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NATTONAL. ADVISORY CCMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

A COMPARATIVE ANALYSTS OF THE PERFORMANCE OF
LONG-RANGE HYPERVELOCITY VEHICLES

By Alfred J. Eggers, Jr., H, Julian Allen,
and Stanford E. Neice

SUMMARY

Long-range hypervelocity vehicles are studied in terms of thelr
motion in powered flight, and their motion and aerodynamic heating in
unpowered flight, Powered flight is anslyzed for an idealized propulsion
system which rather closely approaches present-day rocket motors. Unpow-
ered flight is characterized by a return to earth along a ballistie, skip,
or glide trajectory. Only those trajectories are treated which yleld the
meximum renge for & given velocity at the end of powered flight, Aero-
dynamic heating is trested in a mamner simllar to that employed previously
by the senior authors in studying ballistic missiles (NACA RM A53D28),
with the exception that radiant as well as convective heat transfer is
considered in connection with glide and skip vehicles.

The ballistic vehicle is found to be the least efficient of the
several types studied in the sense that it generally requires the highest
velocity at the end of powered flight in order to attain a given range.
This disadvantage may be offset, however, by reducing convective heat
transfer to the re-entry body through the artifice of increassing pressure
drag in relation to friction drag - that is, by using a blunt body. Thus
the kinetic energy required by the vehicle at the end of powered f£flight
may be reduced by minimizing the mass of coolant material involved.

The glide vehicle developing lift-drag ratios in the neighborhood
of and greater than L is far superior to the ballistic vehicle in ability
to convert velocity into range., It has the disadvantage of having far
more heat convected to it; however, it has the compensating advantage
that this heat can 1n the main be radiated back to the atmosphere. Con-
sequently, the mass of coolant material may be kept relatively low.

The skip vehicle developing 1lift-drag ratios from about 1 to & is
found to be superior to comparsble ballistic and glide vehicles in con-
verting velocity into range. At 1lift-drag ratios below 1 it is found to
be about equal to comparable ballistic vehicles whille at lift-dreag ratios
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above 4 it is about equal to comparable glide vehicles. The skip vehicle
experlences extremely large loads, however, and it encounters most severe
aerodynamic heating.

As a final performance consideration, it is shown that on the basis
of equal ratios of mass et take-off to mass at the end of powered flight,
the hypervelocity vehicle compares Ffavorably with the supersonic airplane
for ranges in the neighborhood of and greater than one half the circum-
ference of the earth. In the light of this and previous findings, it is
concluded that the ballistic and glide vehicles have, in additlon to the
advantages usually ascribed to great speed, the attractive possibility of
providing relatively efficient long-range flight.

Design aspects of the glide vehicle are touched on briefly. It is
argued from considerations of motion and heating that vehicles of this
type which fly at hypersonic speeds to impact might profitably conslst
of blunt-nosed bodies of revolution stabilized by a conical flare at the
base and controlled by deflectable sections of the afterbody. In the
event that wings are necessary to praovide acceptable low-speed character-
istics, 1t 1s indicated that they should have highly swept, rounded lead-
ing edges in order to alleviate the local heating problem wilith minimum
drag penalty.

INTRODUCTICON

It is generally recognized that hypervelocity vehicles are especially
gulted for military applicatlion because of the great difficulty of defend-
ing against them. It 1s also possible that for long-range operation,
hypervelocity vehicles may not be overly extravagent in cost. A satellite
vehicle, for example, can attain arbitrarily long range with a finite
speed and hence finite energy Input. E. Sanger was among the first to
recognize this favorable connection between speed and range (ref. 1) and
was, with Bredt, perhaps the first to exploit the speed factor in design-
ing a long-range bomber (ref. 2). Thils design envisioned a rccket-boost
vehicle attaining hypervelocity speeds at burnout and returning to earth
along a combined skip-glide trajectory. ~Considerable attention was glven
to the propulsion and motion analysis; however, little attention was glven
to what is now consldered to be & principal problem asscclated with any
type of hypersonic aircraft, namely that of aerodynamlc heating. In
addition, the category of expendable vehicles, perhaps best characterized
by the ballistic missile, was not treated.

Since the work of Sanger and Bredt there have been, of course, many
treatments of long-rénge hypervelocity vehicles in which the propulsion,
motion, and heating problems have been studied in considerable detaill.
However, these analyses have been devoted in the main to particular designs
and are not intended to reveal, for example, the relatlve advantages and

GRllERSp—



L9

'n

NACA RM AS5LL10 ComEEE—y, 3

disadvantages of ballistie-, skip-, and glide-type vehicles. Furthermore,
it appears that the extent to which these vehicles can compete on a slmple
efficiency basis with lower speed alrcraft of either the expendable or
nonexpendable type has not been well established.

It has therefore been underteken in the present report to make a
comparative analysis of the performance of hypervelocity vehicles having
ballistic, skip, and glide trajectorles. An idealized propulsion system,
whose performance is rather closely approached by present-day rocket
motors, is assumed. The motion analysis is simplified by treating, for
the most part, only optimum trajectories yielding the meximum range for
arered mortion of
a owered portion of
flight. Aerodynamic heating is treated in & menner analogous to that
employed by the senior authors in studying ballistic missiles (ref. 3)
with the exception that radiant heat transfer, as well as convective heat
transfer, is considered in the treatment of glide and skip vehicles. The
efficiencies of these vehicles are compared with those determlned by the
method of Schamberg (ref. 4) for supersonic aircreft.

a olven dndtdisl Ikirnetdin eanergv mner 1mit mecs iIn the unm
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ANATYSTS

General Considersations

In the followlng ansliysis of long-range hyperveloclty vehicles, only
flight in planes containing the great clrecle arc between teke-off and
landing is considered. The flight is thought of in two phases: (a) the
powered phase in which sufficient kinetic energy, as well as control, is
imparted to the vehicle to bring it to a prescribed velocity, orientation,
and position in space; and (b) the unpowered phase, in which the vehicle
travels to 1ts destination under the influence of grevity and aerodynamic
forces.

The analyses of motion and aerodynemic heating during unpowered flight
wlll, of necessity, differ widely for the seversl types of vehilcles under
consideration., On the other hand, motion in the powered phase is con-
veniently treated by & method common to all vehicles. The study of powered
flight and 1ts relation to range 1s thérefore taken as a starting point
in the analysis. The mathematical symbols employed in the analysis are
listed in Appendix A.

Powered Flight and the Breguet Range Equation

In this part of the study, the following simplifying sssumptions are
made: (a) aerodynamic heating can be neglected on the premise that high
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flight speeds are not attalned untll the vehicle is in the rarefied upper
atmosphere; L (b) sufficient stability and control is availeble to provide
proper orientation and positioning of the vehicle in space; (c) the dis- 3
tance traveled while under power 1s negligible by compariscn to the over-

all range; and finally, (d) the thrust is very large compared to the

retarding aerodynamic and gravity forces. In terms of present-day power

plants, the last assumption 1s tantamount to assuming a rocket drive for el
the vehicle.

The velocity at burnout of the first stage of a multistage rocket )
(or the final velocity of a single-stage rocket) can then be expressed e
as (see, e.g., ref. 5):

—_ gI mi
vhere the initial velocity is taken as zero. In thils expression, mj and . A

m, represent the mass of the vehicle at the beginning and ending of ) L
first -stage flight, and Vfl = Vr /Vs vhere Vg = fgrg = 25,930 feet
per second is the satellite velocity at the surface of the earth. The
coefflcient g is the acceleration due to gravity and 1s, along with
the specific impulse I, considered constant in this phase of the anal- .
ysis.2 The final velocity of the vehicle at the end of the N stages of

powered flight can be expressed as

e ul@)E G g

where the initilsl mass of any given stage differe from the final mass of
the previous stage by the amount of structure, etc., Jjettisoned.

Now let us defilne an equivalent single-stage rocket having the same -
initial and final mass as the N-stage rocket and the same initial and final
velocity. There is, then, an effective specific impulse defined by

iThis assumptlion is in the main permissible, A posslble exception
occurs, however, with the gllide vehicle for which heat-transfer rates
near the end of powered flight can be comparable to those experienced in .
unpowered gliding flight. . . _ o

2Both g and I actually vary with altitude, of course, but for the
powered fllght trajectories of interest here the variations are small and
it is permissible to use constant average values of these quantities.

il T -
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whereby equation (2) can be written as

1

B

= gl
Vf=7S§' HG% (k)

The effective specific Ilmpulse Ie 1is always somewhat less than the
actual specific impulse, but for an efficlent design they are very nearly
equal. Throughout the remeinder of the analysis the effective impulse

I. will be used.

Equation (L) might be termed the "ideal power plant” equation for
accelerated flight because, when considered in combination with the
assumptions underlying 1ts development, attention is naturally focused
on the salient factors leading to maximum increase in veloeity for given
expenditure of propellant. Thus the thrust acts only in overcoming inertia
forces, and the increase in vehilcle veloclty is directly proportional to
the exhaust velocity (gI) for the propellant.

Now we recognize that an essential feature of the hyperveloclty
vehicles under study here is that they use their veloeclty (or kinetic
energy per unit mass) to obtain range. For this reason, equation (L) also
constitutes a basic performance equation for these vehicles because it
provides a connecting link between range requirements and power-plant
requirements.

