ttps://ntrs.nasa.gov/search.jsp?R=19930093753 2020-06-16T22:10:04+00:00Z

National Aeronautics and Space Administration Landley Research Canter

Hampton, Virginia 23665

JUN 1 6 1993

139A Repty to Alln of

20.4

Distribution **TO**1

FROM: 180A/Security Classification Officer

Authority to Declassify NACA/NASA Documents Dated Prior to SUBJECT: January I, 1960

Unformal, Carterouda

Effective this date, all material, classified by this Center prior to January 1, 1960, is declassified, This action does not include material derivatively classified at the Center upon instructions from other Agencies.

Immediate re-marking is not required; however, until material is re-marked by lining through the classification and annotating with the following statement. it must continue to be protected as if classified:

*Declassified by authority of LaRC Security Classification Officer (SCO) letter dated June 16, 1983," and the signature of person performing the re-marking.

If re-marking a large amount of material is desirable, but unduly burdensome, custodians may follow the instructions contained in NHB 1640.4, subpart F. section 1203.604, paragraph (h).

This declassification action complements earlier actions by the National Archives and Records Service (NARS) and by the NASA Security Classification Officer (SCO). In Declassification Review Program 807003, NARS declassified the Center's "Research Authorization" files, which contain reports, Research Authorizations, correspondence, photographs, and other documentation. Earlier, in a 1971 letter, the NASA SCO declassified all NACA/NASA formal series documents with the exception of the following reports, which must remain classified:

Document No.	
E-51330	•
E-53G20	
2-53021	
E-53K18	
8L-54J21a	
2-55C16 2-56R232	
•	

LARC TECH LIBRARY

First Author

Nagey Francisco Johnson Spooner Westphal Tox Himmel.

JUN 2 3 1983

804 864 2375

62:11 2661-90-90

If you have any questions concerning this matter, please call Mr. William L. Bimkins at extension 3281.

Jess G. Ross 2898

Distribution: SDL 031

ccr NASA Scientific and Technical Information Facility P.O. Box 8757 BWI Airport, MD 21240

NASA--NIS-5/Security 180A/RIAD 139A/TULAO

1392/WLSIMKinstelf 06/15/83 (328)) 1392/JS D G-15. 33

> ZI-OI HEADS OF ORGANIZATIONS Hebs, Jane 5., Heil Stop 155 Bloc 1194 Hail Stop 155

, e

2

. . :

NACA RM No. E7CO3

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TRINGTOLE

RESEARCE MEMORANDUM

DETERMINATION OF RAM-JET COMBUSTION-CHAMBER TEMPERATURES

BY MEANS OF TOTAL-PRESSURE SURVEYS

By I. Irving Pinkel

SUMMARY

A method is described by which the total temperature of the gases at the combustion-chamber outlet of a ram-jet engine may be determined from the loss in total pressure measured across the combustion chamber. A working chart is presented by means of which the ratio of the total temperature of the gases at the combustion-chamber outlet to the total temperature of the gases at the combustionchamber inlet may be determined from the measured loss of total pressure across the combustion chamber and the known values of air flow, total pressure, and total temperature at the combustion-chamber inlet.

Values of total-temperature ratio across the combustion chamber of a 20-inch ram jet were obtained in the Cleveland altitude wind tunnel over a range of pressure altitudes from 6000 to 15,000 feet. The difference between the temperature ratio across the combustion chamber determined from the chart and that obtained from thermocouple measurement was within 6.2 percent of the thermocouple-temperature ratio and was within the accuracy of the thermocouple measurements.

INTRODUCTION

The evaluation of the performance of a jet-propulsion engine and its combustion chamber requires a knowledge of the temperature of the combustion-chamber outlet gases. The temperatures in a ram-jet combustion chamber, however, are often too high for thermocouple measurement and must be determined by other means. Because the total-pressure loss across the combustion chamber is dependent on the ratio of the total temperature of the outlet gases to the total temperature of the inlet gases (reference 1), the temperature ratio can be determined from the total-pressure measurements.

A chart is presented in reference 1 to estimate the pressure losses in jet-propulsion combustion chambers from the known values of total temperature, total pressure, and air flow at the combustionchamber inlet and of the ratio of total temperature of the exit gas

1

to total temperature of the inlet gas. It is based on the assumption that the pressure losses in a given combustion chamber can be matched by those of an equivalent combustion chamber of uniform cross-sectional area.

