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_STUDY BY THE PRANDTL-GLAUERT METHOD OF COMPRESSIBILITY
EFFECTS AND CRITICAL MACH NUMBER FOR ELLIPSOIDS OF
AVARIOUS ASPECT RATIOS AND THICKNESS RATIOS
By Robert V, Hess and Clifford S, Gardner

SUMMARY

By the use of a form of the Prandtl-Glauert method
that is valid for three-dimensional flow problems, -  the
value of the maximum incremental velocity for compressible
‘flow about thin ellipsoids at zero engle of attack is
calculated as s function of the Mach number for various
aspect ratios end thickness ratios. The critical Mach
numbers of the various ellipsoids are slso determined,
The results indicate an increase in critical Mach number
with decrease in aspect retio which is large enough to
explalin experimental results on low-agpect-ratio wings
at zero l1lift,

INTRODUCTION

Recent tests (references 1 and 2) have shown that
an appreciable increase in the criticael Mach number,
together with other improvements of the aerodynemic
cherecteristics at supercriticel Mach numbers, results
from the use of wings of very low aspect retio., These
improved characteristics have been somevhat qualitatively
ascribed to "three-dimensional relief," although no
quantitative theoreticzl discussion has yet been provided.

In the present paper an effort is mede to provide
such a study by considering the flow, at zero sngle of
atteck, about =~ series of thin ellipsoids of verious
aspect ratios end thickness ratios, Ellipsoids were
chosen because they are smenable to calculation,
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Although they differ aporeciably from the wings of
reference 1, which had an NACA CCl2 airfoil section and
rectangular plan form, ellipsoids should nevertheless
show similar aspect-ratic effects. The calculstions

were made for ellipsoids of thickness rstics 0.10, 0.15,
and 2.20, and for the entire range of 2spect ratlos

from the elliptic cylindor to the ellipsoid of revolution.

The compressibility effects were computeo by the use
of a form of the Prandtl-Glauert method that is valid for
three-~dimensional flow problems. The method has been
given by ¢dthert (reference 3) without, however, very clear
mathematical proof. Since the methods that have been
commonly used (see, for example, reference l, 5, and 6)
are applicable onIJ to two~dimensional provlems; a deteiled
proof of the method correct for three-dimensional flow is
included in che aspendix., A brief discussion of 'he
accuracy of the Prandtl- Glauert method, as aonlied to
ellipsoids, is also given,

’hig study was made during the period from OCuober
1945 to April 19l6. _

SYMB0LS
U | free-stream velocity
Cc velocity of sound in free stream
M free-stream Mach number (U/C)
y . ratio of specific heats
p=A - W
X, ¥, % rectangular coordinates
B thin body ‘ . S
@ | velocity potential
u, v, w X-, j—, and z-components of incremental
velocity for compressible flow about B
B! body obtained by stretching 3B in direction 

of x-axis by the factor 1/8

u', v', w! x-, y-, and z-components of incremental
velocity for incompressible flew about B!



NAGA B} No, L7303a AP 3

a maximum semichord of ellipsoid
b ' semispan of elllpsold
c maximum semithickness of elll Qid'tr“*t_
: -
at = a /
B8 \ NS
A aspect ratio i&hl_ L »
a mab ma
g = mMax
U
(M) value of W when the Mach number is equal
to M
T(0) value of i for 1ncomore<sib1e flow (M = 0)
‘ , Thickness
. . .
€ thickngss ratio ( Thord
%(G,M) value of ratio of incremental veldcity to

free~stream veloclty for compressible
flow having Mach number M about a body
having thickness ratio ¢

%(€,O) value of ratio of incremental velocity to

free-stream velocity for incompresslible
flow about a vody having thickness ratio ¢

max maximum value
METHCODS CF CALCULATION

The Prandtl-Slauert method for three-dimensional
flow,- The Prandtl-Glauert method 1s used in the present
paper in the folloW1ﬂx form: The incremental velocities
at 2 point P on the surface of a thin bedy B in three-
dimensional comnre sible flow mey be obtained in three
stenS°

(1) The x-coordinates of all points of B are

g ———— e

increased by the factor 1/B, where [ =1 - ¥ and
the x-axis is in the stream direction., This trans-
formation takes E 1intc a "stretched" body B',

e r=: iy wineg
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(2) The velocity increments "u', v', and w!'
. parsllel to the »-, y-, and z-axes, reQ_ectively,
the »oint. P' on the stretched bOdJ B! correspondlng
to the npoint P on the original body B are calculated
zs though B' were in an incompressible flow having the
same free-stream velccity as the original compressible
flow.

