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NATIONAL ADVISORY COMMITTL.jUR AERONAUTICS 

: .;ADVANCE RESTRICTED REPORT 

COMPRESSIBLE POTENTIAL PLOW 11Th CIRCULATION


ABOUT A CIRCULAR CYLINDER 

By Max, A Heaslet 

SUMMARY 

The potential function for flow, with circulation, 
of a compressible fluid.about a cfrcular cylinder is ob-
tained in seriesform including terms. of. the order of M4 
where M is the. Mach number of the free stream. The re 
suiting equations are used to obtain pressure coefficient 
as a function of Mach number at a point o,n the surface of 
the cylinder for different values-of circulation.. The 
coefficiento derived are ' compared with- the Glauert.Pranä.-tl 
and Kárm.n.-Tsien approximations which are functions of the 
pressure coefficients of an incOmpressible fluid. For the 
cases considered,.. the values of the pressure coefficients 
computed from the theory were found to lie somewhere be-
tween the two approximations, thefirst underestimating 
and the second overestimating the theoretical result, 

INTRODUCTION 

In the two-dimensional irrotational flow of a com-
pressible fluid w here the expansion it assumed to be 
adiabatic', the velocity otentia1 is known to satisfy a 
nonlinear partial differential equation of the second 
order. For subsonic velocities, at least three methods 
are known for the approximate solution of this equation. 
They are usually denoted as the method of small perturba-
tions,the Rayleigh . Janzenméhod, and the hodograph 
method, 

The method, of small perturbations (references 1 and 
2) assumed that velocity changes which are brought about 
by the airfoil in the uniform p arallel air stream are 
small in comparison with the velocity of the undisturbed 
stream. Under this assumpion it is possible to intro-. 
duce new variables which reduce the differential equation
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to a Laplace equation,":and,'as- 'aco .nse.qu , nce, the problem 
becomes one concerning flow in an incompressible fluid, 
provided the body is assumed'&istorted to,  correspond to 
the change,-of va'r'i.a'b:1s.': The assumed'stotiol-.cons.ists 
in expansion of the dimensions of the airfoil perpendic-
ular to the direct ioi'of' the .,fr'ec.'s'tream in the ratio 

l-M , where M is the Mach number of the undisturbed 
s t ream. 

The Rayleigh-Janzen method (references 3 and )4) as-
sumes that, the general expression for velocity potential 
may be written as a series in rising powers of . M and 
with variablecoeff•icient.s, .Theecoefficnts.an.be

I. shown^to satisfy--cer-t.ain -Poisson diff er exit- 4-al -equations 
and 9 if . the equation are integrable 5 t,heso1ution.be-. 
comes a. mat terof . det,em.fliflg these cofficients 	 Suc-




cessive'steps, .hower, become increasingly ]aborioüs and 
the 'convergence .of • tie ;.seriesmay be 51 .3w 9 even at.rela-
tively 'small .Mach•numb ers .ifthe.shape of the body is 
such that the .. speed. of sound.. is aproacheft 1oal1y . Solu-
tions, using tIis method of att.ack have been rar r i .ed out 
by 0..Kaplan'(references . 5.. and 6)9 S, G Hooker (reference 
7) I Imsi reference ) K Tamadaand,,,,Y _a-to—refeT- 
enc.•9), and	 Po.ggi introduced

certain refinment 9 and some of the preceding references 
employ this process	 It is ta ntamount . to using the so-




called Neumann function in solving given Poisson equa-
tions and will be discussed later. 

The hodograph method is ascribed by writers on that 
subject• to P Molenbrock and. A. Tschalygin0, Instead, of 
expressing the velocity potential as a function. of co o r-
dinates in the.Carteian or polar plane r the magnitude, 
of velocity V. and. its inclination 0 toan,assumed 
axis.a re-chosen 'as - independent variables.. The resulting. 
differential equa t ion is linear and.can befurther.simpli-
fied by replacing tIe . pressure . volume relationship for 
adiabatic expansion by.the' equation of a line tangent at 
a point corresponding to the state of the fluid in the 
ambient streams This artifice Was suggested by T0 von 
Krmán ,(references , 2 and 1 .1) and used most.succe,ssfu,l1y 
by H,. T, Tsien (referenc.;12).. .K Tamada (reference 13) 
also has applied	 .general results; 'on.. iliptic 
cylin.•ers to compressible flow past a circular cylinder0. 