In order to determine the temperature of ram-jet combustionchamber outlet gases from the pressure-loss chart, which is the application of the chart described in this report, the required known factors are the pressure loss across the combustion chamber, the air flow, and the total temperature and the total pressure of the air at the combustion-chamber inlet.

As an illustration of the use of the pressure-loss chart to obtain combustion-chamber temperature ratios, a comparison is made of the combustion-chamber temperature ratios computed from the pressure-loss chart with those determined by thermocouple measurement from wind-tunnel tests of a 20-inch ram jet taken over a range of pressure altitudes from 6000 to 15,000 feet. The combustion chamber of the 20-inch ram jet was considered to extend from the flame holder to the nozzle outlet because combustion continues in the nozzle. The range of temperature ratios compared was limited, however, to the values of combustion-chamber outlet-gas temperature for which thermocouple measurements could be made.

SYMBOLS

The terms involved in using the pressure-loss chart are defined in the following list of symbols: (The symbols on the pressure-loss chart in reference 1 have been modified in the present chart to conform to the corresponding ram-jet symbols that apply to the locations shown in fig. 1.)

- A area of cross section of equivalent combustion chamber of constant cross section, square feet
- K friction pressure-loss factor
- M₂ Mach number of air flow at inlet of equivalent combustion chamber of constant cross section
- M_B Mach number of air flow at inlet of combustion zone (fig. 2) of equivalent combustion chamber of constant cross section
- P2 total pressure of air at inlet of combustion chamber; pounds per square foot absolute

- P_B total pressure of air at combustion-zone inlet, pounds per square foot absolute
- P₄ total pressure of air at outlet of assumed combustion zone (nozzle outlet), pounds per square foot absolute
- $\Delta P_{\rm F}$ pressure loss due to friction, pounds per square foot
- ΔP_{M} pressure loss due to addition of heat to the air stream by combustion, pounds per square foot
- $\Delta P_{\rm T}$ over-all pressure loss due to friction and heat addition, pounds per square foot
- T_2 total temperature of air at inlet of combustion chamber, ^{O}R
- T₄ total temperature of gases at outlet of assumed combustion zone (nozzle outlet), ^OR
- W air mass flow through combustion chamber, pounds per second

DISCUSSION

The over-all total-pressure loss ΔP_T from the combustionchamber inlet to the combustion-zone outlet is considered equal to the sum of two component pressure losses: the friction pressure loss ΔP_F and the momentum pressure loss ΔP_M . The friction pressure loss results from friction and turbulence in the flow produced by the flame holder and corresponds to the pressure loss in the section between stations 2 and B in the equivalent combustion chamber (fig. 2). The momentum pressure loss results from the addition of heat to the air flowing in the combustion zone. The momentum pressure loss corresponds to the pressure loss in the section between stations B and 4 in the equivalent combustion chamber.

$$\Delta P_{\rm T} = \Delta P_{\rm F} + \Delta P_{\rm M} \tag{1}$$

 or

$$\frac{\Delta P_{\rm T}}{P_2} = \frac{\Delta P_{\rm F}}{P_2} + \frac{\Delta P_{\rm M}}{P_2} \cong \frac{\Delta P_{\rm F}}{P_2} + \frac{\Delta P_{\rm M}}{P_{\rm B}}$$
(2)

The pressure-loss chart in reference 1 is arranged to provide values of friction and momentum pressure-loss ratios, $\frac{\Delta P_F}{P_2}$ and $\frac{\Delta P_M}{P_B}$,

15

for known combustion-chamber-inlet conditions and temperature ratio T_4/T_2 , once the values of friction pressure-loss factor K and cross-sectional area of the equivalent combustion chamber A are known. The construction for obtaining the pressure losses from the chart (reproduced with changed notation as fig. 3) starts with the known value of the entrance parameter $W_*/T_2/P_2$ on the ordinate of quadrant IV. The Mach number M_2 is obtained from the proper A curve in quadrant IV and $\Delta P_F/P_2$ is obtained from the curve in quadrant I with the value of KA^2 for the combustion chamber. From this value of $\Delta P_F/P_2$ and the curve in quadrant II having the value of M_2 previously obtained, M_B is evaluated. The momentum pressure-loss ratio $\Delta P_M/P_B$ is obtained from this value of M_B and the known value of T_4/T_2 . The over-all total-pressure-loss ratio $\Delta P_T/P_2$ is then the sum of $\Delta P_F/P_2$ and $\Delta P_M/P_B$ (equation (2)).

