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NAT I OFAL ADV I SOR Y CO:M I TTEE FOR AER ONAUTIC S 

RESTRIC1ED BULLETIN 

FLIGHT TESTS OF A GLIDER MODEL TO~ED BY TW I N PARALLEL TOWLI~ES 

~y Marvin Pitkin and Marion O. McKinney , Jr . 

Sul1.MARY 

The stability characteristics of a glider towed by 
tnin parallel towlines have been studied in the NAGA frec­
flight tunnel. A preliminary the oretical anAlysis of the 
stability of a gl ider restrqined from YRwin~ wes followed 
by an e xp e r ir1 e n t a lin v e s , i gat ion 0 f t 11 est a b il H y 0 f R 

model to~ed from fixed tunnel points in such a ~Ry as to 
simula te tow in level flight . A ra~fe of diLedr~l angles 
f~om - 4 0 to 10 0 ~AO covered for to~line len~ths of I , 2 . 
and 3 Glider-span len~~ths . In add:i.tiol . tha effect of 
flibht-path an~le was investt cated . T Ie effect of the 
glider on the tord,n b ai.rcraft "lHs deterr.lred by l:::d er 
tests in ~hich t he blider'Das attach~d to a free-flying 
model . 

The results of the to s tu confirm the t~eorctical anal­
y sis and. in d i c 3 t c t !l a t a ~ i 1 0 i I eSt;, s t!-'b 1 €. tow a J - b lid. e r 
s~stem is ?ossib le when t~in parallel to~ca~les are used . 
The de5ree of lat e ral stpbilit y of sucL a system wa s found 
to be chiefly dependent 'upon the dih~drEl an~le . ULstable 
oscillations were o'bservea. for lart,;e allGles of dihedral 
and divergences ~ere encou~tered Dith ne&ative angles of 
dihedral . 

EJTB. ODUC'I I ON 

Loa d'- ca r r yin g g 1 ide r s h a ,v e .1 any mil ita r y a 'P pI i CRt ion s . 
If existi~g Bir~raft are utilized as tUbS , troops and their 
full equipment may be t r pn sDo rted great distences without 
sacri:fi'cing any of the co,rabat utility of t~le tug . The 
~lider hlay be also ~3Gl to carry additional fuel , which 
would thereby exteDd th8 r an6 8 of the tugs . 

A seve:e limita tio~ to tte scope of glide r aonlication. 
however, is the pro'bl\:3!O of ootainins satisfactory stability 
of the towed aircraft . This lack of atability has made it 
necessary, in mo st cases to date , th~t each ~lider have its 
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own pilot to mak e the necessa r y corrections to hold the 
glide r on its course. In bli nd towing , eit her at night 
or in bad weather , the gl ider pi lot loses orientation with 
the towing aircraft and thus has difficulty in avo i ding 
accidents . It appears extremely des ira-ole , therefore , to 
attain inherent s tabi li ty in a towed glider . Some succe s s ­
ful wo r k has been done i n connection with the p roble m of 
towing g liders with sin ~ le towlines but the prob lems hav e 
been considerable. 

I n order to reduce the comolex it y of the p roblem a 
dyadic towline system, sho wn in fi~ure I, has b ee n devised. 
This s y stem restrains the glider from yaw i ng , thus limit ­
ing the lat e ral motion to two de ~ rees of freedom a d al so 
provides additiona l lateral stability throu gh action of 
t he towlines. The stabilit y of this g lider s ys tem ha s 
been determirted from an analysis of the equa tion s of mot ion 
and from tests of a dynam i c mod el in the f ree-flight tunnel. 
For si mp I i cit y , a n I y the res u 1 t s 0 f the e xp e r i TIl e n t s a re 
given in the present report. 

APPARATUS 

The t ests r eported herein were made in the NACA free­
fli ght tunnel, a co mp lete description of Dhich will be 
found in reference 1 . 

A 1/20-sca1e mode l of the Bristol glider-tow target 
"Skeet" was c ho sen for the tests, i nasmu c h as unpublished 
full-scale data as we l l as data obtained for sing l e towline 
tests were available at LMAL. A th ree-view drawing of the 
mo d el is g i ven as figure 2. The fuselage co nsi sted of two 
perpendicular planes each out lin inb the projected s h~pe of 
a conventional fuselage . The dime~s i onal characte ris tic s 
of t he ful l-s cale glider are g ive n in the following table: 

Wing area, square feet . 
Horizontal tail area , square feet 
Vertical tail a r ea , s que r e feet 
Wing span , feet. 
Over-all length, feet. 

