NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WARTIME REPORT
 ORIGINALLY ISSUED

January 1944 as
Advance Restricted Report 4A08

COMPRESSIBLE POTENTIAL FLOW WITH CIRCULATION
ABOUT A CIRCULAR CYLINDER
By Max A. Heaslet

Ames Aeronautical Laboratory Moffett Field, California

FILE COPY
To be returnid to the files of the National Advisory Committee for Aeronautics Washington, D. C.

WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

ADVANCE RESTRICTED REPORI
 COMPRESSIBLE POTENTIAL FLOW WITH CIRCULATION
 ABOUT A CIRCULAR CYIINDER

By Max A. Heaslet

SUMMARY

The potential function for flow, with circulation of a compressible fluid about a circular cylinder is obtained in series form including terms of the order of M^{4} where M is the Mach number of the free stream. The rem sulting equations are used to obtain pressure coefficient as a function of Mach number at a point on the surface of the cylinder for different values of circulation. The coefficients derived are compared with the Glauert. Prandtl and Kármán-Tsien approximations which are functions of the pressure coefficients of an incompressible fluid. For the cases considered; the values of the pressure coefficients computed from the theory were found to lie somewhere be~ tween the two approximations, the first underestimating and the second overestimating the theoretical result.

INTRODUCTION

In the twowdimensional irrotational flow of a com. pressible fluid, where the expansion is assumed to be adiabatic, the velocity potential is known to satisfy a nonlinear partial differeritial equation of the second order, For subsonic velocities, at least three methods are known for the approximate solution of this equationo They are usually denoted as the method of small perturbations, the RayleighwJanzen method, and the hodograph method.

The mothod of small perturbations (references 1 and 2) assumes that velocity changes which are brought about by the airfoil in the unfform parallel air stream are small in comparison with the velocity of the undisturbed stream。 Under this assumption it is possible to introduce new variables which reduce the differential equation
to a Laplace equation and，as a consequence，the problem becomes one concerning flow in an incompressible fluid， provided the body is assumed distorted to correspond to the change of variables．The assumed distortion consists in expansion of the dimensions of the airfoil perpendic－ ular to the direction of the free stream in the ratio $i / \sqrt{I-M^{2}}$ ，where M is the Mach number of the undisturbed stream．

The FayleighmJanzen method（references 3 and 4）as－ sumes that the general expression for velocity potential may be written as a series in rising powers of M and with variablecoefficients．These coefficients．can be shown to satisfy certain Poisson differential equations and，if the equations are integrable，the solution be－ comes a matter of determining these coefficients．Suc－ cessive steps，however，become increasingly laborious and the convergence of the series may be slow even at rela－ tively small Mach numbers if the shape of the body is such that the speed of sound is approached locally．．Solu－ tions，using this method of attack，have been carried out by C．Kaplan（references 5 and 6），S，G．Hooker（reference 7），I．Imai（reference 8），K．Tamada and y－iaito－（refer－ ence 9），and L．Poggi（reference 10）．Poggi introduced certain refinements，and some of the preceding references cmpioy this process．It is tantamount to using the so－ called Neumann function in solving given Poisson equa－ tions and will be discussed later．

The hodograph method is ascribed by writers on that subject to P．Molenbrock and A．Tschaplygino．Instead of expressing the ，velocity potential as a function of coor－ dinates in the Cartesian or polar plane：the magnitide of velocity V and its inclination θ to an，assumed axis are chosen as independent variables．．．The resulting differential equation is linear and can be further simpli－ fied by replacing the pressurew volume relationship for adiabatic expansion by the equation of a ine tangent at a point corresponding to the state of the fluid in the ambicnt stream。 This artifice was suggested by To von Kármán（references 2 and 11）and used most suceessfully by H_{0} ．The Tsien（reference．l2）．．K．Tamada（referencel3） also has applied Tsien＇s more general results on elliptic cylinders to compressible flow past a circular cyinder。
：One noteworthy result of the hodograph method has been the KarmánゅTsien expression for pressure coefficient
P in terms of Mach number M and $P_{M=0}$, the pressure coofíicient for \quad tho ". This expression may be written

$$
\begin{align*}
F= & P_{M=0} \tag{1}\\
& \sqrt{1-M^{2}+\frac{1}{M^{2}}} \frac{P_{M=0}}{2}
\end{align*}
$$

It always gives, for negative, pressure coefficients, a result greater in absolute value than the Glauert-Prandti formula, which is based on the method of small perturbions.

$$
\begin{equation*}
P=P_{M=0} \frac{1}{\sqrt{1-M^{2}}} \tag{2}
\end{equation*}
$$

and is currently accepted as the more accurate of the two n
From equations (1) and (2) it is possible to compate the critical Mach number M_{c}, the value of M at which the local speed of sound is attained, in terms of $F_{M=0}$. The relations involving M_{c} and $P_{M=0}$ morosponding respoctively to formulas (1) and (2), are
$\frac{2}{\gamma M_{c}^{2}}\left\{\left(\frac{2}{\gamma+1}+\frac{\gamma-1}{\gamma+1} M_{c}^{2}\right)^{\frac{\gamma}{\gamma-1}-1}\right\}=P_{M=0} \frac{1}{\sqrt{1-M_{c}^{2}}+\frac{M_{c}^{2}}{1+\sqrt{1-M_{c}^{2}}} \frac{P_{M}}{2}}$
and

$$
\begin{equation*}
P_{M=0}=\frac{-2}{M_{c}} \sqrt{1-M_{c}^{2}} \quad\left(1-M_{c}\right) \tag{4}
\end{equation*}
$$

The difficulties inherent in the last two procedures arc quite as distinctive as their respective approaches to the problem. As stated before, the Rayleigh-janzen

