UTHCRTY OFNA SA TD.23-403 OH $18 / 13 / 23$ BYA 146370

 RESEARCH MEMORANDUM

 RESEARCH MEMORANDUM}

STUDY BY THE PRANDTL-GLAUERT METHOD OF COMPRESSIBILITY
EFFECTS AND CRITICAL MACH NUMBER FOR ELLIPSOIDS OF
VARIOUS ASPECT RATIOS AND THICKNESS RATIOS
By Robert V. Hess and Clifford S. Gardner
Langley Memorial Aeronautical Laboratory Langley Field, Va.

CLASSIFIED DOCUMENT

This document contains ciassified Information affecting the National Defense of the United States within the meaning of the Espofonage Act, USC $50: 31$ and 32. Ita transmission or the rovalation of its contants in amy manner to an
unauthorized person is prohthited hy unauthorized parson is probifolted by law. only to persons in the milltary and naval sorvices of tha Unitod States, aypropriate clviltan ofllieers and employees of the fioderal Government who have a legitimate interest therein, and to Upiled States citirens of known loyalty and discretion who of necessity must be informed thereof.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON
March 3, 1947

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

PESEAQGE TEMOPANDUM

STUDY BY THE PRANDTL-GLAUERT METHOD OF COMPRESSIBILITY EFFECTS AND CRITICAL MACH NUNBER FOR EIJIPSOIDS OF
VARIOUS ASPECT RATIOS AND THICKNESS RATIOS

By Robert V. Hess and Clifford S. Gardner

SUMMARY

By the use of a form of the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the verious ellipsoids are elso determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-retio wings at zero lift.

INTRODUCTION

Recent tests (references 1 and 2) have shown thet an appreciable increase in the critical Mach number, together with other improvements of the aerodynemic charecteristics at supercritical Mech numbers, results from the use of wings of very low aspect ratio. These improved charecteristics have been somewhat qualitatively escribed to "three-dimensional relief," although no quentitative theoretical discussion hes yet been provided.

In the present peper en effort is made to provide such a study by considering the flow, at zero angle of attack, about a series of thin ellipsoids of verious espect ratios and thickness ratios. Ellipsoids were chosen because they ere emenable to calculation.

Although they differ aporeciably from the wings of reference 1, which had an NACA 0012 airfoil section and rectangular plan form, ellipsoids should nevertheless show similar aspect-ratio effects. The calculations were made for ellipsoids of thickness ratios 0.10, 0.15, and 0.20 , and for the entire range of espect ratios from the elliptic cylindor to the ellipsoid of revolution.

The compressibility effects were computed by the use of a form of the Piandtl-Glauert method that is valid for three-dimensional flow problems. The method has been given by Gothert (reference 3) without, however, very clear mathematical proof. Since the methods that have been commonly used (see, for example, reference 4,5 , and 6) are appliceble only to two dimensional problems, a detailed proof of the method correct for three-dimensional flow is included in the apendix. A brief eiscussion of the accuracy of the Prandtl-Glauert method, as applied to ellipsoids, is also given.

This study was made during the period from october 1945 to April 1946 .

SYMBOLS

U free-stream velocity
C velocity of sound in free stream
M free-stream Mach number (U / C)
γ ratio of specific beats
$\beta=\sqrt{1-M^{2}}$
$x, y, z \quad r e c t a n g u l a r ~ c o o r d i n a t e s$
B thin body
$Q \quad$ velocity potential
$u, v, w \quad x-, y-$, and $z-c o m p o n e n t s ~ o f ~ i n c r e m e n t a l . ~$ velocity for compressible flow about B
$B^{\prime} \quad$ body obtained by stretching B in direction of x-axis by the factor $1 / \beta$
$u^{\prime}, v^{\prime}, w^{\prime} x-, y-$, and $z-c o m p o n e n t s$ of incremental velocity for incompressible flow about B^{\prime}

a	maximum semichord of ellipsoid
b	semispan of ellipsoid
c	maximum semithickness of ellipsoid U
$a^{t}=\frac{a}{\beta}$	10
$A \quad$	aspect ratio $\left(A=\frac{(2 b)^{2}}{\pi \dot{b}}=\frac{4}{\pi} \frac{b}{a}\right)$
$\overrightarrow{\mathrm{u}}=\frac{u_{\max }}{\mathrm{U}}$	- π ab
T(M)	value of \bar{u} when the Nach number is equal to M
$\bar{u}(0)$	Yalue of \bar{i} for incompressible flow ($\mathrm{M}=0$)
ϵ	thickness retio ($\left.\frac{\text { hntckness }}{\text { chord }}\right)$
$\frac{u}{U}(2, M)$	value of ratio of incremental velocicy to free-strean velocity for compressible flow having Mach number M about a body hevine thickness ratio ϵ
$\frac{u}{U}(\epsilon, 0)$	value of ratio of incremental velocity to free-stream velocity for incompressible flow about a body having thickness ratio