173 
56 .1 
10.5 
34 .4 
29 . 3 

Inasmuch a s the original wing loadi ng of the ful l­
scale Bristol glide r was too low (2.08 I b per sq ft) to 
rep r e s ent the wing loading of a modern load-carrying gl ider, 
the mod· l was ballasted to represent a full-scale weight of 
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2 976 p ound s a nd a wing lo ad in g of 17 . 2 p ound s pe r s qua r e 
foot. The mass characteristics of the scaled-up glide r 
are as follows : 

Wei gh t, pounds . 29 7 G 
Wiuf, loading . pounds pe r s quqre foot 17 . 2 
Center-of - gravity location in perceHt of M. A. C .. 24 . 0 
Mom(Hl t of inertia about X Axi s , I X ' s 1 11 g- f e G t D • 2596 
Moment of inertia a tout Y axi s . I y , 

(J 
s l ug- feet . 4063 

Radius of gyratio n atou t X exi s. k X' feet. 5 . 30 

Radius of gyration about Y a)~ is, ky , feet 6 . 03 

The model wa s conotrncted of balsa with conventiona l 
control surfaces iustalled to allo~ for trim Adjustment . 
Skid fins were mounted on each win~ tin to provide for 
vertic~l variation of the to~line attachment point as 
shown on fiiures 1 end 2 and n dihti~ral - AdjQstment devic e 
~as attached to tbe wingn aud fusela~e . 

Provision was wRde for the installRtion of 29-percent­
spa n s poi I erG 1 0 cat (; d in b 0 E1 r d I'J t t 11 e I? - 0 e ·r c e n t c ::10 r d lin e 
ard also for the illstallation of 2D-percent-chord onlit 
flaps of ~9-perc~nt span locatod at the inboard portions 
oft h 0 V! in g . 

TE [i 'f S 

In orde r to simUlate towed fli rh t . the model was 
attached , for most of tile tects . by ID8uns of twin pRralle l 
ca bles to the wire mesh screen locFlt e d just upstream of 
the t est section as shown in figure 1 . 

Tests WLre run to investigate the longitu di nal sta­
bility cllarncteristics of tIle g lider . ]'or these tests, 
tLe points of attachment of the towline were at different 
vertic Al locations on the glider . These attachment points 
were located in the Y2 plane for all teets . 

Test s for determillin~ the lat e ral stability character ­
inti c s 0 f t l18 g 1 ide reo vcr e d r:l rant; E:. 0 f (i h E; d r a I aDs 1 G S 

but~eeD _ 4 0 and 10° and were r un for glider lift coeffi­
cients of 0 . 30 Bnd 0 . 75 for towline lenc ths of 1 , 2 , and 3 
glider-span leng ths . 

The eff ec ts of to~jng the g lider in high and in low 
positions pith respect to the tug rtere studied and addi­
tional test3 ~ere mAde to observe the effects of varying 
the flight - path ang le of the tug . 
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Finall y . the 61ider ~as attached to a free-fly i ng 
model and the behavior of the complete system was observed . 
The tug repres ented a 74-foot-span airpland weighing 32.400 
pounds ~ith a ~in~ load i ng of ~7 . 0 pounds per square foot 
based on the glider scale. 

Motion - uicture records of ea ch flight were made and 
correlat ed \7 ith visual observatio IS. 

R~SULT S AND DISCUS3ION 

Lo n~ it ud inal Sta bility' 

The longitudillDI stability of the ~lider was found to 
be dependent nainly upon the vertical location of the tow­
line attachme nt ?oiut on the ~l i der. With the towl i ne 
at t a c h e d a t '0 0 i 1: t son t ::. e Y 2 Y. i s 0 ft .. e. g 1 ide r. the Ion -
g it ud inal be~av ior was co~pletel ~ sat is factory . Moving 
the attachment poi.t above or belc' t he c ente r of gravit y . 
however . intro du c ed s~qrp pitcbin~ as ~ell as longitudi n a l 
oscillAtions rese~blinb the J~u6oid oscillation . The lon­
g itudinal behAvior of the nodel WAS ver~ jerky for th ese 
conditions and sU s taine~ fli ~ht s could not ~e obtained 
for t 11 e 1 R I' ) e r val l e. s 0 f d j s ) 1 ~ c e.u e!. t :' I' 0 Iil t h '" c en t e I' 0 f 
gravity . 