In addition to comparing variocus types of hypervelocity vehicles,
our attention will also be focused upon comparison of these vehicles with
lower speed, more conventional types of alrcraft. For this purpose it is
useful to develop an alternate form of equation (4). We observe that the
kinetic energy imparted to the vehicle is

1
3 meVe®

This energy is équated to an effective work done, defined as the product
of the range traveled and a constant retarding force. (Note that the
useful kinetic energy at the end of powered flight is zero.) This force
is termed the "effective drag" De. Thus

iSRRI T
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e = L nete? ) -

where R ig flight range messured along the surface of the earth.
Similarly, we may define an: "effective 1ift" Le, equal to the final
weight of the vehicle ) a— ”

Le = W = mirg

from which it follows that equation (5) may be written as
2
L\ Ve
R=(%) ~—
<5>e 2g (6)

where (L/D)e is termed the "effective lift-drag ratio.” C(Combining
equations (4) and (6), we obtain

RO

Ve
2

wvhere

ve = (8)

and represents an "effective" flight velocity of the vehicle., Equa-
tion (7) will prove useful in comparing hypersonic vehilcles with conven-
tional alrcraft because of 1ts analogy to the Breguet range equation,

R=%’I‘Iln<%> (9)

It will elso prove useful to have equation (7) in the dimensionless form
obtained by dividing through with rg, the radius of the earth. 1In this

case we have
R T\ = /8le ik} '
Ta D e € Vs s .

vwhere ¢ 1s the range in radians of arc traversed along the surface of the
the earth.

Motion in Unpowered Flight

Ballistlc trajectory.- In studying the motion of long-range vehicles
in this trajectory, advantage is taken of the fact that the traverse
through the earth's atmosphere generally forms only a small part of the
total trajectory. Therefore, the deflectlion and deceleration encountered -
in the re-entry phase (discussed in detall in ref. 3) are neglected in

GRliSEENR .
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the computetion of the total range. With the added simplification that

the contribution to range of the powered phase of flight is negligible,

the ballistic trajectory becomes.one of Kepler's planetary ellipses, the
major axis of which bisects the total angle of are ¢ traveled around

the earth (see sketch). For the trajectories of interest here (Vg<1), the
. far focus of the ellipse is at the mass center of the earth. For purposes
of range computation, then, the balllstic vehicle leaves and returns to

the earth's surface at the same absolute magnitude of velocity and inci-
dence3 (see sketch) .

. ﬁef

Elliptical orbit

Earth's surface

B¢

The expression for range follows easily from the equatlion of the
ellipse (see, e.g., ref. 6) and can be written

sin épcos &8¢

o =2 =2 tan-? (11)
To = - cosaef
Vg2

where the angle of incidence 6y 1is consldered positive. In order to
determine the optimum trajectory glving maximum range for a given velocity
Ve, equation (11) is differentiated with respect to 6p and equated to
0, ylelding

7.2 vfz 2

Vg === =1 - tan"6¢

Va2
8 (12)

R
To =7 - her

=
It

BRotation of the earth is neglected in this and all other phases of
the snalysis.

parmivere
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Equations (11) and (12) have been employed to determine velocity as a
function of incidence for various values of range and the results are
presented in figure 1.* The "minimum velocity line” of figure 1 cor-
responds to the optimum trajectories (egs. (12)).

The effective lift-drag ratlos can easily be calculated for optimum
ballistic vehicles using equation (6) in combination with the information
of figure 1. The required values of (L/D)e as & function of range are
presented in figure 2. . _ = e

'Skip trajectory.- This trajectory can be thought of as a succession
of ballistic trajectories, each connected to the next by a "skipping
phage" during which the vehicle enters the atmosphere, negotlates a turn,
and is then elected from the atmosphere. The motion analysis for the
ballistic missile can, of course, be applied to the ballistlc phases of
the skip trajectory. It remalns, then, to analyze the skipping phases
and to combine this analysis with the ballistic analysis to determine
over-all range. : .

To this end, consider & vehicle in t° ~ process of executing a skip
from the atmosphere (see sketch),

-+

/

st L Vex
~ e ff— ——— ,/ Outer reach of
>‘ \\/otmosphere
"’,———' D < ~\~~\\‘
//’ 9
S
w v \L Earth's surface

4Independent calculations of ballistic trajectories by King-Hele
and Gilmore (ref. 7) came to the attention of the authors after comple-
tion of this asnalysis, The results presented here agree with those of
reference 7.
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The parametric equations of motion in directions perpendicular and
parallel to the flight path s are, respectively,

2 2
Cr1, E%— A-mgcos @ = v

Te
(13)
2
-Cp v A+ mg sin 6 = m v
2 at

where re 18 the local radius of curvature of the f£flight path, 8 i1s the
local inclinatlon to the horizontal {positive downward), p 1s the local

air density, and Cp, and Cp are the 1ift and drag coefficients, respec-

tively, based on the reference area, A, of the aircraft.

In the turning process, aerodynamic 13ift must obviously predominate
over the gravity component, mg cos 6. By analogy to the atmospheric
re-entry of ballistic missiles (see ref. 3), aserodynamlc drag generally
predominates over the gravity component, mg sin 8. Moreover, the inte-
grated contribution to veloecity of this gravity component during descent
in a skip 1s largely balanced by an opposite contributlion during ascent.
For these reasons we will ideallze the ansalysls by neglecting gravity
entirely.® In this case equations (13) reduce to

CroV2A = ~my2 32
TR as

(1k)

o= ol

2y o &
CppVEA =m 3t

where de/ds = - é%- to the accuracy of this analysis.
c

Now we assume an lsothermal atmosphere, 1n which case

p = poe’ﬁy (15)

where pg, and B are constents, and y = (r - ry) is the altitude from
sea level (see ref. 3 for discussion of accuracy of this assumption).

SThis epproach is analogous to the classicel treatment of impact
problems in which all forces exclusive of impact forces (aerodynamic forces
in this case) are neglected as being of secondary importance. Gravity is
shown to be of secondary importance in figure 3 where the trajectory :
results obtaineble from equations (13) and (14) are presented for the
first skipping phase of en L/D =2, ¢ =1 skip missile. .
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Noting that dy/ds = -sin 8, we combine the first of equations (14) with
equation (15) to yileld

CLeoA _
-—2;— ePYay = sin ¢ dg (16)

This expression can be integrated to give

CLD O‘A

ePY = cos 6 - cos éen (1n
2Bm

where p is taken as zero at the altitude corresponding to the effective
"outer reach" of the gtmosphere. Equation (17) points out an Important
feature of the skip path; namely, cos 6 is a single-valued function of
sltitude, Since & proceeds from positive to negative values, it ls
evident that

fenp_ ;1 = Fexpy (18)

where the subscripts en and ex refer to atmospheric entrance and exit
conditions, respectively, and the numbers n - 1 and n refer to suc-
cessive ballistic phases of the trajectory. Now since

equations (14) may be combined to obtain

14av _ v2 g

= — = 1
2 ds L/D ds (19)
which, for constant L/D, can be integrated to yield
Bex,, ~ fen
n n-1
en-1

With the aid of 'equation (18), this expression may be written

R e
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Vex, - EEEEE:&
v =°¢ L/D (21)
€on-1

which relates the velocities at the beginning and end of a skip to the
lift-drag ratio and the entrance angle of the vehicle to the earth's
atmosphere. From equation (18) it follows further that the entrance
angle for each skip in the trajectory is the same, so that

26¢
V e
_n _ LM (22)
Venp-3

We now combine this result of the skip analysis with that of the
ballistic analysis to obtain the total flight range. From equation (11),
the range of the nth ballistic segment of the trajectory is

gin B6pcos O¢

v 2
< S ) - cosaef
VGXn

Consistent with the idealization of the skipping process as an impact
problem, we neglect the contribution to range of each skipping phase so
that the total range is simply the sum of the hallistle contributions.
From equations (22) and (23) this range is then

-1

(23)

Pp = 2 tan

o o0
R -,/ ©in 6pcos 6
= =— = =2 ) tan 24)
mm ) ) e ‘
n=o0 n=0
i - cos®8
vfz iy
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From thils expression we see that for any glven velocity at the end
of powered fllght there is a definite skipping englie which maximizes the
range of an aircraft developing a particular lift-drag ratioc. These
skipping angles have been_obtained with the ald of an IBM CPC, and the _
corresponding values of Vg as a function of range for various L/D are
presented in figure 4. Corresponding values of (I./D)E3 have heen obtained
using equation (6) and the results are shown in figure 5.

Glide trajectory.- The trajectory of the glide vehlcle 1s illustrated
in the accompanyling sketch. As 1n the previous analyses, the distance
covered in the powered phase will be neglected in the determination of
total range.

