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COAPRESSIBLE POTENTIAT FLOW WlTh CIRCULATION
ABOUT A CIRCULAR CYLINDmR ‘

By Max A. Heaslet
. SUMMARY

The potential function “for flow w1th c1rculatlon,
of a compressible fluid about a 01rcu1ar cylinder is ob-
tained in series form including terms of the order of M4
where M is the Mach number of the free stream.  The re-
sulting equations are used to obtain pressure coefficient
as a function of Mach number at a point on the surface of
the cylinder for different values of circulation.,. The
coefficients derived are compared with the Glauert-Prandtl
and Karman~Talen approximations which are functions of the
pressure coefficients of an incompressible fluid. For the
cases considered;. the values of the pressure coefficients
computed from the theory were found t6.lie somewhere be-
tween the two approximations, the. first underestimating
and the second overestimating the theoretical result.

INTRCDUCTICN

In the two-dimensional irrotational flow of a come
pressible fluid, where the expansion is assumed to Je
adiabatic, the velocity votential is known to satisfy a
nonlinear partial differenmtial equatlon of the second
01deru For subsonic velocities, at least three methods
are known for the approximate solution of this equation.
They are usually denoted as the method of small perturba-
tions, the Rayleigh~Janzen méthod, and the hodograph
method, - o

The method, of small perturbatlonﬂ (references 1 and
?) assumes that velocity changes which are brought about
by the airfoil in thse uniforn parallel air stream are
small in comparison with the velocity of.the undisturbed
stream, Under this assumption it is possible to intro-.
duce new variables which reduce the differential equation



to a Laplace equat1on, -and, -as 'a.consequence, the prodblenm
hecomes one concerning flow in an 1ncombre<s1ble fluid,
provided the body is assumed distorted to correspond to
the change 'of variables.,: The-assumed -distortion.consists
in expansion of the dimensions of the airfoil perpendlc—
ular to the direction of the free.stream in the ratio
1/'J1~M2, vhere M is the Mach number of the undisturbed
stream.

The Rayleigh-Janzen method (references 3 and 4) as-
sumes that the general expression for velocity potential
may be written as a series in rising powers of M and
with variable coeffieients. .Thege coefficlents can be
shown to. satlsfy certarn Po1sson dlrferent4al equatlons
and, if.the" equatlons are integrable the solutlon ‘be-
comés a matter .of -determining these coefficients. Suc—
cessive steps, however; .become 1ncrea01ngly laborious and’
the-convergence .of the. ser;es may be slow, even at rela-
tively small Mach: numbers..wf the .shape of the body 1s
such that the.gpeed of sound. is apvroached 1ocallyo- Solu~
thns, using this methed of attack, have been carried out .
by C.:Kaplan (references. 5. and 6), S. G. Hooker (reference
7) ‘Imai (reference 8), K. Tamada and Y, faito—(refer- -
ence. 9) .and L. Poggi—{reference 10), Poggi introduced
certain reflnementb9 and some of the, precedlnw references
employ this processc: It is tantamount to using tne so~- -
called Yeumann function in solving given Poisson equa-
tions and will be discussed later.

The hodograph method is ascribed by writers on that
subjeect-to P. Molenbrock and. A, Tschaplygin, Instead of
expressing the veiocity potential as a function of coor-
dinates in the.Cartesian or polar plane, the magnitude.
of velpcity V. and its inclination © to an,assumed
axis-are chosen as - 1ndependent varlableo,, ‘The resultlng
differential equation.is linear. and can be further. s1mp11~
fied by replacing the, pressurewvolume relationbh1p for
adiabatic expansion by the equation of a line tangent ‘at
a moint corresponding to the state of the fluid in the '
ambiont stream. 'his artifice was suggested by T. von
Karmian (references 2 and 11).and used most,suceessfully
by H. T, Teien (reference. 12).. K. Tamada (reference’ 13) .
also has applied Tsien's more generaL results.on. elliptic
cylrnders to compre351b1e flow past a c1rcular cyrlnder°

fOne_ncteworthygresult of the.hodegraph method has
been the Kérman-Tsien expression for pressure coefficient’
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in terms of Mach number M and Py-o,» ~ the pressure
cocfiicient for -M=o.- This ‘expression may be written