InClsmu c:1 as tlJE:; :I.odc-l would lilair,trL. a COT.s t Rnt ang le 
of attack (h~nce a co ~stan t lift c08ff icient) for any given 
elevator setti~g d~spit~ vnriatio~ iL a irspeed of the tow­
i ng aircraft , thd glidor 70uld fly either below or ab ove 
the leve l of the tug (low or high tow) depending UDon 
whether t~e nirspeed ~qS lo~ or hi~h . Thi s characteristic 
of the blider could t~ utili zed ~or the ta~e- off and land­
ing maneuvers . ':.l''-S , O~1 take - off , the glider would b e 
trimme d. f or crJisinf; sJeed. TJ:.e tT1.E-, wO"J.ld then take off 
first alld fl y above t'.e gljde r inasn:uch as the take-off 
suee d of the tug vould te belor the sneed at whi ch the 
glide r could lift its n~n weiGh t. At hi~he r airs?eeds the 
glider would move back Rnd up relative to the tug , rotating 
a bout the tug towline attachment po ints uLt il, at cruis ing 
speed . it uoul d reRch the position se t fo r normal flight . 
F~r landing . thi s p rocedu r~ would be r ev ersed; the g lider 
would drop Delo~ the tug as lower speeds were reach ed and 
~ould l a~d first . 

-~- ------
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Lateral Stability 

Q~!i~~!Q~~ '- 1he stability cbaracteristics of an air­
pl~ne are those q~alities w~ich define the nature of tne 
motion afte r a deviation fro~ en initiRl co ndition of 
equilinrium . The . .l otion may 'De oscillatory , consisting of 
a series of oscillations having a fixed period and a cer ­
tain rate of increase or dec r ease in amplitude, or aperi­
odic with a certain yste of return toward or deviation 
from the equilib r ium position . The preliminary theoreti­
cal study indicated that the lateral motions of a glider 
to~ed by twin ~arallel cables would consist of o~e oscilla­
tory a~1d two aperiodic modes , the dam9inE':, of which would 
determine t~e nature of the glider f li bhts. It is not 
suf ficient . horever, for the sl ider just to be s~able - to 
da~p out oscillatory 0= ' aperiodic Lot ions - becAlse the 
~lider is linjted to the field of ~ot ion allo~ed it by the 
cables Rnd the to ry ing aircrqft. Eecause of this restric ­
tion, t:tle blider m2y dtstro? itsElf, even t:wu E.h its 
actions are stabilizin~ , if those actio n s require a larger 
field of motion than that allo~ed by the ca~les. Three 
criterions were accordin~ly Is ed to evaluate the nature of 
the results obtai~ed i~ t~e 12~erAI stability tests . Tw o 
of these criteriol1s deal only with the inherent stability 
of the glider (i . e., damping of t ~ e oscillatory and speri­
o d i c mot ion s ) ; w 11 ere a s the t ~1 j r dis C 0.1 C er n e d wit h tho 
degree of stabilit~ inherent in the glider system, or the 
IIsteadi ness ll of the flight . A condition that damps oscil ­
latory and aperiodic motions moderatel~,r ca.n be expected to 
1 e a d t 0 s tea die r f 1 i e; h t t h a 11 a C 0 :1 d i tin r1 t h'3. t damp s 0 sci 1-
latory motion s heavily ~ut ape riodic mo tions slightly 
because sillalle r corrective motion s are r equired of the 
glider . Steadiness wnen used as a flight rating in this 
re~ort therefore should be co~sidered as an index of the 
optiID'J.m da;u1J in ..; 8.Ld satisfactory nature of gUder fli gh ts. 

Evaluatior s of the nature of the oscillatory and 
aneriodic uhase s of the glide r fli ~hts were obtained 
c~iefly by - examination of motion- picture records, wtereas 
the steaQiness rati n6s were determined br visual observa­
tion of fli shts . Most of the results are therefore neces­
sarily of a qualitative nature . 