(%) The values u, v, and w of the incremental
velocities at the point P on B 1In compressible flow

O

are then gilven by the eq1 tions
a = .;L_.. u'
@2
v = 1 v!
B
R 1 w!
g

A derivation of this form of the Prandtl-Glauert
method 1s gilven in the appendix. The method in es sentially
this form has been given by Gothert (reference 3) without,
however, a very clear procf, (G&thert prefers to shrink
the lateral coordinates of the body by the factor §
rather than to expand the coordinate in the stream
directicn by the factor 1/3; cbviously the two pro-
cedures lead to the same result.) Prandtl (reference l)
and von Kdrmén (reference 5) state the method in a form
that 1s valid for -two-dimensional flows but in gensral is
incorrect for three-dimensional fleows. Goldstein and
Young (reference 6) alsc give a discussion leading to

sults that are correct only for two dimensions. A
discussion of the reasons for the failure of these
commonlv used methods for three-dimensional flow problems
1s included in the apoendix.

Calculation of incremental veloclty for compressible

flow about ellipscids.- In order to determine, by the
Pranctl-Glauert method, the incremental velocity cn the
surface of an e1119501d having semiaxes a, b, and c,

where a is the length of the semiaxis in the stresm
direction, the incremental velocity is cslculated for a
stretched ellipsoid having semisxes =2', b, and c¢, where

a' = =, 1in an incompressible flow having the same

'(1“1)

stream velocity, and the result is multlplled vy 1/8°.
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For incomnressible’ flow about the stretched ellipsoid, the
velocity potential on the surface of the ellipsoid 1is
given by

rp .:4__.2..0_.._ Ux
e 2 -.ao
where c
dn
0o = a'be 3 .
‘ (212 + M) /(812 + 8) (02 + M) (2 + M)
v T e . _
(see, for example, reference 7). The incremental velonity
st x =0 (half-chord line on the-stretched. 91110s01d in
incompressible flow) is then given by :
0t = %o -
2 - Qo -

"This value' 1s .the meximum value of -ut (reference %)
and evidently is the same at all points on the half-chord
line. The incremental velocity at the half-chord line LOP
the compreéssible flow about tha original imstretched ellip
is given by

el a
u :_12._:!:_.1'_2_..._._9.__[} (l)
e Tope 2 - g,

Various formulas are nece seary for the evaluation of the
integral a5 when 2' 2>b>c, b>a' >c, or a' >b=c

~9
(ellinscid of rovolnt on,.

For a' > b > ¢, ths value of a, is given by the
formula 4 :
C o o n !l hn . ' ,-1 . o
ag =, ca'te (F -~t) . (2)
’ : / A v

re in comﬁlete elliptic integrals of the
. ¥ind, respectlively, defined as follows:

iad
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where ) _
K = _,'%.‘2 - b2
V’a'z - e

‘For b > a' > c, 'tﬁe value of ‘ao iS‘given.by,the
formula :

0o = — 2a'bcv%?j?‘;éh s a.a .2 Fl 52 )
D) 7 el R ey NETLEE

';where F and E are defined as before,:with :

= (o2 - ar?
', T . b2 - 02 :
and . S :; ‘
[2
sin ¢ = 3[@.:_.‘.‘...0_
.. . ’b .