4
method employs classical mathematics, the required terms being solutions of Poisson equations with given boundary conditions, but the work involved is arduous. In the hodograph method the principal difficulty is to deter. mine proper boundary conditions in the $\gamma \theta$ plane. In available calculations the solution is given with a slight distortion in the given boundary。. It is possible to correct this distortion, in some cases, so that the final results are not too seriously affected. When the flow around the body invoives circulationg however, the change in the boundary is more serious, for nonperiodic terms appear and the boundary is no longer a closed curve. At the present times no way has been found to circumvent this trouble. Added circulation does not involve any essential variations in the Rayleigh-Janzen method, however, and in this report the velocity potential for such compressible flow about a circular cylinder has been dea rived, Since no theoretical study has been presented, as far as is known, to determine the error in the KármánTsien pressure coefficient, tre results obtained in this report furnish a meens of mproachirg this problem. The results of such calculations, for various values of circulationg are therefore included:

ANALYSIS

Consider a gas obeying the adiabatic law and flowing irrotationally in two dimensions. Its equation of motion may be written in polar coordinates in the form

$$
\left[1 \ldots \frac{\gamma \cdot 1}{2} M^{2}\left(\frac{V^{2}}{U^{2}}-1\right)\right] \nabla^{2} \Phi=\frac{1}{2} \frac{M^{2}}{U^{2}}\left(\frac{\partial \Phi}{\partial r} \frac{\partial V^{2}}{\partial r}+\frac{1}{r^{2}} \frac{\partial \Phi}{\partial \theta} \frac{\partial V^{2}}{\partial \theta}\right)(5)
$$

where
$\Phi \quad$ relocity potential
$\nabla^{2} \Phi=\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}$
$\gamma \quad$ ratio of specific heats of gas
co velocity of sound in undisturbed flow

U
velocity of free stream
$M=\frac{U}{c_{0}}$ Mach number of free stream
$V^{2}=\left(\frac{\partial \Phi}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial \Phi}{\partial \theta}\right)^{2}$ local velocity squared

By introduction of the variables φ and v, so that

$$
\varphi=\frac{\Phi}{U} \quad \text { and } \quad V=\frac{V}{U}
$$

equation (5) may be written in the form

$$
\left[1-\frac{\gamma-1}{2} M^{2}\left(v^{2}-1\right)\right] \nabla^{2} \varphi=\frac{1}{2} M^{2}\left(\frac{\partial \varphi}{\partial r} \frac{\partial v^{2}}{\partial r}+\frac{1}{r^{2}} \frac{\partial \varphi}{\partial \theta} \frac{\partial v^{2}}{\partial \theta}\right)(6)
$$

Where

$$
\begin{equation*}
\nabla^{2}=\left(\frac{\partial \varphi}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial \varphi}{\partial \theta}\right)^{2} \tag{7}
\end{equation*}
$$

Following the method of Rayleigh and Janzen, assume that φ^{2} may be developed in a series of ascending powers of

$$
\begin{equation*}
\varphi=\varphi_{0}+M^{2} \varphi_{1}+M^{4} \varphi_{2}+\cdots . \tag{8}
\end{equation*}
$$

After substitution of equation (8) in equation (7), el. montary calculations show that

$$
\begin{equation*}
\nabla^{2}=\nabla_{0}^{2}+\nabla_{1}^{2} M^{2}+\nabla_{2}^{2} M^{4}+000 \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{0}^{2}=\left(\frac{\partial \varphi_{0}}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial \varphi_{0}}{\partial \theta}\right)^{2} \tag{10a}
\end{equation*}
$$

$$
\begin{gather*}
\nabla_{1}^{2}=2\left\{\frac{\partial \varphi_{0}}{\partial r} \frac{\partial \varphi_{1}}{\partial r}+\frac{1}{r^{2}} \frac{\partial \varphi_{0}}{\partial \theta} \frac{\partial \varphi_{1}}{\partial \theta}\right\} \tag{10b}\\
v_{z}^{2}=2\left\{\frac{\partial \varphi_{0}}{\partial r} \frac{\partial \varphi_{z}}{\partial r}+\frac{1}{r^{2}} \frac{\partial \varphi_{0}}{\partial \theta} \frac{\partial \varphi_{z}}{\partial \theta}\right\}+\left\{\left(\frac{\partial \varphi_{1}}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial \varphi_{1}}{\partial \theta}\right)^{2}\right\} \tag{10c}
\end{gather*}
$$

In a similar manner, equations (8) and (9) may be substituted in equation (6) and on equating coefficients of the
 φ_{2}, . . result:

$$
\begin{align*}
\nabla^{2} \varphi_{0} & =0 \tag{11.a}\\
\nabla^{2} \varphi_{1} & =\frac{1}{2}\left(\frac{\partial \varphi_{0}}{\partial r} \frac{\partial v_{0}^{2}}{\partial r}+\frac{1}{r^{2}} \frac{\partial \varphi_{0}}{\partial \theta} \frac{\partial v_{0}^{2}}{\partial \theta}\right) \tag{110}\\
\nabla^{2} \varphi_{2} & =\frac{1}{2}(\gamma-1)\left(\nabla_{0}^{2}-1\right) \nabla^{2} \varphi_{1} \\
& +\frac{1}{2}\left(\frac{\partial \varphi_{0}}{\partial r} \frac{\partial v_{1}^{2}}{\partial r}+\frac{1}{r^{2}} \frac{\partial \varphi_{0}}{\partial \theta} \frac{\partial v^{2}}{\partial \theta}\right) \\
& +\frac{1}{2}\left(\frac{\partial \varphi_{1}}{\partial r} \frac{\partial v_{0}^{2}}{\partial r}+\frac{1}{r^{2}} \frac{\partial \varphi_{1}}{\partial \theta} \frac{\partial v_{1}^{2}}{\partial \theta}\right) . \tag{IIc}
\end{align*}
$$

If equations (lla), (ilb), and (llc) can be solved successively for $\varphi_{0}, \varphi_{1}, \varphi_{2}$. . . . the values may be substituted in equation (8) to get the potential function for the flow of a compressible fluid. A step-by-step procedure is therefore established whereby any desired degree of aporimation to φ may be obtained, provided the
value of M is within the region of convergence of the resulting series. Equation (lla) is the differential equation satisfied by the potential function in the case of incompressibility. Once this potential function is known, it is used to evaluate the rightohand member of the second equation, the solution of which furnishes the second term in the development of φ c The method of obtaining further terms follows the same Eeneral procedure.