:BlLf.~£.i_9_f_9:.!£§,9-.~~! . - The t est s t 0 d e t e r min e t 1:. e e f f e c t s 
of dihe0ral were conducted at z ero flight-path anrole with 
towlines horizonta l. _~e res~ltG are uresented in table I. 
Flight ratin~s are giv~n for tbe oscillatory mode , the 
aperiodic mJde, and the st eadiness of each of the dihed ral 
tests run. 
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Dihedral angle ap~eared to be the major parameter.de­
termining the stability of the glider flights . For level 
tow the model would remain steady for small through moder­
ately lar ge , positive dihedral angles. All lateral oscil­
lations and aperiodic motion s damped out quickly in t hi s 
range . Increasing the dihedral above this range led to 
unstable lateral oscillations and violent divergences oc­
curred when the dihedral was negative. The mos t steady 
flights for level tow we re obtained for geometric dihedral 
ang les of 4~ and 6 0

. 

!ff~f.~_Qf_~Q~_;U~.~~~~.- Increasing the towli n e leng th 
apparently narro wed the range of ihedral angles at wh ich 
steady satisfactory fli gh ts could be o~tained and a notice­
able lessening of stabilit y was evident for all flights . 
The action of the cables in resistinb sideslip was consid­
erably r educed and intr oduced p robl em s which had not been 
encountered for short towlines. 

Increased unsteadiness and ampl itude of l a teral mot ions 
we re apparent throu~hout the 2- and 3-span tOI tests and 
the sensitivity of the model to cl1angeS i trim was highly 
incr easod . Alth ough satisfactory flights for I-span to w s 
could be obtained for a dihedral ra nge extending roughly 
between 0 0 and 8° , satisfact o r y fliGhts for longer towlines 
could only be obtai ned when the dihedra l was 4 0 or 6° . 
Fli ght s made with dihedral ~ng les of 2° and 0°, although 
a~parently stable insofar as l ate ral osc illation s were 
concer ned , seemingly posses sed little resistance to side­
slip and sustained flights we re difficult or i m~ossible to 
obtain with such dihedral . Flights ~Bde with dihe d ral 
ang les g reat er than these values were le s s stab l e fo r 
fli ghts with the longe r towlines than corr espond ing flights 
with the shorter towlines and instability occurred a t 
lowe r dih ed r a l angles . 

~ff~f.i_Qf_~l~~~~Q~_~~~~!Q~ .- Increasing the elevator 
s et ting to increase the lift coefficient lessened the deg ree 
of stabi lit y in the gl id e r s y st em . This lessening of sta­
bility was not not ic ea Ie in the I-span tow tests of the 
model wh ere the stabilizing action of the cable iG lar g e, 
but was incr e asingly evident when longe ~ towlines wer~ 
uti 1 i zed. Ass how n in tab 1 e I, s tea d;y , s at i sf act or y f 1 i g h t s 
could not be obtai ned for .) -span lensth tows when the 
g li de r wa s trirrmed to the highe r value of li ft coefficient . 

Increasi ng the elevqtor setting resulted in a shift in 
t he stab le dihedral ra nge . Flights made at high lift 
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coefficients became unstable at lower vAlues of geometr i c 
dihedral than those made at lov lift coefficients but 
showed better aperiodic motion chAracteristics for low 
and negative dihedrals . This effect a~pears to be prima­
rily due to the chaLge in effective dihedral ~ith angle 
of ettack, resulti n g in greater effective dihedrals for 
large values of lift coefficient. Full - scale data from 
unpublished tects indicate that this difference in effec ­
tiye dihearal due to the change in angle - of attack would 
be of the order of from 2 0 to 4 0 and the conclusion may 
thus be dra~n that the stability reversal points for tnis 
model occur at apuroximately the same effective dihedrals . 

~f.t:.~Q.i_Q.f._iQ!!_§.~~l£ . - The mod e 1 '.;' a s m 0 s t s tab 1 e and 
steady when the to~lines inclined ~ownward from tug to 
glider . No case of instabtlity existed f~r positive 
dibedral angles until the model a~proached the level tow 
position . Increasing the airspeed so that the model flew 
above the screen touline ~osition had en adverse effect 
upon the lateral behavior of the model . A reduction in 
stability was apparent for all hi~~- tow flights, and 
flights that had !ttflr:::,; inal sta"Dilit: i the level position 
became unstable in the high position. :he beneficial ef­
fect of lou tou was particulnrly emnhasized uith the longer 
tOIT lengths. Fairly satisfactory flights could be obtained 
at CL = 0 . 75 even with the J - span tow , provided that the 
towlines uere considerably incli ~ ed downward from th~ 
horizontal. Despite elevator setting , no flights could be 
obtained at 3- span- length tows when the towing sneed was 
increased SJ tl1~t the towlines i ere even as littie as 10 0 

above the level tow position . 