Equation (2) is derived from the first equation given
in equaticns (5.13) of reference 7. by substituting a' for

~a and by using the expreqsion for %k 1in terms of a', D,

and c. Z&quation (3) is derived from the second equation
given in equations (5.1%) of reference 7 by interchanging a
and b, substituting a' for a, " and using the expression
for k in terms cof a', b, and c.

For a' > b = ¢, (ellipsoid of revolution), a, 1is
given by the equation : '

pe
ay = arn2 | '\dk —
JO A(é'2 + X2}5/2 (b2 + K)

—SONEFDTEN Sl
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whiéh resolves into y
_ 2 . q
4y = l - e Qoge 1+ e - 2e

where

If this value for ap is substituted in equation (1),
the incremental velocity at the half-chord line for the
ellipsold of revolution is found to be

+
loge %——»i - 2e
w = L . L - € U
B~ 2e 1l + e
To .2 0% T
1 - e~ = =

&

The limiting case of infinite aspect ratio (ellintic
cylinder) was treated by the use of formulas for the
ellipse in two-dimensional flow (referesnce 2).

Calculation of the critical kach number.- For flow
about a two-dimensional body, the frec-stresm Mach number
for which scniec speed is first reached at some point cn
the surface ls called the critical Mach number, because
of the development of shccks and the accomganying deteri-
oration of the aerodynamic characteristics shortly after
this ¥ach number is exceeded. For the general three-
dimersional body, however, exceedinz the Mach number st .
which sonic sveeds first svpear does not rnecessarily
imply the possibility of sheck formstion; for example,
in the casze of the infinite yawed cylinder (reference 9)
shocks may be impossible even when supersonic speeds
exist cn the suvrface. In this case, since the flow
mist be the same at corresponding points of the sections
along the cylinder, any shock front must be parallel to
the axis of the cylinder. Such an oblique shock requires
that the velocity component normal to the shock Front -
that is, normal to the cylinder axis - be supsrsonic.

The magnitude of the velccity component parallel to t¥e.
axis 1s immaterial, :

By what seems a reasonable extension of this concept,

the following critericn for the pcssibility of shock
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formation on the general three-cdimsnsional bodry is
tentatively pronosed: Consider the line cn thé body
that ferms the lccus of those volnts where the total
velocity on each streamline is a maximum (that is,
where the pressure is a minimum); a shock will form
when the velocity normal tc thils line exceseds sonic
velocity at some point along the line. '

It shculd be emphasized that, for the three- (
dimensional body, the shock may %eg n to form over
cnly a very smell regicn of the surface so that, in
general, existence of the conditicn wust definea does -
not nece sarily imply an imminent deterioration of the

serodynamic characteristics of the body.

For the special case of the unyawed ellinsoid
consicdered in the present vnaner, howevar, no appreci-
able analysis cf shock formation or shock extent along
the lines just indicated seems to ks reguired. As is

shown in the section "Calculatiocn of Tncremental Yelocity
for Compressibls Flow sbout Ellizscids", the maximum
velocity for an unvawed ellipscid is in the stream
fs . 3 . N .
direction and occurs simultaneously at all points szleng
the helf-chord line. Senic velcclity 1s thus reachel
simultaneously along a line that ertends across the

al t

1y
entire span of ths body and is
direction. These ccndltior: al
the unyawed infinite cvlinde '
body.

ist in the case of
s, the two-dimensional

tical Msch number of the ellipsoid was
determined by solving graphically the

cremental velocity

2
where (M) 1is the ratio of the in
stream velocity at the

at the hzlf-chord line %to the
¥ach number M.