The parsmetric equations of motion normal and parallel to the direc-
tion of motion are the relations of equations (13) rewritten in the form

2
L -mg cos 68 =~ %g—
c
(25)
av
- 1 = —_
T + mg sin 6 m at

Under the assumption of small inclination angle 6 +o the horizontal
(thus cos 6 ® 1, sin 6 = 6), constant gravity acceleration (i.e., %%531),
and noting the following relations

ARNESRENSink
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&y a1 ave

dt s 2 ds

_];_=d-¢‘9) > (26)
Tre ds

a¥ _cos 8 , 1

ds r To J

equations (25) can be written in the forms

= de sz
= mV< == + - —
L m! a mng

(27)

l av=
D =- 2 an + mg @

Dividing the first of equations (27) by the second ylelds the following
differential equation

I 7 1 av2 ag\ _ V= _
s(1-5e)+ GrE )50 (28)
But, as is demonstrated in Appendix B, the terms %-ge and V2 %g may
be neglected so that equation (28) reduces to
WE__2__y=, 28 o (29)
ds ro(L/D) L?D

Since

2
Vs = gro

equation (29) can be integrated for constant %' to give the veloclty
in nondimensional form as

. .29
=1 - (1-7e2)elD (30)
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This expression gives veloclty as a function of range for what Sanger
(ref. 2) has termed the equilibrium trajectory - that is, the trajectory
for which the gravity force 1s essentially balanced by the aerodynsmic
1ift and centrifugal force, or

21 -7 (31)

|+

It follows from equation (25) that velocity cen be expressed in the form

=2 1
V" = —————— : (32)
1+ CLAVS 0
2mg

Now 1t is intultively obvious that as the maximum range 1s approached,
L/W—>1 and hence V= becomes small compared to one (see eq. (31)).

In this event it follows from equation (30) that the maximum range for
the glide vehicle is given by

-2 -3 @)

The relation between velocity and range has been determined with
equation (33) for various values of L/D and the results are presented
in figure 6. Corresponding values of (L/D), have been obtained using
equation (6) and are presented-in figure 7.

These considerations complete the motion anelysis and attention is

now turned to the aerodynemic heating of the several types of vehicles
under conslderation.

Heeting in Unpowered Flight

General considerations.- Three aspects of the serodynamic heating
of hypervelocity vehicles wlll be treated here; namely,

l. The total heat lnput
2. The maximum time rate of average heat input per unit area

3. The maximum time rate of local heat input per unit area
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Total heat input is, of course, an important factor in determining
over-gll coolant weight, whether the coolant be solid (e.g., the struc-
ture), liquid, or gas, or a combination thereof. The maximum time rate
of average heat input per unit area can determine peak average flow
retes in the case of fluld coclants and may dictate over-all structural
strength in the event that thermsl stresses predominate.

Excessive local heating is, of course, a serious problem with hyper-
velocity vehicles., This problem may vary depending upon the type of the
vehicle, Thus, for the ballistic vehicle, an important locel "hot spot”
is the stagnation region of the nose, whlle for the skip or glide vehlcle
attention mey also be focused on the leading edges of planar surfaces
used for developing 1ift and obtaining stable and controlled flight., In
this analysis attentlion is, for the purpose of simplicity, restricted to
the "hot spot” at the nose. In particular, we consider the maximum time
rate of local heat input per unit area because of its bearing on local
coolent flow rates and local structursl strength,

It is undertaken to treat only convective heat transfer at this
stage of the study. As will be demonstrated, radiant heat transfer from
the surface should not appreclably influence convectlve heat transfer
to & vehicle, Therefore, elleviating effects of radiation are reserved
for attention in the discussion of particular vehicles later in the paper.
This anelysis is further. K simplified by meking the assumptions that

l. Effects of gaseous imperfections may be neglected

2. Shock-wave boundary-layer interaction may be neglected
3. Prandtl number is unity

4. Reynolds analogy is applicable

These assumptions are obviously not permissible for an accurate quenti-
tative study of & specifle vehlecle. Nevertheless they should not 1lnval-
idate this comparative analysis which is only intended to yield informa-
tion of a general nature re ng the relative meriis and problems of
different types of vehicle (see ref, 3 for a more complete discussilon
of these assumptions in connection with ballistic vehicles).

In calculating convective heat transfer to hypervelocity vehilcles,
the theoretical approach taken 1n reference 3 for ballistic vehicles is,
up to & point, quite gemeral and can be employed here., Thus, on the
basis of the foregolng assumptions, it follows that for large Mach numbers,
the difference between the local recovery temperature and wall tempera-
ture can be expressed as

(Tr - Tw), = -21’—;; (34)
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where Ty 1is the recovery temperature, Ty 1s the wall temperature,
i1s the specific heat at constant pressure, and the subscript 1 denotes
local conditlons at a point on the surface.

It is clear, however, that the walls of a vehicle should be maintained
sufficlently cool to insure structural integrity. It follows in this case
that, the recovery temperature at hyperveloecities will be large by compar-
ison to the wall temperature and equation (34) may be simplified to read

il
1 2Cp

To the accuracy of this analysis, then, the convective heat transfer is
independent of wall temperature., Therefore, as previously asserted,
radiant heat transfer should not appreciably influence convective heat
transfer and the one can be studied independently of the other.

Ir (35)

Now, according to Reynolds analogy, “the local heat-transfer coef-
ficlent h; 1s, for a Prandtl number of unity, glven by the expression

1 .

where CFZ is the local skin-friction coefficient based on conditions

just outside the boundary layer. With the ald of eguations (35) and (36)
the time rate of local heat transfer per unlt area,

%1% = hy(Tp - Ty), (37)
can be written as
- ( )
SE _ — (cp,Cp,01V2 (38)
dt - Lo 1Cp1P1

Equation (38) can be integrated over the surface of a body to yleld the
time rate of total heat input.as follows

49 aE 1
T =] & 98 =71 ovicE's (39)
5



NACA RM AS5LLIO GENPERENERL. 17

wherein Cpl is set equal to Cp and

Cp! =

-

P Vg
IE (o)
S

The parameter Cp' is termed the "equivalent skin-friction coefficient”
and will be assumed constant for a particular vehicle. From equation (39)
we can obtain two alternate forms which will prove useful; namely, the
altitude rate of total heat input defined by

= L_dq _fTOR'S (k1)
dy ~ V sin 67 4t ~ 4 sin 6p
and the range rate of total heat imput defined as
pV3Cnts
dq 1 d9 " “F~ (42)

d(rep) V cos g dt k4 cos or

The totel heat input may be obtained by integration of equations (39),
(k1) or (42), depending upon the particular varisble used.

The time rate of average heat ipgput per unit area may be obtained
from equation (39) as

dHgx

348 - 3 v s

dt

Consider next the local convective heat transfer in the region of
the nose. The time rate of local heat input per unit ares was determined
in reference 3 under the assumptions that viscosity coefficient varies as
the square root of the absolute temperature, and that flow between the
bow shock wave and the stagnation point is incompressible, In this case
it was found that®

SWhile this expression is no doubt in error due to neglecting com-
pressibllity effects, nevertheless it is a useful guide 1n studying the
local heat-transfer problem. (See ref. 3 for more complete discussion
of this matter.)
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- = 6 8><1o‘6~/_aé Vs (L)

where ¢ 1s the radius of curvature of the body at the stagnation point.

With these relations we are now in a position to study the heating
of the several types of vehlcles of interest.

Ballistic vehicle.- The heating for this case has already been
analyzed in reference 3. Only the results will be given here.

The ratio of the total heat input to the initial kinetic energy was
found tc be R

Cppoh
Crt'S T Qm =41 Do
- Q =_% g'A 1 - e fm sin Gf (1‘5)
-2' me2 D . . .

For the "relatively light missile," which is of principal interest here,

_ CDpoA
fm sin &
e feca (46)
and equation (45) reduces to
’ Cy'B
—e IZEZ (47)
lmw2a 2 A

The tlme rate of average heat input per unit area was found to be

sC A
- S -_2DPo™  -By
dHav _ 1 4q _ “F Po'f -By_ 2Pm sin Of
e™Pe (48)
At TS @& b
which has the maximum value
c
> = dH&f) £ —E; mVe3sin 6p (49)
max Ve, " 6e CpA

at the altitude
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Yo =% In (;m';p——&f) (50)

B Bm sin 6

Equation (49) applies, of course, only if the altitude of occurrence is
above ground level. If the value of ¥y, 1s negative then the maximum
rate will, of course, occur &t sea level,

The time rate of local heat input per unit area to the stagnation
region of the nose was found to be

P . By - e
9_%1 = 6.8x107 /2 v 8¢ 2 o Pm 8in Of (51)

heving & maximum velue of

- |Bm s8in @
s = (s 6.8x10"® [———-L v, (52)
L fuay N @b /Jy 3eCpoA

occurring at the altitude

3Cppoh
1 o)
=g (gm sin 9%) (53)

If the value of ¥, 1is negative, then the maximum value occurs at
ground level.

Skip vehicle.- With the aid of equation (17), the density at any
point in a given skipping phase is found to be

o = pe BV - % (cos @ - cos 6f) (5k)

where it is to be recalled that 6y, = 8p. The corresponding velocilty
is obtained by integrating equation (19) for constant L/D, yielding
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_ef-e
V = Vene L/ (55)

By substitution of equations (54) and (55) into equation (39), the time
rate of total heat input at any point in a skipping phase can he expressed
as follows:

a(gr-6)
dg _1CF'S Bu , 3 - - L/D
3t =3 Goh 1D Ven3(cos 6 - cos G¢)e (56)

Now, recalling that ds/dt = V, the first of equations (1%) may be com-
bined with equation (17) to yleld

de
T -BV(cos 6 - cos 6p) (57

Inasmuch as Vg, = Vo for any balllstic phase, 1t then follows from
equation (22) that

(n-1) 20
(Ven)n _ (Vsz;)n IR v (58)

(Ven) n=1

With the aid of equations (57) and (58), equation (56) can be integrated
to give the total heat input for a given skipping phase. Thus we obtain

02\ (n-2) £
9 1 Cp'S < _ e'f/‘ﬁ o (2 L/D (59)
-é- me2 2 cDA

where n refers to the ballistic phase subsequent to the given skipplng
phase.