One, net eworthy result of th, . hodograph method has 
been the ICrmán-Tsien expression for pressure coefficient



P in terms of Mach ' number M' and P 0 , the piessure 
coofficient for M=o'. This 'expression may be written 

- p10	 (i) 

+	 I2	 PMO 

2 
- 

It always gi.ve,. for: no'gaivo; pressure coefficients, a' 
result crcat'cr In absolute' value than the Glauert-Pra'ndt1 
formula, wh.ic'h l's: based oh 'the method 'of small perturba-
tions,'  

1 
P = P 0	 ' '	 ' ( 2) 

- 

and is currently accepted as the more accurate of the two 

Prom equations (1) and ('2) it' 'is possible to corn-
nute the critical Mach number M 0 , the value of M , at 
which the local speed' of sound is attained, in terms of 

The relations involving "ac and PM= 0 , corre-

sponding respectively to formulas (1) and (2), are 

-	 f(-+. i,.i
l	

=	 =o	 (3)
 C) 

YM	 LYY+l	 (-f•l

l-M 

and

M=c =	 (1 - M)	 (Lv) 

The difficulties inherent in the last two procedures 
arc quite as distinctive as their respective approahes 
to the Droblorn	 As stated before, the Rayleigh-Janzen



et-hod employs classical mathematics, the required terms 
being solutions of Poisso.n equ.t:ion,s with given boundary 
conditions, but the workinvolved is arduous. In the 
hodograph methodthe.princ .ipal difficulty is to deter.. 
mine proper boundary conditions in the V 6,0 plane,, In 
available calculations the solution is given with a 
slight distortion in the given boundary, It is possible 
to correct.th.s..distortion, in somecases, Sb that the 
final rults are not too seriously affected. When the 
flow around the boav invoi.ves circulation, however, the 
chaxge in the boundary is more serious, for nonperiodi 
terms appear and the boundary is no longer a closed curve. 
At the present time s no way has been found to circumvent 
t.Ils trouble. Added circulatioi . .&ôes not involve any 
essential variations in the.. Rayieigh-Janzen method, how-
ever, and. in this report the velocity :ootential for such 
compressible flow about a circular cylinder has been de. 
riv.e. ..Since no theo•re.tic.l stiid h.'s been p rese'nted 9 as 
far as is known, to determine the error in the K(rmn-
Tsicn r'sro coefficient, the results obtsined in this 
report furnish aneans :of approaching t'his problem, The 
results of such calculations, for various values of cir- 
culatiox-i., are therefore included, 

ANALYSIS 

Consider a gas obeying the adiäbatià 'lawandfiowir 
ii'rotationally in two dimensions. Its equationof motin 
may be written in polar coordinates in the form 

'y	 z(v2	
i\12	

1 M (a	 L2 + _ _ \ () L	 2	 \U2 .	 2 U \ar ar	 r2 ao ae j 

where  

velocity potential 

a2	 1 a  =	 +.	 + .• 
8r 2	 r . ar''	 r 2 &9	 . :. 

ratio of specific heats of gas


co	 velocity of sound in undisturbed, flow



U	 loc1ty.f free stream 

N =	 Mac.h number of free stream 
Co

	

+ 1 (
	

)2
 local velocity squared 

By introductio.n of the variables ep and v, so that


V 
cp=-' and v=-. 