beccuracy of the Prandtl-Glauert method.- The
Prandt]l-Glauert method 1s based on the assumption of
small perturbations. Concecuertly, near the nose of
the ellipsoids discussed in the present paver, where
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the aS°umptlon of small perturbations is violated, the
results given by the Prandtl-Glauert method cannot be
expected to be reliable. More reliable values, however,
should be obtained for the maximum incremental velocity,
which occurs at the half-chord line. The accuracy of
the Frandtl-Glavert epproximation for the maximum incre-
mental velocity may be estimated by cdmparison with more
exact solutions of the compressible flow prchlem. A4n
iteration methcd in which the Prandtl-Glavert method is
used 2s the first approximation hss been prcposed by
Busemann (rcfbrence 1C). The first and second ag»roxi-
mations have been calculated by Hantzsche and Hendt for
the elliptic cylinder (reference 11) =nd by Schmieden
and Kewalkl feor the ellipsoid of revelution (reference 12).
Calculaticn of the marximum incremental velocity for the
elliptic cylinder having thickness r=tio (,20 by a
formula feor the seccnd apnroximation given in reference 10
shows that the value ”lv€ﬁ by the Frandtl-Glavert method
at a Mach number of .9 1s almost 20 cercent lower than
the velue gilvén oy the second sporoximaticon. For the
ellipsoid cof revclution, however, the value of the
maximum incremental velocity given by the Prandtl-
Glauert method agreed with the value glven by the second
approximation to within 5 pvercent 2t 2 lach number of 0.8
for thickness ratios up to (.30. Although the second
approximation is not the exact solut ion, it indicates
nat the error involved in using the Prandtl-Glauert
method to estimate the maximum incremental velocity for
ellinsoids having a glven thickness ratio is greatest
for the limiting case. of the ellintic cylinder (A = o) .
and very small for.th&-ellipﬁoid oft revolution, which
has a very low aspect ratio, [The error may be exnscted
to be intermediate in magnitude for 1ntorw~dlqtc vslues
of the aspect ratio and tc decresse with' aspect ratlo.
The reduction of evror of the Frandtl-Glauert method with
a decrease 1n aspect ratlo was to be expected. as the
incremental velccitiecs are smsller for ellipsoids having
low esnect ratio. :

RESULTS AND

o

ISCU

y"1
fa
(3

SICN

Results.~- Figures 1, 2, and 3 show the vslue of the

: u,
velocity ratic U = ??x at the half-chord line plotted

against the Mach number for elliwscids at zero angle of
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attack for various aspect ratios and section thickness
ratios equal to 0.10, 0.15, and 0.20. In the same
figures the sonic veldcity boundary having the equation

- 1+t Lyl
- 1\ -
m = =

1s plotted. The abscissa of the intersection of this
boundary line with the curve of ® plotted against M
for any aspect ratio is the critical Mach number. In
order to show the effect of compressibility more directly,

the ratio .;Ey) of maximum. incremental velocity for ccm-
pressible flow to the maximum incremental velocity for
incompressible flow for the same free-stream velocity is
plotted agzinst the Mach number in figures i, 5, and 6
for the same aspect ratios and thickness ratios. Similar
curves for the ellipsoid of revolution, which is a
special case of the ellipscid having three unequal axes,
are plotted for the same thickness ratios in figures 1

to 6. Figure 7 presents curves of critical Mach number
against aspect ratio for thickness ratios of 0.10, 0.15,
and 0.20, :

Three-dimensional relief.- It may be seen from
figures I To 3 that the three-dimensional relief, that
1s, the difference between the velocity on the ellipsoid
and the velocity on the corresponding ellipsoid of
infinite aspect ratio (elliptic cylinder), increases
with 2 decrease in the aspect ratio. This increase has
two causes:

(1) For a flow with M equal to zero (incompressible
flow), the relief effect increases with a decrease in the
aspect ratio,