Subscript:
\max maximum value

NETHODS OF CALCULAMTON

The Prandtl-alauert method for three-dimensional
flow. - The Prandti-Glauert method is used in the present paper in the following form: The incremental velocities at e point P on the surface of a thin body B in threedimensional compressible flow mey be obtained in three steps:
(1) The x-coordinates of all points of B are increased by the factor $1 / \beta$, where $\beta=\sqrt{1-M^{2}}$ and the x-axis is in the stream direction. This transformation takes B into a "stretched" body B'.
(2) The velocity increments u^{\prime}, v^{\prime}, and w^{\prime} parallel to the $x-, y-$, and z-axes, respectively, at the point. P^{\prime} on the stretched body $E^{\prime \prime}$ corresponding to the point P on the original body B are calculated as though B^{\prime} were in an incompressible flow having the same free-stream velocity as the original compressible flow.
(3) The values u, v, and w of the incremental velocities at the point P on B in compressible flow are then given by the equations

$$
\begin{aligned}
& u=\frac{1}{\beta^{2}} u^{\prime} \\
& v=\frac{1}{\beta} v^{\prime} \\
& w=\frac{1}{\beta} w^{\prime}
\end{aligned}
$$

A derivation of this form of the Prandtl-Glauert method is given in the appendix. The method in essentially this form has been given by Göthert (reference 3) without, however, a very clear proof. (Göthert prefers to shrink the lateral coordinates of the body by the factor β rather than to expand the coordinate in the stream direction by the factor $1 / \beta$; obviously the two procedures lead to the same result.) Prandtl (reference 4) and von Kámán (reference 5) state the method in a form that is valid for two-dimensional flows but in general is incorrect for three-dimensional flows. Goldstein and. Young (reference 6) also give a discussion leacing to results that are correct only for two dimensions. A discussion of the reasons for the failure of these commonly used methods for three-dimensional flow problems is included in the appendix.

Colculation of incremental velocity for compressible flow ebout ellipsoids.- In order to determine, by the Prandtl-dlauert method, the incremental velocity on the surface of an ellipsoid having semiaxes a, b, and c, where a is tho length of the semiaxis in the strem direction, the incremental velocity is calculated for a stretched ellipsoid having semiaxes a^{\prime}, b, and c, where $a^{\prime}=\frac{a}{\hat{\beta}}$, in an incompressible flow having the same stream velocity, and the result is multiplied by $1 / \beta^{2}$.

For incompressible fiow about the stretched ellipsoid, the velocity potential on the surface of the ellipsoid is given by

$$
\dot{\varphi}=\frac{a_{0}}{2-a_{0}} \pi x
$$

$$
a_{0}=a^{\prime} b c \int_{0}^{\infty} \frac{d \lambda}{\left(a^{2}+\lambda\right) \sqrt{\left(a^{2}+\lambda\right)\left(b^{2}+\lambda\right)\left(c^{2}+\lambda\right)}}
$$

(see, for example, reference 7). The incremental velocity et $x=0$ (half-chord line on the stretched ellipsoid in incompressible flow) is then given by

$$
u=\frac{a_{0}}{2-a_{0}}
$$

This value is the maximum value of u^{\prime} (reference 7) and evidently is the same at all points on the half-chord line. The incremental velocity at the half-chord line for the compressible flow about the original unstretched ellipsoid is given by

$$
\begin{equation*}
u=\frac{1}{\beta^{2}} u^{\prime}=\frac{1}{\beta^{2}} \frac{a_{0}}{2-a_{0}} U \tag{1}
\end{equation*}
$$

Various formulas are necessary for the evaluation of the integral a_{0} when $e^{\prime}>b>c, b>a^{\prime}>c$, or $a^{\prime}>b=c$ (ellivsoid of revolution).