Consider now the case of a right circular cylinder of infinite length in a compressible fluid, the axis of the cylinder being at right angles to the direction of steady flow. In determining the velocity distribution about the cylinder, the problem may be treated twodimensionally with a circle as the boundary curve and the equations established in the Rayleigh-Janzen method may be applied directly, in the following manner, The radius of the circle is arbitrarily assumed equal to 1 , and a polar coordinate system is chosen with origin at the center of the circle and polar axis extending down stream。 The flow about the circle is assumed to be that resulting from the combination of unform stream velocity and circulation about the cylinder. Under these conditions, the classical expression for φ_{0} is well known. It may be written

$$
\varphi_{0}=\left(r+\frac{1}{r}\right) \cos \theta-\frac{\Gamma}{2 \pi U} \theta
$$

where Γ is the circulation around the circle, measured positive in a clockwise direction. For ease of computation it is convenient to set

$$
\frac{\Gamma}{\pi U}=K
$$

and, as a consequence,

$$
\begin{equation*}
\varphi_{0}=\left(r+\frac{1}{r}\right) \quad \cos \theta-\frac{K}{2} \theta \text {. } \tag{12}
\end{equation*}
$$

The boundary conditions, in general, are

$$
\begin{equation*}
\frac{\partial \varphi}{\partial r}=0 \text { for } r=1 \tag{1За}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \varphi}{\partial r}=\cos \theta \text { for } r=\infty \tag{13b}
\end{equation*}
$$

From equations (12) and (10a)
$\nabla_{0}^{2}=\left(1+\frac{1}{r}\right) \omega \frac{2}{r^{2}} \cos 2 \theta+\pi\left(\frac{1}{r}+\frac{1}{r^{3}}\right) \sin \theta+\frac{R^{2}}{4 r^{2}}$
This result, together with equation (llb), gives

$$
\nabla^{3} \varphi_{1}=\left(\frac{-4}{r^{5}}+\frac{2}{r^{7}}\right) \quad \cos \theta+\frac{2}{r^{3}} \cos 3 \theta
$$

$$
\begin{equation*}
+K \sin 2 \theta\left(\frac{\cdots 1}{2 r^{2}}-\frac{2}{2 r^{4}}+\frac{1}{2 r^{6}}\right)-\frac{K^{2}}{2 r^{3}} \cos \theta \tag{15}
\end{equation*}
$$

The more elementary methods of integration lead to certain difficulties when an attempt is made to solve for φ_{1}, in oquation_(15) o-These-d-fficulties result from nonperiodic terms in the particular integral and resultant trouble in determining such constants of integration that tho necessary periodicity, in terms of θ, is maintained in the final expression for the potential function. This difficulty may be obviated, however, by established methods. (See appendix.) It follows that the solution of

$$
\begin{equation*}
\nabla^{2} \Omega=\frac{\sin m}{r^{s}} \tag{16}
\end{equation*}
$$

satisfying the boundary conditions

$$
\binom{\partial \Omega}{\partial r}_{r=1}=0 \quad\left(\frac{\partial \Omega}{\partial r}\right)_{r=\infty}=0
$$

$S=\frac{\sin n \theta}{m(m-s+2)(m+s-2)}\left\{\frac{(s-2)}{r^{m}}-\frac{m}{r^{s-2}}\right\}$ (when $m+2 \neq s$)
and
$\Delta=\frac{-\sin m \theta}{m r^{m}}\left\{\frac{1}{2 m}+\frac{1}{2} \log r\right\} \quad$ (when $m+2=s$)
The veracity of these solutions, together with analogous ones existing when sin m is replaced by cos θ, may be checked easily by substitution in equation (16).

Since equation (15) is a linear differential quadion, its solution is determined by considering each term of the risht-hand member and summing the individual intergrails obtained by means of equations (17a) and (17b). The final result is

$$
\begin{align*}
Q_{1}=\cos \theta\left(\frac{13}{12 r}\right. & \left.-\frac{1}{2 r^{3}}+\frac{1}{12 r^{5}}\right)+\cos 3 \theta\left(\frac{-1}{4 r}+\frac{1}{12 r^{3}}\right) \\
& +K \sin 2 \theta\left(\frac{1}{8}+\frac{1}{6 r^{2}}+\frac{1}{24 r^{4}}+\frac{10 g r}{2 r^{2}}\right) \\
& +K^{2} \cos \theta\left(\frac{1}{4 r}+\frac{1054}{4 r}\right) \tag{18}
\end{align*}
$$

