NATIONAL ADVISORY COMMITIEE FOR AERONAUTICS

WARTIME REPORT

GRIGINALLY ISSED
April 1946 as
Advance Confidential Rer it L6C13

FIEID OF FLON ABOUT A JJT ANL EFFECT OF JEIS OR
STABTITIY OF JEN-PROPKIITSD ATRPLAIES
By Herbert S. Ribner

Langley Memorial Aeronentical Laboratory
Lengley Field, Va.

NACA NARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an atthorized group requiring them for the war effort. They were prevously held under a security status but are now unclassified. Some of these reports were not echulcaly edited. All have been reprodused without change in order to expedite general distribution

NATIONAL AOUSOEY COMRITEE EOR AEDORMTICS

FIELD AT FLO: ABOUT A JET ATD ETECT GE JETS E

討 Herbert s. Kicner

SJ:CidRY

Tre fich lnolinstirn huaved ajtsice asle ara tot propulsive jets by the turbulen= spreacing tas beer derived. Certian similifying gasumetcns were nupleyed and the reisicn near the criviles was not trested. Tie effect ci fet temerature or the ficis inclination was Conna to be smail when the shrast coaffiaient is usad as the oriterion for sixilitude. The derlecton or a jut due to angle of attanh has been derized eas round th ce Eurenisble tut onsil for :crmai fligit coristinns zith cmall nomal eveelerations. Tie average fez-incluced downwash over a tall plane :as been outained in terns of the geametry at the sict-tall conflounution. These resilts have been apolied to the estimation of the efiect ni tre jets or tie static innitudinal gtability ard trim $=$: jec-propeined atrplanes.

IMORTMJIIN:

\therefore iot, Es it spreads bu torbuisrt mixiran, is janun to ontrain outsioe fir ir tra aixing zers. ipr is tious arain in; tre zot mis the exterral inn is oausej in snoinge urourd the iet axis. If the jet tail siriaces if jet-propejlei :irgraes, the jet-iniuced

 stability are kerein irveztiguted rae=retivaity fry zoti cold areitutjoさz.

be impaired by the use of an idealized ansine velocity distribution in the jet, which produces errors as great as 11 percent. Also, the original version of the present a:milysis was found to be oversinglified in one respect, whicn resulted in comparable errors in the opposite direction. In the preserit revised trestment, most of the advantages of simplification are setained, but the basic analysis of reference l is used to establish the value oi a constant. The gprroximate treatnent jiven herein eermits the representiation of the jet-induced strean deviation by a Eingle curve. A comparison of tie present analysis for the oold jet with that of Sulife and Trouncer is ziven in appendix i. Reference 1 ijes not treat the hot jet.

Tise first part of the present paner is concerned witl the analusis of the flow invination incuced ruts de cold and hot itts and the fot defiectior ciae to angle or
 the oomputation the errects or the jot on ionstudinal stability onj trim. The comrutstional rrosedure is outlined in detail ir the rumeracal exsaine (takles I is ITI) so that littie reierence to tre tert is necessary.

SYEDLS
(For diatrorstic representation of some of the zymbols referrine tc jets, see fie. l.)
$¥ \quad$ thrist
T Ebsclute strequ: temperethin, fegrees
\therefore strear: dersity
$\sigma \quad r a t i o$ of icesl jet density to jeresen density
$\because \quad$ strem: reiscity
in ineroment of jet vaiocity over itrean. veicoity pt Cint (x, r)
u incuenert \because jet yelcolty oven strean pelecity $\ddagger t$ osint x un $j=t$ axis

t Increment oi jet tempersture over stream temperg-
ture at point (x,r), degrees
tm increment of fet tempereture aver stream tempera-
ture st point x cri jet axis
T jut-tenqergture coefrinient (\frac{t/T}{/}
x axial distance from print at whict jot, in acsorc-
ance mith law of spreading thet holds at sub-
startigl distances irom oririce, would have
zers aross section
r redial distunce from jet sxis
R radius o: jet joundery at section }

```

```

S}=x\sqrt{}{\frac{\mp@subsup{m}{2}{2}\mp@subsup{I}{1}{2}/2I}{2}\hat{L}
Ic' Errist voerficient (}\frac{\vec{F}}{\frac{1}{2}0\cdot\mp@subsup{V}{}{2}S}
S ding frea
In, In constsats cf relucity Omozijo; desined ir text

```

```

 ze:゙neg fre text
    ```


```

K こcmstar.t (さ\&ner. ss ?.Jミ)

2Ereám fan=t!on

```
A area of fot orifice
\(b_{t}\) scan of horizontel tail
d lateral aistree of jet axic from center of rori-
    zortal tál
    distince zf trriat axis beiow ceriter of gravity
\(\sigma_{\mathrm{m}}\) airpiare pitchimg-momert coefitcient
        \(\left(\frac{\text { Fitchir. morent }}{\frac{1}{2} c v^{2} s c}\right)\)
- wing ckord
2 distance of nacelle inlet arecd of ceiter ot
(rrivity; wensured parailel tan axas
\(c_{\text {L }} \quad\) alrelere inft coeficient \(\left(\frac{\text { lift }}{\frac{1}{c} \mathrm{r}^{2} s}\right)\); power cn
        uniess slibscriptel
it in incilerae of norizantsil tail, desrees \(^{t}\)
So elevator ingle, cespocs; pusitive jowneri
?: Elevstar nispo-inorent coefricient
    \(\left(\frac{\text { Bnga anmert }}{\frac{1}{2} r^{2} \times \text { govator sran } \times(\text { Eiengtor shara })^{2}}\right)\)
\(C_{a_{a}}=\frac{d C_{h}}{d a}\)
\(C_{h_{\delta}}=\frac{d C_{h}}{d \delta_{e}}\)
\(n_{p}\) distance of neutral point behind leading-edge mean aerocynamic chcri \(\theta\) fraction ef mear aereJynamic chord
inp shift of neutral point due to power: cositive in Corward direction

Subsarints:
\(j\) mesuured at jet orifice
I Jue tc trrust :orce
\(\varepsilon\) Jue to jet-ir.juved ficw incifration
1 Si:e to single jet
2 due co two jets
nac due to nacelle norman inion
© r:easured at zero thrust; defined as pover-off
conaitinn
fixed stick ifixed
free stick free

\section*{ASSUSPTIOASS}

The basic assumptions for the acld jet are the sare
 srreaj es tircijeree (reference 2, f? 163-16j). The ín studies is incompressible but tiae results are snaEideres ilcsely arplicitle to all suosonia jets ard ateroximately appli=scle tu supersuria jets. Ihe startinz phirt for tiee onesent paper is a coroliary ar

GO:CIMFMTAL
the assumptions of raference 2 ，denived in appendix 3 in the form oi an amproaniate diffenertial equation fon te
 tio snealine of the jet in cotared in a nironows ande：
 by a suitable choice of a corstart \(i\) tio values oit íe two earrossions can be matie to arres vory clesely．nie constunt has been so cooson iに tio roosent anai－sis．
on ties jasis of cherementol ciata fronineaces 5






 San：assuatic：20 wutebis for ceturinin，tu connas
 いも



Ye』ocity amyorents panollel do tie je：axis inincect
 aralusis．This onission eficcto a constasuble simili－
 of iac：outuice the jet by a singe cuave in a gran．
 anal ilow monges tinct＂．．．tle racial slo．．Et occi




 ナー．











temperatire distribution is lnown to follow from the momertum-trensfer theory when the temperature differences ars so s:hall that censity changes and ineat transfer by radiation may be neslectcd. This mrinciple will bc applien hercin without restriction to small verperature dirferences ant without regard for the divergerce from experimeit. (See fig. 2.) Because of these simplifying assumptions the analysis of the not jet can nardiy be valud quantitatively. The analysis should be valid quilitainvely to the extent of establishing winether the erfect of temperature on the jet-induced flow inclinat_on is larse or 3:ayll.

ATMJYSIS
Cola Jet Parallel to Strear:

Velocity in jet. If all the fiuid of the jet is taise: locally inos تie streain, momentur: considerations show that the firmet ecuals tiee mass flow per second torolizin any eloriont multipliod by the exoess oítien jet velocit ovor the strean velocity at the olement fntegrated over the cross section of tiae \(j \in t\); that is (see ins. \(1(a)\) ror notation),
\[
\begin{aligned}
F & =\rho \int_{0}^{n}(V+u) u 2 \pi r d r \\
& =2 \pi R_{2}^{2} p U\left(V I_{1}+U I_{2}\right)
\end{aligned}
\]
or
\[
\begin{equation*}
\left(\frac{i}{V}\right)^{2}+\frac{I_{1}}{I_{2}} \frac{i}{V}-\frac{F}{2 m p V^{2} I_{2} R^{2}}=0 \tag{1}
\end{equation*}
\]
where
\[
I_{I}=\int_{0}^{I} \frac{u}{U} \frac{r}{R} \frac{d r}{R}
\]
\[
I_{2}=\int_{0}^{1}\left(\frac{u}{U}\right)^{2} \frac{r}{R} \frac{\partial r}{R}
\]

If any of the fluid of the jet is not takien from the stream, the thrust \(F\) in equation (1) rust be replaced by (F - Flicht velocity \(x\) idded mass per second). The aided mass par second contributsd by the fuel is nefilgible for air-breathing jet motors. For rockets the added mass per second equels the thrust divided by the jet-nozzle velocity. sispiratcr-type jets lie between the t:so categories.

