) may be reduced to an 
ordinary differential equation of the fourth order by 

(, 
writing p = at; thus, 

~ + n"'!::..) d4w 
- E . 4 

dx 
(A3) 
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The general solution of equation (A3) is 

w = P cosh 8L + Q sinh 8L + R sin eL + s cos et (A4) 

where 

8 = L 

The coefficients P, Q, R, and S are to be determined from 
the boundary conditions. The ca s e under consideration is 
that of a cantilever moving with uniform velocity v and 
having its base brought instanbaneously to rest. The 
boundary conditions for this case are 

. (~~)x=o = U(W)x=o = v - vi 

The velocity of the root as given by the first boundary 
condition is renresented graohically in figure l3(a). 
The rvles of the Heaviside calculus, however, have b e e n 
devised !or a disturbance, called the unit functioni , 
shown in figure l3(b). By the principle of su~erposition, 
the velocity function shown in figure l3(a) may be 
considered as a sunerposition of those shown in figures 13(c) 
and l3(d). The velocity therefore consists of a constant 
velocity v (fig. l3(c)) added to the s0lution of the 
problem obtained by the Heaviside expansion theorem for 
the disturbance shown in figure l3(d). On the basis of 
this procedure, the first boundary condition may be 
written 

(! w..\ = p(w) -0 = -v:1 \ot)x=o x-
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With the arplication of the boundary condit i ons t o 
equation (A4), the operatiocal fo r m of the solution for 
the velocity (that induced by the disturbance) is found 
to be 

pw= -vi rr(l + cos 8 cosh 8) (cosh 8~ + cos 8~L' ) 2 ( 1 + cos h 9 cos 8 L1 \1 L 

( x X) + sin 9 sinh 8 \ cosb 8L - co s 8r: 

+ (sinh e cos 8 + cosh 8 sin 8) ( sin 8L - sinh 8f )J (AS ) 

Interpretation of this operational expr ess i on and addition 
of the constant velocity v gives for the t otal velocity 

ow( x, t) 

6t 

where 

W ' n 

v - vi + 

A.Ub 
2E 

cos wn ' t - - ---- sin 

~l _ )"q"n 
2 

4E2 

., 
I ! 
( A6) 

nth posItive root ')f 1 + cos 8 cosh 8 =0 

undamped natural angu lar freque ncy o f 
nth mode, radians/se c 

damped natural angular frequen cy of 
nth mode , radians/se c 



F 8 ~\ = sin 8 n sinh 8n (COSh 8nr - cos 8nf) - (COSh en sin 8n + sinh en cos 8 n) (sinh Snr - sin 8n~) 
~nL ) 8n ~osh en sin 8n - sinh en cos 8n) 

Inte €rati on o f equation (A6) with respect to the time with the condition 
gives for the d eflecti o n 

where 

co 

w(x,t) )'.F(8 ~) AWn2 
= 2v nL -~E t 

1. \ . e ~ sin wn ' tl 
L--... u..n 
n=l 

r:J;J 

v ~ Cn 2L "'0) 2 
1 - __ n~t 

~
. ",2w 'i.e 2E 

1 _ n 

sin wn ,tl = C p 

n=l 

Cn = 

4E2 

( 
x \ 2F 8nL ) 

e 2 
n 

'rhe contribution of the nth mode to the def l ection is 

Wn(x,t) 
_ v L2 

c p Cn 

1 AW 2 _ n 

i [ - ~-~-e ----;:>]It 

~l _ )..2"'n
2 

4E2 

sin Wn ,tl 

(W)t=o = 0 

(A7 ) 

(AS ) 

~ 

;t> 
o 
> 

~ 
:::0 

z 
o 

t-t 
~ 
H 
(\.) 

--J 

I-' 
'0J 
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When 

where now 

v 
c 

equation (A8 ) may be put in the form 

( 9) 

- 1 

- 1 

A.W 
The form indicated by equation (A8), where 2; < 1, is 

characteristic 'of the lower modes and represents damped 
oscillatory motion . The form indicated by equation (A9 ), 

A.Wn 
where 2E > 1 (damp~_ng greater than cri ti cal), is 

characteristic of the higher modes and reoresents 
subsidence motion . 

From equat ' on (A6) for velocity and equation (A7) 
for deflection, the complete behavior of the cantilever 
may be determined. The quantities of interest are the 
bending stresses, the shear str esses , and to some extent 
the acceler ations . When damping is present , the equations 
reoresenting the contribution 0: the nth mode to these 
quanti tie s TIlay be given in the two forms indi cated by 
equations (A8) and (A9). In subsequent equations, however, 
only the form indicated by equation (A8) is given because 
it is characteristic of the modes that are of practi cal 
import8.nce . 