~ ff.£.£i _Q.f_f:!:.ikt.~Jl_~_i£_~ r:.&l _~ · - 'I h e the 0 ret i c "11 in v est i ­
gation indicated that the stability of the glider was a 
fUnction of cable tension and that the tension in the cable, 
for any given glider weight , was primarily a function of 
the magnitude of the difference (~t - ')Ic-) \y- ere ')I re-pre­
sents the fli~ht -path angle and the sub~cri?ts t And g 
identify this angle for the tug and ~lider, respectively. 
In either CAse , 'Y - is considered ~ositive in the Attitude 
for c 1 i 1l. b . A dec rea s e i n 'Y g 0 ran i 11 C rea s e i n 'Y t mig h t 
the ref are bee x,? e c ted t 0 i 11 C rea set 11 e t. e r. s ion i n t 1: e cab 1 e 
and nence the restorin; forces of the to~line syste~. 

~h~ effect of varJilg 'Yt was first investi g ated and 
was found to check the theory. I_creasing the fli~ht-path 
al.gle of th", tunnel to sir!!ulate climbins flight led to 
increased steadiness of all flights tested; whereas 
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dec r eas i ng the tunne l angle to simulate diving conditions 
led to less s tea~y glider fli ght s which were finally ter­
minated when 'Yt becaJ!le eq al to 'Yg . At this point the 

ca-Dles wert3 completely slack and any tU11nei disturbance 
would cause the model to move about violently. The resu~ts 
of these tests indicated that some means other than eleva­
tor sett i ng. ould have to be provided fo r increasing 'Yg 

if gliding flights were to be maintained . Inas mu ch as 
eit he r flaps or spoilers accom~lish this result oy decreas­
ing the lift - drag r atio of the glider , their effect s were 
then investigated . The optimum di~edral angle of 4 0 wa s 
utilized for all tests . 

The results of these te~ts s ho wed that the installa­
tion of the partia l - span split flaps deflected 45 0 decreased 
the 'Yg ter!!! by only a ferl degrees , ar-d the flap effects 

were therefore small. I nstallation of spoilers cove r ing 
the inboard 29 pe r cent of the span , ho~ever , proved very 
ben e f i cia 1 tot h e g 1 i de r - f 1 i g h t be h a v i 0 r . C 0 mp 1 e tel y sat -
isfactory flights could th~n be obtained Rt lift coeffi­
c ients of 0 . 75 for 3 - span- l eng th to~s Rnd fo r tunnel (or 
tug) flight-path Bn~ les varyin~ from 20 0 climb to 22 0 glide . 
Flights were also made for horizontal fli ~h t at a lift 
coefficient of 0 . 30 and for a tow length of 4 sp a n lengths , 
but these were only mildly satisfRctory and then onl y for 
airspeeds pt which the glider ~as below the tug . No flights 
we r e possible Rt 4 - span tow leng ths when the spo ilers we re 
r emoved . 

The results of the f l i gh t - path- engle tests tend to 
ex-plpin the pr.::viously not ed f v orabl e effE-ct of 10\7 e le ­
vat o r s0t t ings , i nA s mu ch ~. s tne 'Yg term is 1", rger nega-

t i vely for the lo~ lift co ef ficients and thus pids in main­
t aining tension in the caoles . 

~ff~~~_~f_~li~~~_~~_1Q~i~&_~i~~~af~ .- With the glide r 
a t ta c hed to a free-flying model the stability of the glide r 
was e s sentially unchanged and little effect of the g lide r 
on the tug was noted . The glider fol l owed the tug th r ough 
it s motion s and closely duplicated all lateral and longi­
tudina l maneuvering of tIe tug. Successf~l fli ghts uere 
made with towlines of 1 a~d 2 span le_gth s . Iu&smuch as 
the tug 7as i n gliding flight , it was necessary to 5quip 
the tow e d glider with spoilers to ste6pen its g lidi~g ang le . 
A photograph of the glider train in ~ lidin g fli ght is ~re­

seuted as figure 3 . . The model fli ght tests indicated that 
an ilh e re~t l y stable g lider system can oe obtained through 
the use of twin parallel towlines . 
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CONC LUSI ON S 

Based on preliminary theoretical and experimental i n­
vestigation s of a model of the Bristol glider tow-target 
1/ Skeet" , the fol l o\'!ing co.nclusions are reached : 

1. A dyadic system of parallel towlines which im90sed 
a restrai n t in yaw prov i ded sati s factory inherent stabil­
ity for a pilotless towed-glider system . 