Equation (1) inay be solved for the ratio of the peak jet additicnal velocity \(U\) to the stream velacity \(V\) in the form
\[
\begin{equation*}
\frac{\mathrm{U}}{\mathrm{~V}}=\frac{I_{1}}{2 I_{2}}\left(\sqrt{1+r_{1}^{-2}}-1\right) \tag{2}
\end{equation*}
\]
where
\[
\begin{aligned}
\eta & =F \sqrt{\frac{\pi V^{2} I_{l}^{2} / 2 I_{2}}{F}} \\
& =R \sqrt{\frac{\pi I_{l}^{2} / I_{2}}{S T_{c}{ }^{\prime}}}
\end{aligned}
\]
and is a nundimensional parameter.
Spreading of jet.- By extension of Prindtl's qualitative reasoning (see reference 2, pe. 163-165) it is show in appendix \(B\) that
\[
\begin{equation*}
\frac{d ?}{d r}=\frac{k}{1+f \frac{V}{U}} \tag{2}
\end{equation*}
\]
where \(k\) and \(f\) ere constants thet gre determined in quoendixes \(A\) and \(B\), respectively. By ase of equation (2), equation (32) may be witten
\[
\frac{d R}{d x}=\frac{k}{1+\left(\frac{2 f I_{2}}{I_{1}}\right)\left(\eta^{2}+\eta \sqrt{\eta^{2}+1}\right)}
\]

When the new variable
\[
\begin{aligned}
\xi & =x \sqrt{\frac{\pi v^{2} I_{1}^{2} / 2 I_{2}}{F}} \\
& =x \sqrt{\frac{\pi I_{1}^{2} / I_{2}}{S T_{c}}}
\end{aligned}
\]
is introduced
\[
\begin{equation*}
\frac{d \eta}{d \dot{s}}=\frac{d R}{d x}=\frac{k}{1+\left(\frac{2 f I_{2}}{I_{1}}\right)\left(\eta^{2}+\eta \sqrt{\eta^{2}+1}\right)} \tag{3}
\end{equation*}
\]
and upon integration
\[
\begin{equation*}
r_{i}+\left(\frac{2 f I_{2}}{3 I_{1}}\right)\left[n^{3}+\left(n^{2}+1\right)^{3 / 2}-1\right]=k \xi \tag{4}
\end{equation*}
\]

Equation (4) provides the law of spreading for the jet since \(R \sim \pi\) and \(x \sim \xi\); the thrust \(F\) is contained in both \(\eta\) and \(\underset{\text { g }}{ }\). ivear the orizin, where the jet additiensl velocity \(U\) is large in comparisen with the strean velocity \(V, \eta\) is small in comparison with urity and equaticn (4) is appreximately
\[
\eta=k_{\xi}^{5}
\]
or
\[
\mathrm{r}=\mathrm{kx}
\]

Thus, near the oriain oi tine jet, the spreadine is approximately lindar aith the axikl jisterce \(x\). Far fror: the oricir, where the jet additional velocity is swall in comparison with the strear: velocity, \(\eta\) is lange in comperizon with unity and equatian (4) is aporoximatel:
\[
\frac{2 f I_{2}}{3 I_{1}} 2 \eta \eta^{j}=k \tilde{\Xi}
\]
or
\[
R^{3}=\text { Constant } \times x
\]

That is, fan from tres orian tine jet shieads as the onethird nower of the axial distance \(x\). "Sove further conForts on the spresding of a jet are macle in appendix 3 .

For the velocity profile (fir. 2), experimentally fotre ior a jet in a still iluid, \(I_{1}=0.0991\) and \(I_{2}=0.04\) ©95. For greater generality is will be left undeterrined for the gresent. With these values of \(I_{1}\) anc: In, equetion ( 4 ) lics beon used to mepare figure \(j\),
 Zquation ( \(\mathrm{l}_{+}\)) :as also been used :ith equation (2) to piovicie tise variation of \(\mathrm{J} / \mathrm{V}\) with \(\mathrm{le} / \sqrt{3 \mathrm{~T}_{\mathrm{c}}}\) show in ingure L.-

The wint orian of the idsalized jet of tiae present treatment, wincin is the orioin of the coorciinate \(x, ~ i s\) locetad a dietance inj upstrex: of tice orifice or the actual jet. (See fig. l.) T:ie value oi \(x_{j}\) varies ऊith \(\mathrm{S}_{0}^{\prime}\) but an averije value is \(2 . j\) eririne diancters. Yore preciso values can be obtained from ficure \(j\) witi. \(R\) Internisted as the orifice radius \(\mathbb{R}_{\mathrm{j}}\).

Zlow inclination. \(\quad\) T:e condition or continuity may be expressea by foming the strear Iunction
\[
\psi=\int_{0}^{r}(u+v) r d r
\]

Outside the jet this expression is approximately
\[
\begin{equation*}
\psi=U R^{2} I_{1}+\frac{V r^{2}}{2} \tag{5}
\end{equation*}
\]
if the small values oi \(a\) induced by the jet in the external flow are ignored. The angle at which tho external flow inclines toward the jet axis is then, for small angles,
\[
\begin{align*}
\epsilon & =\frac{1}{r i} \frac{\partial U}{\partial x} \\
& =\frac{I_{1}}{r} R^{2} \frac{d R}{d x}\left[2 \frac{U / V}{R}+\frac{d(U / V)}{d P}\right] \tag{5}
\end{align*}
\]

The use of \(r\) and \(\xi\) in place of \(R\) and \(x\), respectively, (with ratios of the farm \(x / s\) permitted, however) serves to eliminate the thrust as a separate parameter. when this change is made in equation (b)
\[
\epsilon=\frac{x I_{1}}{r s} \eta^{2} \frac{d \eta}{d s}\left[\frac{2 U_{j}^{\prime} / v}{\eta}+\frac{d(U / V)}{d \eta}\right]
\]
if \(x / s\) is written for its equal \(R / \eta\). Then by the use of equations (2) to (4) there results finally
\(\varepsilon=\frac{k I_{1}{ }^{2}}{2 I_{2}} \frac{x}{r \xi} \frac{\left(\sqrt{\eta^{2}+1}-r_{1}\right)^{2}}{\left[1+\left(\frac{2 r I_{2}}{I_{1}}\right) r\left(\sqrt{\eta^{2}+1}+n\right)\right] \sqrt{r^{2}+1}}\)
in radians, where \(\eta_{1}\) is related to the independent variable \(\equiv\) by equation ( \(\mathrm{H}_{\mathrm{H}}\) ). N asymptotic approximacion, accurate te within 1 percent for \(r_{1} \leqq 0.13\), is
\[
\begin{equation*}
\epsilon=\frac{k I_{1}^{2}}{2 I_{2}} \frac{x}{r \xi} \frac{1-2 n}{1+\left(2 f \frac{I_{2}}{I_{1}}\right) r_{1}} \tag{7a}
\end{equation*}
\]

If \(\eta\) is expressed in terms of \(\xi^{-2}\), the flowinclination relation ( 7 ) is of the form
\[
\epsilon=\text { constant } \times \frac{x}{r} \times \text { Tunction of } \frac{S I_{c}^{\prime}}{x^{2}}
\]

Nithin the limits of applicaticr of oquation (7) the flo inclinftion cutside the jet tius is inversely proFortional to tiee radal distance rem fhe jet axis. Equation (7) car be convenientiv revresented by the variation of \(\frac{r}{x} \in w i t h \frac{S c^{2}}{x^{2}}\). Tre velues of the zonstants \(k, f, I_{1}\) and \(I_{2}\) therein are deternined in appendixes a and 3 as \(2.240,3.3,0.6991\), and 0.0is35, respectivelv, for the velsity prof 1 le of figure 2 . For these values che varistion of \(\frac{r}{x} \epsilon\) with \(\frac{S T_{c}}{x^{2}}\) is giver in figure 5. This single curve provides all the necessany infrratior or the flov incination a typical flnw patiern is stom in fisure 6.

The fiow-inclination relotien (7) and ilgure 5, which is computed from it, sre limted in application to points reasorably near the jet out well away from the orifice. the iirst ilmitation resuits from the neglect In the computition of the siream function of vilues of axial velocity induced oy the fet in the exterral flow. The seconi imitiation results from the neslect of the transition region betwoon the orifise of the \(f=t\) and the rekion of similer velocity Erofilos. The charts of Foference i, in which tiese omissions were not mede, show that the \(\frac{1}{r}\)-iariation of equation ( 7 ) holds, in general, to \(\pm 5\) zercent within tilice the jet riaius at distances grester thar. 3 crifice diamerers aninstream of the orifice. This accurscy should os suriaciort for the usual relative positions of \(\operatorname{phe}\) jet end the hoizontal tail inr ulngmounted jift mozors.