(2) For larger values of M (compressible flow), an
additional relief effect occurs with & decrease in the
aspect ratio because of the fact that the compressibility
effect (increase of incremental veloclity with an increase
in the Mach number) decreases with a decrease in the
aspect ratic. (See figs. I} to 6.) It may be seen that
this additicnal three-dimensional relief increases most
rapldly. at high Mach numbers.
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Frecm figures 1 to 6 it may be seen that the compressi-
- bility effect on the maximum incremental velocity is
greatest for A equal to infinity (infinite elliptic .
cylinder) and is smallest for the ellipsoid of revolution.
The compressibility effect on the maximum incremental
velocity for the elliptic cylinder is proportional to
—::%z:i, which is in agreement with the usual form of
V1 =M ‘
the Prandtl-Glauert method in two dimensions. The com=-
pressibility effect on the maximum incremental velocity
for the ellipsoid of revolution is small in comparison
with that of the elliptic cylinder, 1In fact, as the
thickness ratio of any type of body of revolutlon
approaches zero, the compredsivility correction factor
approaches unity, for in this limit the incremental
velocity in incompressible flow is proportional to the
square of the thickness ratio, so that the effect of '
stretching the body (first step of Prandtl-Glauert method,
see the appendix) 1s exactly compensated for by_the multie
plication of the incremental velocities by 1/ (third
step of the Prandtl-Glauert method). For ellipsolds of
practlcal thlckness ratios, however, the incremental
elocity varies more slowly than the square of the thickness
ratio. The compressibility effect for the ellipsoid of
revolution (figs. 4, 5, and 6) is thus considerable at
high Mach numbers. For example, for a thickness ratio of
0420 and at a Mach number of 0.8, the compressibility effect
amounts to about 20 percent of the wncremental velocity in
incompressible flow.

The effect of Lhe thickner ratio on the three-
dimensional relief may be seen by a comparison of flgures 1,
2, and 3. From figure.l it may be seen that, for a :
thickness ratio of 0,10, at a Mach number of Q. 75, the
maximum incremental veloc1ty for A =2 1is 76 percent
of the maximum incremental veiocity for A = . From
figure 3, on the other hand, it may be seen that, for
a thickness ratio of 0,20, at a Mach number of 0.73, the
maximum incremental velocity for A = 2 is 75 percent
of the maximum incremental velocity for A = o. Thus,
an increase in the thickness ratic causes only a very
small increase in the three-dimensional relief.

Critical Mach number.- Figures l, 2, 3, and 7
indicate that A0 1H0Feass in th C”lt pal Mach number
of an ellipsoid at zero 1lift may be obtained by decreasing
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the aspect ratio. For example, for ellipsoids having a
thickness ratio of ¢.10, a decrease in the aspect retio
from infinity to 2 causes the critical Mach number to
increase from C.£27 to 0.857. For.a thickness ratio of
C.2(, a decresse in the aspect ratio from Infinity to

L

2 causes the critical Mach number to incresse from C.7h1
to 0.783. A4lthough ellipsoids having greater thickness
ratic have lower critical Mach numbers, a decrease in
the 2spect ratio is slightly more effective in increasing
the critical Mach numbers for €llipsoids cof greater
thickness ratio. Flgure 7 indicates that only a large
reduction in aspect ratio will cause a significant rise
cf the criticsl Mach number.

Compsrison with test results on low aspect ratio
wings.- Figure 6 of rererence 1 shows Ltro minimum drag
coefficient (CD for zero 1ift) plotted against the liach
number for wings having an NACL (0012 section and various

raspect ratios. The critical Mach number for any aspect
ratio may be estimated roughly as the Mach number for
which the drzag ccefficient first begins tc rise. The
rough estimate of the critical Mach numbers obtsinable

by this consideration is net sufficiently accurate to
warrant coemparison ¢f the numerical values with the
numerical values of the criticsl Mach number obtained

in the present paner for thrin ellipscids, Compariscn of
the numerical results is, moreover, not warranted inasmuch
as the wings of reference 1 did not have an elliptic
section and furthermore had a rectangular plan form.

A gqualitative comparison may be made, however, between

the results of the present vaper snd those of reference 1.
The increase in critical Mach number with decrease in
aspect ratio indicated in figures 1, 2, 3, and 7 of the
vresent paper is considered sufficiently large to explain
the corresponding effect indicsted in figure 6, reference 1.