2. The longitudinal stability of the glider was satis­
factory , provided that the towl i ne attachment to the glide r 
wing was made at the vertical a s ~ell as at the fore-and­
aft location of the center of g r avity . 

3. The lateral stability of the glider was influenced 
chiefly by the dihedral settiilg s of the wings. The stead­
iest stable flights were obtained with moderate dihedral 
angles . Unstable lateral osci l l~tions occurred for large 
positive dihedral angles , hile lateral diver g ences were 
encountered for ne~~tive dihedrRI ng les . 

4. Increasing the towline length was detriffiental to 
the lateral stability characteristics of the glider , 
although successful fli ~hts were obtained ~ith a 3- s9an 
tow length. 

b. Increasing th0 alovator sotting to trim tho glider 
at higher lift coefficients reduced the lateral stability 
for all slidur conditions . 

b. A low position of the glider relative to the tug 
had beneficial effects on the lateral stability; whereas 
a hi~h position was det r imental . 

7. There was a favorable effect of climbing fli ght 
upon the stability chsracteristics of the c lider , which 
resulted in ver~ steady fli~hts for stable configurations . 
Reducing the flight - path an~ le belo~ the horizontal , how­
ever, seriously lessened the stAbility of the g lider and 
prevented satisfactory flights at gliding angles greater 
than a few degrees . Satisfactory glider flights for 

-- '~----
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negative flight-path angles wer e obtained, however, by the 
use of spoilers, ~hich h~d a highly beneficial e!fect on 
the glider stability. 

Lang ley Memorial Aeronautical Laboratory, 
National Advisory Committ ee for Aeronautics, 

Lan6ley Field , Va. 
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TABLE I 

LATERAL STABILI T'f OF A GLIDER TOWED BY NIH 

CABLES IN HOR IZONTAL FLIGH~ 

n 

. Angle One-span tow length TWo-span tow length Three-span tow length of dl-
CL 

0.,0 .,0 
.30 
.30 
.,0 
.,0 
.,0 
.30 

0.75 
.75 
.75 
.75 
.75 
·75 
.75 
.75 

hedral. Oscll1a- A,perl- Steadl- 08cl1la- Aperl- Steadl- Oscl11a- Aperl-
r tory odIc ness of tory odic ness or tory odIc 

(deg) mode modes flight mode mode flIght mode mode 

-4 l' 0 0 -- -- -- .. - --
-2 .. C C- ? 0 0 ? 0-
0 A- B c+ ? D+ 0 ? 0 
2 A A B+ A C C A 0 

~ A A A A A Bt- l. A 
B+ A A B+ A B B A 

8 B- A B+ B+ A B- B- A 
10 C+ A D+ C A C C- A 

-4 ? D 0 -- -- -- -- --
-2 I- B C -- -- -- -- --
0 A- I. B l' l' D -- --
2 A A B • B C -- --
t A A A A t B+ ? '? 

A- I. " B B l' ? 
8 C A c 0 A 0 -- --

10 0 A D -- -- -- -- --

a 
EvaluatIon or ratings: 

Ratings OscIllatory mode Aper10dic mode SteadIness 

A HIgh degree of oscillatory High degree of Very steady tlight 

B 

C 

o 

+ 

-, 
--

stability (oscillations convergence 
damp out quickly) 

MargInal degree of oscl1- SlIght degree 
latory stabIlIty (oscl11a- of convergence 
tlons eventually damp out) 

Marginal degree of oscil­
latory instability (oscil­
lations eventually build 
up) 

High degree of osc11~atory 
instability (oscillations 
build up quickly resulting 
in violent termination of 
flight) 

Slight degree 
of divergence 

High degree of 
divergence 

Steady flight 

Erratic flight 

Viole~tly erratIc 
flight 

IIndicates conditIon slightly better than letter designated 

IIndlcates condItion slightly worse than letter C1esignated 

~ight too vIolent to obtain stability rating 

pontigur.~ion not tested 

Steadl-
ne.s ot 
rUght 

--
0-
D 
0 
B 
B-
c 
D 

--------
D 
D ----
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FIGIIRE Z - /Jetoil of ~-sco/e model of the Bristol !I/id!r­
tow target 'Skeet" 1/$ testlld in ff'H-fliglTt tunnel. 
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Figure 3.- Photograph of test glider being towed in low position ~ 

CN 
by a free-flying model. 
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