The foregoing remarks inay ba interpreted from another poirt of view. The diameter of the jet orifice does not qppear in the equations of the flnw analysis, but it has been ascertaired that these equations are applicable, in general, for cistances greater than 8 orifice diameters downstream of the orif:ce. The dovnwash induced at the Forizontal tail by wing fets at a given thrust may therefore be concluded to be almost independent of the size of the jet crifice up tc a diameter about une-eighth the distance to trie horizontal tail.

For very bizh ratios of the jet velocity to the suream velocity \(\left(\frac{U}{V}>30\right)\), \(n\) is very small, and equations (?) and (7E) become aporoximatel:
\[
\begin{equation*}
\tan \epsilon=\frac{k I_{1}^{2}}{2 I_{2}} \frac{x}{r 5}=\frac{\sqrt{S T_{c}}}{r}\left(\frac{k I_{1}}{\sqrt{4 \pi I_{2}}}\right) \tag{7b}
\end{equation*}
\]

Where the assumption that \(\varepsilon\) is smell is dropped. Sunh conditions may occur with rociets at take-sif and at low speeds. For rockets the mass flow from the nnzzle is not taner irom the stream and, as \(k_{\text {a }}\) as been stated, the coefiicient \(T_{c}\) must be multiplied by one minus tree ratio of the stream velocity to the jet exit velocity ror use in the مomulas. Rocivet jets are ordinarily supersonic near the nozzle and the equations are not strictly applicable.

Hot Jet Parallel to Stream
 the free \(3 t r e c m\). For the present purpose the temperature elevation at any point in the jet will be assumed to be propontional to tre difference jetween the lacal jet velocity and tre stream velncity ( aee section of present paper erititicd "Assumptions"); tiact is,
\[
\frac{t}{T}=\frac{T u}{V}
\]
where \(T\) is a constent．（Sfe fig．l（b）for retsicn．） By the perfset－gis le：\％then
\[
\begin{align*}
\sigma & =\frac{T}{T+t} \\
& =\frac{1}{1+\frac{t}{T}} \\
& =\frac{1}{1+T \frac{d}{J} \frac{J}{V}} \tag{j}
\end{align*}
\]

Sith tae incraperation nt tna ciersity inatar \(\sigma\) ，

 ion：
\[
\begin{equation*}
()_{i}^{2}+\frac{I_{1}^{\prime}}{I_{2}} \frac{U}{V}-\frac{\vec{Z}}{2 \pi v^{2} I_{2} H^{2}}=0 \tag{9}
\end{equation*}
\]
where
\[
\begin{aligned}
& I_{1}^{\prime}=\int_{0}^{1} \frac{\frac{u}{E} \frac{r}{R} \frac{d r}{T}}{1+i \frac{u}{V} \frac{U}{V}} \\
& I_{2}^{\prime}=\int_{0}^{1} \frac{\left(\frac{U}{U}\right)^{2} \frac{r}{\vdots} \frac{d r}{\Gamma}}{1+\tau \frac{u}{U} \frac{U}{V}}
\end{aligned}
\]

 sajecets the f！lisufre arproxuchtione：
\[
\left.\begin{array}{l}
\frac{I_{1}^{\prime}}{I_{2}^{\prime}}=\frac{I_{1}}{I_{2}}  \tag{10}\\
I_{2}^{\prime}=\frac{I_{2}}{1+\frac{I_{2}}{I_{1}} \text { kT } \frac{j}{7}}
\end{array}\right\}
\]
whene \(x\) is \(s\) corstant tc be ietermined by surstituting values comipated or the exaet ejuatians in finc secrai oí ecuatiansil（）．Ar average valut rion tine range cf Eriatest interest，\(J \leqq T \frac{J}{\gamma} \leqq 1.3\) ，is \(\kappa=3.31\) fce tine
 an now b？expressed in！tise selitie rorr．
\[
\left.\left(\frac{\pi}{V}\right)^{2}+\frac{I_{i}}{I_{2}} 1-\because T r_{i}-2\right) \frac{V}{V}+\frac{I_{i}^{2}}{I_{i} I_{i}^{2}} r_{i}^{-2}=7
\]
from vi：ich
\[
\frac{J}{V}=\frac{I_{1} / 2 I z}{r_{1}^{2}-n T+\sqrt{\left(r_{i}^{2}-n^{T}\right)^{2}+r_{1}^{2}}}
\]
 equarier（2）．

Tre fot－temperature zefficiert T Ea＊te determired from the fulisolry consideniticni it tine inperatine st the jet orifice is kncw：．EquEちューn（j）ss xppliedto

 tie isrm．
\[
\left(\frac{\because i}{\because}\right)^{2}-\frac{\ddot{Z}}{\because}-\left(1-\frac{ \pm i}{\square}\right) \frac{\ddot{2} 3}{\bar{z}}=0
\]
whence

By spplicetirr of fis difinitima at the ortilice, tie temperatire coefricient is
\[
\begin{equation*}
T=\frac{t_{i}^{i} i}{T_{i}, ~} \frac{V}{V} \tag{12}
\end{equation*}
\]

\[
\begin{align*}
\frac{d m}{i \ddot{u}} & =\frac{d ?}{d x} \\
& =\frac{x}{1+\frac{f v}{u}} \tag{2}
\end{align*}
\]

Substifution of equation (11) in equation ( Bi ) zites
\[
\left[1+\frac{I_{2} I_{2}}{I_{1}}\left(r_{i}^{2}-n T+\sqrt{n^{1}+(i-2 k T) \eta^{2}+r_{0}^{2} T^{2}}\right)\right] \frac{d r}{d ?^{2}}=x
\]




where
\[
a=\frac{\kappa T}{\sqrt{1-2 K T}}
\]

Bauation (1j) provides the approximbte law of spreading for the hot iet, since \(A \sim T_{1} \operatorname{ani} x-j\). The variation ni \(R / \sqrt{S T_{c}}\) wita \(k x / \sqrt{S T_{c}}\) sor a frical hot jet \((T=0.15)\) is shown with tile cur:e for tie cola jet ( \(T=0\) ) in sigure 3. Tra virizaice of \(\mathrm{U} / \mathrm{Y}\) with \(k x / \sqrt{S T_{a}}\) for \(T=0.15\), sbtaired \(b_{j}\) use or ec'iation (ij) witi equation (11), is giten in シizens - along i. iti the curve inr the cold iet \((T=0)\).

\[
\psi=\int_{0}^{r} \sigma(u+V) r \ln
\]
outsice the jet tree expression is sporoximate?
\[
i v=V\left[R^{2}\left(\frac{\mathrm{~V}}{V} I_{1},-I_{3}{ }^{\prime}\right)+\frac{r^{2}}{2}\right]
\]
where
\[
\begin{align*}
I_{3} & =\int_{0}^{1}(1-\sigma) \frac{r}{i} \frac{d r}{i} \\
& =\frac{1}{2}-\int_{u^{1}}^{1} \frac{\frac{r}{3} \frac{i r}{\eta}}{1+-\frac{3}{y} \frac{\Sigma}{7}} \tag{1}
\end{align*}
\]

If the small values of \(u\) insured by the jet in the external flow are ignored．The fet－induced stream deviation is then，for smell angles，
\(\epsilon=\frac{1}{\mathrm{Vr}} \frac{\partial \psi}{\partial \mathrm{x}}\)
\[
=\frac{1}{r} R^{2} \frac{d R}{d x}\left[2 \frac{(U / V) I_{1}^{\prime}-I_{3^{\prime}}^{\prime}}{R}+\frac{U}{V} \frac{d I_{1}^{\prime}}{d R}-\frac{d I_{3}{ }^{\prime}}{d r}+I_{1}{ }^{\prime} \frac{d(U / V)}{d R}\right]
\]

The introduction of \(\eta\) and \(\dot{S}\) in place of \(R\) and \(x\) ，respectively，（with ratios of the form \(x / \xi\) permitted，however）eliminates the thrust as a separate parameter．OAth this change
\[
\begin{equation*}
c=\frac{x}{r \dot{S}} r_{i}^{2} \frac{d r}{d \underline{E}}\left[2 \frac{(\mathrm{~V} / \mathrm{V}) I_{1}^{\prime}-I_{3}^{\prime}}{r_{i}}+\frac{U}{V} \frac{d I_{1}{ }^{\prime}}{d \eta_{1}}-\frac{d I_{3}^{\prime}}{d \eta}+I_{1}^{\prime} \frac{d(U / V)}{d \eta}\right] \tag{15}
\end{equation*}
\]
where \(x / \underline{\text { w }}\) has been substituted jor its equal \(k / r\) ．
According to the original assumption that the shape of the velocity profile is the same for ill sections， the ratio \(u / U\) depends coly on \(r / i i\) and is independent of \(R\) or 7 ．Therefore
winery
\[
I_{1}{ }^{\prime \prime}=i \int_{C_{c}}^{1} \frac{\left(\frac{0}{i}\right)^{2} \frac{n}{i} \frac{d r}{B}}{\left(i+\tau \frac{u}{V} \frac{U}{V}\right)^{2}}
\]
\[
I_{j}^{\prime \prime}=T \int_{0}^{I} \frac{\frac{U}{U} \frac{r}{U} \frac{d r}{R}}{\left(1+T \frac{\pi}{U} \frac{V}{V}\right)^{2}}
\]