U	 U 

equation (5) may be written in the form 

M (v 2 1)]	 =	 N	 (6) 
L	 2	 2	 \rr	 r2ee) 

where

	

v2 = () P.+ L	 (7) 
r)	 r2 

Following the method of Rayleigh and Janzen, assume that 
cp may be developed in a series of ascending powers of 

so that

	

=	 M2p1 ± M 4 (P2 +	 S	 () 

After substitution of equation 	 in equation (7), ele.-. 
incntary calculations show that 

	

v = v + v M 2 +	 +	 (. 9) 

where

=	
+ L 

(9\2	
(10"')

r

 
)2

 
r2 t	 )
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v2	 2 [)TO
 

() 

	

1	 r	 r.	 r2eej 

2 = 
r3y 692  ± !2 v	 2	 +	 1(P\2 

+	 (lee) 
2 r 	 r2	 O J	 L\r1	 r2 \eJJ 

S 

In a similar manner, equations () and (9) may be substi- 
tu t	 in equation (6) and on equating coefficients of the 
same. iiowers of H,	 the following .r.elat ions for CP0 

result: 

2	 = o V CPO .:. . (ha) 

1(o 6Y
2 

+___2 ? v o) .: (lib) 1	
2\r 6r	 r2O G 

2	 = (i	 1)	 2 (v	 - .1) 2 
2 ° - 

v 2 CP0 ^v 
2) 

2\r r	 r. e - e.j-
(c	 2 

+
+ 

2 \r	 :r	 .	 r2O 

If	 equation (ha),	 (hib), - and (lie)	 can be solved 
succssiveiy for ,	 the values may be sub-

stituted in equation ()	 to	 get the potential function for 
the flow of a compressible fluid. A step-by-step proce-
dure is	 therefore established whereby any desired degree 
of apbroximation to Cp	 maybe:obtainéd, provided the



value of M is within the region of convergence of the 
resulting series0 Equation (ha) is the differential 
equation satisfied by the potential function in the case 
of incompressibility. Once this potential function is 
known, it is used to evaluate the right-hand member of 
the second equation, the solution of which furnishes the 
second term in the development of C9c The method of ob.-
taming further trms •follows the same general procedures 

Consider now the case of a right 'circular cylinder 
of infinite length in. a compressible fluid., the axis of 
the cylinder being at right angles to the 'direction of 
steady flow, In determining the velocity distribution 
about the cylinder, the problem may be treated two-
dimensionally with a circle as the boundary curve and the 
equations established in the Rayleigh-Janzen method may 
be applied direc.t1y, in the following manner, The radius 
of the circle is arbitrarily assumed equal to 1, and a 
polar coordinate system is chosen with origin at the cen-
ter of the circle and Dolar axis extering down stream,, 
The flow about the circle i.s assumed to be that resulting 
from the combination of. uniform stream veloQity and cir-. 
culation about the .cylinder. Under thee: conditions, the 
classical expression for To is well known*.It may be 
written

cp = (r +	 co.s	 0	 -J.. e °	 3?!	 211U 

where F is the circulation around the circle, measured 
positive in a clockwise direction. For ease of computa-
tion it is convenient to set 

irU 

and, as a consequence,

K 
p	 =(r-i-_I cos	 -- 0 0-	 ri	 2 

The boundary conditions, in general, are 

	

= 0 for r = 1
	

(13 a) 

7 

(12)



Prom equations (12) and (lOa) 

2 

	

v = (1 cos 20	 +	 in 0 
0	 r	 r 2	 ^r r) 

This .result, together with equation (nb), gives 

+
cos 0 +	 cos 3 0 

%r 
5	 r 7 )	 r 

3 

/ . .i :  2 

	

2	 1\	 K 

	

+ K sin 2 Of	 - - +	 - cos 0	 (15) 
2r 2	 2r4	 2r61	 2r3 

The more elementary methods of integration lad to 

certain difficulties when an attempt is made to solve for - 

in 

non-periodic terms in the particular integral and resultant 
trouble in determining such constants of integration that 
tho necessary periodicity, in terms of 0, is maintained 
in the final expression for the potential. function. This 
difficulty may be obviated, however, by established meth-
ods.	 (See appendix) It follows that the solution of 

2n	 sin m


rs

(16) 

satisfying the boundary conditions 

1 —	 =0 
r I	 tr ir=3. 

is
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sin m e Rs_2) -	 m	 (when m+2s	 (17a) 
m(m-s+2) (m+s-. 2) Lrm	 r52J


and
+	 log r	 (when m+2=s)	 (17b) 

	

rnr m 	 12m	 2	 j 

The veracit of these solutions, together with analoous 
ones existing when -sin m 0 is replaced, by cosm 9, may 
be checked easily by substitution in equation (16). 