The total heat input for the entire trajectory can be obtained by
summing up the heat inputs for each separate sklpping phase., Performing
this operation yields
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= Cr'S 46¢ -(n-1) —= ‘wf
G _ 1 Cf' L/D L/D
l___Q_ - E === 1 - ; (60)

The summation on the right side of equation (60) represents a geometric
series which can readily be evaluated. The total heat input for the
entire trajectory then becomes

(61)

1 2
‘= mV.
> iy

which is identical to the result obtained for the light ballistic missile
(eq. (¥7)).

The time rate of average heat input per unit ares is obtained by
dividing equation {56) with the surface area, thus yilelding

oot s(6p-6)
dHgy 1 Cf' Bm
at 2 Cph L/D Ven®(cos & - cos Gf)e L/D (62)

It can be shown that this expression hes a peak value at a polnt in the
skip, 85, given by

(cos @4 - cos 8p) = Lég sin 64

or e

cos Of
L/D)z
l ———
* ( 3

From equation (22) it can be concluded that the maximum heat-transfer
rate will occur in the first skip where Veop = Vp; consequently,

-1

8y = 75 - Bin (63)
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a(05-6g)

dHay fm Cp' TTL/D
= v in @
at ) B Cpa T “sin 6ge

(6k4)

The time rate of local heat input per unit area in the stagnation
reglon of the nose is obtained by Introducing equations (54) and (55)
into equation (44) with the following result:

3(6r-8)
dHg

1/2 5 m
d_t = 6 8xlo"6 <2ﬁm> COS e - cos Gf) / na e L/D (65)

Equation (65) has & peak value at a point 6y 1Iin a skip given by
D
(cos 6y - cos Bp) = Eé— sin 6y

or

cos Gf .
e

It ie clear in this case also that the heat-transfer rate wilill have its
meximum value in the first skipping phase where the velocities are
highest. Since Vg, = Vy in the first skip, equation (65) becomes

(66)

op = tan™t 5 - gin”t
W)

3(0r-6p)

dHg ~ - /BuL/D sin 6,\Y2 . ~TTg5
—EEZLEX = 6.8x10 30LAc > Vile (67

Glide vehicle.- From equetions (30) and (32), the den51ty at a point
in the glide traJectory 1ls found to be
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=2
CrAvg® 1 - (1 - V¢o)e'

(68)

where
J=ap
L?D

By substitution of eguations (30) and (68) into equation (39), the time
rate of total heat lnput can be expressed as

d_,Q! =é CE'S avs (1 - "-’g)eJrj_ (1 - —Z)e;l'—llja on
at "2 opa Lp g el - £)e | (69)

Now with the aid of eguations (30) and (33), equation (69) cen be inte-
grated over the limits of the glide trajectory to yield the total heat
input in terms of the initial kinetic energy as

Cg'S
Cpa

Q

me2

1
T =3 (70}

which expression is identical with that obtained for the skip vehicle
(eq. (61)) and for the light ballistic vehicle (eq. (L47)).

Now the time rate of average heat input per unit area is found by
dividing equation (69) with the surface area, thus ylelding

/2
dHgy 1 Cp' mglg = 2y J = 2y.J
ot EC_DKE/?(:L-Vf)e l-(l-Vf Je (71)

It follows from this expression that the maximum time rate of average
heat input per unit area is
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| 4
d.Ha_v> _(8Bay\ _ _L_ CF meVg
max

&t at )5, 343 CpA L/D (12)

at a value dJg glven by .
Jg = -ln g (l - Tffa) (73)

If J, 1is taken as a reference value, and equations (71) and (72) expres-
sed in terms of Jg and incremental changes AJ =J - dg, 1t can easily
be shown that

dHgyv/dt

(d'HB.V/dt) mex

va
=273 - 2e)" = (o) (74)

The dependence of Fg(AJ) on AJ is shown in figure 8.7

The veloclty at which the maximum average heat input rate occurs _
can be obtained by substituting equation (73) into equation (30) yielding

v=f§ o (75)

In equation ( 30) it is seen that the velocity is greatesf. at the start of
unpowered flight (i.e., when _J = 0). Equations (72), (73), and (7k)
apply, therefore, only when V¢ > (1A/3).

For caeses when 'Vf < l/\f§), the maximum time rate of average heat
input per unit ares will occur at the start of unpowered flight and is
given by ' :

dHav = -]; CF' mng _ T f~ T
=<dt> 5 GpR T/ (1 - V£5)Vr (76)

(dﬁa.v)
dt
7Similar generalized curves have been obtained for ballistic vehicles

in reference 3.
GalEDEG,
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The maximum time rate of locel heat input per unlt area in the stag-
nation region of the nose 1s found by first substituting equations (30)
and (68) into equation (k) to obtain

b -
dH 2mg - —
—dTbs- = 6.8x107® CL_AU'- Vsa[l - (1 - sz)eJ]I:(l - sz)e'r:, (1m

The meximum time rate 1s then

dHg dHg - - [ 2ng . >
__dt> = —-> = == 6.810™ [775 Vg (8)
/max

dt dp 3\(3_

occurring at a value of Jy, given by

Jp = -In 3(1 - V) (79)

With Jy, &as a reference, it can easlly be shown that

dHg/dt
(aHg/dt) pax

= (3 - e“) = Fp(a3) (80)

ol

where

AT =3 - Jy

The dependence of Fp(AJ) on AJ is shown in figure 8.

With reference to equations (30) and (T4) it can be seen that the
maximum time rate of local heat transfer in the stagnation regilon occurs
when - .

(81)

<)
n
o
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It is apparent then that eguations (77), (78), end (79) apply only when

Ve >J2/3. For caeses where Vp <A2/3, the maximum time rate of local

heat lnput per unit ares wlll occur at the start of unpowered flight and
1s given by

— — Ve
dBs _(Es = 6.8x107° /;E.f_ Vg e (1 - V) (82)
at /max &t /3y =0 LAY

DISCUSSION

Performance of Hyperveloclty Vehlcles

In this study the point of view is taken that the performance of
long~range hyperveloclty vehlcles is measured by thelr efficiency of
flight. Thus, for example, it is presumed that the advantages (military
end otherwisei of short time of flight accrue equally to all vehicles.

The efficiency of flight is perhaps best measured by the cost of
delivering & glven pay load a given range = the higher the cost, the
lower the efficiency. Quite abviocusly it is far beyond the scope of the
present paper to actually compute thils cost. Rather, then, we adopt a
more accesslble parameter of hypervelocity flight, namely, the initial
mass of the vehicle, as a measure of cost. In effect, then, the assump-
tlon 1s made that the higher the inltlial mass of a vehicle the higher the
cost and the lower the efficlency. With these thoughts in mind, 1t is
constructive to reconsider the basic performance equation (eq. (4)) writ-
ten in the form

my = mpe o/ e (83)

This expression clearly demonstrates the roles played by the three factors
which influence the Initial mass of a vehicle required to travel a glven
range. For one thing there is the power plant, and as we would expect,
increasing the effective specific impulse Incredses the over=-all efficlency
of flight in the sense that 1t tends to reduce the initial mass. The
veloclty at burnout influences initial mass by dictating the amount of
fuel reguired, end it is not surprising that decreasing the required burn-
out veloeclty (e.g., by increasing the L/D of a skip or glide vehicle)
tends to decrease the initlel masss. Finally, we see that the Initial
mass is proportional to the final mass which consists of the pay load,
structure {and associated equipment), and coolant., If we presume the mass
of the pay load to be some fixed quantity, then the initial mass will
vary in accordance wilth this mass of structure and coolant.

GONSTERNT T
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Now we assume for comparative purposes that the power plant for one
vehicle is equally as good as the power plant for snother vehicle - that
is to say I 1is a more or less fixed quantity. In this event it is per-
missible to resbrict our attentlion to two mein performance considerations;
namely, the prescribed motion as it iInfluences the required burnout
velocity, and the resulting aerodynesmic heating as it influences structure
and coolant. We therefore proceed to discuss the comparative performance
of long=range hyperveloclty vehicles in terms of these considerations.

Motion.~ The dependence of burnout velocity Ve on range was deter-
mined in the anaelysis of motlorn In unpowered flight and the results
obtained for the several types of hypervelocliy wehlcle under study were
presented in figures 1, L, and 6. Using these results in combination
with the baslc performance equation we have calculated the corresponding
initial to final mass ratios my/mf as a function of range. For these
and subsequent calculatiaons 1t has heen assumed thet the rocket power
plant develops an effective specific impulse of 225 seconds.® The results
of these calculations are presented in figure 9 and we observe that, in
general, the mass ratlos are highest for the ballistic vehicle. The gllde
and skip vehicles have comparable and relatlvely low mass ratios at 1ift-
drag ratios in the neighborhood of It and greater. The skip vehicle is
superior, however, to the glide vehicle at lift-drag ratlios in the neigh-
borhood of 2. From considerations of motion alone, then, we conclude
that the skip vehicle and the glide vehlcle developing lift-drag ratios
greater than 2 are superior efficiencywise, in the sense of this report,
to the ballistiec vehicle. Let us now determine how these obgervations
are modified by considerations of serodynamic heating.