For $a^{\prime}>b>c$, the value of a_{0} is given by the formule

$$
\begin{equation*}
a_{0}=\frac{2 a^{\prime} b c}{\left(a^{2}-b^{2}\right) \sqrt{a^{2}}-c^{2}}(F-E) \tag{2}
\end{equation*}
$$

where F and E are incomplete elliptic interrals of the first and second kind, respectively, defined as follows:

$$
F=\int_{0}^{i_{\varphi}} \frac{d \psi}{\sqrt{1-k^{2} \sin ^{2} \psi}}
$$

$$
E=\int_{0}^{\varphi} \sqrt{1-k^{2} \sin ^{2} \psi} d \psi
$$

HACA RM No. L730ja
where

$$
k=\sqrt{\frac{a^{2}-b^{2}}{a^{2}-c^{2}}}
$$

and

$$
\sin \varphi=\frac{\sqrt{a a^{2}-c^{2}}}{a^{\prime}}
$$

For $b>a^{\prime}>c$, the value of a_{0} is given by the formula
$a_{0}=\frac{2 a^{\prime} b c \sqrt{b^{2}}-c^{2}}{\left(b^{2}-a^{2}\right)\left(a a^{2}-c^{2}\right)}-\left(\frac{a^{2} 2-c^{2}}{b^{2}-c^{2}}\right) F-\frac{2 c^{2}}{a^{2}-c^{2}}$
where F and: E are defined as before, with

$$
k=\sqrt{\frac{b^{2}-a^{2}}{b^{2}-c^{2}}}
$$

and

$$
\sin \varphi=\frac{\sqrt{b^{2}-c^{2}}}{b}
$$

Equation (2) is derived from the first equation given in equations (5.1.3) of reference 7. by substituting a' for a and by using the expression for k in terms of a^{\prime}, b, and c. Equation (3) is derived from the second equation given in equations (5.13) of reference 7 by interchanging a and b, substituting a^{\prime} for a, and using the expression for k in terms of a^{\prime}, b, and c.

For $a^{\prime}>b=c, \quad\left(e l l i p s o i d\right.$ of revolution), a_{0} is given by the equation

$$
a_{0}=a^{\prime} b^{2} \int_{0}^{\infty} \frac{d \lambda}{\left(a^{2}+\lambda^{2}\right)^{3 / 2}\left(b^{2}+\lambda\right)}
$$

which resolves into

$$
a_{0}=\frac{1-e^{2}}{e^{3}}\left(\log _{e} \frac{1+e}{1-e}-2 e\right)
$$

where

$$
e=\frac{\sqrt{a^{2}}-b^{2}}{a^{\prime}}
$$

If this value for a_{0} is substituted in equation (1), the incremental velocity at the half-chord line for the ellipsoir of revolution is found to be

$$
u=\frac{1}{\beta^{2}} \frac{\log _{e} \frac{1+e}{1-e}-2 e}{\frac{2 e}{1-e^{2}}-\log _{e} \frac{1+e}{1-e}}
$$

The limiting case of infinite aspect ratio (ellintic cylinger) was treated by the use of formulas for the ellipse in two-dimensional flow (reference 0).

Calculation of the critical mach number. - For flow about a two-rimensional body, the free-stream Hach number for which sonic speed is first reached at some point on the surface is called the critical Mach number, because of the development of shccks and the accomoanying deterioration of the aerodynamic characteristics shortly after this Wech number is exceeded. For the general threedimensional body, however, exceeding the Nach number at which sonic syeeds first supear does not recessarily imply the oosibility of shock formation; for example, in the case of the infinite yowed cylinder (referencé 9) shocks may be impossible even when supersonic speeds exist on the surface. In this case, since the flow must be the same at corresponding points of the sections alone the cylinder, any shock front must be parallel to the axis of the cylinder. Such ar oblique shock requires that the velocity comporient nomal to the shock front thet is, normal to the cylinder axis - be supersonic. The marnitude of the velccity component parallel to the axis is immaterial.

By what seems a reasonable extension of this concept, the following criterion for the possibility of shock
formation on the general three-dimensional body is tentatively pronosed: Consider the line on the body that forms the locus of those points where the total velocity on eech streamline is a maximum (that is, where the pressure is a minimum); a shock will form when the velocity normal to this line exceeds sonic velocity at some point along the line.

It shculd be ermphasized that, for the three- 1 dimensional body, the shock may begin to form over only a very sinall region of the surface, so that, in general, existence of the condition just defined does not necessarily imply an imminent deterioration of the aerodynemic characteristics of the body.