Since e quation (15) is a linear differential equa-
tion, its solution is determined by considering each term 
of the rd.,-,ht-hand member and summing the individual inte-
rals obtained b;r means of equations (17a) and (17b). 

The final result is 

= cos e	 -	 +	 + cos 3	 -	 1 
1	 12r	 2r3	 12r5J	 V4r	 12r3 

+ K sin 2 0	 + _L + __L + log r 

S	 6r2	 24r'	 2r2 

+ K 2 cos 0	 + lO r )	 (is) 

	

In the evaluation of cp	 the calculation follows 

the same ?attern of development. From equation (lOb) 
together with equation (12) and (lS) 

	

(^19	 7	 (-5	 1	 1	 1 

	

(,.4	 6	 8,	 2	 4	 6	 S 
2r /	 \3r	 r	 r	 3r 

+1	 l	 _  

+ cos ) o	 - K sin o	 + --- -	 5	 1	 2 logr'\ + -+ (r 2)	 (r	 6r3	 12r5	 3r7	 r5	 )
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r •6r 	 T-5	 12r	 r 

+K2	
+ 1	 log r\ 

--- + -.--,.-

	

\r 2 	 4r4	 2r4 I 

+ I2 cos 2 e (_.i -	 - ____ ...	 - log 

	

\,.2r 2 	 12r4	 12r6	 2r2	 r4 

/	 1	 log r\ 
+ K3 sin U ( ++ ...—••.-	 (19) 

\	 r'	 #r	 I 

This result, together with equations (12), (i), än.(1), 
substituted in equation (llc),'gives 

2	 3 
2 2 

=	 - 1)
 

Cos U	 +	 -	
+ 

(_.]. 
+ cos 3Ot----' + cos 50.- 

\ r 7 	 r91 

+ K sin 2	 + 
\. 2r 4 	 14r6	 2r8	 4r1° 

+ K sin 4 0+	 - _!. 

	

4r 4	 2r6	 4•r8 

( -1	 3	 9	 3 
+ K' cos 0 — - - - — + 

\. r 3 	 8r5	 Sr7	 8 r9 

(gr 
K 2 cos 3 0 .-.- +	

3
- + 

3	 8r5	 gr 7 	 g r9
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+ K 3 sin 2 9	 - _-!_ + 
lGr 4	 r6	

+ K 4 co •s e 

7-32 39	 15 11 \	 / 19 3	 5	 1 
+ cos Gj —+--- – —+	 + cos 3 8( —+— - 

L	 \.3r5 2r 7	 r 3r' 1 )	 Gr r	 3r 2r'1 

+ cos 5	 – 

(1	 11	 25	 114.	 3	 G log r 4 log r\ 
+ - sin 2_G —	 •4+_•	

3r82r10 - -	
-+	

r) 

(4r 2 

1	 11 2	 5	 1	 3logr 
+ K sin )4 ._.+_+_ -	 +_.___-___+

 4r4 r 6	 12r8 12r 1 ° 	 r' 

+ K cos
2	 13	 log r + log  

8—. – -–	 - .-_ 
\3r 3	 3r5	 24r7	 r5	 2r7 

+	 cos 3 J__ + 2 3	 1 log r 3 log r	 log r\ 
r 5 4r 7	 r9 2r3	 r5	 - – r	 / 

+ K 3 sin 2 0	 + K cos	 —1	 (20) 
2r4	 3r6	 2r4 ) 16r)J 

To integrate, formulas (17a) and (17b) are again 
resorted. to. The method of integration given in the 
appendix also provides integrals corresponding to. the 
new type of terms appearing in the right—hand member of 
equation (20)	 Thus, the solution of



1 

	

2Q	 log r Pin m8 =	 (21) 

satisfying boundary conditions ()
	