In the evaluation of φ_{2} the calculation follows the same pattern of development. From equation (lOb). together with equations (12) and (18)

$$
\begin{aligned}
\mathrm{v}_{1}^{2} & =\left(\frac{+19}{6 r^{4}}-\frac{7}{3 r^{6}}+\frac{1}{2 r^{8}}\right)+\cos 2 \theta\left(\frac{-8}{3 r^{2}}+\frac{1}{r^{4}}-\frac{1}{r^{6}}+\frac{1}{3 r^{8}}\right) \\
& +\cos 4 \theta\left(\frac{1}{r^{2}}\right)+K \sin \theta\left(\frac{+1}{4 r}+\frac{11}{6 r^{3}}-\frac{5}{12 r^{5}}+\frac{1}{3 r^{7}}+\frac{2108 r}{r^{5}}\right)
\end{aligned}
$$

$$
\begin{align*}
& +K \sin 3 \theta\left(-\frac{1}{4 r}-\frac{7}{6 r^{3}}-\frac{1}{2 r^{5}}+\frac{1}{12 r^{7}}-\frac{210 \mathrm{~m}^{3}}{r^{3}}\right) \\
& +K^{2}\left(\frac{1}{4 r^{2}}+\frac{1}{4 r^{4}}+\frac{10 g r}{2 r^{4}}\right) \\
& +K^{2} \cos 2 \theta\left(\frac{-1}{2 r^{2}}-\frac{7}{12 r^{4}}-\frac{1}{12 r^{6}} \cdots \frac{10 g r}{2 r^{2}}-\frac{10 g r}{r^{4}}\right) \\
& +K^{3} \sin \theta\left(+\frac{1}{4 r^{3}}+\frac{\log r}{4 r^{3}}\right) \tag{19}
\end{align*}
$$

This result, together with equations (12), (14), and. (18), substituted in equation (lld),' gives

$$
\begin{aligned}
\nabla^{2} \varphi_{2} & =(\gamma-1)\left\{\cos \theta\left(\frac{1}{r^{5}}+\frac{2}{r^{7}}-\frac{3}{r^{9}}+\frac{1}{r^{21}}\right)\right. \\
& +\cos 3 \theta\left(\frac{3}{r^{7}}-\frac{1}{r^{9}}\right)+\cos 5 \theta\left(\frac{-1}{r^{5}}\right) \\
& +K \sin 2 \theta\left(\frac{-1}{2 r^{4}}-\frac{7}{4 r^{6}}-\frac{3}{2 r^{8}}+\frac{3}{4 r^{10}}\right) \\
& +K \sin 4 \theta\left(\frac{3}{4 r^{4}}+\frac{3}{2 r^{6}}-\frac{1}{4 r^{8}}\right) \\
& +K^{2} \cos \theta\left(\frac{-1}{8 r^{3}}-\frac{3}{8 r^{5}}-\frac{9}{8 r^{7}}+\frac{3}{8 r^{9}}\right) \\
\therefore & +K^{2} \cos 3 \theta\left(\frac{1}{8 r^{3}}+\frac{9}{8 r^{5}}+\frac{3}{8 r^{7}}-\frac{1}{8 r^{9}}\right)
\end{aligned}
$$

$$
\begin{align*}
& \left.+K^{3} \sin 2 \theta\left(\frac{-3}{16 r^{4}}-\frac{3}{8 r^{6}}+\frac{1}{16 r^{8}}\right)+K^{4} \cos \theta\left(\frac{-1}{16 r^{5}}\right)\right\} \\
& +\left\{\cos \theta\left(\frac{-32}{3 r^{5}}+\frac{39}{2 r^{7}}-\frac{15}{r^{9}}+\frac{11}{3 r^{11}}\right)+\cos 3 \theta\left(\frac{19}{6 r^{3}}+\frac{3}{r^{7}}-\frac{5}{3 r^{9}}+\frac{1}{2 r^{11}}\right)\right. \\
& +\cos 5 \theta\left(\frac{-3}{2 r^{3}}-\frac{1}{r^{5}}\right) \\
& +K \sin 2 \theta\left(\frac{-1}{4 r^{2}}-\frac{11}{3 r^{4}}+\frac{25}{12 r^{6}}-\frac{14}{3 r^{8}}+\frac{3}{2 r^{20}}-\frac{6 \log r}{r^{6}}+\frac{4 \log r}{r^{8}}\right) \\
& +K \sin 4 \theta\left(\frac{1}{4 r^{2}}+\frac{11}{4 r^{4}}+\frac{?}{r^{6}}-\frac{5}{12 r^{8}}+\frac{1}{12 r^{10}}+\frac{3 \log r}{r^{4}}\right) \\
& +K^{2} \cos \theta\left(\frac{-3}{8 r^{3}}-\frac{2}{3 r^{5}}-\frac{13}{24 r^{7}}-\frac{\log r}{r^{5}}+\frac{\log r}{2 r^{7}}\right) \\
& +K^{2} \cos 3 \theta\left(\frac{5}{8 r^{3}}+\frac{2}{r^{5}}+\frac{3}{4 r^{7}}-\frac{1}{4 r^{9}}+\frac{10 \varepsilon r}{2 r^{3}}+\frac{3 \log r}{r^{5}}-\frac{\log r}{r^{7}}\right) \\
& \left.+K^{3} \sin 2 \theta\left(\frac{-1}{2 r^{4}}-\frac{1}{3 r^{6}}-\frac{10 g r}{2 r^{4}}\right)+K^{4} \cos \theta\left(\frac{-1}{16 r^{5}}\right)\right\} \tag{20}
\end{align*}
$$

To integrate, formulas (17a) and (I7b) are again resorted to. The method of integration given in the appendix also provides integrals corresponding, to the new type of terms appearing in the right-hand member of equation (20). Thus, the solution of

$$
\begin{equation*}
\nabla^{2} \Omega=\frac{i o g \sin m \theta}{r^{s}} \tag{21}
\end{equation*}
$$

satisfying boundary conditions $\left(\frac{\partial \Omega}{\partial r}\right)_{r=1}=0,\left(\frac{\partial \Omega}{\partial r}\right)_{r=\infty}=0$, is

$$
\begin{align*}
\Omega= & -\frac{\sin m \theta}{2 m r^{m}}\left\{\frac{1}{(m+s-2)^{2}}+\frac{1}{(m-s+2)^{z}}\right\}-\frac{\sin m \theta}{2 m r^{s}-2}\left\{\frac{2 \ln 10 \varepsilon r}{(m+s-2)(m-s+2)}\right. \\
& \left.+\frac{1}{(m+s-2)^{2}}-\frac{1}{(m-s+2)^{2}}\right\} \tag{22a}
\end{align*}
$$