Alsc, by ulifereitiation of equation (11),
\[
\begin{equation*}
\frac{d\left(\Gamma_{i}^{\prime} y\right)}{d r}=-\frac{I_{2}}{2 I_{2} r_{i}^{3}}\left[\Xi \kappa T-\frac{2 V T\left(r_{i}^{2}-: T\right)-r_{i}^{2}}{\sqrt{\left(r_{i}^{2}-K T\right)^{2}+r_{i}^{2}}}\right] \tag{17}
\end{equation*}
\]

The incorportion of equations (26) in equation (15) then rields the foliowing final extression for the angie at which t.e flow Ins! Ines towned the axis of the fot jet:

In radians. iul of tie variabios in the ecuation exaeot \(x\) and \(r\) are dirimajely inazeions of \(r_{1}\) ard \(T\) abone; the i's arid fridiz are given in terme of \(\mathrm{C} / \mathrm{y}\) and \(T\)
 esucticr.s (11!, (17), ard (ij), respoctivel:.
merns of echation (13), tae flow-irciantion relation (10) is af tien form
\[
\varepsilon=\text { Constant } \times \frac{x}{r} \times \text { Function of }\left(\frac{S T_{c}^{\prime}}{x^{2}} ; T\right)
\]
is is the case fon the cold iot, the ficm inclination outsicie the jet is thus inversaly proportional to the radial districe \(r\). Fine eficct of the jet teriperatiare is deter:nined by the jet-tamperature cceisicient \(T\).

Equation (ij) for the IlcN deviation abcut the hot jet nas bean evalueted for the sirgle value \(T=0.1 j\). The curve of \(\frac{r}{x} \epsilon\) against \(\frac{i T_{c}^{\prime}}{x^{2}}\) is siover in flgure 5 , where \(\varepsilon\) is ressured ir. degrees, alone vith the curve for tine ooli jet ( \(\mathrm{r}=\mathrm{i}\) ).
\[
\begin{aligned}
& \text { Stmilltide oi hot end cold jets with } \\
& \text { mplicstions to i.ind-Tuniel Tests }
\end{aligned}
\]

A typicsi value of the temereture confficiert in
 From the arues of fistras, therefore, the efinct of temportions er the fet-intuesd ri-ow inclination con be


 fielde sood hot raj eld jota on tho tyse tor viriat all the i=0:

 date the zorelasor.
 typlesl tarest ict metor will hav of tie orior of
 sax the:




 simumat fee froper ilow utntit the nacsile. Tae mass

ITACA ACR No. L6OLS
flow in the cold jet car be raade equal to tinot in tin :-rt jet br reducirij the onifice on "ine cold jet to suck a size tiset the pooduct of ain density ain onifice area as the saic Sor botir jets. In wind-tunnel tests at tine rues deronaticici Iabojatory oi the Tir i (unpubifshed) the acale-size oririce of the cold-jut model was restriosed to ain annulus by means of a fayied plue.

If some of the sinid oi tiee cold jet is supplied fro.n a sounce otter than the indet of tins nacelic, as in the casc of an asrinator jet, the mass ilow into ine iniet is leas ticn the mase fiow from tise e:!it, and the forejoing relations do not nealy. In tris \(=\) ase ejmuiation of tio rrouci nass flow into tie iniot su yessible :Uthout recuction on the 31ne of the exit irsm tie scale value. Fith an aspirator jet, hovevor, the jet-indueer? flow inclinetion at a given thanist ilil jo too small for the roasons exnyinined in tiee annarsis oi tie aole jet. (See section entitled "Cola Jat Perailel to Stream.")

\section*{Ef:ect or Inclinetion o: Jet uis}

Gerenal rearyme - The eriect of incisnition ol the jet axis to tive jexal flor :ust be consirered in estinctions of the jut-inuuced co:rniach at fle fall
 nation would Give rise to ni. interfarence similar to that between tise fuselago tinc tive horizontai tar?. Vortically sbore tho jet tiere would be a slight inom-
 across the taii, tiae ret oíact vould be nceligzbi.e.
 it ternds to maintiu: -te slape sna direction in spite of any inclinetioi: to the aman flon. Twer is an anomeciable prosressive cevi"cion, hovevor, irow wie iniuiai direction fowsec the stroar frometion that an be obtained Proin moortum consiclerations. Tiss icfiecuion altenc t'ue distance jotmeen the jé nur tho horinortal tanj, and theworors the jet-iniuced uownash.

Deternination of teu cetloction. - Lot \(j\) be ti.e
 and let fe se the inciination of the turdst ais. ㅂ. the basis of nomentw considenations, tile following aporoximate relation ior tins fractia:al anfular cieviation oi ti:e jet is ieriver ir alpourix C:
\[
1-\frac{\theta}{a_{e}}=\frac{2+\left(I_{1}+\sin T \frac{I_{2}}{I_{1}}\right) \frac{U}{V}}{2+\left(2 I_{1}+6 k \tau \frac{I_{2}}{I_{1}}\right) \frac{U}{V}+I_{2}\left(\frac{U}{V}\right)^{2}}
\]
 jat \((T=0)\) ard the iot jej \((T=0.1 j)\) is giver in flyurs 7. Phe eirisct of jat timperatuie is seen to be nesilgibie.

The chance due to jet doilection in the radial distance \(r\) fren the jct axis to the :orizontal tail is even by
\[
\begin{equation*}
\Delta r=-\frac{a_{e}}{57 \cdot 3}\left(x-\hat{x}_{j}\right)\left(1-\frac{a_{2}}{a_{e}}\right)_{a v} \tag{19}
\end{equation*}
\]
where \(x-x_{j}\) is the distance frori the orifice to the honizoital tisil and \(\left(1-\frac{\epsilon}{a_{s}}\right)_{s v}\) is the average vrilue of \(1-\frac{\partial}{a_{e}}\) betrion the fet orifice and the binge inne of tho hori ontal tail rinus the wilue et the jet ori:ice. In tiois arialicition tha genersl flow in the \(r=\) Eion of the : \(\because=t\) le affectad hy the wink downersh so thit, in strajget flust,
\[
a_{e}=a-\varepsilon_{\mathrm{w}}
\]

1n degres, where \(a\) is the incingtinii of the tinust axis to the res stream, and \(\epsilon_{\mu}\) is the co:vni:ash die to
 erat-d filight the eurvature of tiae flly jét pati. contrioures an additiongl incrertert to \(a_{z}\).

The ift seflection \(\Delta r\) is evaluitiod in teole :II of the numbical examizie, alonä rith vericus otion
 CCIFIDENTIAL . ......
quantities, end 12 shown to be no more than 15 percent of \(r\). Ca the basis of these computstions the jet deflection appears to be smail for straight flight and for fligtt with small ncrmal accelerations. On the other hand, the average angular deviation of the jet is ar. appreciable fracticn of the ancle of attack. The fractional ancular deviation \(\left(1-\frac{5}{a_{e}}\right)_{a v}\) is 0.24 or greater for the several conditions of the numerical example. (See tables I to III.)

\section*{EFEET OF TETS \(2 N\) LONGITGDINAL STABTITV AND TRI: \\ Average Downash over Tail Plane}

Corsider a seneral point \(y\) along the span of the horizontal tall, \(\because i t h \quad y=0\) directly above tre jet. (See fia. こ.) Let tine angle subtended at the center of the jet by the length \(y\) be : \(\partial^{\prime}\). The jet-incuced flow inclination tas been shown to be inversely progortional to the radial ilistance from the jet axis; therefore, if the inclination at \(z=0\) is \(\epsilon\), the incliration at \(y\) is \(\epsilon\) ccs \({ }^{7}\). The downwash at \(y\) is the component of this normai to the tail plane \(\epsilon \operatorname{ccs}^{2} 6\). The cinvelghted mean downwash angle over the taill flane is therefore
\[
\bar{\varepsilon}=\frac{\int_{v-a+\frac{b_{t}}{2}}^{\frac{b_{t}}{2}} \varepsilon \cos ^{2} g d v}{\int_{i-d+\frac{b_{t}}{2}}^{d+\frac{b_{t}}{2}} d y}
\]
\[
=\frac{\epsilon_{r} \int_{1, r=-d+\frac{\partial_{t}}{2}}^{2} d ?}{r_{t}}
\]
or
\[
\begin{equation*}
\frac{\bar{\epsilon}}{\varepsilon}=\frac{r}{b_{t}}\left(\tan ^{-1} \frac{-d+\frac{b_{t}}{2}}{r}+\tan ^{-1} \frac{d+\frac{b_{t}}{2}}{r}\right) \tag{20}
\end{equation*}
\]

Lifting-line theory suguests that an average weighted accordine to the chord would jurovide the most accurate values of tail lift. in urielehted average over, 3ay, 0.g of the tall soan mould appear to approximate tris condition. The surves of ficurs 2 , ecocrdingly, have beer prepsreci from equation ( 20 ) with \(0.0 b_{t}\) substituted for \(b_{t}\). The curves give the variaticn of \(\bar{E} / \epsilon\) with \(r / b_{t}\) and \(\bar{c} / b_{t}\) where \(\bar{\varepsilon}\) is now the effective rear jet-ind:cel downash acresis the tall plane, \(\epsilon\) is tre ficuinclination at a narius \(r\) fror the jet,
 the tail plane, os shown in fiexe ミ. The curves applo the a airoje jet, ard the dowriwash is adaltive for several jets.