= ,	 0; 

is	 .	 .. 

sin m 9 I	 1	 1	 sin m 8 1	 2, rtt log r 
- 2rn r ill j(m+s_2) 2 + ( ms+2) 2 J 	 2mr2	 2)(m-s+2) 

+--- _1
(22a) 

(m+s_2) 2	 (m-s+2)(  

when m	 s-2	 When rn = s-2 

= : 51r m 0( iog 2 r +	 log r + (22b) 
2mrm	 \?	 2m	 2mJ 

Proceeding directly With 
foIiö.nexression 

P2 = ( hi-i) cos 9 + -	 7 + r) 

+ cos 3 9-- + -- - - 

	

.240r 3	 16r5	 4Or7) 

	

(+1	 3\	 / 427	 7 
+ cos 5 9	 - -- + K sin 20 i---  

	

lGr 3 	 S0r5)	 960r' 	 4 Sr.' 

	

64r 6	 SOrs	 r2



(13) 

-.3.	 1	 1	 3 log r\ 
+ K sin	 0 (	 - +	 --- - 

16r  320r4 Or6	 16r) 

I + K2	 f 49	 3	 3	 1	 lo 

^728r
_ - + 	 + g r

 64r3 64r5 129r 	 lGr 

+ K 2 cos 3 0	 +	 - 57	 3	 1	 3 log r 
I - 

	

6r	 6Or3	 12gr6	 32Cr7	 16r3 ) 

	

/ 41	 1	 1	 3 log r\ + K3 sin 2 0 ( -	 - -c- +	 + 

	

512	 32r 32r4	 512r6	 61r2) 

(+3	 ] 
+ K 4 cos 0 (12
	 - l2Sr3jJ 

0 
	 13	 5	 __

+

 

( +1 37




Or 

!2... 5	 + 3	 -----+. 1 \ + cos 3	
i6r5	 2r 7 	 iiir9) 

(1	 1	 1 \ 
+ COS 5 8	 + 16r	 2Or) 

( 
+ K sin 2 0 1
	 2267	 23	 19 

1 - + 
\ 16	 r - i44,	 + 

+ 	 log ! + 

	

121' 2	 2r4	 8r.6 J



(-1  
t- K sin +	 + 7 . ,	 7	 1	 1	 log r	 log  

- -	 - -	 - - -- -	 -. 
\64 4r 2 '2r 4 49, r-	 576r-8	 4r2	 #r4 ) 

2	 ( 197	 17	 1	 3 log r	 log r	 log r 
+ K COS 0	 -- - - +	 -	 + 

	

\2r	 96r 3	 72r5	 16r	 r3	 48r5 

	

/ -1	 911	 1	 1	 log r	 5 log r 
+ 2 Co s 3 e (	 -	 +	 -	 -	 -	 - 

	

\lGr	 5760r3	 12r5	 160r7	 lGr	 12r3 

log	 log  r 

16V 5 	 4r3 

+ K 3 sin 2 0 (576r2JL 	 L +	 +

36r	 32r2	 16r2 

+ K4 
COS 0
	

(23) 

Applications of Theory 

With the expressions for p0, y,, and	 the two-




term app ximatin for velocity potential is 

U (cp + cp. M2 +	 2	 )	
(24) 

and from this function the values of velocity at any point 
in the plane may be computed 	 Of particular interest is 

the evaluation of

1	 ct 

r
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for this gives velocity normal to the radius vector of 
the point in question and thus, when r = 1, is equal to 
the velocity at the surface of the cylinder. 