The values of K and A for a given combustion chamber are obtained from the pressure-loss chart with a measured value of $\Delta P_{\rm T}$ and $\Delta P_{\mathbf{r}}$ taken for the same known value of the entrance parameter $W_{\sqrt{T_2}}/P_2$. The value of ΔP_T is obtained by measuring the pressure loss across the combustion chamber with combustion taking place at some measurable value of the temperature ratio T_4/T_2 . The friction pressure loss ΔP_{w} is measured across the combustion chamber with air flowing at the same value of the inlet parameter $W_{\star}/T_2/P_2$ without combustion. The difference between ΔP_{TP} and ΔP_{TP} is equal to ΔP_M (equation (1)). The values of K and A are obtained using this information on pressure losses and temperature ratio across the combustion chember by means of the construction Y shown on figure 3. Line a-b is drawn parallel to the abscisse through the known value of $\Delta P_{M}/P_{B}$ ending on the curve having the value of T_{4}/T_{2} used when ΔP_{ϕ} was measured. Line c-d is drawn parallel to the abscissa through the known value of $\Delta P_{\rm F}/P_2$. Line e-f is drawn parallel to the abscissa through the value of the-inlet parameter $W_{\chi}/T_{2}/P_{2}$ used in determining $\Delta P_{\rm T}$ and $\Delta P_{\rm F}$. The line a-g drawn parallel to the ordinate intersects line c-d on a curve in quadrant II having some value of M2. Line h-j is drawn parallel to the ordinate through this value of M2 on the abscissa of quadrant I. The intersection of line h-j with line c-d determines the value of KA2. The intersection of line h-j with line e-f gives the value of A. The values of K and A are reasonably constant for all conditions of ram-jet operation for which the flame is steady and originates at the flame holder.

4

The use of the pressure-loss chart with which this report is concerned is the evaluation of the temperature of the outlet gases of the combustion chamber from pressure-loss measurements once the values of K and A have been established. By means of totalpressure probes located at the combustion-chamber outlet, a value of the loss in total pressure ΔP_{m} across the combustion chamber is obtained in the subsonic case. The construction X shown on the pressure-loss chart (fig. 3) gives the value of T_4/T_2 from the known value of the entrance parameter $W_{\lambda}/T_{2}/P_{2}$ and the measured value of ΔP_T . The value of $\Delta P_F/P_2$ is obtained from the known value of $W_{\rm v}/T_2/P_2$ and the proper A and KA^2 curves. The value of $\Delta P_F/P_2$ is subtracted from the measured value of $\Delta P_{\rm TP}/P_2$ to give $\Delta P_{\rm M}/P_{\rm B}$ (equation (2)). Line 1-m is drawn parallel to the abscissa through the value of $\Delta P_M/P_R$. Line n-p is drawn through the known value of $\Delta P_{\rm F}/P_2$ ending on the curve in quadrant II having the value of M2 obtained at the abscissa of quadrant I when $\Delta P_F/P_2$ was evaluated. Line r-s, drawn parallel to the ordinate, intersects line 1-m on a curve in quadrant III having the value of the temperature ratio T_4/T_2 . Inasmuch as the total temperature of the gases at the inlet of the combustion chamber T₂ is known, the total temperature of the gases at the outlet of the combustion chamber T_A can be obtained.

In order for the measured value of the total pressure in the combustion zone to be representative of the flow at the measuring station, the total pressures obtained from the survey rakes should be weighted according to the local mass flow in the neighborhood of each pressure probe. As a first approximation the mass-flow distribution in the combustion zone can be considered to be the same as that upstream of the flame holder. This assumption takes no account of the effect of the flame holder, fuel-spray distribution, and boundary-layer growth on the mass-flow distribution in the combustion zone. A better approximation to the mass-flow distribution could be obtained by correlating the mass-flow distribution upstream of the flame holder with that in the combustion zone. This correlation is carried out for several combustion-zone temperatures low enough for the necessary measurements to be made over the range of combustion-chember inlet conditions of interest. The mass-flow distribution at the high combustion-chamber temperatures is obtained by extrapolating the mass-flow distribution measured at the low combustion-chamber temperatures. The uncertainty regarding the massflow distribution in the combustion zone represents one of the

approximations involved in using the method of this report to obtain combustion-chamber total temperatures.