\section*{Pitchine-ionent incremer.ts Due to Jet Creration}

General cansjderatims.- Ai a giver anile of attack, nferstion 1 the met mors wili, in zereral, change brin the pitelurig monert arcl the i:it cosifizleat. Corfusion will be avoicied if the cianges an pitching remeat and iift coefticient are inftiaily cotalme as furactans if the cower-off (zero thrust) ijft coeriicient CIo, which is a knoun function of angie of attach. The several pltcharg-ioment ircrenerts due to jet operdticn are discussad in c:ee followire paragrafhs. Eaci incroment is
 given for a aingle jet and ame to be mitipiled by the nurbor of iets.
```

Fitenting momer.t centrituted by direct trirust. - is the thrust aini of tife jot passes a inetarice z below the certen of fravity tie tirist yill contribute an ircromental fitiding monant, wisk is in coefficient fom,

```

ThCA \&? H2 LÓCI3 , CONFIDENTIAL ................... 25
\[
\Delta C_{m_{I}}=\frac{z}{c} T_{c}
\]

The thrust ccefficient \(T_{c}{ }^{\prime}\) ordinarily will be known as a function of the power-cn lift coefficient \(C_{L}\). In order to obtain \(\mathrm{T}_{\mathrm{c}}\) ' as a function \(0 \hat{\imath}\) the power-off lift ccefincient \({ }^{C_{L}}\), use can be made of the known relation between \(C_{L_{0}}\) and \(a\) togetier with the relation
\[
c_{L}-c_{I_{0}}=a_{T_{c}}
\]
where \(C_{L}\) and \(C_{C_{C}}\) are meacured at the same angle of attack \(a\) and \(a\) is taken in radian measure. a "cut-and-tryil pacedure may be used and a curve of \(C_{I}\) against \(\mathrm{C}_{\mathrm{j}}\) can be obtained at the same time.

It haitching moment contributed by jet-induced downenes. axiaily symatric flow field. The incination \(e\) (measured in degrees) relative to the thrust axis st the point ( \(x, r\) ) (see fibs. 1 and E ) for a given thrust coefficient \(I_{c}\), can be determined from fizure 5. A small deflection \(\Delta r\) experienced by the jet winen inclinad to the general stream cin be jeternined from equation (ij) and figure 7 and ased th correct \(r\) and then \(\varepsilon\). The ratio of the value \(\cap\) i average dnuratash over the horizontal tail \(\bar{\epsilon}\) to the value of \(\epsilon\) is given in figure \(\bar{E}\) as a function of the \(z \in\) metry of the jet-tail configuration.

The pitcifingoment coefificent contrituted ser jet by the jet-incuced downash is then, for the stick fixed,
\[
\begin{equation*}
\Delta C_{m_{\varepsilon_{f i x e d}}}=-\frac{d c_{m}}{d i_{t}} \bar{\varepsilon}_{1} \tag{21}
\end{equation*}
\]

If the stick is fres and if the jet unit is mounted under the wing so that the horizontal tall is well away from ths crifice, expression (2j) becomes
\[
\begin{equation*}
\Delta C_{r_{\epsilon_{\text {rree }}}}=-\left(\frac{d c_{m}}{d I_{t}}-\frac{d c_{n}}{d 5_{\varepsilon}} \frac{C_{n_{1}}}{C_{r_{1}}}\right) \bar{\epsilon}_{1} \tag{22}
\end{equation*}
\]

If tine crifice is near the jorizrntal tail, as when the jet issijes Erom the rear ond ci tiol fuselage, ti.e horizontal tail will be in a rejtm of curved flow. If the value of \(C_{h_{5}}\) is negstive, the elevator vill tend to ilost downward to conior: th the curvature. Tris downfloating tendency will edd a stabilizing or negative amount to tie vaiue of the stici-fres pitcling-moment increment fiven by equation ( 22 ). The change could be substantial for a closely balanced elevator fots near zero; ; the magnitude of the ciange :ill deperid on the type of bslance. In adiltion, tine tinge-moment charecteristics might be modified by an efiect ci tine jet on the bounciary layer of the eievator.

The charts of the present peser (figs. 3, 4, j, and 7) Ene not valid inthin a distance of a proximately 3 orifice diemeters downstrean of ths orifice, and reference 1 should be consulted COF the fiow in this region. Equation (2i) For the stick-fixei pitenirg-moment inorement wil be anoroximately valid prov-cod \(\epsilon\) is evaluated at the trree-quarter-chord inine of the hosizontal tail.

Fitching momsat contributed by naceile nomel force.The air taken in at the naceile inist is turned tircugh an arole (tie anjie of attack of tie trrust axis) in beconing aitiod with tre jet atis. This turning of the air sives rise to s centrifugal corce acting upward at the inlet. The force, whict 19 gezligible compared with t:ee \#ing lift, equals the majs firiiv per jecond through ti:e nacelle miltiflitid by the strearl velocity and tre siac of the locsl argle of attack. Tre contribution to the alrplare pitchinz-moment coficiciect is
\[
\begin{equation*}
\Delta C_{\text {mac }}=\frac{(M a s z / 3 \in c) 2 \sin (a-\varepsilon)}{\frac{1}{2} \rho V \equiv s} \tag{zj}
\end{equation*}
\]
where \(l\) is the lever am from tiee inlet of the racelie to the center of gravity of the cimpione and \(-\epsilon\) is the upwash induced by the wing at the nacelie inlet. The upwash - \(\epsilon\) can be estimated fron "igune 5 of reference j. This upwash is large only when \(l / c\) in equation \((z, z)\) is small, and its neglect thererore introcuces small error in the moment.

Pitching moment contributed by joundar-layer removel.- The suction and other af:ects of the jet na; terd to remove some of the boundary layer on adjacent surfaces. The pressure distribution ould be somewhat altered. In some instarces fiow geparation may be frat.bited, which would result in rather iarge changes in pressure distribution. In cass fiot separation on the wing is suppressed, an increased acwnash will oceur at the tail with a consequent positive fitching-moner:t increment. The determinstion of the noment cranges due to thesa several effects must be left to experiment.
riny change in the fuselage pitc:inc mo..ent due to boundary-layer removel with tail on reve possibly be different from such a change with tail or' tecause of the interference between the hoirizontel tail and the fuselage. For this reason the corparisor of teste oi models with tail on and with tall orit mat not recessarily yield the part of the power-on pitchin -roment chonge that can be attributed to the jet-incuced as:nwas:.

\section*{Neutral-Pcint Sinits Due to Fower}

The power-on curves of \(C_{m}\) amainst \(C_{r}\) for various elevetor settings should be nereliei like the power-off curves. The shift in neutral point du? to nower is tierefore
\[
\Delta n_{p}=\left(\frac{d C_{m}}{d C_{I}}\right)_{\text {Fower on }}-\left(\frac{d C_{I}}{d S_{L}}\right)_{\text {Foyer orf }}
\]

In units of the wirg chord. The derivatives are evaluatcd at any convenient flevator \(\operatorname{settin}_{\theta}\) ior the stickfixed condition and at any scnvenisnt elevetor tab zettize for the stlek-free soncition,
compedevtiril

From tre esrlier discussion it inilous that expres= sions of the form
\[
i n_{p}=\frac{d \Delta C_{n}}{d C_{I_{0}}}
\]
or
\[
\Delta n_{p}=\frac{d \Delta C_{m}}{d J_{L_{1}}}
\]
are not quite correct, where \(\mathrm{AC}_{\mathrm{in}}\) is the suri of the several incremental momert coefficienta of tie preaedins paregraphs ...itiplied by tie nunber of fit units, \(C_{j}\) is the foner-cif lift ccefficient, er.d \(c_{L}\) le the pontron lít erefi: alerat. Since \(C_{I}-C_{L_{0}}\) is sriall, however, ettier of the tan equations 13 a zocu inisst approximation. The exact neutrai-rcint scilt is sifzetiy dopencut on tise position oi tive power-ofi neutral fotni.