P o= PM50'~~ " :“A — — ' ‘ (l)
V1 - w? o Fusg

s 2

Colea/l - ME

It alvays ﬂlves, for nvgati~m preasure coefflclenus,4a
result greator ‘in:.absolute value than the Glavert~-Prandtl
formula* ‘which is based on the method of small vorturba-~
tions, B : o - :

o . |
P = PM_ pp— o (2)

Jl - M3

and is currecntly accepted as the more accurate of the two.

From equations (1) and (2) it is possible to com-
pute the critical Mach number M,, the value of M . at
which the local speed of sound is attained, in terms of
Pyug+  ~The rclations involving Mg and PpM=g, corre-

sponding respoctively to formulas (1) and (2), are

- A R Y- R T 1
e [ (-2 2y - e , e
YHE LAY+ Y4l — Mg Py .
° yI-UE T
1+¢ 1-4°
c
and
P =:E 1 - M2 (v - M) S (4)
M=0 Mg N c c

The difficulties inherent in the last two procedures
arc quite as distinctive as their respective approaches
tc the prodblem, As stated before, the Rayleigh-Janzen
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wmethod employs classical mathematics, the required terms
teing solutions of Pecisson equations with given boundary
conditions, but the work involved is arduous. In the
hodograpn method ‘the.principal difficulty is to deterw
mine proper boundary conditions in the V,8 plane, In
available calculations the solution is given with a
slight distortion in the given boundary. It is possible
to correct this distortion, in some cases, sb that the
final résults .are not too-seriously -affected,” Wheh the
flow around tne body.inveives circulation, however, the
changeé in the boundary is more serious, for nonperiodic
terms appear and the boundary is no longer a closed curve.
At the present time;, no way has been found to circumvent
this trouble. Added circulation dodes not involve any
essential variations in ‘the Raylelgh-Janven method, how-
ever, and in this report the velocity nrotential for such
compressible flow about a circular cylinder has been de~
rived. . .Since no theoretical study has been nresented as
far as is known, to determine the error in the Karman»
Tsien pressure. coefficient, Cthe results obtqlned in thlS
report. furnish .2 means of “pnroachlrg this problem., The
renults of such: calculations, for Varlouv Valhé% of C1r—
culation are the“efore included,’

i T

AWALYSIS

Consider a gas obeying the adidbatic law and flowing
irrotationally in two dimensions. Its equation. of motlon
may be wrltteq 1n polar coordlnates in the form

S
. . - . BTN - o) ~are 2
[1,. Y1 ;v;‘(lé - 1)}7‘@ =L 54.5 .a.f_ v . ..1.5 20T (5
2 U . 2 U or or r 96 o6
‘whers
o] velocity potential
. 9% 1 3% 1 3%
V20 = = o +~“@4”mw‘
or®. . r ar r2 5¢°
Y ratio of specific heats of gas

Co velocity of sound in undisturbed flow



U velocity of free stream

U

o

M = Mach number of free streanm

1\\2 ’ .
T2 = (é_ Vs (ém \ local velocity squared
o / 2 \og /

By introduction of”the variables ¢ and v, so that

o =" and

[l ALS
«
"
il

squation (5) may be written in the form

V I 2 2 ] 2 13 [0 Bva 1 3¢ BVE
1 - M? (v°-1) = - MP S S b I 2=l ) (6)
L Ve 2 dr dr r® 38 39
vhere
v? = (§$ \ P -4 \ (7
dr r? d6 ‘

Following the method of Bayleigh and Janzen, assume that
@ may be developed in a series of ascending powers of
M?, so that

9 = o * Moy + Moy v o oo (8)
After substitution of equation (8) in equation (7), ele-

moentary calculations show that

v2 = v2 + v MR 4 DM+ .. (9)