It is mentloned in reference 1 that the Mach number
for a significant rise in the drag coefficient is approxi-
mately 0.1 higher for an aspect ratio of 2 than for an
Infinite aspect ratio. This velue is considerably higher
than the increase in critical lach number due to a decrease
in the =spect ratic. Since, for low-aspect-ratio wings,
the drag coefficient increases only gradually after the
critical Mach number is reached, the critical Ma2ch number
for a wing having low asvect ratio does not indicate so
critical a change in the flow phenomena as the critical
Mack number for az wing having high aspect ratic. It %
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thought that the smaller rate of increase of the drag -
coefficient for wings having low aspect ratio is due to
the fact that, at the critical Mach number, the rate of
increase with Mach number of the incremental velocity is
less than for high aspect ratios, as may be seen from
figures 1, 2, and 3. ' '

CONCLUSICNS

A study by the Prandtl-Glauert method of compressi-
bility effects and critical Mach number for ellipsoids of
various aspect ratios and thickness ratios indicated the
following conclusions:

1. The flow about the unyawed ellipsoid is analcogous
to that about the infinite unyawed cylinder in that
sonic velocity is reached simultanecusly along a line
that extends across the entire span of the body and is
normal te the stream direction.

2. The critical Mach number for a thin ellipsoid
may be predicted with good accuracy by means of the
Frandtl-Glauert method, and the accuracy increases with
decrease 1in aspect ratio.

2. The compressibility effect on the flow about an

S

ellipsoid decresses as the asvect ratic decreases.

!« The three-dimensional relief for ellispoids is
essentially independent of the thickness ratio, for
thickness ratios from .10 to ¢.20.

5. For ellipéoids of thickness ratio 0.20, the
critical Mach number increases by 0.ClLL when "the aspect

ratic 1s changed from & to 2; for ellipsoids of thickness

ratio 0,10 the incresse is 0.03,

6. The calculatéd increases in critical Mach number
are sufficiently large to exolain the experimentally
onserved increases in the Mach number at which the drag
first begins tc rise. ' ’

T+ The experimentally indicsted reduced rate of
drag rise for low-aspect-ratio wings at zero 1ift as
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compared to that for wings having infinite aspect ratio
may be explained qualitatively on the bszsis of the-
results obtained for the three-dimensional relief for
ellinsoids. :

Langley Memorial Aeronautical Laborztory
National Advisory Committee Por Aeronautics
Langley Field, Va.

s e.‘-ei. .J_BLLI'.\’ E E!g
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APPENDIX
THF PRANDTL-CLAUFRT KZTHCD FOR TBREE-DIMENSIONAL FLOW

A derivation of the Prandtl-Glauert method for three-
dimensional ficw.- A brief derivation of a form of the
Prandtl-Glauvert methed correct for three dimensions may -
be =siven as follows: A first-order apnroximaticn to the
subsonic comoressible flow about a thin body B, the
surface of which has the eguation '

{n

. (x, vy, 2) =0

may be cbtained by finding a sclution of the linearized
c¢ifferantial eguatiorn for the potential @ of the
incremental velocities,

o
-
—

0., + O + @ =
X R.YY -qzz

where the x-axls 1s in the stream directlon snd the

Incremental velocities o © snd o are small
VXY Ny Vo

compared with the stream velocity U. At all vpoints on
the surfsce of B, the votential © must satisfy the
bourndary conditicn

(U + ¢ S, + 0.5 + ¢ 5 = A2 )
Qx) x * 05, @5, =0 (a2
which states that the flow is tangential to B, Since B
is sssumed thin, 5 1s small compared with S, and S,
J
ceneegquently the second-corder term ®4S, may be neglected,
and the boundary condition becomes '

172 < —
va + @yuy + mzsz =0

In order te scolve the boundary-vslue problem given
by equations (Al) and (A2) in terms of incompressible
flow the following traznsformation of variables is used:

L (43)
o' = P@J
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Under this transformation equations (Al)_and (A2) become,
resnectively,

1 A 1 ~ 1 = -

Us ! 1 A

w1t O ySy + ?-zsz 0 | (45)
Bouations (AL) and (AS5) are, respectively, the differ-
entlal equation and boundery condition for the potential
@' of the incremental velocities of an incompressible
flow with free-stream velocity U, in the =x', y, 2
space, about & thin body B', the surface of which has
the equation