\section*{}

Secoifactions Bor a hopotiet.esp arplane prorebied by twin :ing-remnted jot riconrs ure 3iver in table I.
 lonsiturinsi stíblity and tram aro fivar. :n tables If

 Ths computetiors onver a raniry oi ilit inerilile:ats and both coid asd hot jets. The nore ir:ortert factors abiculated are tiee ines jet-iadiced arunush fincle over tio horizontal tall; the ohaness in the pitrime mement wit: the stich fixed ara with the staz? free de th this arenwash, to the dire:t thrust morert, sed to the nacelic normal force; end the correspnname anilits in the stionfixid an stick-free neutrsi pointo.
 The metrod 15 aporoximite in tiat he ercet of itt deflection at thergle of attack is neexeotue, tne


CGIDETTiAL

of temperature is nezlected excert in sfecifyin弓..the......... mass flow :een second tnrouzh the nacelle. Table iII sives tho detailed computstion rithout these approximations. The maximum influence of the variation in \(x\) i on the fet-induced flow inclingtion is found to se 1 percent. The maximum iniluence ni coti \(x_{j}\) and incl:nstion of the fet axis on the meen \(j=t-i n d u c c d\) downinsh is foum to be 7 percent. The jet deflection does not excesd 15, percent of the distunce irom the jet \(4 x: 3\) to the norizontal tall. The ciose arreenert between tables \(I T\) ani III suggests tinat the deteilei vompitation of table III may be ilspensed \(\because\) ith in many cases.

Crmperisor. with Exverimert
The present method has been used to estimate the stick-ijxed そitcrinétomer.t Increat.ta due to jet cuerstior for a \(\begin{gathered}\text { wir-jet riginter-ty, e airelare t:at ias been }\end{gathered}\) tested in tiee Langley full-saale tunael. Tine unpioiisted exjerimental values are cemp:red wit: the estlmated values
 y aisinefanizy in trim, but gend ajreemor.t in elope. Tine
 both slove sind trim up to a lift coefincieat oi J. 5 , but Eiove \(C_{I}=0.6\) tre experimental curve divenges mankediy from the retier \(3 t r a \operatorname{cin} t\) estimated aurve. This divergence is protably assool=ted with sone suppressior. by fet ection af seouration st ths raceile inlets tlist was Indicaied by tift studies sarnied out during tree tests. In the whole, the egronerent bivec: tie estingted pitchlnz-romert incremonts due to jet ojeration and tiae exeermental incrererts aree:rs to be suffleient for desien Furfuses. io rumber of turtieer comparisans uith ex:ertmert mil have to be made bifore tre accurasp of

C. nuruss nis


 sicre incivile ar iliomance lor one limitaitors of ís


COMET2BMIIAL
1. The jet-induced flow inclination varies very nearly inversely as the radial distance from the jet axis within the region betine en the fot boundary and twice the radilis of the jet boundary at distances greatar than B orifice diametsrs downstream of the orifice.
2. The effect of jet tempereture on the jet-induced flow incinnation is small when the thmust coefficient is used as the riterion for similitude.
3. The deflection of the jet due to angle of attack is smill for straight flight and flight with saall nomal acceleration. The angular devietion of the jet, horever, is an appreciable fraction of the angle of attuck.
4. The downwash induced at the horizontal tall \(\mathrm{k} \%\) wine jots at a given thrust is almost independert of the slas cf the jet orifice up to a liametar about one-eighth the distance to the horizontal tail.
5. The radius of a jet varles almost linfarly aiti arial distance near the orifice and raries approximately as the one-third power of the axial distance very far fror: the orifice.
6. The equations for jet-induced flew laclinaion may be apolled epproximately to rocist juts if the thrist soefficient is multiplied \(b_{j}\) one minus the ratio of strean velocity to jet-rozzle velocity.
 bility and tric may be ostimatud wh sixficient accuracy for dasiz. purposes by an ipnrozinats methoc that neglocts the effocts or jot deflection, size of the jet orifice, jet-induced boundary-layer removal, and most of the effects of jat temperature.

Lancier Memorial Aeronautical Laboratory
IIticnal idvisory Cormittee for Aeronautics Lancley field, Ve.

\section*{APPEMDIX A}

\section*{}

The Elor－incilnation ctarts of Squire and Trnirat： Ereference ll difser fror figure 5 of the gresent isuer うy amwints rrom 0 to 11 percent iren the flow is ：－ees－ ired at tiae tet boundarr \(\varepsilon\) on more orifice fismeters Eran the orifice．Figure 5 is believed to be more rearly correct within its region of aprlication bncnuce ci tice ：ise ot an oxerermertal rather than an ideallzed jeiculty \(\therefore\) Erribution in the jel，althounh the treatrant ls less －Lgerons otiorwise．A detailed onargrison it the analyses foiznws．

Jouire and mrouneer present a relstivesy rizeno：s trétmert．ay the momentum－trararer tiency o：the sevelop－ ＝ert \(\because:\) a runc jet in a zeneral atreau：mocira peralioj ＝R the iet Exis．Full consiciera＝ion is Eiver to tre
 anict errnsiticn sceios from the unicrom veiosict st the jシt unifize to tie chanacteristic velooity ifstribution of tine ：rillj develnped turbulent jet．The pressnt antiysis ign－ros the transition resion entirely．Üs is ＝ase if Siuine ana Trouncer＇s analysis to everect tie ：alue \(\because\) a crrisiant in an appooximste equation inc ree spresning of tie jet．（Jec iaconulx 3．）İe equation is serived from the gialitiatiog sonsixerations at reseruse 2.

Ir．the Eneiysis of redereace l the vailes of axisi \(\because e i o c i t y\) incucod by the \(j=t\) in tie exterryl ilow ane ＂irst ：थEiected in determining tie stredm lunctinr，as末幺s beer：dore ir tree present anaiveis．Scuire and

 ＝1on（nr，more accurately，its x－terivative）ls refiaia－ sted．Jhiz Erosesure effectivel．T restares the missing Exial－zelacitr Increments．Jxarinatinr of the amojté
 Ith tiee val：es of \(\frac{1}{c^{2} a u_{1}} \frac{\partial \dot{j}}{d x}\) in tables IT tu IV tionnin
sroms tast tris refinement is unnocessary within taine
 Eounstresin ti the sri：ise．This race ztould sover the
usual relative positions of the fet and the horizontal tail for wing-mounted jet motors.

\section*{Determination of Jet-Spreading Farameter \(k\)}

The only questionable point in the analysis of Squire and Trouncer is the use of a sosine-velocity distribution for reasons of mathomstical simplicity, rati.er than the experimental valocity distribution that was used in the present analysis. The general development of the jet (from considerations of mass fiew) is affected only slightly by a moderate change in the velocity prcsile. (See reference l.) The determinction of the angular spreading of the boundary of the jet by means of the experimental data of reference 1 , however, 13 quite sensitive to the shape of the profile. The deterrination may be made as follors. A jet issuing from a small crifice in still air is known to spread conically. aczording to reference 1 the cone on which the velocity is equal to nne-half the velocity on the jet axis at the same section has a semiangle of \(5^{\circ}\). With Squire and Trouncer's cosine-velocity profile therefore
\[
\begin{aligned}
0.5 \mathrm{R} & =x \tan 5^{\mathrm{c}} \\
\mathrm{R} & =0.175 \mathrm{x}
\end{aligned}
\]
or
\[
k=0.175
\]

With the experimentai velocity profile of reference 3 used herein (fig. 2),
\[
\begin{align*}
\therefore .355 R & =x \tan 5^{\circ} \\
R & =0.240 x \\
k & =0.240 \tag{in}
\end{align*}
\]

This value is 37 percent more than the value for the cosine profile.

Effect or velocity profile on Flow Incilnatinn
The flow lncilration about the jet is in turn dependei:t on the spreading of the jet. If \(\eta\) is expressed in terms of \(\underline{c}^{-2}\), equation (7) is of the form
\[
\begin{equation*}
\frac{r}{x} \varepsilon=\frac{k^{2} I_{1}{ }^{2}}{I_{2}} \times \text { Furation of }\left[\frac{S T_{c}{ }^{\prime}}{x^{2}\left(\frac{k^{2} I_{1}{ }^{2}}{I_{2}}\right)} ; \frac{f I_{2}}{I_{1}}\right] \tag{A3}
\end{equation*}
\]
where \(k\) and \(:\) al. parametars for the spresiling of tho fet, and \(I_{1}\) aid \(I_{2}\) are integrals invclving the velocity profile. iilth Squire and Trouncer's cosine profile
\[
\begin{aligned}
\frac{x^{2} I_{1}^{2}}{I_{2}} & =\frac{(0.175)^{2}(0.14-5)^{2}}{0.0061} \\
& =0.00705 \\
\frac{f I_{2}}{I_{1}} & =\frac{(2.6)(0.0861)}{0.1,0.5} \\
& =1.506
\end{aligned}
\]
:ith the experimental velscity profile (fig. 2)
\[
\frac{x^{2} I_{1}^{2}}{I_{2}}=\frac{(0.210)^{2}(0.0991)^{2}}{2 \cdot 0 i+5 j}
\]
\[
=0.01156
\]
\[
\frac{r I_{2}}{I_{1}}=\frac{(3.3)(0.04505)}{0.0991}
\]
\[
=1.632
\]

The aifference in \(k^{2} I_{1}^{2} / I_{2}\) is 32 percent of the value for the experimental profile. Thls difference is large enouzh to reduce the ordinstes of figure \(j\) by from 0 tha 11 fercer:t; the reduction is almost ingear with \(\mathrm{Sm}_{\mathrm{c}} \% \mathrm{x}^{2}\) up to a value of 7 percent at \(\frac{3 f_{c}{ }^{\prime}}{x^{2}}=0.8\). \(\cdots i\) th this reduction, fizure 5 is in substanțal arreement, within its ranee of applicability, wit: the ciarts of referenec 1. The use of a cosine-velocity listribution instead of tiee more sharply reaked experimentel disiritution thus appears to fatroduce errons up to 11 zessoiat in the charts of reference 1.