C 2
ve = (?.f.g. + .]_'.._ <.§.(’.0.9\2 (106‘,)
or }



P_ P 1 99, o9,
o2 = 0 o 1 9% 1 (100)
. ér dr . r2 ae' 56 J
. (a0, 30, 1 3%, 3¢, 1 (acpl)z
e o= + —_— —_] — ' (1OC)
= 1§r Br 2 58 \ r2 d8 -

L] . B ° °

In 2 similar manner, equaulons (8) and (9) may be substi-
tuted in cequation (6) and on equating coefficients of the

same powers of - M, the following relations for @, 9,
Py, + o o TEsult: ' '
vz@o = 0 o "‘u } C (11a)
2 -
. 3P, oV, 1 0%, ovy
oo, = (e Ze 2 ZTe T (11v)
2 \or odr r° 36 08
GPo, = (v = 1) (v7 - 1) e,
- - T ”42 o .
+ 1 9;9~§i; + éEQ é?l)
2 \dr dr r®de/%e-/ .
3%, 3v2 1 39, avE
+ .]Z (__._..:.L. _.__.._9 + i _.._1 __1 (11C)
2 \3r :dr - r® 38 o8¢ /.. . . . .

If equations (1la), (1Ib), and (1lc) can be solved
successively for @,,9,,9,, . . - the values may be sub-
stituted in equation (&) to get the potential function .for
the flow of a compressible fluid. A step-by~step proce-
duvre is therefore established whereby any desired degree
of approximation to ¢ may:-be obtained, provided the



value of M is within the region of convergence of the
resulting series. Equation (lla) is the differential
equation satisfied by the potential function in the case
of incompressibility. Once this potential function is
nown, it is used to evaluate the right~hand member of
the second equation, the solution of which furnishes the
second term in the development of ¢. The method of ob=
taining further terms follows the same general procedure,

Consider now the case of a right circular cylinder

of infinite length in a compressible fluid, the axis of
the cylinder being at right angles to the dlrectlon of
steady flow. In determining the velocity distribution
about the cylinder, the »roblem may be treated two-
dimensionally with a circle as the boundary curve and the
equations established in the Rayleigh~Janzen method may
be applied directly, in the following manner, The radius
of the circle ig arbitrarily assumed equal to 1, and a
polar coordinate system is chosen with origin at the cen-
ter of the circle and polar axis extending down streamnm,
The flow about .the circle is assumed to be that resulting
from the combination of uniform stream veloc1ty and cir-
culation about the. cyllnder. Under these conditions, the
classical express1on for 9, 1s well known, It may be
written ' A '

¢ = (r +'w3 .cos '’ —”az« 8.

. e r/ ‘ 2ny

where I' ‘is the circulation around the circle, measured
positive in a clockwise direction. For ease of computa-
tion it is convenient to set

= =X
U
and, as a consth»nce
= {7 + = f - = .
%o = (v +g) cos om0 (12)

The boundary conditions, in general, are

® .

e for r =1 (132)



and

§$~; cos>9 “for T = o o (13b)

AFrom‘equatiohs (12) and (10a)

ve = <l + lz> - g-‘ cos 26 + K(—]: + }-E) sin 8 + — (1)-|-)
° \ ‘r /. r? r r hr

-

This;result; together with equation (11b), gives

: -4 2\ o
vgq)l = (-—-5‘ + -z cos 6 + -2°3' cos 3 8
\ D r r

-1 2 1\ @ x® |
+ X sin 2 8 - + = —— cos 8 (1%)

: 2r” ort 2r®/ er ,
. The mbré elementary methods of integration lead to

certain difficulties vhen an attempt is made to solve for
Py in equation_ (15),  These—difficulties result from