Bending stresses .- The bending stresses a(x,y,t) 
at any fiber distance y from the neutral axis are 



a(x,y ,t) 
_ ;,.2 
- Ey 'L.!!. 

ox2 

co 
= i: :!.. y~ AW 2 

c p '> An 1 - -4-t L -_.- e 2E . 

f 
1? --2- s In w t t 1 

n=l \ 1 _ /'-.'-W_ n n 

4E2 

whe r e 

An 
sin Sn sinh Sn (CO Sh Snf- + cos Snf) - ( CO Sh Sn sin en + sinh en cos en) (Sinh 8nr + sin Snr) 

2 
en (CO Sh en sin en - sinh en cos Sn) 

The bending stress due to only the nth mode is 

CJn(x,y,t) 
_ ~ v 

.J:!; -
C 

2 AWn t 
1 e- 2E 

y A -;::::=~'--2 P n I A 2w
n 

~l - 4E2 

sin wn tt l 

z 
~ 
o 
~ 

:r-~ 
~ 
~ 

2: 
o 

s-
H 
[\) 

--J 

f-' 
\.Jl 



where 

Shear stresses.- The average shear stress over the cross section T(X,t) is 

"T(x,t) 
_ ..., 2 .!> ~ 
-:c,fJ !)-"w 

dx3 

ex> Au.; 2 

L 
n 

_ v P 1 ---t 
EeL En e 2E sin wn ' t 1 

I "\ 2, .. 2 
n=l i 1\ UJn 

1 -
4E2 

Pn 
2 sin 9n sinh en (sinh 8n~ - sin 8nf) - cosh en sin 8n + sinh 8n cos 8n ) (cosh en~ + C'JS en~) 

cosh en sin en - sinh 8 n cos en 

The average shear stress due to only the nth mode is 

Tn(X,t) 

r... 2 

= E ~ ~ 1 ~~ c L En e 2E I,., sin wn' t 1 
r...2w 2 

1 _ n 

4E2 

Accelerations .- From equation ( A6) , with the aid or the relation 

pF(t)l = F(O)pl + F'(t) l 

f-' 
a--

z: 
:x> 
o 
;t> 

5; 
~ 

2: 
o 

t-t 
+=H 
f\J 

-.J 
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the acceleration anywhere on the beam is found to be 

a ( x , t) = 0 2w (x , t ) 

ot2 

With the aid of the orthogonal proDerties of the 

functions F (eni) it is possi.ble to show that the 

en 

17 

1 

quantity 2 ~F (eni) - 1 reduces to zero when 0 < ~ ~ l. L -
n=l " 0 

x the quantity 2~ F (8 ni) At - = 0 equals "er o , and only 
L ' 

n=l 
term -vpl remains . This term indicates that at t = 0 
an infinite acceleration of zero duration exists at the 
root. 

The acceleration due to only the nth mode is 

----
t.~ 2 t.w 2 t.Uh t. qu 2 

1 -
n n n 

v r2 2 2E2 ---t E 4E2 
B-n( x t ) = -- ~- w C e 2E 

, c p n 
n f-t.ctJ 2 t.~ 2 

1 _ n 1 -
n 

4E2 2E2 

the 

Comparison ~ith the exoression for wn(x,t) (equation (A8)) 
shows that the acceleratlon for each mode is out of phase 
with the def lection. When d~iping i s sufficiently small, 
however, the relation bet een the dcceleration and the 
deflection reduces to the we ll-kncnvn r e suI t for undamped 
vibration 
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Figure 6.- Pendulum assembly used in impact test. 
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FIgure /0. - Porlions Of typical records 
obtained .for Iwo different lengths 0/ lube. 
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For I-in. 0.0. lubGJ) Q028- /n. -lhic~ wall, 
26% in. long 

FIgure /1.- Theorefical wave Torm fOr exfrern~
rlber bending stress at roof obta/ru;;d f'rom 
fhe first three modes of' Vibration. 
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Figure 12.- Comparison of experimenfally and 
fheoretically determ/r7ed maximum stresses 
of' fundamenfal mode at root Of cantilever 

lube. Impact ve/oclfy = 2.5 feef pBr .secOl7c/. 
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F(gure /3. - Graphic repr@~enfation of 
various velocity functions. 
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