For the special case of the unyawed ellipsoid consicered in the present paper, however, no appresiable analysis of shock formation or shock extent along the lines just indicsted seems to be required. As is shown in the section "Calculation of Incremental Velocity for Compressible Plow gbout Ellipsozcis", the maximum velocity for en unvawed ellipscia is in the strean direction and occurs simultaneously at all points along the half-chord line. Sonic velocity is thus reached simultaneously along a line that eyicnes across the entire spen of the body and is normel to the stresim direction. Whese conditions also exist in the case of the unyawed infinite cylinden, that is, the two-dimensional body.

The critical mech number of the ellipsoid was accordingly determined by solving eraphically the equation

$$
\bar{u}(M)=\frac{1}{M} / \frac{1+\frac{1-1}{2} \sqrt{2}}{\frac{\gamma+1}{2}}-1
$$

where $\bar{u}\left(\mathrm{Ni}_{i}\right)$ is the ratio of the incremental velocity at the helf-chord line to the strearn velcoity at the Nach number M.

Gccuracy of the Prandtl-Glevert method. - The Prandtl-Glauert method is based on the assumption of small perturbations. Consequently, near the nose of the ellipsoids discussed in the present paper, where
the assumption of small perturbations is violated, the results given by the Prandtl-Glauert method cannot be expected to be reliable. More reliable values, however, should be obtained for the maximum incrementel velocity, which occurs at the half-chord line. The accuracy of the Erandtl-Glauert epproximation for the maximum incremental velocity may be estimated by comparison with more exact solutions of the compressible flow problem. in iteration method in which the Prandtl-Glauert method is used as the first approximation hes been proposed by Busemann (reference 10). The first and second spproximations have been calculated by Fantzsche and Wend for the elliptic cylinder (reference ll) and by Schmieden and Kowalki for the ellipsoid of revolution (reference l2). Calculation of the maxinum incremental velocity for the elliptic cylinder heving trickness rytio 0,20 by a formula for the second approximation eiven in reference 10 shows that the value given by the Crandtl-Glauert method at a Mach number of 0.9 is almost 20 cercent lower than the velue given oy the second approximation. For the ellipsoid of revolution, however, the value of the maximum incremental velocity given by the PrandtlGlauert method agreed with the value given by the second approximation to within 5 percent at a liach number of 0.8 for thickness ratios up to C .30 . A] though the second opproximation is not the exact solution, it indicates that the error involved in using the Prandtl-Glauert method to estimete the meximum incremental velocity for ellipsoids having a given thickness ratio is greatest for the limitine case of the elliptic cylinder ($A=\infty$) and very small for the ellipsoid of revolution, which has a very low espect ratio. The error may be expected to be intermediate in magnitude for intermediate vsilues of the aspect ratio and to decrease with' aspect ratio. The reduction of error of the Erandtl-Glavert method with a decrease in espect ratio was to be expected, as the incremental velcoities are smaller for ellipsoids having low aspect ratio.

RESULTS AND DIECUSSION

Results.- Figires 1, 2, and 3 show the value of the velocity ratio $\bar{u}=\frac{u_{\max }}{U}$ at the half-chord line plotted against the Mach number for ellipsoids st zero angle of
attack for various aspect ratios and section thickness ratios equal to $0.10 ; 0.15$, and 0.20 . In the same figures the sonic velocity boundary having the equation

$$
\overline{\mathrm{u}}=\frac{1}{\mathrm{M}} \sqrt{\frac{1+\frac{\gamma-1}{2} M^{2}}{\frac{1+1}{2}}}-1
$$

is plotted. The abscissa of the intersection of this boundery line with the curve of \bar{u} plotted against M for any aspect ratio is the critical Mach number. In order to show the effect of compressibility more directly, the ratio $\frac{\bar{u}(M)}{\bar{u}(O)}$ of maximum incremental velocity for com-
pressible flow to the maximum incremental velocity for incompressible flow for the same free-stream velocity is plotted agsinst the Mach number in figures 4, 5, and 6 for the same aspect ratios and thickness ratios. Similar curves for the ellipsoid of revolution, which is a special case of the ellipsoid having three unequal axes, are plotted for the same thickness ratios in figures 1 to 6. Figure 7 presents curves of critical Nach number against aspect ratio for thickness ratios of $0.10,0.15$, and 0.20 .