. nonperiodic terms in the particular integral and resultant
trouble in determining such constants of integration that
the necessary periodicity, in terms of 0, is maintained
in the final expression for the potential function, ~This
difficulty may be obviated, however, by established meth-
ods. (See appendix.) It follows that the solution of

giq = sinm 8 | e
rs '

satisfying the boundary conditions

30 0\
e = 0 —— = 0
<.ar)r=l (51‘/ r=co



o e (s=2) . 21 (unen me2fs) (174)
m(M—s+2) (m+s—2) Lo rS-2
and
22 = -sin m o ;1 . 1 log r (when m+2=s) (171)
nr™ 2m , o .
) [ o

The veracity of these solutions, together with analogous
ones existing wvhen .sinm € 1is renmlaced by cos m 6, may
‘be checked essily by substitution in equation (16).
Since equation (15) is a linear differential equa-
tion, its solution is determined by considering each term
of the rizht-nand member and sunmnming the individual inte-

grals obtained by means of equations (17a) and (17b),
The final result is

w = cos B /13 - 13 + 15 + coé 30 -1, 1 3
1 \12r or lor br 127

+ K sin2 6 (% + 2 4+ 1 4 logr
g 6r® olp = or?

| (1 g 4
+ K? cos 8 <}— + lof ) (19)
: 4rp dr

In the evaluation of ¢ the calculation follows
2

the same nattern of development. From equation (10Db),
together with equations (12) and (18)

= +12 - 76 + 18 + cos 2 9 :g— + ié - jé + —ig
6r 3r or 3p® r r Zr

<
[




10

+ ¥ sin 3 0 - Lo 73 SRS S ;17 _ 2 lgg r)
\  lUr 6r or 1207 r
1 1
P S LN ogv?>
)4'1‘2 )-l-r4 21'4
+ K® cos 2 § f -1 _ 1.1 . 10gnr _ log r>
\er? 12r? 1lor® o2 rd
' 1 log r
+ K sin 8 [+ + (19)
e ( 4p? 4r® )' 7

This result, together with equations (1l2), (1&)} and .(18),
substituted in eguation (lle),’' gives ‘ '

- -

| | 2 2 3 1
2 _ _ | 1 2 3
Ve, F (v l)ﬁ cos © (rs +“r7 -2 . rll)
'“w'"‘—““m'*—*—Yggﬂ_jf-4~"'ﬂ_‘Tfﬂ /-1
+ cos o [ = - ) & cos o[22
’ <I‘7 rg) s 5 \\rs)
\er®  4r®  2r®  Upl0
o .
+ K sin L4 9 (3. 3 1
\4rs  2r6  lye
-1
+ X cos 0 | .3 9,3 )
81“3 8r5 8r7 61‘9

+
=
3
e}
e}
wm
N
@
S
=
+
(Xo]
+
W
1
-
\_—/
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=3 3

+

-

gr®  16r

+ K° sin 29'
k16r

Leos o222, _

L 3r or 7

15,

+
r° 3pil)

/~{ 11 .25

! \+ cos 39<;Ei+;% - -2—+

14
—

) + K4 cos 6 (
P ‘

3r°

6r° r

5

11

or!

)

6 log r+ﬁ log r

XK sin 28 - '
R - \Hr' 3r% 12rS

1 11 » 5

+

-

5;8 opl0

1'6

1 1
+3 og r

K s1n’+9<—-+~—~4——
br? L% 6

13

lor® 12ri©

)

A
‘&

r

log r log r
g + &

olp?

2

3 1
—

(242

QO

log log
LLo€ r+3 og r

)

5

r 2r7

log r

r8

*
i

cos 38
\Sr r5 Ur?

Yp®

1

sin 26(“ L
or4

31°

log r
ort

To
resorted
appendix
new type
equation

integrate,
to.