Aerodynamlc heating.- The analysis has revealed one particulerly
salient factor in regard to the heat transferred by convection to hyper-
veloclity vehicles that expend the majority of thelr kinetic energy of
flight in traveling through the earth's satmosphere., This factor 1s that
the amount of kinetic energy which appesars in the body in the form of
heat is proportional to the ratio of frictlon force to total drag force
acting on the body (see eqs. (47), (61), and (70)). With the possible
exception of the relatively heavy ballistic vehicle (see ref. 3) all of
the hyperveloclty vehicles treated here do expend the major pert of their
kinetic energy in flight. It is, in fact, only by virtue of this expend-
iture of energy that the skip and glide vehicles achieve long rsnge. From
the standpoint, then, of reducing the total heat transferred by convec-
tion, the problem is to determine how the ratio of friction force to total
drag force can be reduced. Thies matter was discussed in detail in ref-
erence 3 in connection with bellistlc vehlcles and it was demonstrated
that the ratio could be reduced by employing high-pressure-drag (i.e.,
blunt) shapes. It would be most fortunate if this avenue of solution

8A value of Ig = 225 geconde was chosen on the basis of specific
impulses given for a cross section of rocket fuels in reference 4. In
particular, I 1is the average I for these fuels, reduced by about 15
percent to account for staging, etc., (see eq. (3);.

NSRSk
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were open also to the sgkip and glide vehicles; however, it is readily
epparent that such is not the case. This conclusion follows simply from
the fact that the skip and glide vehicles must develop reasonably high
lift-drag ratlos to achieve long range. But, as is well known, high
lift-drag ratios and high pressuré drag are incompatible aerodynamic
properties. Evidently, then, the skip and glide vehicles will be rela-
tively slender and they will, by comparison to blunt ballistic vehicles,
be required to absorb large amounts of thelr kinetic energy of flight in
the form of heat. On the basis of the calculations of reference 3, 1t
does not seem feasible for slender hyperveloéity vehicles to absorb and
retain so much heat (of the order of one-tenth the kinetic energy of
flight). We are led, therefore, to consider the possibility of radiating
part or all of this heat back to the atmosphere.

Let us first consider radiation heat transfer from the surface of a
glide vehicle. For purposes of simpllelty we presume a vehicle conical
in shape. The base dlameter is taken as 3 feet and the weight as 5,000
pounds. We conslder two slender cones which, according to hypersonic
theory including friction drag, can develop maximum lift-drag ratios of
4 and 6 (see Appendix C). We find (see Appendix D) that the L/D = 4
glide vehicle can radlate heat like a black body at a rate equal to the.
maximum average convectlve heat-transfer rate 1f the surface temperature
is allowed to rise to about 1500° F, If the vehicle develops a 1lift-
draeg ratio of 6, then the allowable surface temperature must be ilncreased
to about 1800° F. These surface temperatures are hilgh; nevertheless they
are withln the range of useful strengths of available alloya. Further-
more, they can, 1f necessary, be reduced somewhat by deslgning a less
dense vehicle (or, more specifically, a vehicle of lower mg/S, see
Appendix D).

It 1s indicated, then, that the glide vehicle has the attractive
poasibility of radiating back to the atmosphere a large fraction of the
heat transferred to it by convection.® As a result the mass of coolant
required to protect the vehicle may be greatly reduced. Just as with
the ballistic vehicle, however (see ref, 3), it 1s evident that additional
means, such as transpiration cooling, may well be necessary to protect
local hot spots on the surface, like the stagnation reglon of the nose.

It is also well to note that the alleviating effects of radlative cooling
are not limited to the glide vehicle alone, but would apply to any hyper-
veloclty vehicle in level flight.

We inquire now 1f the skip vehicle is capable.of radiating heat at
& rate comparaeble to the maximum convective heat-transfer rate. For this
purpose it sufflces to confine our attention to the flrst skip wherein
the maximum convective heat-transfer rstes are encountered (see eq. (64)).
On the basis of our cslculations for glide vehicles developing lift-drag

SThe possibllity of radiating relatively large quantities of heat
from glide vehicles has, of course, been considered by others in connec~
tion with particular designs.
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ratios of 4 and 6, we conclude that the skip vehicle developing compa-
rable lift-drag ratlos cennot radiate heat at anything like the maximum
convective rate. This conclusion follows directly from the faect that,
although the heat absorbed by the skip vehicle in the first skip would
be about the same as that for the glide vehlcle experiencing the same
loss of kinetic energy, the rates of absorption would be far greater for
the skip vehicle. Hence, the surface temperatures required for radilation
to offset convection would probebly exceed the temperatures at which
known meterisls retain apprecieble strength.®

Now the skip vehlecle operating at lift-drag ratios in the nelghbor-
hood of 2 will absorb less heat than sklp vehicles developing higher
lift-drag ratios. However, as shown in Appendix D, the former vehiele
still absorbs more heat than a comparable high-pressure-drag ballistic
vehicle and it accrues no apprecisble sdvantage by radiation. From the
standpoint of heat transfer, then, it is indicated that the skip vehlcle
is inferior to both the ballistiec and glide vehlcles. That is to say,
proportionately more coolant of one form or another would be required to
protect the skip vehiele than would be required to protect beallistic or
glide vehicles of the same range. The skip vehicle has other disadvantages
as well. Certainly one of the most serious of these lg the very high
lateral loads (see fig. 3) that the vehicle would be required to with-
stand during a skip from the earth's atmosphere. These loads, coupled
with simultaneous high thermal stresses (due to high convective rates),
would reguire the structure to be stronger and, consequently, heavier
than that of a comparsble glide vehicle.ll For these and other reasons
concerned with problems of stability, control, and guidance, the skip
vehicle is thought to be the least promising of the three types of hyper-
veloclity vehlele considered here.

In essence, then, the preceding study has Indicated that the ballistic
vehicle exhibits the possibllity of belng relatively efficient for hyper-
velocity flight by virtue of the fact that aerodynamic heating can be
markedly reduced through the artifice of using blunt, high-pressure-drag
re-entry shepes. The disadvantage of using the relatively lnefficient
ballistlie trajectory is counterbalanced by this advantage which tends to
keep initial mass down by reducing coolant mass. The glide vehicle
appears promising for hypervelocity flight because 1t has, coupled with
the relatively high efficiency of the gllde trajectory, the possibility
of radiating a large fraction of the heat absorbed by convection.

10Tt is interesting to note, as shown in Appendix D, thet a more-or-
less typical vehicle, operating at & reasonable surface temperature, can-
not radiate in the second ballistic phase of flight &l1]1 the heat convected
to it in the f£irst skipping phase.

11pdded weight means, of course, added coolant (see, again, eq. (61))
which, in turn, means added weight. The performance efficiency of vehi-
cles is reduced accordingly - indeed one can easily demonstrate that ulti-
mately the coolant is being added to cool coolant. This situation must
obviously be avoided.

I aalinsm=t o
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Up to this point we have considered the performance efficiency of
the several types of hypervelocity vehilcle by comparison wilth each other.
It 1s of interest now to compare, insofar as is possible, the efficiency
of flight of these vehlcles with that of lower speed, more conventiocnal
type aircraft.

Comparison of Hyperveloclty Vehicles
With the Supersonic Airplene

In the analysis of powered flight 1t was found that the basic per-
formance equation for hypervelocity vehicles could be written in a form
analogous to the Breguet range equation. Thus, according to equations (7)
and (9), we have for both hypervelocity and lower speed vehicles that

R = (%)exeveln (—E—i—) (8%)

where it i1s understood that the effective quantities are the same as the
actual quantities in the case of the lower speed, more conventionael ajr-
craft. Now let us consider the product (L/D)oIcVe. Taking first the -
supersonlc alrplane we assume flight at s Mach number of 2 and a maximum
lift-drag ratio of 5. .According to Schemberg (ref. U4) the product IgVe,
whether the Eower plant be ram-jet or turbojet, 1s not likelg to exceed
about L.Lx10° feet.12 The product (L/D)eIeVe 15 then 22x10° feet for

the airplane. Now let us compare these gquantitles with the corresponding
quantities for a ballistlc vehicle and let us presume that the range will
be half the circumference of the earth. In thils event, the effectlve
lift-drag ratio for the ballistic vehicle is 2x (see fig., 2) which is
slightly greater than that for the airplane, while the effective veloecity
is Just half the satelllte veloclity, or 13,000 feet per second. Let us
agaein assume that the effective specific impulse i1s 225 seconds. In

this case, the product of IgVe i1s 2.9x10° feet which is about two thirds
of that for the airplane. The product (L/D)eIcVe 1s about 18x10° feet
which is less than, but certainly comparable to, that for the supersonic
airplane. Thus we have our first suggestion that the hypervelocity vehi-
cle is not necessarily an inefficient type vehicle for long-range flight.