When $m \neq s-2$. When $m=s-2$,

$$
\Omega=\frac{-\sin m \theta}{2 m r^{m}}\left(\begin{array}{l}
1 \tag{22b}\\
2
\end{array} \log ^{2} r+\frac{1}{2 m} \log r+\frac{1}{2 m^{2}}\right)
$$

Proceeding directly with tho integration-resul-s-in-the following expression

$$
\begin{aligned}
\varphi_{a} & =(\gamma-1)\left\{\cos \theta\left(\frac{17}{60 r}-\frac{1}{8 r^{3}}+\frac{1}{12 r^{5}}-\frac{1}{16 r^{7}}+\frac{1}{80 r^{9}}\right)\right. \\
& +\cos 3 \theta\left(\frac{-61}{240 r^{3}}+\frac{3}{16 r^{5}}-\frac{1}{40 r^{7}}\right) \\
& +\cos 5 \theta\left(\frac{+1}{16 r^{3}}-\frac{3}{80 r^{5}}\right)+K \sin 2 \theta\left(\frac{427}{960 r^{2}}-\frac{7}{48 r^{4}}\right.
\end{aligned}
$$

$+K \sin 4 \theta\left(\frac{-1}{16 r^{2}}+\frac{1}{320 r^{4}}-\frac{1}{80 r^{6}}-\frac{3 \log r}{16 r^{4}}\right)$
$+K^{2} \cos \theta\left(\frac{49}{128 r}-\frac{3}{64 r^{3}}-\frac{3}{64 r^{5}}+\frac{1}{128 r^{7}}+\frac{10 g r}{16 r}\right)$
$+K^{2} \cos 3 \theta\left(\frac{\infty}{64 r}-\frac{57}{640 r^{3}}+\frac{3}{128 r^{5}}-\frac{1}{32 C r^{7}}=\frac{3 \log r}{16 r^{3}}\right)$
$+K^{3} \sin 2 \theta\left(\frac{41}{512 r^{2}}-\frac{1}{32 r^{4}}+\frac{1}{512 r^{6}}+\frac{3 \log r}{64 r^{2}}\right)$
$\left.+K^{4} \cos \theta\left(\frac{+3}{128 r}-\frac{1}{128 r^{3}}\right)\right\}$
$+\left\{\cos \theta\left(\frac{+137}{80 r}-\frac{4}{3 r^{3}}+\frac{13}{16 r^{5}} \div \frac{5}{16 r^{7}}+\frac{11}{240 r^{6}}\right)\right.$
$+\cos 3 \theta\left(\frac{-19}{48 r}-\frac{5}{48 r^{3}}+\frac{3}{16 r^{5}}-\frac{1}{24 r^{7}}+\frac{1}{144 r^{9}}\right)$
$+\cos 5 \theta\left(\frac{1}{16 r}+\frac{1}{16 r^{3}}-\frac{1}{20 r^{5}}\right)$
$+K \sin 2 \theta\left(\frac{1}{16}+\frac{2267}{2880 r^{2}}-\frac{23}{144 r^{4}}-\frac{19}{192 r^{6}}+\frac{1}{40 r^{8}}\right.$

$$
\left.+\frac{11 \log r}{12 r^{2}}-\frac{10 g r}{2 r^{4}}+\frac{\log r}{8 r \cdot 6}\right)
$$

14
$+K \sin 4 \theta\left(\frac{-1}{64}-\frac{7}{48 r^{2}}-\frac{7}{288 r^{4}}-\frac{1}{48 r^{6}}+\frac{1}{576 r^{8}}-\frac{\log r}{4 r^{2}}-\frac{\log r}{4 r^{4}}\right)$
$+K^{2} \cos \theta\left(\frac{197}{288 r}-\frac{17}{96 r^{3}}-\frac{1}{72 r^{5}}+\frac{310 g r}{16 r}-\frac{10 g r}{8 r^{3}}+\frac{10 g r}{48 r^{5}}\right)$
$+K^{2} \cos 3 \theta\left(\frac{-1}{16 r}-\frac{911}{5760 r^{3}}+\frac{1}{128 r^{5}}-\frac{1}{160 r^{7}}-\frac{\log r}{16 r}-\frac{5 \log r}{12 r^{3}}\right.$

$$
\left.-\frac{\log :}{16 I^{5}}-\frac{\log ^{2} r}{4 r^{3}}\right)
$$

$+K^{3} \sin 2 \theta\left(\frac{77}{576 r^{2}}-\frac{3}{36 r^{4}}+\frac{510 g r}{32 r^{2}}+\frac{10 g^{2} r}{16 r^{2}}\right)$
$+K^{4} \cos \theta\left(\frac{3}{128 r}-\frac{1}{i 28 r^{3}}\right)$

Applications of theory
With the expressions for φ_{0}, φ_{2} and φ_{2}, the twoterm approximation for velocity potential is

$$
\begin{equation*}
\Phi=U\left(\varphi_{0}+\varphi_{1} M^{3}+\varphi_{2} M^{4}\right) \tag{24}
\end{equation*}
$$

and from this function the values of velocity at any point in the plane may be computed. of particular interest is the evaluation of

$$
-\begin{aligned}
& I \quad \partial \Phi \\
& r
\end{aligned} \frac{\partial}{\partial \theta}
$$

for this gives velocity normal to the radius vector of the point in question and thus, when $r=1$, is equal to the velocity at the surface of the cylinder.