Three-dimensional relief. - It may be seen from figures l. to 3 that the three-dimensional relief, that is, the difference between the velocity on the ellipsoid and the velocity on the corresponding ellipsoid of infinite aspect ratio (elliptic cylinder), increases with a decrease in the aspect ratio. This increase has two causes:
(l) For a flow with M equal to zero (incompressible flow), the relief effect increases with a decrease in the aspect ratio.
(2) For larger values of \mathbb{M} (compressible flow), an additional relief effect occurs with a decrease in the aspect ratio because of the fact that the compressibility effect (increase of incremental velocity with an increase in the Mach number) decreases with a decrease in the aspect ratio. (See figs. 4 to 6.) It may be seen that this additional three-dimensional relief increases most rapidly at high Mach numbers.

From figures 1 to 6 it may be seen that the compressibility effect on the maximum incremental velocity is greatest for A equal to infinity (infinite elliptic cylinder) and is smallest for the ellipsoid of revolution. The compressibility effect on the maximum incremental velocity for the eliliptic cylinder is proportional to
$\frac{1}{\sqrt{1-M^{2}}}$, which is in agreement with the usual form of the Prandtl-Glauert method in two dimensions. The compressibility effect on the maximum incremental velocity for the ellipsoid of revolution is small in comparison with that of the elliptic cylinder. In fact, as the thickness ratio of any type of body of revolution approaches zero, the compressibility correction factor approaches unity, for in this limit the incremental velocity in incompressible flow is proportional to the square of the thickness ratio, so that the effect of stretching the body (first step of Prandtl-Glauert method, see the appendix) is exactly compensated for by the multiplication of the incremental velocities by $1 / \beta^{2}$ (third step of the Prandtl-Glauert method). For ellipsolds of practical thickness ratios, however; the incremental velocity varies more slowly than the square of the thickness ratio. The compressibility effect for the ellipsoid of revolution (figs. 4, 5, and 6) is thus considerable at high Mach numbers. For example, for a thickness ratio of 0.20 and at a Mach number of 0.8 , the compressibility effect amounts to about 30 percent of the incremental velocity in incompressible flow.

The effect of the thickness ratio on the threedimensional relief may be seen by a comparison of figures 1 , 2, and 3. From figure i it may be seen that, for a thickness ratio of 0.10 , at a Mach number of 0.75 , the maximum incremental velocity for $A=2$ is 76 percent of the maximum incremental velocity for $A=\infty$. From figure 3, on the other hand, it may be seen that, for a thickness ratio of 0.20 , at a Mach number of 0.75 , the maximum incremental velocity for $A=2$ is 75 percent of the maximum incremental velocity for $A=\infty$. Thus, an increase in the thickness ratio causes only a very small increase in the three-dimensional relief.

Critical Mach number. Pigures $^{3}, 2,3$, and 7 indicate that an jincrease in the critical Mach number of an ellipsoid at zero lift may be obtainec by decreasing
the aspect ratio. For example, for ellipsoids having a thickness ratio of 0.10 , a decrease in the aspect retio from infinity to 2 causes the critical Nach number to increase from $0 . e 27$ to 0.857 . For a thickness ratio of Q.20, a decresse in the aspect ratio from infinity to 2 causes the critical Niach number to increase from 0.741 to 0.783 . Although ellipsoids having greater thickness retio have lower critical Mach numbers, a decrease in the sspect ratio is slightly more effective in increasing the critical Mach numbers for ellipsoids of greater thickness ratio. Flgure 7 indicates that only a large reduction in aspect ratio will cause a signinicant rise of the oritical Mach number.

Comperison with test results on low aspect ratio wings - Figure 6 of reference shows the minimum drae coefficient (C_{D} for zero lift) plotted against the Fach number for wincs having an NAC: OQl section and various aspect ratios. The critical Mach number for any aspect ratio may be estimated roughly as the Mech number for which the cirag coefficient first besins to rise. The rough estimate of the critical. Mach numbers obteinable by this consideration is not sufficiently accurate to warrant comparison of the numerical values with the numerical values of the criticel hach number obtained in the present paner for thin ellipscids. Comparison of the numerical results is, moreover, not warranted inasmuch as the wings of reference 1 did not have an elisptic section and furthermore had a rectangular plan form. A qualitative comparison may be made, however, between the results of the present paper and those of reference 1. The increase in critical Mach number with decrease in aspect ratio indicated in figures 1, 2, 3, and 7 of the present paper is considered sufficiently large to explain the corresponding effect indicated in figure 6, reference 1.