In order to pursue this point further, a performance efficiency
factor (see eq. (10)) defined as

E = G;—) ToSe . _ 0 (85)
e Vg 1n (ﬁi

nf

12This observation holds essentiaslly for any air-breathing engine =~
note that the maximm value of IgVe 1is simply the product of the thermal
efficiency (taken as 0.3) and the specific heat content of the fuel (taken .
as 14,6X10® feet for gasoline-type fuels).
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has been calculated for ballistic and glide vehicles for I = 225 sec~
onds, and ranges up to the circumference of the earth. The corresponding

uantity E has been calculated for the supersonic airplane

TeVe = L.Ux10® feet) for several 1lift-dreg ratios. The results of these
calculatlions are presented in figure 10 and we observe, as our example
calculation suggested, that both the ballistic and glide vehicles compare
favorebly with the supersonic airplane for ranges 1n the neighborhood of
and greater than helf the circumference of the éarth. The glide vehlcle
1s again superlor to the ballistlc vehicle at lift-drag ratios in excess
of 2 and, as a result, it compares favorebly with the airplane at shorter
ranges than the ballistic vehicle.*®

CONCLUDING REMARKS AND SOME DESIGN CONSIDERATIONS
FOR GLIDE VEHICLES

During the course of this study it has been indicated that ballistile
and glide vehicles can be operated at hypervelocities with the reasonable

aaurance +hat nrohlema of serodvnamie hesting can he lagrcelvw gllevisted
SE8UTaINCce TNaT Prol.icis QL acrodynomic leadtilfg can fe argely a._._cviatel

by proper design. Skip vehicles appeared substantlally less promising

in this as well as other respects. It was further demonstrated that on
the basis of equal ratics of initial to final mass, the long-range hyper-
velocity vehicle compares favorably wlth the supersonic airplane. These
conslderations suggest that the ballistic and glide vehicles have, in
eddition to the advantages usually ascrlbed to great speed, the attractive
possibility of providing relatively efficlent long-range flight.

o

In view of these f£indings, 1t seems appropriate as a final point to
touch on what appear to be favorable design fegstures of glide-~type vehi-
cles. Comparable aspects of the ballistic vehicle are not treated here
inasmuch as they have already been considered in some detail in refer-
ence 3. Two categories of glide vehicle will be considered. The Tirst
category is made up of those vehicles whose flight through the earth!s
atmosphere is entirely at hypersonic speeds. More specifically, a vehi-
cle in this category is required to be stable and controllable to the
point of high-speed impact with the surface of the earth. The second
category includes those vehicles which are requlred to have acceptable
low-speed aerodynamic characteristics (perhaps to the point of landing).

Considering now the first category, we recognize that while the
shape of the vehicle must be such as to provide reasonsbly high lift-drag

13Tt should be kept in mind, of course, that my may be substentially
greater than mp, the mass of the pay load. This point takes on particular
significance with regard to expendsble vehicles where m-/mp is perhasps &
better measure of cost tharn mj/mp. Thus, noting that mi/mp=(mi/me) (me/mp),
and recognizing that mg/mp 1s probably lowest for the ballistic vehicle,
we anticipate that the ballistic vehicle would sppear to better advantage
than shown in figure 10.

plaalir===r
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ratios, it should also he a compact configuration designed to minimize
structural and, hence, propellant welght. Furthermore, it appears most
desirable from the standpolint of aerodyrnamic heating to eliminate all .
surfaces that present extremely severe heating problems. These consldera-

tions tend naturally to focus our attention on configurations free of

the planar surfaces normally used for developing lift and providing stable

and controlled flight. We pursue this point, therefore, by inquiring of -
the efficiency of a body of revolution as & lifting device at hypersonic

speeds. For thls purpose, theory, including friction drag estimates, was
employed to calculate the maximum lift-drag ratlos of cones and flat

plates (see Appendix E) and the results are presented in figure 11. It

is seen that while the flat plate 1s, as would be expected, by far the

most efficlent lifting device at low supersonic speeds (l/M-€>1), 1t has

but little. advantage over the cone at hypersonic speeds (1/M—>0),%*

Evidently, then, the body of revolution is relatively efficient for

developlng 1ift at hypersonic speeds.

Now, it 1s clear (see eq. (78)) that just as with the ballistic
vehicle, the nose of the glide vehlcle should be rounded to alleviate
the local heating problem. There is evidence, both theoretical and exper-
imental that in addition to alleviating the heating problem, rounding the
nose may, in' fact, increase the 1lifting efficlency of & body. Recalling
that for slender bodiles the maximum 1lift~drag ratlio is governed primarily
by 2zero-1ift drag, we recognize the validity of this statement on the
basis of the theoreticael and experimental work of reference 9 and the
experimental work of reference 10.

The body must, of course, be stable and controllable in flight.
Recent experimental work in reference 11 indicates that these require-
ments may be satisfied without recourse to planar surfaces. Stability
in pitch and yaw is provided by a conical flare at the base of the body,
and control in pitch and yaw is provided by deflectable sections of the
surface of the body. These sections are located on the rear portion of
the body to provide a configuration which 1s inherently steble in roll.
A hypervelocity glide vehicle in the first category might, then, in view
of these considerations, appear something llke that shown 1n figure 12
which i1s repeated from reference 1ll.

Consider now a glide vehicle falling In category two. TFirst of all,
i1t appears most unlikely that acceptable low-speed aerodynamlc character-
1stics can be obtained without using more conventlonal planar surfaces,
at least to the extent of a wing. The questlon then 1s: What can be
done to alleviate the aerodynamic heating of planar surfaces? Especially
in this regard are we concerned with the very severe heating encountered

14This conclusion is not to be construed as contradlecting the findings
of Resnikoff, reference 8, which presumed an inviscid hypersonic flow.

Certainly too, as demonstrated experimentally by Resnikoff, the low-aspect-
ratic wedge wing will generally be superior to the body of revolution in -
the speed range of his tests (M = 5).
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at the leading edges of these surfaces.. It 1s apparent by analogy to the
nose of the body that the severity of serodynamic heating at the leading
edge of a wing can be reduced by simply rounding the leading edge. In
fact, on comparing the theoretical results of references 12 and 13, we see
that for the purposes of this report there is no essential difference
between the heat-transfer rate at the stagnation point of a dlunt leading
edge and that at the stagnation point of a comperable blunt nose as given
by equation (44). We may anticipate,. however, that rounding the leading
edge will incur a drag penalty which will, in turn, reduce the attainsble
lift-drag ratios. This difficulty may be largely clrcumvented by simply
sweeping the leading edge of the wing. The contribution to total drag

~ el T T omddame ad oo 2o Lo +lnd o veoriasr —as Arr e e, o oy e e oy e 2 T e
Ol wOoe LLL55 U:la I.;J-I.G .I.Cdu-_l-l-la :U-&c .LD .L.LI. D.I..I..I.D AHEIIITT LT T GHLJ.LU.IL.LLLMUCJ._Y

in proportion to the sguare of the cosine of the angle of sweep. Equally
important, the rate of heat transfer to the leading edge may also be sub-
stantially decreased by sweep. This possiblility 1s suggested by the
independence principle for cylindrical viscous flows (refs. 14 and 15)
which applies to the components of flow normal and parallel to the &xis
of a cylinder.l5 We conclude, therefore, that in the event rounded lead-
ing.edges are used to alleviate heat transfer to wings of glide vehicles,
or for that matter any hypersonlc wehicle, these wings might well have
highly swept leading edges. One is lead maturally to consider triarngular
or delta plen form configurations. By entirely analogous reasonling, the
triangular plan form may also prove desirable for stabillzing and control-
ling surfaces.

It is entirely possible, of course, and perhaps even desirable,
that wing-body Junctures of a glide vehicle should not be discontinuous
but rether that the body, in effect, should be simply flattened ocut to
appear more or less elliptic In cross section. In any event we see that,
interestingly enough, the concept of sweepback may play an important role
in reducing the heating and drag of practical configurations at hypersonic
speeds, much as it has for drag alone at supersonic speeds.

Ames Aeronautical Laboratory
Nationel Advisory Committee for Aeronautics
Moffett Field, Calif., Dec. 10, 195k

1SAccording to the independence principle and equation (M4), heat-
transfer rates will be reduced by the cube of the cosine of the leading-
edge sweep angle. This principle is, of course, mot strictly applicable to
viscous flow aboul blunt cylinders. Actually, there may be a -izable con-
tribution to heat transfer by the component of flow parallel to the leading
edge, and unpublished theoretical and experimental results indicate that
the reduction in hest transfer may be more nearly proporiional to the
square of the cosine of the sweep angle. In &ny.case, 1t is sufficient
for the purposes of this report, to note that a sizable reduction in heat
transfer is achieved by sweeplng & blunt leadling edge.
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APPENDIX A
ROTATION

reference area for 1ift and drag evaluation, sq ft
specific heat of vehilcle material, ft-1b/slug °R

drag coefficient

1lift coefficlent

skin-friction coefficient

equivalent skin-friction coefficient, (see eq. (L40))
speclfic heat of alr at constent pressure ft-lb/slug °r
specific heat of air at comstant volume, ft-1b/slug °R
drag, 1b

Naperian logarithm base

berformance efficiency factor, (see eq. (85))

general functional designation

functions of AJ, (see eqs. (T74) and (80))
acceleration due to force of gravity, ft/sec2
convective heat-transfer coefficient, ft-1b/ft2 sec °R

convective heat transferred per unit area (unless otherwise
designated ), ft-1b/f£t2

specific impulse, sec
range parameter for glide vehicle (see eq. (68))