It is ruther striking that the pronounced difference between the cesine frofile anl the excerimental velocity Frorile resiilts in very litile difference in the parameter \(\int I_{2} / I_{1}\). Thus the only impartmint uncertalnty In the calcuiations for the onld jet \(2_{2}^{5}\) the evaluation of the spreadine-profile parameter \(k^{2} I_{1}{ }^{2} / I_{2}\). This uncertainty is not great, since 32 percent error in \(k^{2} I_{1}^{2} / I_{2}\) leads to errors of from 0 tc 11 yercent in the fles inelination.

These results imply that the calculated rate of change of :isus flow in the jot with exitil distance is not critically dependent on the veicoity proflle chosen. Presumably Scuire and Trancer iad this interpretation in rince when they stated (referarce 1) that the general dev:lopmert of the jet is little afiected by a mederats change in velceity frorisle.

\section*{APFFiTIX B}

APPROKI:'ATE DIPRERENTIN ROLATION POR SFREADING CF

OE THE CONSTANT f FRCM EXUTICNS (14)
AND (15) OF SMIRE AND TROUNCER
Basic Antysis

Constier e cross section of a pound iet on make fo: which the velocity at the certer ts d . The particles of Eiuid in the secticn move downstreari vitt an average velccity \(\frac{U}{2}+V\). icsording to Piar:dtlis soproximate treatment of the sproad of turbulence (reiference 2 , pa. 163 to 165) the time rate of increase or the jet radius is proportionsi to the velocit; difference iut betyen the certer n: the jet and tise edge. The section may thus be visualized is expandine radially with a velocit: Froportionel to lul and movins downstream with a velocity \(\frac{!!}{2}+V\). The slope os the boundary of this mound jet or ixés is trerciore
\[
\begin{equation*}
\frac{d R}{d x} \sim \frac{i}{\frac{U}{2}+V}=k \frac{U}{\because+2 V} \tag{51}
\end{equation*}
\]
where \(x\) is a constant that is determined in appendix \(A\) from experiaental data. Equation (El) is nise applicable to i two-rimersional jot or wore if \(A\) is interpretoc as the semlwititn.

Equation (31) leads to tie knom linear exparsion of the jet radius vistin axial distance for a round jet ia still alr ance to the ras:in one-thisid power law tor the
 3incle, are orittad. It is Ai interest to note thet a hige-spesi jet in roving tir siouid siov ar aporoximatel: IIne ar sprescins near the visice, vieri tiee strean
velocit: \(V\) is small in comparison witr. the jet adiltional velocity \(U\), and fur back where \(U\) is siaull in comparison with \(V\) the exparsion should follow the onethird power law for the spresding of tife wake of a body of revolution.

The foregoling enalysis contains an arbitrary element In the specification of \(\frac{U}{2}+V\) as the erfective averace velozity in the jet. A more generalized average velosity nould be \(\frac{V}{f}+V\) wisere \(f\) is a sonstart that depends on tine shape of the velocity profile. Thus equation can be zeseralized to
\[
\begin{equation*}
\frac{d G}{d x}=k \frac{|U|}{U+f v} \tag{32}
\end{equation*}
\]

It will be shown that the equations oi refererae 1 , derived on a mone riserous bosis, pacovde in expression for \(d R / \mathrm{ix}\) that approximates equation (E2) very closely for a suitable valus of \(f\), and thus establish the ecrrect vailae for f.

\section*{Jetermination of Jet-Spreading fercanger f}

Equations (1i4) and (15) of reforence 1 may be writter, in the notation of the presert paper, as
\[
\begin{gather*}
U R^{2}\left(I_{1} V+I_{2} U\right)-b_{3}=0  \tag{33}\\
U \frac{d R}{d x}\left(b_{1} V+b_{2} U\right)+R \frac{d U}{d x}\left(b_{3} V+b_{1} U\right)+b_{5} U^{2}=0 \tag{1}
\end{gather*}
\]

\footnotetext{
respectively, where
}
\[
\begin{aligned}
& I_{1}=\int_{0}^{1} \frac{d}{U} \frac{r}{R} \frac{d r}{R}=0.1486 \\
& b_{1}=2\left(J_{1}-\frac{1}{16}\right)=0.0578
\end{aligned}
\]
\[
\begin{aligned}
& J_{1}=\int_{0}^{\frac{1}{2}} \frac{u}{U} \frac{r}{R} \frac{d r}{R}=0.091_{4}^{\prime} \quad b_{3}=J_{1}=0.091!; \\
& J_{2}=\int_{0}^{\frac{1}{2}}\left(\frac{1}{r}\right)^{2} \frac{r}{R} \frac{d r}{R}=0.0695 \quad b_{L}=2 J_{2}-\frac{1}{2} J_{1}=0.0933 \\
& b_{5}=\frac{\pi c^{2}}{8}
\end{aligned}
\]

The numerical values epply to the cosine-velocity distributien aciopted by Squire and Trouncier. (The smbol e in the equation tor \(b_{j}\) is used by suire and Trouncer and is distinct from the wing chord \(c\) of the present repert.; Eliminstion of \(\mathrm{dU} / \mathrm{dx}\) between equations (B3) and (BL) zives
\(\frac{d R}{d x}=\frac{-b_{5} U\left(I_{1} V+2 I_{2} U\right)}{-\left(2 I_{1} V+2 I_{2} V\right)\left(b_{3} V+b_{4} U\right)+\left(I_{1} V+2 I_{2} U\right)\left(b_{1} V+b_{2} U\right)}\)
If this equation is put into the form of equation ( \(=2\) ), the constants therein are
\[
k=\frac{\frac{\pi c^{2}}{\varepsilon}}{b_{4}-b_{2}}
\]
\[
\begin{equation*}
r=r\left(\frac{V}{i j}\right)=\frac{b_{3}-b_{1}}{b_{4}-b_{2}}+\frac{I_{1}\left(b_{3}+b_{1} \frac{\bar{V}}{V}\right)}{\left(b_{4}-b_{2}\right)\left(I_{1}+2 I_{2} \frac{\ddot{V}}{V}\right)} \tag{B6}
\end{equation*}
\]

For the values of the constants that apply to the cos:nevelocity profile of Squire and Trouncer (blven uncer
 this value the poproximate aquation ( \(\mathrm{D}_{2}\) ) ascees with \(\mathrm{t}_{1}\) : more exact equation (aj) within 1 percent over the ranse from \(\frac{U}{V}=1\) to \(\frac{U}{V}=\infty\).

For the experimental velocity profile that was used herein (fig. 2) the constants are
\[
\begin{array}{ll}
I_{1}=0.0991 & b_{1}=0.01514 \\
I_{2}=0.04895 & b_{2}=0.01764 \\
J_{1}=0.0701 & b_{3}=0.0701 \\
J_{2}=0.01 .39 & b_{1}=0.0547
\end{array}
\]

Insertion of these values in equation (ES) Eives an average value of 3.3 for \(f\). fith this value the approximate equation (i2) acrees with the nore exact fquation ( 35 ) witinin 2 percent over the rance from \(\frac{\mathrm{J}}{\mathrm{V}}=1\) to \(\frac{i}{V}=\cdots\). The value \(i=3.3\) has ben used in the computstions of the present peoer.

\section*{APPENDIX C}

\section*{DEPLECTION OF IDEAL JUT INCLINED TO STREAM}

Let \(a_{e}\) be the inclination of the thrist axis to the general flow, and let \(\theta\) be the inclination of the jet center line at a distance \(x\) from the ifctitious point origin of the jet. It is required to determine \(1-\frac{\theta}{a_{e}}\), the fractional change in the direction of the jet.