Neglecting all terms containing powers of $1 / r$ greater than the first, Glauert (reference l) has given this well-known result

$$
\left(-\frac{1}{r} \frac{\partial \Phi}{\partial \theta}\right)=U\left(\sin \theta+\frac{K}{\partial r} \frac{\sqrt{1-M^{2}}}{1-M^{2} \sin ^{2} \theta}\right)
$$

and under the same restrictions equation (24) gives

$$
\left(-\frac{I}{r} \frac{\partial \Phi}{\partial \theta}\right)=U\left(\sin \theta+\frac{K}{2 r}-\frac{K M^{2} \cos 2 \theta}{4 r}-\frac{K M^{4} \cos 2 \theta}{8 r}+\frac{K M^{2} \cos 4 \theta}{16 r}\right)
$$

These results are identical to the order of M^{4} 。
Velocity at the surface of the cylinder is

$$
\begin{aligned}
V(1, \theta) & =U\left\{2 \sin \theta+\frac{K}{2}+M^{2}\left[\frac{2 \sin \theta}{3}-\frac{\sin 3 \theta}{2}\right.\right. \\
& \left.=\frac{2 \operatorname{Kos} 2 \theta}{3}+\frac{K^{2} \sin \theta}{4}\right]+M^{4}\left[(\gamma - 1) \left(\frac{23}{120} \sin \theta\right.\right. \\
& =\frac{11}{40} \sin 3 \theta+\frac{1}{8} \sin 5 \theta-\frac{127}{240} K \cos 2 \theta \\
& +\frac{23}{80} K \cos 4 \theta+\frac{19}{64} K^{2} \sin \theta-\frac{81}{320} K^{2} \sin 3 \theta \\
& \left.\approx \frac{13}{128} K^{3} \cos 2 \theta+\frac{1}{64} K^{4} \sin \theta\right)+\left(\frac{37}{40} \sin \theta\right.
\end{aligned}
$$

$$
\begin{align*}
& -\frac{25}{24} \sin 3 \theta+\frac{3}{8} \sin 5 \theta-\frac{887}{720} K \cos 2 \theta \\
& +\frac{59}{72} K \cos 4 \theta+\frac{71}{144} K^{2} \sin \theta-\frac{631}{960} K^{2} \sin 3 \theta \\
& \left.\left.\left.-\frac{61}{288} K^{3} \cos 2 \theta+\frac{1}{64} K^{4} \sin \theta\right)\right]\right\} \tag{25}
\end{align*}
$$

Results derived from this equation will be presented in terms of pressure coefficient, which is defined as

$$
\begin{equation*}
\frac{p-p_{o}}{l / 2 p_{0}} U^{2} \tag{26}
\end{equation*}
$$

where the zero subscripts refer to free. stream conditions. By means of Bernoulli's equation it follows that

$$
\begin{equation*}
P_{M=0}=1-\left(\frac{V}{U}\right)^{2} \tag{27}
\end{equation*}
$$

Where $P_{M=0}$ denotes the pressure coefficient for incomepressible fluids. If P denotes pressure coefficient for a compressible fluid obeying the adiabatic law then

$$
\begin{equation*}
P=\frac{2}{\gamma M^{2}}\left\{\left[1+\frac{\gamma-1}{2} M^{2}\left(1-\frac{V^{2}}{U^{2}}\right)\right] \overline{\gamma-1} \quad-1\right\} \tag{28}
\end{equation*}
$$

Where M is the Mach number of the free stream and γ is the ratio of specific heats (1.40 for air).

As an approximation for P the Glauert-Prandtl rem suit (reference 2) is given by equation (2) and the Kármánolsien result (reference 2) is given by equation. (1).

The velocity at the topmost part of the cylinder may be found by setting $\theta=90^{\circ}$ in equation (25) and the resultant expression is a function of K and M. 'In. figure l, pressure coefficient at this point is plotted against M for $K=0$. As a test for rapidity of convergence the expressions for velocity, using only M^{2} (one-term approximation) as well as M^{2} and M^{4} (twoterm approximation), are used. It is to be noted that the curves diverge greatly near the critical Mach number, but that, for smaller values of M, the curves derived from equation (25) are together and definitely lie, between the results derived from the GlauertmPrandtland KarmanTsien relations. Figures 2 and 3 show the same equations applied for $K=1 / 4$ and $1 / 2$, respectively. It thus appears from these calculations that the true value of p. lies somewhere between the approximations applied. On the other hand: experimental data, as determined frop airfoils, have shown a much better agreement with the KarmanTsien equation than have the theoretical results obtained here for the cylinder.

In figures 4 and 5 the same noint on the cylinder is under consideration, but circulation is made negative by setting K equal to $-1 / 4$ and $-1 / 2$ in the two cases. As the pressure coefficient gets smaller in absolute value, the theoretical data agree more nearly with equation (l). For all the calculations, the one-term and two-term approximations diverge widely as the Mach number increasés. This is to be expected forg as has been pointed out by Messrs. G. I. Taylor and C. F. Sharman in reference i4; the convergence of the series fails when M reaches its critical value, For near-critical velocities, several more terms would be required to furnish an accurate evaluation of the true potential-flow pressure coefficient.

Figure 6 shows the value of pressure coefficient at all points on the surface of the cylinder. These results were derived from equation (25) with K set equal to $1 / 4$ and at a Mach number of $1 / 5$. Crosses on the graph are at positions obtained from equation (1), and the circles were determined by equation (2). The disagreementiat the extreme pressure coefficients is again in evidence.