Stefan-Boltzmen constent for black body radiation (3.Tx10™1°
ft-1b/ft2 sec OR%)

1if¢, 1b
mass, slugs

Mach number
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H & 0

<]

Vs

convective heat transferred (unless otherwise designated),
££-1b

distance from center of the earth, ft
radius of curvature of flight path, ft
radius of earth, £t

range, £t

distance along flight path, £t

surface area, sq ft

time, sec

tempersture (ambient alr temperature unless otherwise spec-
ified), °R .

velocity, ft/sec
ratio of welocity to satellite velocity

velocity of satellite at earth's surface (taken as 25,930
ft/sec)

weight, 1b

vertical distance from surface of earth, ft

angle of attack, radiens unless otherwise specified

constant in density-altitude relation, (22,000 £t)

ratio of specific heats, Cp/Cy

semivertex angle of cones, radians unless otherwise specified
increment

1ift-drag efficiency factor, (see eq. (C27))

angle of flight path to horizontal, radians unless otherwise
specified

function of Mach number, (see eq. (ET))
air density, slugs/cu £t (pg = 0.0034)
]
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o] nose or leading-edge radius of bedy or wing, ft
P partisl renge, radians

total range, redians

¥ remaining range (® - @), radians
Subscripts
o conditions at zero angle of attack

132s8s.++ conditions at end of partlicular rocket stages

a conditlons at polnt of maximum average heat-transfer rate

av avergge values

b conditions at polnt of maximum local heat-transfer rate
convection

e effective values

en conditions at entrance to earth's atmosphere

ex conditions at exit from earth's atmosphere

f conditlons at end of powered flight

inltial conditions

[ local conditions

n baellistic phases of gkip vehicles
N total number of rocket stages

hs) pressure effects

P pay load

r recovery conditions

R radlation

s stagnation conditions

T total wvalues

w wall conditions
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APPENDIX B

SIMPLIFYING ASSUMPTIONS IN THE ANALYSIS OF THE GLIDE TRAJECTORY

]

The assumption of small deflection angle (6 < <1) was used through-
out the study of the glide trajectory. In addition, equation (28) was
gsimplified on the assumpitions that

(L/D)e << 1 (B1)
and
2 .
e o o (o2)

The extent to which these assumptions are permissible can be checked by
deriving an expression for (L/D)G and examining its varisation over a
range of trajectory parameters.

From equations (30), (33), and (34) the altitude of any point in a
glide trajectory 1s found to be

- J
1-(1-Vede - Vs
y = Llin — Z 7|+ 1n ——:EF—E;EQ> (B3)
B (L - Ve5)e Vir=rq

By retaining the assumption of smell inclination angle, whereby ¢ =-dy/ds,
and recalling that J = (28/ro)/(L/D), we find the inclination angle by
differentiating equation (B3). Performing this operation and making use
of equation (30) reduces the expression for (L/D)e to

L, 2 1 _ 2.105x1078
D%~ BTOL - (1-vf2)eJ} v (B4

Since 72 becomes very small towerd the end of the trajectory, it is
apparent from equation (BLk) that the assumption of small (1/D)6 cannot
be justified in this portion of flight. The problem then is to determine
the conditions under which (L/D)G remains negligibly small over the
major part of the trajectory.



38 g NACA RM ASL4T1.10

with the aid of equations (30) and (36), equation (BY4) can be modi-
fled to the following form

o _, _ LA 1 (85)
) o ] - [Q{Bro ]
(r/p)e

For given values of L/D and total range &, equation (B5) determines

the fractional part of the total range which corresponds to a given value
of (L/D)e. Since the deflection angle is always incressing, we can there-
fore determine the portion of the total range through which (L/D)e remains
equal to or less than a given value. A computation of this nature was
performed for a value of (L[D)e < 0.05, and the results are presented in
figure 13. From this figure we can see that except for short ranges

and large 1ift-drag ratios, (L/D)6 (as well as @) remains at a value less
than 0.05 for better then 90 percent of the total range.

The second assumption, equation (BE), can alsoc be verified from the
results of the enalysis. By differentiation of equation (BY) we find that

= o
ag _ thz (1-Ve®)e
V2 E;- = Broz(I/D)z vz (B6)

while differentiation of equation (30} yields

Ve3(1 - T e
L um Lo LR (87)

Dividing equation (B6) by equation (B7), and meking use of eguation (Bh),
we find that

2 28 o9 2
s ___ = = [(L/D)o] (B8)
Tam L wp  @p)? /

v

By comparing equation (B8) with the previous results obtained for (L/D)8,
(fig. 13) we cen readily see that this assumption, equation (B2), is
actually less stringent than the previous one for practical values of
1/D.
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) APPENDTIX C

Cy'S
) THE RELATTON BETWEEN é; AND <'! FOR CONICAL MISSILES

The 1ift and drag coefflclents for slender cones at smell engles of
attack can be expressed in the followlng manner:

Cr, = 2u (c1)
CD = CDO + G:CL (02)

By dividing the first of the preceding equations by the second, one can
obtain an expression for the lift-drag ratio

- ] D G GCp +aC Cp, + CL?/2
It can be shown that equation (C3) has a maximum value when
Cp, = C1%/2 (cl)
whereby
) r/my_. = 2o (c5)

From equations (Cl) through (C5), the maximum velue of the lift-drag
ratio can be expressed in the following ways:

(L S S (C6)
D/max 2o CL 20D,

The drag coefficient at zero angle of atltack appearing in equa-~
tion (C2) can be broken down into its component parts to yield

Cp, = (CDO)P + CFOS/A (c7)
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where (CDO) is the zero-lift pressure drag coefficient and CFO is the
zero-1ift skin-friction coefficient based on wetted area. The skin-
friction coefficient, Cr,, in equation (CT) can be related to the equi-

valent skin-friction, Cp', (see eq. (43)) by considering average conditlions
over the surface of the cone. Equating the friction drags as determined
from free~stream and local average conditions, it is found that

(p?. )a_v(v?,)avz
CFO - <6FZ>LV pVZ (c8)

By referring to local average conditions on the body surface, the expres-
sion for Cp', equation (40), can be written as

(pl)av(vl)aw
cxt = (or,) :
ol Fy - ov (c9)
Comparing equations (C8) and (C9) it is apparent that

(Vl)av
CFO = CF' ¥ (C].O)

For slender shapes at hypersonic speeds, the local velocity doces not
differ appreciebly from the free-stream value. Also, for small angles
of attack, the skin-friction coefficient should remain fairly constant.
Consequently, equation (Cl0) can be written as

Cr, = Cp = Cp' = constant (ci1)

and equation (C7) then becomes

Cp'S
CDO = (CDO)'p * _%—

(c12)
From equations (C5) and (C12) it can then be shown that
CF'§> 1 (Opo)p
Yy =5\t -7 — (c13)

SOFTTENTIT.
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From the Newtonian impact theory, the zero-1lift pressure drag coef-
ficlent for slender cones at hypersonic speeds can be expressed as

(Cpg), = 282 (c1h)

where & 1s the semivertex angle of the cone. By further noting that
for slender cones

S 1
% .(c15)
equation (C12) then becomes
Cl t
= o082 ¥
Cp, = 26 + —§~ (016)
For a given value of Cg'! it can be shown that equation (C16) has
minimum value when
i/s
Sopt = ( ) (c17)
whereby, at & = sopt
2
(CDo)yan = Bopt = 3(Cpo),, (c18)

Obviously, then, the highest value of maximum lift-drag ratio (eq. (C6))
will be attalned by the cone with the semivertex angle given by equa-
tion (C17). By substitution from equation (Ci8) into equation (C6), the
optimum value of maximum lift-drag ratio is

By further substituting the expression for minimum zero-lift drag
coefficient, equation (C18), into equation (Cl3), the following relation,
corresponding to the condition of optimum meximum lift-drag ratlo, is
obtained:

Cp'S

1
_CpA. (L/D) ey 3 (c20)
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With the aid of equations (ClL) and (C16), equation (C13) can also
be expressed in the following form, corresponding to any maximum 1ift-
drag ratio including the optimum value:

tg
Cp'S L - —2 (ce1)
CpA 2 Cg

(L/D)Ina.x 1 + 253

From equations (C20) and (C21) it cen readily be seen that in the case of

Cp

— =2 g22
280Pts ( )

from which 1t follows directly that

et S (8—‘;?E>3 (c23)

so that equation (C21) may be written as

5opt

With the aid of equations (Cl6) and (C23), the expression for any
(L/D)pax (eg. (C6)) can be shown to be

(c25)

O T

and it follows directly from equation (Cl9) that the ratio of (L/D)pax
for any cone to that for the optimum cone is
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aaNme— 43
Sopt /2
= _05!; 3 oot = (co6)
1+2 <?7§—>

where 1 1s defined as the "1ift-drag efficiency factor.™

By substitu-
tion from equation (C24), the ratio of (L/D)max to the optimum value can
then be expressed in terms of (Cp'S/CpA) as follows:

7! i/s Cy! 1/8
L =J§<CCD§> (1 -2 CDD

The dependence of 7

(cam)

on Cp'S/CpA is shown in figure 1h. It should
be noted, however, that for small values of 17 +the assumption of slender
cones will be vioclated, although the results as shown will be qualitatively

correct in that Cp'S/CpA will become exceedingly small for low values
of (L/D)max regardless of body shape.
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APPENDIX D