Neglecting all terms containing powers of hr 
greater than the first s Glauert (reference 1) has given 
this well-known result

K	 ,%J1_M2 
i--

r	 2r 1-. M 2 	 fl20 

and under the same restrictions euation (24) gives 

\	 r0	 2r	 14r	 $r  

i:mI cos 4a 

 lGr 

These results are identical to the order of M4 

Velocity at the surface of the cylinder is 

V (1 , 0) = U2 sin 8 +	 +	 -
 

sin 30 

	

2	 L	 3	 2 

2 K cos 20	 K2sin el	 I	 / 23 

	

+-	 j+ M 4 (v-1) (— sin 0 
3	 z.	 J	 \120 

11	 1  
- sin 3 0 + - sin 5

	

	
127 K cos 2 0

24O 

+K Cos	 0 + 19 K 2 sin 0 — LL K 2 sin 3so 	 8 
320

/ ^37 
—	 K3 cos 2 0 +	 K4 sin	 +	 sin 8



25	 3 
..._sin30+-sifl50-.--KCO5 20 

2#	 720 

59'cos52Y —K2Sifl0___K2sin30 
72	 144	 960 

-	 K3 cos 21 
2	

0 +	 K4 sin 0 
	

(25) 

Results derived from this equation will be presented 
in terms of pressure coefficient, which is defined as 

	

cL_	 (26) 
1/2p U2 

where the zero subscripts refer to free-stream conditions 
By means of Bernou1lis equation it follows that 

M=o 

i._()2	
(27) 

where PM_0 denotes the pressure coefficient for incom-

pressible fluids, If P denotes pressure coefficient 
for a compressible fluid obeying the adiabatic law, then 

1 V 2 2	 fr 	 ly 
P =	 I i + --. M (
	 )]	

i 	 (29) 

LL.	 2
	 J 

where 14 is the Mach number of the free stream and Y 
is the ratio of specific heats (1.40 for air), 

As an approximation for P the Glauert-Prandtl 
suit (reference 2) is given by equation (2) and the 
KármáncTsien result (reference 2) is givei by equation. 
(1).
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The velocity at the topmost part of the cylinder may 
be found. by setting U = 900 in equation (25) and the 
resultant expression is a function of K and M. 'In 
figure 1, pressure coefficient at this point is plotted 
against M for K = 0. As a test for rapidity of con-
vergence the expressions for velocity, using only M2 
(one-term approximation) as well as M 2 and M	 (two-
term approximation), are used. It is to be noted that 
the curves diverge greatly near the critical Mach number, 
but that, for smaller values of M, the curves derived 
from equation (25) are together and definitely lie 1between 
the results derived from, the Glauert-Prandtl and Karman-
Tsien relations. Figures 2 and 3 show the same equations 
applied for K = 1/4 and 1/2, respectively. It. thus 
appears from these calculations that the true value of P 
lies somewhere between the approximations applied. , •On 
the other hand, experimental data, as determined froift air-
foils, have shown a much better agreement with the Iarman-
Tsien equation than have the theoretical results obtained 
here for the cylinder. 

In figures 4 and 5 the same point on the cylinder is 
under consideration, but circulation is made negative by 
setting K equal to -1/4 and -1/2 in the two cases	 As 
the pressure coefficient gets smaller in absolute value,' 
the theoretical data agree more nearly with equation (i). 
For all the calculations, the one-term and two-term ap- 
proximations diverge widely as the Mach number increas é, 
This is to be expected for, as has been pointed out by 
Messrs G. I. Taylor and C. F. Sharman in reference 14. 
the convergence of the series fails when- .M reaches its 
critical value, For near-critical velocities, severl 
more terms would be required to furnish an accurate eval-
uation of the true-potential-flow pressure coefficient.. 

Figure 6 shows the value of pressure coeffi':ient at 
al l points on the surface of the cylinder. These results 
were derived from equation (25) with K set equal to l/# 
and at a Mach number of 1/5.. Crosses 'on the graph are at 
positions obtained from equation (i), and the circles 
were determined by equation (2) 	 The disagreementat the 
extreme pressure coefficients is again in evidence.
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APPENDIX 

For the integration of the differential equation 

2 + .1.	 $2 = f (r,O)	 (29) 
2. 

rr	 r 2 

with boundary conditions. 

(\ \
0	 and	 (\	 = 0	 (30) 

rJ	 \ri 

it is assumed as in P0991 1 s method, that the unit circle, 
with center at the origin is surrounded externally, by a 
continuous distribution of sources such that the source 
strength of an element RdRdw is 

f(R,	 ç). 