APPENDIX

For the integration of the differential equation

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial r}+\frac{1}{r} \frac{\partial \varphi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}}=f(r, \theta) \tag{29}
\end{equation*}
$$

with boundary conditions.

$$
\begin{equation*}
\left(\frac{\partial \varphi}{\partial r}\right)_{r=1}=0 \quad \text { and } \quad\left(\frac{\partial \varphi}{\partial r}\right)_{r=\infty}=0 \tag{30}
\end{equation*}
$$

it is assumed, as in Yogi's method, that the unit circle, with center at the origin is surrounded externally by a continuous distribution of sources such that the source strength of an element RdRdw is

$$
\begin{equation*}
f(R, \omega) \operatorname{RdR} \alpha \omega \tag{31}
\end{equation*}
$$

Equation (29) may then be interpreted as the equation for incompressible flow in such a region.

The velocity potential of an incompressible fluid at point (r, θ) due to a unit source at (R, ω) may be calculated by the method of images. If this potential is dem noted by $\bar{\varphi}$, then

$$
\begin{align*}
\dddot{\varphi} & =\frac{1}{2 \pi}\left\{\frac{1}{2} \log \left[r^{2}+R^{2}-2 \operatorname{Rr} \cos (\theta-\omega)\right]\right. \\
& \left.+\frac{1}{2} \log \left[\frac{1}{r^{2}}+\mathbb{R}^{2}-\frac{2 R}{r} \cos (\theta-\omega)\right]+10 g \frac{1}{B}\right\} \tag{32}
\end{align*}
$$

The required potential φ, satisfying equation (29), is therefore

$$
\begin{align*}
\varphi(r, \theta) & =\frac{1}{4 \pi} \iint\left\{\log \left[r^{2}+R^{2}-2 \operatorname{Rr} \cos (\theta-\omega)\right]\right. \\
& +\log \left[\frac{1}{r^{2}}+R^{2}-2 \frac{R}{r} \cos (\theta-\omega)\right] \\
& \left.+2 \log \frac{I}{R}\right\} f(R, \omega) \text { Rad } \omega \tag{33}
\end{align*}
$$

where the integration extends over the region of the plane lying external to the unit circle.

In the equations under consideration in this report the function $f(R, w)$ is restricted to one of the forms

$$
\frac{\sin m \omega}{R^{s}}
$$

$$
\frac{\cos \quad m \omega}{R^{s}}
$$

$\log R \frac{\sin m \omega}{R^{s}} \quad \log R \frac{\cos m \omega}{R^{s}}$

$$
m_{0} \quad s \geqq I
$$

As an example of the integration process, take the first case listed. Then, set $r^{\prime}=1 / r$, which results in

$$
\begin{aligned}
\varphi(r, \theta) & =\frac{1}{4 \pi} \int_{1}^{\infty} \int_{0}^{2 \pi} \log \left(r^{2}+R^{2}-2 R r \cos (\theta-\omega)\right) \frac{\sin m \omega}{R^{s}} \operatorname{RdRd\omega } \\
& +\frac{1}{4 \pi} \int_{1}^{\infty} \int_{0}^{2 \pi} \log \left(r^{\prime 2}+R^{2}-2 R r^{\prime} \cos (\theta-\omega)\right) \frac{\sin \operatorname{m\omega }}{R^{s}} \operatorname{RdRd\omega }
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{2 \pi} \int_{1}^{\infty} \int_{0}^{2 \pi} \log R \frac{\sin m \omega}{R^{s}} R d R d \omega \tag{34}\\
& =I_{1}+I_{2}+I_{3}
\end{align*}
$$

Integrating I_{3} first with respect to ω shows immediately that its value is zero.

For purposes soon evident I_{z} is written in the form

$$
\begin{align*}
I_{z} & =\frac{1}{4 \pi} \int_{1}^{\infty} \int_{0}^{2 \pi}\left\{\log R^{2}\right. \\
& \left.+\operatorname{Iog}\left[1+\left(\frac{x^{i}}{R}\right)^{2} \cos (\theta-\omega)\right]\right\} \frac{\sin m \omega}{\operatorname{Ra}^{s} \operatorname{IaRd} \omega} \tag{35}
\end{align*}
$$

Since the los $?^{2}$ term vanishes, after integration with respect to w, tho expression for I_{z} may be simplified further by the substitution

$$
\begin{align*}
& \log \left[1+\left(\frac{r^{\prime}}{R}\right)^{2}-2 \frac{r^{i}}{R} \cos (\theta-\omega)\right] \\
&=-2 \sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{r^{i}}{R}\right)^{n} \cos n(\theta-\omega) . \tag{36}
\end{align*}
$$

since $r^{i}<r$, and
$I_{2}=-\frac{1}{2 \pi} \int_{1}^{\infty} \int_{0}^{2 \pi} \sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{1}{r R}\right)^{n} \frac{1}{R^{s-1}} \sin m \omega(\cos n \theta \cos n \omega:$
$+\sin n \theta \sin n \omega) d R d \omega=-\frac{1}{2 \pi} \int_{1}^{\infty} \frac{1}{m} \frac{1}{r^{m} R^{m+s-1}-\pi} \sin \cdot m \quad \theta d R$
$=-\frac{1}{2}-\frac{1}{m r^{m}} \frac{\sin m \theta}{m+s-2}$