The moinentum relations for the components of the thrust parailel to and perpendicular to the stream are, for small vilues of \(a_{e}\),
\[
\begin{align*}
T & =\rho \int_{0}^{R} \sigma(V+u) u 2 \pi r d r \\
& =2 \pi R^{2} \rho V^{2}\left[\frac{U}{V} I_{1}{ }^{\prime}+\left(\frac{V}{V}\right)^{2} I_{-}^{\prime}\right]  \tag{Cl}\\
a_{Q} T & =\rho \int_{0}^{R} \sigma(V+u)^{2} \theta 2 \pi r d r+\rho \int_{0}^{R} V^{2} \theta 2 \pi r d r
\end{align*}
\]

Tie first integral of \(a_{e} T\) is the cross-wind momentum of the riass flow in the jet; the second integral is the cross-inind riomertum of the disturbed outside iin computed irom the additional apparent inass of the jet. The expression reduces to
\[
\begin{equation*}
a_{e} T=e 2 \pi R^{2} \circ V^{2}\left[2-I_{3} \prime+2 \frac{U}{V} I_{1}{ }^{\prime}+\left(\frac{V}{V}\right)^{2} I_{2}{ }^{\prime}\right] \tag{c2}
\end{equation*}
\]

Solving equations (Cl) and ( 22 ) simultareously gives

40
\[
1-\frac{\theta}{a_{e}}=\frac{2-I_{3}^{\prime}+\frac{U}{V} I_{1} \prime}{2-I_{3}^{\prime}+\frac{U}{V} I_{1}^{\prime}+\left(\frac{U}{V}\right)^{2} I_{2}^{\prime}}
\]

In accordance with the main text put
\[
\begin{aligned}
& I_{1}^{\prime} \approx \frac{I_{1}}{1+\frac{4 I_{2}}{I_{1}} k T \cdot \frac{U}{V}} \\
& I_{2}^{\prime}=\frac{I_{2}}{1+\frac{L I_{2}}{I_{1}} k T \frac{U}{V}} \\
& I_{3}=\frac{\frac{2 I_{2}}{I_{1}} k T \frac{U}{V}}{1+\frac{4 I_{2}}{I_{1}} \kappa \tau \frac{U}{V}}
\end{aligned}
\]
(Strictly speaking, the values of \(k\) should be different in each expression.) Then
\[
\begin{equation*}
1-\frac{\theta}{a_{e}}=\frac{2+\left(I_{1}+6 \kappa T \frac{I_{2}}{I_{1}}\right) \frac{U}{V}}{2+\left(2 I_{1}+6 k T \frac{I_{2}}{I_{1}}\right) \frac{U}{V}+I_{2}\left(\frac{U}{V}\right)^{2}} \tag{CB}
\end{equation*}
\]

\section*{REFERENCES}
1. Sguire, \(\mathrm{H}_{\mathrm{i}} \mathrm{B}_{\mathrm{H}}\), and Trouncer, J.: Round Jets in a General Stream. R. \& M. No. 1974, British i.R.C., 1944.
2. Prandtl, L.: The Hechanics of Viscous Fluids. Spreaci of Thrbulencs. VCl. III of Aerodynamic Theor, dir. \(G\), sec. 25, W. F. Durand, ed., Julius Springer (Berlin), 1935, pp. 162-175.
3. Fluid Motion Panel of the Aeronautical Research Comittee and Others: liodern Develonments in Fluid Dynamics. Vol. II, cr.. XIII, sec. 255, S. Goldstein, ed., The clarendon Press (Orford), 1933. 2. 506, fig. 236.
4. Conrsin, Stanley: Investication of Flow in an Arially Syimetrical Heated Jet of Air. MACA ACR Ne. 3L23. 101+3.
5. Aibner, Herbert S.: Notes 0 tie Proceller and SIIpsirean in Relation to Stability, Nica airR No. IHIL2a, 19.44.

\section*{TABLE I}

\section*{SPECIFICATIONS FOR NUNERICAL EXANPLE}


CONFDENTLAL YMERE II

[jot dofleotion aneloetod and x g then an 4.6k; jot tooperature aeglected excopt in otep 13]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { Jot } \\
\text { (ased) }
\end{gathered}
\] & Cold & cold & cold & cold & neanerk \\
\hline stop & plap doflen- & 0 & 0 & 45 & 45 & 01ven \\
\hline 1 & \(c_{L_{0}}\) & 0.5 & 1.0 & 1.0 & 2.0 & 0100n \\
\hline 2 & \(\mathrm{F}_{6}{ }^{\prime}\) & . 08 & . 16 & . 16 & . 32 & 01ven \\
\hline 5 & 5x. \(9 / \mathrm{x}^{2}\) & . 227 & . 455 & . 455 & . 909 & \(\frac{3}{2}=8 \operatorname{tap} 2\) \\
\hline 4 & \({ }_{2}{ }^{6}\) & . 222 & . 420 & . 420 & . 750 & Prow fig. 5. by uat of stop 3 (eurve for \({ }^{\circ}=0\) : \\
\hline 5 & 4.606 & . 73 & 1.38 & 1.38 & 2.46 & fok-Induced dommash angla at section of horizontal tall Ferti-ally abow get \(\left(\operatorname{step} 4=\frac{2}{p}\right)\) \\
\hline 6 & \(\mathrm{r} / \mathrm{st}_{5}\) & . 25 & . 25 & . 25 & . 25 & - bation in table! \\
\hline 7 & 24, \(\mathrm{B}_{8}\) & . 5 & . 5 & . 5 & . 5 & - civen in table 1 \\
\hline 8 & \%/ & . 526 & . 526 & . 526 & . 526 & Prem ric. 8 oy use of atope 6 and 7 \\
\hline 9 & \(\overline{7}_{2},{ }^{0} 8\) & . 77 & 1.45 & 1.45 & 2.59 & tren fot-Induaed downeath equle over Borisontal tasl for two jes (2 : step \(5 \times\) Otep 8 ) \\
\hline 10 &  & . 0231 & . 0435 & . 0435 & . 0777 & Ftehlng-nonnt incromens da to jetindueed domanent esick fined
\[
\left(-\frac{d c_{1}}{d I_{z}}=\text { otop } 9\right)
\] \\
\hline 11 &  & . 0173 & . 0326 & . 0326 & . 0583 & Fitehing-honat lasmenent the ka Jetinduesd dompent atict fres
\[
\left[-\left(\frac{d c_{1}}{d 1_{8}} \cdot \frac{d c_{1}}{30_{0}} \frac{c_{\mathrm{h}_{8}}}{c_{\mathrm{h}_{0}}}\right)=\sec 9\right]
\] \\
\hline 12 & \({ }^{\Delta c^{4}}{ }_{5}\) & . 3160 & . 0320 & . 0320 & . 0640 & Fitebing-monent incroment ine to thruet-anis affeet ( \(2=\frac{3}{6}-\operatorname{stop} 2: \frac{8}{8}\) rrom tanle 1) \\
\hline 13 & \(\frac{\text { Vale/gec }}{075}\) & . 1.00470 & .00654 & .00654 & . 00914 &  bot jet: in coefflelent fore (civen) \\
\hline 14 & \[
\begin{aligned}
& a_{0} c_{\text {dos }} \\
& \Delta c_{\text {nece }}
\end{aligned}
\] & \({ }^{3.7}\) & 10.3
.0024 & -.3
-.0001 & 13.0
.0042

008 & \begin{tabular}{l}
01ven \\
Pitehing-moment inercement due to aseile normal force, tich elag uprath megleated
\[
\left(4 \frac{1}{0} \times \operatorname{atop} 13=\sin \operatorname{ten}\right. \text { 山) }
\]
\end{tabular} \\
\hline 26 & \({ }^{408 p r s e d}\) & . 278 & . 073 & . 073 & . 068 & atick-fixed neutral-pothe mast due to poser [slope of curve or letep 10 - atep 12 - etep 15) ugalant \(c_{L_{0}}\) ] \\
\hline 17 & \({ }^{\text {AnPros }}\) & . 368 & . 064 & . 066 & .0.ss & athek-froe moutral-polnt ehift due to porar [alope of curve of (stop 11 + stop 12 + ©top 15) ceinot \(C_{c_{0}}\) ] \\
\hline
\end{tabular}

CONFIDENTILL

CONTRENTKL
FABE 115



(6) Tomparatura profile.
MATEONAL ADVISORY
COMMTYEE FO MIOMNTACS


\section*{NATIONAL ADVISORY COMMUTE FO AEMOMAUTKS}


Figure 2.- Velocity and temperature profiles for a round jet in still air.
(a) Experimental velocity profile adopted for the present report. Replotted from reference 3 with \(r / R\) taken as the value therein divided by 2.74.
(b) Experimental velocity profile of figure 20 of referfence 4 fitted to curve (a) at \(\frac{\mathrm{L}}{\mathrm{O}}\) - 0.5.
(c) Theoretical cosine velocity profile of reference 1.
(d) Experimental temperature profile of figure 20 of reference 4 to same \(r / R\) scale as curve (b).



Pl\&uro 4. - Vaclation of tho ratio Velocliy ondetaxio - Stroamvelocity with \(k x / \sqrt{S T_{c}^{\prime}}\).



Figure 7. - Angulai deviation of jet due lo angle of atiaok: variation of \(1-\frac{\theta}{a_{e}}\) with \(k x / \sqrt{S T}{ }^{\text {c }}\).

COMMITTEE FOM AEBOMAUTICS
Figure 8. - Ratio of the effective mean downwash \(\bar{\epsilon}\) induced by the jet \(r\) induced at a radius r.
\(\stackrel{0}{\sim} \quad \stackrel{1}{0}\)

Figure 9.- Experimental and estimated increments of pitching-moment coefficient due to jet operation. Twin-jet fighter-type airplane, rated powis.

Figure 9.- Concluded.```