S({:‘,}i"/, Y z) =0

The incremental velocities in the compressible flow
are thus gilven by

u=cple;@'x.=l§111.
g B
1 1
= O - = O = = V!
v Qy 5 q v 5
_ -1 o -1
w o= O, = = O = = w
QZ g 14 ‘B

/

where u, v, and w 2nd u', v', and w' are the
incremental velocities at corresponding points in the
compressible flow about B  and the incomnressible flow
abeut B', respectively. '

The foregoing analysis establishes the Prandtl-
Glavert method for three-dimensional flow in the
foldowing form: The incremental velocities at a point
P on the surface ¢f a thin body B in comoressible
flow may be obtained in three stevs; )

(1) The x-coordinates of all points of B are
increased by the factor 1/8, where

B =1 - M@

and where the x-axls is in the stream direction. This
transformation takes B .into a stretched.body B!
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(2) The incremental velocities u', v', w', in the

direction of the x-, y-, and z-axes, respectively, st the
peint P' on B' corresponding to the pocint £ on B
are calculated as thcugh B! were in an incompressible
flow having the same free-stream velocity =2s the original
-compregsible flow.

v, and w of the incremental

(3) The values u,
velocities at the point F on the original unstretched -
bedy B in compressible flow =zre then found by the

u = é% u'

W

v!

w f

w o= 1 g

&

" PFailure for three-dimensicnal flow oroblems of the
commoniy stated ferms of the Prsndtl-Llauert method. -
According to the form of the Prendtl-Glavert method given
by Prandtl (reference !y} and von EKdrmén (refererce 5),
the incremental velocities for a compressible flow about
a thin body E are the same as the incremental velocities
[ corresponding points for incompressible flow having tha

(o34
same free-stream velocity about a vedy obtained by expanding
L in the directions normal to the free-stresam direction

by the fsetor 1/8. That is, for bodies of revolution, cr
two-dimensional bedies,

U (e 1) =u (le o)
U‘ (C, 1") - ﬁ ('B'€’ O/

According to G8thert's method, howsver,

: B (e, m) :'612 2 (ge, 0) (46)

. ’ ) / ‘,. .
Thus, Prandtl's and von Karman's method is valid only if
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that is, if and only 1if the incrementsl velocity for
incompressible flow about the bodiss under consideration
is nronortional to the thickness ratic. This relation

is aporoximately valid for thin two- d1m0n31onal bodies

so that the method of Prandtl and von Kérman may he
exnected to be-'vaelid for two-dimensional flows. The
relation is net true in general for three-dimensional
bodies; for examnle, for a very.thin body of revolution
the incremental veloclty is more nearly nroportional to
the square of the thicknesc ratio than to the first power.

/7 S '
| Von Karman annroaches the problem by maklng the
i johs K v g

§ transformation

y' = Py

; z' = {2z
@r =0

Under this transformation the linsarized equation of
compressible Tlow gces into Laplaca's equation; however,
the transformed boundary condition is not satisfied cn
the surface of the transiormed (contracted) body but on
the surface of an expanded body. Thus, the boundary
condition 1s not satisfied cn the boundary but &t noints

| near the houndary. This procedure is applicable to two-
dimensional prcblems (as, for exemple, in the thin-wing
theory, reference 13), because the velocity increments
incduced by the equivalent line distribution of singu-
larities vary only slowly in the neighborhood of the

line of singularities. For a body of revolution, how-
ever, the "91001t* increments induced br a line of
singularities go to infinity at the line of singularities;
for such bodles, eccordingly, the lcocation of the point

at which the boundary cendition is satisfied is important.

According to Goldstein and Young (reference 6),
"in compressible flow the pressure increase at any point
1 ! of the body is 1/B times the pressure increase in
| incompressible flow at the same point." That is,
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Comparison of this relation with equation (A6) shows that
the Goldstein-Young method is also valid for two-dimensional
nroblems but gives an incorrect result for three-dimensional

oroblems.
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