To integrate I_{1}, the region exterior to the unit circle is broken into two parts: The first part is a circular ring external to the unit circle and extends to the fixed point r; the second part is the remaining Dortion of the plane and extends infinitely. Then

$$
\begin{align*}
I_{I} & =\frac{1}{4 \pi} \int_{I}^{r} \int_{0}^{2 \pi}\left\{\log r^{2}+\log \left[1+\left(\frac{R}{r}\right)^{2}\right.\right. \\
& \left.\left.-2 \frac{R}{r} \cos (\theta-\omega)\right]\right\} \frac{\sin \operatorname{m\omega }}{R^{s}} \operatorname{RdRd} \omega \\
& +\frac{1}{4 \pi} \int_{r}^{\infty} \int_{0}^{2 \pi}\left\{\log R^{2}+\log \left[1+\left(\frac{r}{R}\right)^{2}\right.\right. \\
& \left.\left.-2\left(\frac{r}{R}\right) \cos (\theta-\omega) \frac{\sin \operatorname{m\omega }}{R^{s}}\right]\right\} \operatorname{RdRd} \omega=J_{1}+J_{2} \tag{38}
\end{align*}
$$

By use of the same series expansion as was previously used,

$$
J_{1}=-\frac{1}{2 \pi} \int_{i}^{r} \frac{\pi}{m} \frac{R^{m-s+1}}{r^{m}} \sin m \theta d R
$$

$$
\begin{align*}
& =-\frac{\sin m \theta}{2 m r^{m}} \frac{1}{m-s+2}\left(r^{m-s+2}-1\right) \text { when } m-s+2 \neq 0 \\
& =-\frac{\sin m \theta}{2 m r^{m}} \log r \text { when } m-s+2=0 \tag{39}
\end{align*}
$$

In the same manner

$$
\begin{align*}
J_{2} & =-\frac{1}{2 \pi} \int_{r}^{\infty} \frac{\pi}{m} \frac{r^{m}}{R^{m+s}-1} \sin m \theta d R \\
& =-\frac{r^{m}}{2 m} \frac{\sin m \theta}{(m-s-2) r^{m+s-2}} \tag{40}
\end{align*}
$$

From equations (37), (38), (39), and (40), the solution of equation (29), for the case in which
is consequently

$$
\begin{array}{ll}
\varphi=\frac{\sin m \theta}{m(m-s+2)(m+s-2)}\left\{\frac{(s-2)}{r^{m}}-\frac{m}{r^{s-2}}\right\} & \text { (when m-2申s) } \\
\varphi=\frac{-\sin n \theta}{m r^{m}}\left\{\frac{1}{2 m}+\frac{1}{2} \log x\right\} & \text { (when } m+2=s \text {) } \tag{41}
\end{array}
$$

For tho other cases tho integration process follows exactly the same procedure.

Amos Aeronautical Laboratory:
National Advisory Committee for Aeronautics, Moffett Field, Calif.

1. Glauert, \vec{H}_{e} : The Effect of Compressibility on the Iift of en Aerofoil. R. \& Ho Mo. 1135, British A.R.C., 1927.
2. von Kármán, Tho: Comprossibility $¥ f f e c t s i n A e r o d y-$ namicse Jour. Aero. Scio, vol. 8, no. 9; July 1941, pp. 337-356.
3. Janzen, Oc: Boitrag zu einor Theorie der stationaron Stromung kompressibler Flussigkejten. Phys. Zeitschro. It (1913), pp. 639-643.
4. Lord Rayleigh: On the Flow of Compressible Fluids Past an Obstacle, Phil. Mag. 32, July 1916, pp. 1-6; or Sci. Papers, vol. VI, p, 402.
5. Kaplan, Carl: Comprossible Flow about Symmetrical Joukowski Profiles. Rop. No. 621, NACA, 1938.
6. Kaplan, Carl: Two-Dimensional Subsonic Comprossible Flow Past Elliptic Cylinders. Rep. No. 624; MACA, 1938.
7. Hooker, S. G.: Two-Dimensional Flow of Compressible Fluids at Sub-Sonic Specds Past Elliptic Cylinders. R. \& Mo No. 1684, British A.R.C., 1936.
8. Imai, I.: On the Flow of a Compressible Fluid Past a Circular Cylinder. Proc. Phys. Math. Soc. Japan, 20 (1938), pp. 636-645.
9. Tamada, K., and Saitos Y.: Note on the Flow of a Comprossible Fluid Past a Circular Cyinder, Proc. Phys, Math, Soc. Japan, 21 (1939), pp, 402-409.
10. Poggi, Io: Campo di velocità in una corrente piana di fluido comprossible. I'Aerotecnica, vol. 12, 1932, p. 1579. Parte II, Caso dei profili ottenuti con representazione conforme dal cerchio ed in particolare dei profili Joukowski. L'Aerotecnicas vol. 14, 1934: p. 532.
11. von Kármán, To: The Engineor Grapples with Monlinear Froblems. Bull. Am. Math, Soc., vol. 46, no. 8 , Aug. 1940, pp, 615-683.
2^{4}
12. Tsion, Hsuc-Shen: Two-Dimensional Subsonic Flow of Compressible Fluids. Jour. Aero. Sci., vol. 6, no. 10, Aug. 1939, pp. 399-407.
13. Tamada, Ko: Application of the Hodograph Method to the Flow of a Compressiblo Fluid Past a Circular Cylinder. Proc. Phys. Math. Soce Japan, 22 (1940), pp. 207-219.

1t, Taylor, G. I., and Sharman, C, F.: A Mechanical Mothod for Solving Problems of Flow in Compressible Fluids. Z. \& M., No. Il99, British A.A.C.; 1928.

Figure 1.- Variation of minimum pressure coefficient with Mach number when circulation is 0 .

Figure 2.- Variation of minimun pressure coefficient with Kach number when circulation is $\frac{1}{4} \pi \mathrm{U}$.

Figure 3.- Variation of minimum pressure coefficient with Mach number when circulation is $\frac{1}{2} \pi U$.

Figure 4.- Variation of pressure coefficient with Mach. number at topmost point of cylinder when circulation is $-\frac{1}{4} \pi$ U.

Figure 5.- Variation of pressure coefficient with Mach number at topmost point of cylinder when sirculation is $-\frac{1}{2} \pi U$.

NACA