COMPUTATTON OF HEATING ASSOCIATED WITH ROCKET VEHICLES

Radistion of Heat From (Glide Vehicles

From equation (72), the maximum time rate of total heat imput to
the glide vehicle can be expressed as

aq _ dHgv _ __meVs FtS) D1
<dt AN 3f3(1/p) \CDA o

The rate of heat radiation from the vehicle can be expressed by the fol~-
lowing standerd relation

dHg

T KT4S (p2)

S

Using equations (Dl) and (D2}, the requirement for continuous radia-
tion of all convective heat input to a surface at a temperature 2000° R
(1540° F) can be expressed as

Cp'S
—me  “F” o4 5 (D3)

s(L/D) CpA ~

If a value of (L/D)ma¥ = 6 is assumed, values of the parameter Cy'S/CpA
op

and cone angle, 8, can be determined as a function of actusl (L/D)pax

from the analysls gilven in Appendix C. A vehicle weight of 5000 pounds

with & maximum diameter of 3 feet is assumed whereby equation (D3} can

be evaluated for various (L/D) giving the results in the following table:

. 3, 8, mg Cg'S
L/D | CF'S/CpA deg | sq £t s(i/D) CpA
6 | 0.333 2.75 | 147 1.89
b .0600 6.731 60.2 1.24
2 | .00710 (14.3 28.6 619
1 .000890 129.6 14.3 .312
1/2| .000115 {55.8 8.55 .135
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We see, therefore, that at surface temperatures of 2000° R and for an
L/D of 4, this glide-type vehicle can radiate heat at a rate equal to or
gregter than the maximum convectlve heat rate. .

Radlative and Convectlive Heat Transfer Assoclated
With Skip Vehicle

In this section the problem is to determine the extent to which
heat absorbed by & skip vehicle in the first skipping phase, can be
reradiated during the subsequent ballistic phase. The quantity. of heat
absorbed in the first skipping phase has alreedy been obtained in the
heating analysis, (eq. (59) for n = 1)

Q 1 “F "L/D
- / (Dk)
EmeZ J \ /

where the total heat absorbed throughout the entire trajectory is

(D5)

Cg'S
CpA

]
o=

% mVy
In order to determine the heat radisted, three quantitles must be
determined: ’ '

l. Temperature of the vehicle at the start of the second ballistic
phase

2. Temperature of the vehicle at the end of the second ballistic
phase

3. The time duretion of the second ballistlc phase

To determine the filrst of the above quantitlies, we employ the rela-
tion for heat absorbed

Q1-= CWeAT (D6)

where c¢ 1s the specific heat of the material, We Is the effective
weight of material absorbing heat, and AT is the temperature rise during
the first skip. If it is assumed that 1/3 of the missile weight will

ColEEpRnyy,
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absorb heat, equation (D6) becomes

ar =2 2 (D7)

where m is the total mass of the vehicle. It is assumed that the
material has a specific heat of 0.11 Btu/lb ®R. If it is also assumed
that the temperature at the start of the first skip is 500O R, equa-
tion (D7) becomes

Tex, = 500 + 1.1x107° <Q> (D8)

which defines the temperature at the beginning of the second ballistic
phase,

To find the temperature at the end of the second ballistic phase,
we equate the radiant heat-transfer rate from the hody to the rate of
heat loss in terms of the temperature drop of the body

-kT%S dt = cWedT (D9)

This expression can be integrated between limits from beginning to end
of the second ballistlc phase to yield

Teny = 2 (D10)
~15 1
(7.95%10"*9) 8t + ——g-
eXo

for a vehnlcle welght of 5000 pounds (effective absorbing weight of 1667
pounds) where Tan_, 1S5 the temperature at the end of the second ballistic
phase and t+ is tﬁe total time of the second ballistic phase. The total
heat lost by radiation cen now be expressed in terms of the temperature
drop as : :

QR, = (Tex2 - Tenz)wec__
or

Qr, = 1.41x10%(Tex, - Teny) (D11)
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From reference T, in combination with the results presented for the
motion of & ballistic vehicle (eq. (11)), the time of flight in any bal-
listic trajectory can be expressed as

i) 3/2
(i - cOs é) o T 11
2rg -1 ]
t = tan 8¢ + =———= tan <:f——:—— tan-{)
Vs (1 - 13) J1 - 12 1.-1 e

where

(D12}

tan 6

e
It

4

)
5 + tan 9pcos

sin E

8in @pcos 8
tan kg £

e
I

%% - cos26p

The foregoling reletions were applied to a computatlion of the radia-
tive cooling of a missile weighing 5000 pounds and traversing a total
range of 3440 nautical miles (® = 1.0). Values of 6f were obtained in
the motion analysis, whereas values of CF'S/CDA and S5 obtained in the
previous calculation with regard to the glide missile will apply to this
case also, The computatlons are summarized in the followlng table, Note
that t?e case of I/D = 1/2 is essentially the ballistic vehicle (see
fig. 9).

8 — T _

L/D dﬁé Vr® |Qax1075|Q1/Qp sZé Tng’ 65> | X107 GR2/G1
6 |12.5]0.275] 3115 |0.135|213 |[2710 | 1k9o0 1725 |0.55h4
L (17.0] .315( 1470 | .258{335 |[1542 | 1323 316 211
2 [2k.0] .525 549 1 575|395 889 | 885 o7 .olg
1 |27.5] .620 122 | .853|2k7 | 587 | 585 3 .023

1/2|30.0] .650 19 | .985! 80.4 514 | 514 0 o

We see, therefore, that the guantity of heat which must be absorbed
by this skip vehicle decreases rapidly with decreasing lift-drag ratio.
The quantity of heat which must be absorbed by a ballistic vehicle
(/D 2 1/2) is almost negligible compared with the quantities associated
with vehicles with an D = 2 or greater. Comparison of the hest absorbed
in the first skipping phase with the heat radiasted in the second ballistic
phase indicates no appreclable advantage is obtalned due to radiation for

N R e
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values of L/D = 2 and lower. To be sure, this situation could be sub-
stantially altered (near L/D = 2) by allowing the surface temperatures
to reach higher values during the skip; however, it seems most unlikely
that the net heat absorbed by the skip vehicle could ever be reduced to
the low value of the ballistic vehicle for any reasonable surface tem-
perature.
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APPENDIX E

DETERMINATION OF THE RATIO OF (L/D)pay FOR

A FLAT PLATE TO (L/D)pq, FOR A CONE

In Appendix C the expression for the optimum (L/D)max for a slender
cone was developed with the assumpiion of large Mach numbers and & constant
value of Cp'. A simple analysis will now be presented whereby it is
shown that equation (C19) will apply, for the most part, throughout the
Mach number range and for & variable Cg'. Inasmuch as the 1lift coef-
ficient (eq. (Cl)) is essentislly independent of Mach number and cone
angle, modification of the results obtained in Appendix C (eq. (C19))
will occur only through the evalustion of the zero-lift drag coefficient

(eq. (C6)).

The variation with Mach number of the zero-1ift pressure-drag coef-
ficient, (Cpy)p, can be represented as

(cDO)P = 2f (M) sin®s (E1)

while Cgp'! is assumed to vary wlth cone angle in the following menner

m
cg' = Cp',_ B (E2)

where um i1s chosen to gilve the reguired veriation of Cg' with 3. By
an analysis paralleling that presented in Appendix C, it can be shown
that the optimum value of the 1lift-drag ratic assumes the following form

B~ @)

Now the values of f£(M) should not differ greatly from 1 while values of
m should not differ greatly from C. It follows then that values of
(L/D)m& obtained from equation (E3) will not differ appreciably from
those obtained from equation (Cl9). Furthermore, the coefficient Cp!
will not differ appreciably from Cp for the slender shapes and small
angles of attack under consideration. Equation (E3) then reduces to

the form

(E3)
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A y\"®

1
$) ==& (EL)
<$>Lax 23 \°F.
which corresponds to equation (C19) and is also a suitable approximation
for all supersonic Mach numbers.

For s flat plate in supersonic flow, the 1ift and drag coefficients
can be expressed as

oL = —2— + 2o® (E5)
M2 -1
CD = CDO + GCL (EG)

which follows easily from the equation for pressure coefficient given by
Ivey and Cline (ref. 16). By noting that

Cp, = 2Cp

the 1ift-drag ratio can be written from equations (E5) and (E6) as

Ao + of
)

" op + 22 + o

L
o) (ET)

where

Equation (ET) is found to have the following maximum value

T, 1
L = (E8)
<§>Lax a + «® 2ah

P r D (ohr o) (ah+ )

condition L. R S .

o AL

which occurs at values of the independent varisbles given by the maximum
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= -—a’2
o = a [27\ - oo m)] (£9)

From equations (Ek), (E8), and (E9), and recalling that A = (M - 1)"1/2
the ratio of (L/D)pyay for a flat plate to (L/D)pg, for a cone can be
determined as a function of Mach number and Cgp. The variation of this
ratio with Mach number for given values of Cg has been presented in
figure 11, where it was found convenient to use the lnverse Mach number as
the abscissa in order to illustrate conveniently the behavior at hyper-
sonic speeds.
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