(20). Thus, the

) + X% cos 9(

formulas (17a) and (17b) are egain
The method of integration given in the .
also provides integrals corresponding.to the
of terms appearing in the right-hand member of
solution of

7

5 r

ord r

-1

162°

)

)
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020 = ilog r gin.m 6 (1)
C Tt A
‘ : Q /30
satisfying boundary conditions (§~> = 0, K§? = 0,
. 7 \ r r=1 \ /T =00
is o . S
[.. ) . N R ~
q sinm 8 | 1 . 1 .L sinm 6] 2 mlog r
T 7 Tom @ i(m+s—2)3 (m—s+2)3J 2mrS-2 1(m¥s~2)(m—s+2)
1 1 -1 . R '. ‘
* - = [ (22a)
(m+s-2)2 (n=s+2)% |

wvhen m %_s~2, Whén m = s-2,

—ai /
Q-8B B8 (L 102 v X o10g 4 e (221)
2m r® o o\2 em 2m®

Proceeding dlrect}jljgmb;jjuL;ntograt1on-requ&ts—ln-the——"

“following expression

1 1 1 1
= (¥Y-1) < cos 8 . - + L e +
®a i \ 60r grs 12r® 16¢7 g80r°
-6l 3 1
+ cos 3 8 f-~- + - -
' . \e2kor®  16r° u0r7/
ho

+ cos 5 6 /uilu- L2 + K sin 26 /' c7° - ! 5

\16r 3 §0r5 \960r° Lgr:

3 o4t o, logr
6Urs g0or® gr2



+

4

K® cos

K? cos

k3 sin 2

K% cos

cos 3

cos §

K sin

-1 1 1 3 log r
Lo ( + - - )
16r®  320r*  80r° 160*

/ g 3 3'+ 1 +logr)
128r 643 6LUrS 128r7 16r

64r 6U4or3 128r5 3207 163

3 6 (*1 57 3 1 _ 3 logr

And +
\512r® 32r* Hlor® 6Lr®

5 ( by 1 1, 31log r)

° <128r B 1;8r3>i}

<+137 b 13 . 5 L1
g80r  3r°  16r>  16r?  ohopd
“19 5 .31 1
0 - + - -
<h8r bgr®  162°  2br”? : 1hur9>

-1 1 1
9 + -
<l6r 16r3 20r5>

. ( L, 2267 23 19 1
2 16 © 288002 ~ INGLFE T 19578 T Lore

+

11 log r _log r + log r
12r= 2r4 8r6

)

(13)



14

/(=2 . 7.. 1 - 1 1 log r log r
+ K sin 4 8{ e - - b i e e DS
° (GH 4gr® '288r* Ugr®  576r°® br? Lr?

\

. 9 :
+ K2 cos © ( 20 _17 - lv s 2. 1ogr logr  logr
\288r 96r3 72r® 16w gr> Lgrs.
3 / -1 911 1 1 log r 5 log r
+ K© cos e - - - -

3 8 - + > .
k16r' ‘5760r%  128r5  160r7  16r lor3

log = log® r)
1615 by

+ K3 sin

> ( 77_‘ _ } , b logr log® r>
576r®  361* 32r? 16r°

+ K¥ cos 6 [ =

(23)

Applications of Theory

With the expressions for Py Pyo and P, the two-

term appreximaticzn for velocity potential is

- o M3 4 o ME ‘
@--U(cpo+\p_1M +\.p2M) (2k4)

and from this funcition the wvalues of velocity at any point
in the plane may be computed. Of particular interest is
the evaluation of

®

o ——

30

H
N
Q|



15

for this gives velocity normal to the radius vector of
the point in question and thus, when r =1, is equal to
the velocity at the surface of the cylinder,

Neglecting all terms containing powers of l/r

greater than the first, Glauert (reference 1) has given
this well-known result

’ / 35
(— a®> = U Ksin 0 + E- ___“l:ﬂi__)

58 2T 1.u? sin®e
and under the same restrictions eiuation (24) gives

M

! é@) = U (sin o + K _ K MPcosze _ KM'cas 29 . EEiSSE.EE)
\ r 99 2r Gr  8r 16r

These results are identical to the order of M4°

Velocity at the surface of the cylinder is

—~

l K in -
V (1,8) = U2 sin 8 + > + M 2sin 8 sin 38
’ > 3 2
2 K 9 K3®sin 6 r /
. cos 28 , Ksin 81, ya | (v-1) { =22 sin o
3 L \ 120
L.
11 127
w = Sin 0 + = sin f = «ve X cos 2 8
40 3 2 oo
+ %g K cos 4 6 + %% K? sin 6§ - %%6 K® sin 3 6