It is mentioned in reference 1 that the Mach number for a significant rise in the drag coefficient is approximately 0.1 higher for an asvect ratio of 2 than for an infinite aspect ratio. This vqlue is considerably higher than the increase in critical Mech number due to a decrease in the sspect ratic. Since, for low-aspect-ratio winss, the drac coefficient increases only gradually after the critical Nach number is reached, the critical Mach number for a wing having low aspect ratio does not indicate so critical a change in the flow phenomena as the critical Mach number for a wing having high aspect ratio. It is
thought that the smaller rate of increase of the drag coefficient for wings having low aspect ratio is due to the fact that, at the critical Mach number, the rate of increase with Mach number of the incremental velocity is less than for high aspect ratios, as may be seen from figures 1,2 , and 3.

CONCLUSIONS

A study by the Prandtl-Glauert method of compressibility effects and critical Mach number for ellipsoids of various aspect ratios and thickness ratios indicated the following conclusions:

1. The flow about the unyawed ellipsoid is analccous to that about the infinite unyawed cylinder in that sonic velocity is reached simultanecusly along a line that extends across the entire span of the body and is nomal to the stream direction.
2. The critical Mach number for a thin ellipsoid may be predicted with good accuracy by means of the Frandtl-Glauert method, and the accuracy increases with decrease in aspect ratio.
3. The compressibility effect on the flow about an ellipsoid decresses as the aspect ratic decreases.
4. The three-dimensional relief for ellispoids is essentially independent of the thickness ratio, for thickness ratios from 0.10 to 0.20 .
5. For ellipsoids of thickness ratio 0.20 , the critical Mach number increases by 0.04 when the aspect ratio is chanced from o to 2; for ellipsoids of thickness ratio 0.10 the incresse is 0.03 .
6. The calculated increases in critical Mach number are sufficiently large to explain the experimentally observed increases in the Mach number at which the drag first becins to rise.
7. The experimentally indicsted reduced rate of drag rise for low-aspect-ratio wings at zero lift as
compared to that for wings having infinite aspect ratio may be explained qualitatively on the basis of the results obtained for the three-dimensional relief for ellipsoids.

Langley Memorial Aeronautical Laboratory National Advisory Cormittee For Aeronautics Langley Field, Va.

AFPENDIX

THP PRANDTL-GAURRT METECD POR THREE-DTMENSIONAL FLCW

A derivation of the Prandtl-Glauert method for three-Prandtl-Glauert method correct for three dimensions may be given as follows: A first-order approximation to the subsonic compressible flow sbout a thin body B, the surface of which has the equation

$$
E(x, y, z)=0
$$

may be obtained by findine a solution of the linearized differential equation for the potential φ of the incremental velocities,

$$
\begin{equation*}
\beta^{2} \varphi_{x x}+\varphi_{y y}+\varphi_{z z}=0 \tag{Al}
\end{equation*}
$$

where the x-axis is in the stream direction and the incremental velocities Q_{x}, φ_{y}, sind φ_{z} are small compared with the stream velocity U. At all points on the suriace of B, the gotential ϕ must satisfy the bourdary condition

$$
\begin{equation*}
\left(U+\varphi_{x}\right) S_{x}+\varphi_{y} S_{y}+\varphi_{z} S_{z}=0 \tag{A2}
\end{equation*}
$$

which states that the flow is tangential to B. Since B is sssumed thin, S_{X} is small compered with S_{y} and S_{Z}; concequently the second-order term $Q_{X} S_{X}$ may be neglected, and the boundary condition becomes

$$
U S_{x}+\varphi_{y} S_{y}+\varphi_{z} S_{z}=0
$$

In order to solve the boundary-value problem given by equations (Al) and (A2) in terms of incompressible flow the following trensformation of variables is used:

$$
\left.\begin{array}{l}
x^{\prime}=\frac{x}{\beta} \tag{A3}\\
\varphi^{\prime}=\beta \varphi
\end{array}\right]
$$

Under this transformation equations (A1) and (A2) become, respectively,

$$
\begin{align*}
& \varphi_{x^{\prime} x^{\prime}}^{\prime}+\varphi_{y y}^{\prime}+\varphi_{z z}^{\prime}=0 \tag{+}\\
& U S_{x^{\prime}}+\varphi_{y^{\prime}}^{\prime} S_{y}+\varphi_{z}^{\prime} S_{z}=0
\end{align*}
$$