Equation (29) may then be interpreted as the equation for 
incompressible flow in such a region. 

The velocity Dotential of an incompressible fluid at 
point (r 9 e) due to a unit source at (Rw) may be calcu- 
lated by the method of images. If this potential is de-
noted by	 , then F.. 

log L, + R 2	 2Rr cos (0 - w) 

+ log	 + a 2 *	 (e	 + 'L o g	 (32) 

The required potential cp,	 satisfying equation (29)9 is 

therefore
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cp(r,O) -	 j(log [r 2 +	 - 2Rr cos (e - w) ] 

S

it 
+ log [± + B. 2 - 2 cos (0 -. w)] 

	

+ 2 log	 f(R,w) RdRdw
	

(33) 

where the integration extends over the region of the 
Diane lying external to the unit circle. 

In the equations under consideration in this report 
the function f(R,w) is restricted to one of the forms 

sin mw	 cos mw 

B. 5	 R5 

	

sin mw	 cos mw 

	

log B.	 log R 
B. 5	 B.8 

S	 1 

As an example of the integration process, take the first 


	

case listed	 Then, set r 1 = 1/r, which results in 
CO 211 

	

cp(r,0) =,//
	

log(r2 +R
2 - 2Rr cos (0 -
	

RdRd.w
J	 W)) R S 

CO ar 

	

+	 log (r12 + B. 2 - 2Rr' cos (0 - w)) Sin mw RdRdw 
TTT ff	 Rs
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211 

[ log R	 RdRdw	 (31) 
211-f J0 

= I ] + 12 + 13 

Integrating 13 first with respect to w shows 
immediately that its value is zero 

For purosos soon ovicint1 2 is written in the 
form

:_- 1.1 I	 1T	 .2 og p 2

+
+	

cos	 (e	 - dRdw 

Since the log R 2 .	 term vanishes after	 integration with 
respect	 to w, the. expression for 12	 may b. simplified 
further by the substitution 

log r

+ (f—)	
2-	 cos	 (0 - 

= -2

cc n.
n (o. -	 w) (36) 

: \J 
n1	 . 

since	 r < R, and. .	 ..	 .	 . . 

2 TT 

1 2 	 -	 -
(	 1

si	 mw	 (cos . n	 0	 cos	 nw 2;
2-n J L...	 n \ rR) R5 
.. 1	 0.	 n=. 1



1	 1	 sininU 
2 rnr m m4-s-2

(37) 

+ sin ne sin nw) dRdw= - 1 - / 
1 
- - 

1 ­6­ TT s in, rn C dR 
2ir J.
	 •ifl rmnRm+s_l 

1 

21 

To integrate I, the region exterior tothe unit 

circle is broken into two parts: The first part is a 
circular rin g external to the unit circle and extends to 
the fixed p oint r; the second part is the remaining por-
tion of the plane and extends infinitely. Then 

r 

I i 
=- 

rr^log r 2 + log [1 - + (y I _i	 I 

10	 L 

-.	 R	 sinmw - 2- cos C - .w) I	 RdRdw 
r	 Jj	 R 

Cc	 TT 

1 rr tog R 2 + log 1 + (r\2 J  
r 0 

- 2() cos (C - w)	
mw]	 dRdw = 1 +	 (3) 

By use of the same series expansion as was previously used, 

r 

1	 Rm_s+1 
J I = - - I	 sin mOd.R 2n ,	 rn	 rm 

1
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= - 

	

s in  --- -.,10	 .-J_--- (r' 4 	 - 1)	 when m-s+2O 
2mr m m-s+2 

= - 
sin  mG. 	 r	 when m-s+2 = 0	 () 2mrm 

In the same manner 

J=_Lf _fr 2	 _i sin mOdR


= -  

	

rm 
	sin in 0 

	

2m	
(o) 

From equations (37), (3), (39), and. (40), the solu- 
tion of cauation (29), for the case in which 

- is consequently 

=- 
	 (when m-2s) 

= 	 +1 log	 (when m+2=s) ( L 1 

For the other cases the integration process follows 
exactly the same procedure. 

Amos Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif.
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