88
- Eé sin 3 6 + é sin 5 6 = waz K cos 2 6
ol 8 720
' 1 1
+ 27 K cos 4 ¢ + (R K® sin 9 - éé- K® sin 3 6
72 14 960
61 - 1 \
- KS K4 .
S5 cos 2 8 + 7N sin 9)] (25)

Results derived from this equation will be presented
in terms of pressure coefficient, which is defined as

o]
1
'd

|

(26)

-
—~
n

el
o
[

where the zero subscripts refer to free-.stream conditions,
By means of Bernoulli's equation it follows that

/v2
Pyeo” 1'“(6> » (27)

where Py-, denotes the pressure coefficient for incom-

pressible fluids., If P denotes pressure coefficient
for a compressible fluid obeying the-adiabatic law, then

| Y

2 f,( v-1 v2\ o

P = T 1+ ~ M? {1 w = =t L1 (28)
2L | ]

where M is the Mach number of the free stream and Y
is the ratio of specific heats (1.40 for air).

As an approximation for P the Glauert-Prandtl re-
sult (reference 2) is given by equation (2) and the
Karman-Tsien result (reference 2) is given by equation.
(1.
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The velocity at the topmost part of the cylinder may
be found by setting © = 900 1in equation {25) and the
resultant expression is a function of X and M., "‘In
figure 1, pressure coefficient at this point is plotted
against M for X = 0. As a test for rapidity of con-
vergence the expressions for velocity, using only M= _
(ore-term approximation) as well as M° and M* (two-
term approximation), are used. It is to be noted that
the curves diverge greatly near the critical Mach number,
but that, for smaller values of M, the curves derived
from equation (25) are together and definitely lie between
the results derived from the Glauert-Prandtl and Karman-
Tsien relations. Figures 2 and 3 show the same equations
applied for K = 1/4 and 1/2, respectively. It thus
appears from these calculations that the true value of P -
lies somewhere between the approximations applied, On
the other hand, experimental data, as determined frop air-
foils, have shown a much better agreement with the Karman-
Tsien equation than have the theoretical results obtained
here for the cylinder, ' )

In figures % and 5 the same moint on the cylinder is
under consideration, but circulation is made negative by
setting X equal to -1/4% and -1/2 in the two cases, .As
the pressure coefficient gets smaller in absolute value, -
the theoretical data agree more nearly with equation (1).
For all the calculations, the one-term and two-term ap-
proximations diverge widely as the Mach number increasés,
This is to be expected for, as has been pointed out by
Messrs, G. I. Taylor and C. F. Sharman in reference 1L,
‘the convergence of the series fails when M reaches its
critical value, PFor near-critical velocities, severagl
more terms would be required to furnish an accurate eval-
uation of the true potential-flow pressure coefficient.

Figure 6 shows the value of pressure coefficient at
all points on the surface of the cylinder. These results
wére derived from equation (25) with K set equal to 1/U
and at a Mach number of 1/5.‘ Crosses on the graph are at
positions obtained from equation (1), and the circles
were determined by equation (2), The disagreement at the
extreme pressure coefficients is again in evidence,
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APPENDIX

For the integration of the differential equation

o/
kﬁ
+

dr

Qs
5

122 4+
T

with boundary conditions .

o)

l N _ . ’ .
& aé.;g = £ (r,0) (29)
and <§9> = 0 - (30)
or :
. 1r =0

it is assumed, as ‘in Poggi's method, that the unit circle,
with center at the origin is surrounded externally by a

f

continuous distribution of sources such that thée source
strength of an element - RdRdw 1is
- 'f(R,u»Rdﬁdﬁ“”“ (1) -

Equation (99) may then be interpreted as the .equation for
incompressible flow in such a reglon.