Equations (A4) and (A5) are, respectively, the differential equation and boundary condition for the potential φ^{\prime} of the incremental velocities of an incompressible flow with free-stream velocity U, in the x^{i}, y, z space, about a thin body B^{\prime}, the surface of which has the equation

$$
S\left(\beta x^{\prime}, y, z\right)=0
$$

The incremental velocities in the compressible flow are thus given by

$$
\begin{aligned}
& u=\varphi_{X}=\frac{1}{\beta^{2}} \varphi_{X}^{\prime}=\frac{1}{\beta^{2}} u^{\prime} \\
& v=\varphi_{J}=\frac{1}{\beta} \varphi_{Y}^{\prime}=\frac{1}{\beta} v^{\prime} \\
& w=\varphi_{Z}=\frac{1}{\beta} \varphi_{Z}^{\prime}=\frac{1}{\beta} w^{\prime}
\end{aligned}
$$

where u, v, and w and u^{\prime}, v^{\prime}, and w^{\prime} are the incremental velocities at corresponding points in the compressible flow about B and the incompressible flow about B^{\prime}, respectively.

The foregoing analysis establishes the PrandtlGlauert method for three-dimensional flow in the following form: The incremental velocities at a point P on the surface of a thin body B in compressible flow may be obtained in three steps:
(1) The x-coordinates of $2 l l$ points of B are increased by the factor $] / \beta$, where

$$
\beta=\sqrt{1-N^{2}}
$$

and where the x-axis is in the stream direction. This transformation takes B into a stretched.body B^{\prime}.
(2) The incremental velocities $u^{\prime}, v^{\prime}, w^{\prime}$, in the direction of the $x-, y-$, and z-axes, respectively, st the point P^{\prime} on B^{\prime} corresponding to the point P on B are calculated as though B ' were in an incompressible flow having the same free-stream velocity as the original compressible flow.
(3) The values u, v, and w of the incremental velocities at the point E on the original unstretched body B in compressible flow ere then found by the equations

$$
\begin{aligned}
& u=\frac{1}{\beta^{2}} u^{\prime} \\
& v=\frac{1}{\beta} v^{\prime} \\
& w=\frac{1}{\beta} w^{\prime}
\end{aligned}
$$

Failure for three-dimensional flow problems of the commonly stated forms of the Prondtl-Giauert method.According to the form of the Prendtl-Glauert method given by Prandial (reference 4 and vo Kámán (reference 5), the incremental velocities for a compressible flow about a thin body E are the same as the incremental velocities of corresponding points for incompressible flow having the same free-stream velocity about a body obtained by expanding B in the directions normal to the free-stream direction by the factor $1 / \beta$. That is, for bodies of revolution, or two-dimensional bodies,

$$
\frac{u}{U}(\epsilon, \quad n)=\frac{u}{U}\left(\frac{1}{\beta} \epsilon, 0\right)
$$

According to Gothert's method, however,

$$
\begin{equation*}
\frac{u}{U}(\epsilon, M)=\frac{1}{\beta^{2}} \frac{u}{U}(\beta \in, 0) \tag{A6}
\end{equation*}
$$

Thus, Prendtl's and vo Kármán's method is valid only if

$$
\frac{u}{U}\left(\frac{1}{\beta} \epsilon, 0\right)=\frac{1}{\beta^{2}} \frac{u}{u}(\beta \epsilon, 0)
$$

that is, if and only if the incremental velocity for incompressible flow about the bodies under consideration is proportional to the thickness ratio. This relation is aporoximately valid for thin two-dimensional bories, so that the method of Prandtl and von Karman may be expected to be valid for two-dimensional flows. The relation is not true in general for three-dimensional bodies; for example, for a very thin body of revolution the incremental velocity is more nearly proportional to the square of the thickness ratio than to the first power.

Von Karman approaches the problem by making the transformation

$$
\begin{aligned}
& y^{\prime}=\beta y \\
& z^{\prime}=\beta z \\
& \varphi^{\prime}=\varphi
\end{aligned}
$$

Under this transformation the linearized equation of compressible flow gees into Laplace's equation; however, the transformed boundary condition is not satisfied on the surface of the transiomed (contracted) body but on the suriace of an expanded body. Thus, the boundary condition is not satisfied on the boundary but at points nesr the boundary. This procedure is aplicable to twodimensional problems (as, for exemple, in the thin-wing theory, reference 13), because the velocity increments incluced by the equivalent line distribution of singularities vary only slowly in the neighborhood of the line of singularities. For a body of revolution, however, the velocity increments incuced by a line of singularities go to infinity at the line of singularities; for such bodies, accordinely, the location of the point at which the boundary concition is satisfied is imoortant.