Altitude-wind-tunnel data taken on a 20-inch ram jet, which was instrumented with temperature and pressure survey rakes in front of and behind the combustion chamber and nozzle outlet, were used in making the comparison between experimental and calculated values of T_4/T_2 in table I. The operational pressure altitude ranged from 6000 to 15,000 feet. The difference between the experimental and the calculated values of T_4/T_2 for the range of pressure altitudes tested is less than 6.2 percent of the experimental value. This difference in the temperature ratios obtained from thermocouple readings and pressure-loss measurements were within the accuracy of the thermocouple-temperature measurements.

The temperatures obtained from the pressure-loss chart are not subject to the errors involved in measuring temperature with thermocouples. These errors in the thermocouple temperatures include the absence of correction for conduction and radiation effects and uncertainties in the values of the thermocouple impact recovery factor required to compute the total temperature from the indicated temperature. The temperatures obtained from the pressure-loss chart are the total temperatures representative of the stations.

Values of KA^2 and A used to obtain the calculated temperature ratios are tabulated in figure 3. The range of values of $W_{\sqrt{T2}/P_2}$ for the complete combustion chamber exceeded the limit of the ordinate scale of quadrant IV. For this reason the calculations were made for a 60° segment of the combustion chamber for which W and A are one-sixth as large as the corresponding quantities for the complete combustion chamber and KA^2 is the same for the segment and complete combustion chamber. The value of A was 0.36 square foot for the 60° segment and 2.16 square feet for the complete combustion chamber. The geometrical area of the cross section of a 20-inch-diameter combustion chamber is 2.18 square feet. From these data, the actual cross-sectional area of the cylindrical ram-jet combustion chamber can be used as a first approximation for the value of the crosssectional area of the equivalent-combustion chamber A.

Temperature T_4 has been considered to represent the combustionchamber-outlet total temperature. If the total-pressure probes were located at a station within the combustion zone, however, the value of T_4 obtained from the pressure-loss chart would represent an estimate of the total temperature at that station. A survey could NACA RM No. E7CO3

1

thus be made of the longitudinal temperature distribution in the combustion chamber. In general, a separate value of K and A should be determined for each station in the combustion zone. The values of K and A probably require little adjustment except for stations close to the flame holder.

Experimental and calculated temperature ratios at station 3 (fig. 1) are also compared in table I. The divergence between the experimental and calculated values of T_3/T_2 is attributed to hoterogeneity of the flame at station 3. Most of the thermocouples at station 3 appear to be located in flame zones of higher than average temperatures.

Aircraft Engino Research Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio.

REFERENCE

1. Pinkel, I. Irving, and Shames, Harold: Analysis of Jet-Propulsion Engine Combustion-Chamber Prossure Losses. NACA TN No. 1180, 1947.

TABLE I - COMPARISON OF EXPERIMENTAL AND COMPUTED TOTAL-TEMPERATURE

RATIOS FOR 20-INCH-DIAMETER COMBUSTION CHAMBER OF RAM JET

	Altitude	$W\sqrt{T_2}$	Ξ <u>4</u> Ξ ₂			$\frac{T_3}{T_2}$	
I	(ft)	P ₂	Calcu-	Experi-	Difference	Calcu-	Experi-
			lated (a)	montal (b)	(percent)	lated (a)	mental (b)
	6,000	0.1820	2,08	2.14	-2.8	1.42	2.06
	6,000	.3560	2.29	2.39	-4.2	1.43	1.84
	10,000	.2164	3.40	3.28	3.7	1.50	2.55
	10,000	.2671	3.75	3.64	3.0	1.67	2.62
ţ	10,000	.3842	1.44	1.49	-3.3	1.23	1.47
	15,000	.2155	3.54	3.77	-6.1.	*****	
	15,000	.2360	1.82	1.92	-5.2	1.33	1.77
	15,000	.3282	1.60	1.68	-4.8	1.20	1.64

^aFrom chart of figure 3.

^bFrom wind-tunnel data.

National Advisory Committee for Aeronautics

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Figure I. - Diagram of 20-inch ram-jet engine.

.

L

Fig.

L

۵.

652

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Figure 2.- Station locations on equivalent combustion chamber of constant cross-sectional area.

Fig. 2