The velocity potential of an incompressible fluid at
point (r,8) due to a unit source at (R,w) may be calcu-
images. If this potential is de-~

iated by the method of
noted by ¢, then

% = = ’ 2 log l-r R® - 2Rr cos (6 - w)}

The required potential
therefore

0

- 2R o5 (6 - wyw + log %L (32)

satisfying equation (29), is
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o(r,0)

E% ,/i]n {}og [rz + R® - 2Rr cos (8 - w) ]
s

1l
+ log | — + R® - 2§ cos (6 - w)
re r

“+

2 log ili f(R,w) RARdw (33)

where the integration extends over the region of the
plane lying external to the unit circle,

In the equations under consideration in this report
the function f(R,w) is restricted to one of the forms

sin nmw cos mw
st s et e
RS RS
sin mw cos nw
log R o log R 28
m, 8 2

As an example of the integration process, take the first
case listed. Then, set r' = 1/r, which results in
o 2m

(o]
N -
@(r,e) = == /A log (rz + R® - 2Rr cos (6 - Q951n e Rd4Rdw
Y { vy : RS
coo 21

¢ L [f log (r‘a + R? - 2Rr! cos (6 - w)) S12 D9p4Rdw
o U / RS
1
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7~
= L / /\ log R 322 R4may R (34)

=I1+IZ+13

Integrating Iz first with respect to w shovs
immediately that its value is zcro. B

For purnoscs soon cvident 12 is written in the
form

. Caa , ol | .
+ log E—l + \/T——> cos (© --(,,))] L_s__l_.I‘:L_S_I_Yl_u') RARAW (35)

Since the log R®. term vanishes, after integration with

respect to w, the expression for I, may be simplified
further by the substitution

L (e
log Ll + (B—)

g
- 2% cos (6 - w)
R J

2. AN, |
el G (F) cen e w )
Cpzi v :

(o) oTT . . ,
. ~ o 0 o ‘
- : , S
I, =~ = /&4 \3 (L "éh— sin mw (cos n 6 cos nw:"
coooem JoJ £ . n \rR) R®7? :
IRREET 1 0 n=1
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A
= / I ——= < .wsinm o ar
T J DR 0]

1

+ sin n6 sin nw) dRdw= -
rm-RHH' s~-1

1 1 sin md l .
: | | | 0N

nr® mtg-2

To integrate I,, the region exterior to the unit
circle is broken into two pnarts: The first part is a
circular ring external to the unit circle and extends to
the fixed point r; the second part is the remaining por-
tion of the plane and cxtends infinitely. Then

r am
2 =4
I, =;%- /“/— lﬁlog r® + log {}‘f (B)
m_J J L r
i O

5 o o :
2= cos (8 -w):'} 22222 RdRdw
r

R
@ o S .
1 /\ 2 r\?
+ log R + 1 1 + (=
=y f {% °8 [ (R>
r 0
. i
- e(g) cos (9 - w) “MJ} RdRdw = J; + J (38)

By usec of the samc series expansion as Wwas previously used,

r
n m—g+1
gy = -2 | TR sin near
em / .m o



= - sinm@ L (p®m-S*¥2 _ 1) yhen m-s+2#£0
omr®  m-s+2
= - ii£~29°log r when mes+2 = 0 , (39)
' amr” ‘

In the same manncy
[0 ]

1 T m
Jd, = - = - ~— gsin m 9§ 4R
2 Enfmqmﬁl‘

r

- e sin m 8 : | (%0)

on (m-sg-2)pi¥s-2

From cquations (37), (38), (39), and {(40), thec solu-
tion of cquation (29), for the case in which '

U JE 7 N\ (s T fa) _
(7, 6) = 1o
rS
is conscquently
sin m 0 rks~2) m

p = Y ErC | ey 1. i - ypr (when m-2£s)

- -Sin mg J 1 , 1

log when m+2= L
—cy 5o 0g | (when mt2=s) (%1)

-

For tho other cascs the integration process follows
cxactlj the samc procedure,

Amcs Aeronautical Laboratory,
Hational Advisory Committee for Aeronautics,
Moffett Field, Calif.
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