According to Goldstein and Young (reference 6), "in compressible flow the pressure increase at sny point of tre body is $1 / \beta$ times the pressure increase in incompressible flow at the same point." That is,

$$
\frac{u}{U}(\epsilon, V i)=\frac{1}{\beta} \frac{u}{U}(\epsilon, 0)
$$

Comparison of this relation with equation (A6) shows that the Goldstein-Young method is slso valid for two-dimensional oroblems but gives an incorrect result for three-dimensional problems.

RGFFRENCES

1. Stack, John, and Lindsey, H. $\dot{F} .:$ Characteristics of Low-Aspect-Ratio wings at Supercritical Mach Numbers. NACA ACR NO. L5J16, 1945.
2. Gothert, B.: Hochgeschwindigkeitsmessungen an einem Flügel kleiner Streckung. Forschungsbericht Mr. 1846 , Deutsche Iuftfahrtforschune, 194.2. (See alsc Profilmessungen im DVLHochgeschwindigkeitswindkanal. Bericht 156 der Lilienthal-Gesellschaft für Iuftfahrtforschung, 1942, Abschnitt IV, pp. 13-16.)
3. Gothert, B.: Ebene und räumliche Strömung bei hohen Unterschalleeschwindigkeiten (Erweiterung der Prandtischen Regel). Bericht 127 der LilienthalGesellschaft für Luftfahrtforschung, i940, pp. 97-101.
4. Prandtl, L.: General Considerations on the flow of Compressible fiuids. NACA TM No. 805, 1936.
5. von Kármán, Th.: Compressibility Effects in Aerodynamics. Jour. Aero. Sci., vol. 已, no. 9, July 1941, pp. 337356.
6. Goldstein, S., and Young, A. D.: The Linear Ferturbation Theory of Compressible Flow, with Applications to wind-Tunnel Interference. K . \& $\mathrm{m} . \mathrm{No}$. 1909 , British A.R.C., 1943.
7. Munk, Max M.: Fluid Mechanics, Pt. II. Ellipsoid with Three Unequal Axes. Vol. I of Aerodynamic Theory, civ. C, ch. VIII, F. F. Durand, ed., Julius Springer (Berlin), 1934, pp. 293-304.
8. Wilne-Thomson, L. M.: Theoretical Hydrodynemics. Macmillan \& Co., Ltd., 1938.
9. Jones, Robert T.: Wing Flan Forms for High-Speed Flight. NACA NiNe. 1033, 1946..
10. Busemann, Adolf: Der Kompressibilitätseinfluss für dünne wenig gekrummte Profile bei Unterschalieeschwindigkeit. Keft 18, Schriften der Deutschen akademie der Luftfahrtforschung, 1940.
11. Hentzsche, W., and Wendt, H.: The Effect of Compressibility on Thin, Slightly-Cambered Profiles at Subscnic Speeds. F.T.P. Translation No. 2198, British Ministry of Aircrsft Production. (From Z.f.a.M.M., Bd. 22, Nr. 2, April 1942, pp. 72-86.)
12. Schnieden, C., and Kawalki, K. H.: Beiträge zum Umströmungsproblem bei hohen Geschwindigkeiten. II. Teil, Einfluss der Kompressibilitát bei rotationssymmetrischer Umstromung eines Ellipsoids. Bericht S 13/1. Teil der Lilienthal-Gesellschaft für Luftfehrtforschung, 1942, pp. 48-68. (See also Forschungsbericht Nr. 1633, Deutsche Luftfehrtforschung, 1942.)
13. Glauert, H.: The Elements of Aerofoil and Airscrew Theory. American ed., The Macmillan Co., 1943.
CONFIDENTIAL
NACA RM No. L7B03a
阿
Fig. 1

Figure 1.- Variation with Mach number of maximum incremental velocity
for ellipsoids hoving various aspect ratios. Thickness ratio, 0.10 .

$$
\frac{n}{x_{0, w_{n}}}=\underline{n}
$$

Fig. 2
NACA RM No. L7B03a
cominamatial

CONFIDENTAE

CONFIDENTIAL

$\frac{(O) \underline{n}}{(W) \underline{2}}$

Fig. 6

CONFIDENTIAL

[^0]${ }^{10}$ W 'raquin yabw IDS!t!10

[^0]: Figure 7. - Variation

