https://ntrs.nasa.gov/search.jsp?R=19930093773 2020-06-16T22:07:57+00:00Z

CANCELLED

RM E9G09

CODV

143

RM-E9G09 SEC

NACA RM E9G09

TECHNICAL LIBRARY AIRESEARCH MANUFACTURING CO. 9851-9951 SEPULVEDA BLVD. INGLEWOOD, CALIFORNIA

RESEARCH MEMORANDUM

ALTITUDE-WIND-TUNNEL INVESTIGATION OF

J47 TURBOJET-ENGINE PERFORMANCE

By E. William Conrad and Adam E. Sobolewski

Lewis Flight Propulsion Laboratory Cleveland, Ohio

TECHNICAL LIBRARY AIRESEARCH MANUFACTURING CO. 9851-9951 SEPULVEDA BLVD. INGLEWOOD.

> CALLEORNIA This document contains classified information affecting the National Defense of the United States within the meaning of the Explorage Act, 1085 50:31 and 32. Its transmission or the revealation of its contents in any manner to an inauthorized person is prohibited by law. Information so classified may be imparted inly to persons in the military and maxal services of the United States, appropriate services of the United States, appropriate Overnment who have a legitimate Interest Jovernment who have a legitimate laterest herein, and to United States clitizens of known oyally and discretion who of necessity must be mormed thereof.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

> WASHINGTON November 15, 1949

GONRESTRICTED

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

ALTITUDE-WIND-TUNNEL INVESTIGATION OF

J47 TURBOJET-ENGINE PERFORMANCE

By E. William Conrad and Adam E. Sobolewski

SUMMARY

An investigation has been conducted in the NACA Lewis altitude wind tunnel to evaluate the performance of the J47 turbojet engine over a range of simulated altitudes from 5000 to 50,000 feet, simulated flight Mach numbers from 0.21 to 0.97, and a complete range of engine speeds. Data are presented to show the effects of altitude at a flight Mach number of 0.21 and of flight Mach number at an altitude of 25,000 feet. The performance data are generalized by two methods to determine the range of flight conditions for which engine performance may be predicted from performance data obtained at a given flight condition.

Engine-performance parameters obtained at a given altitude and flight Mach number could be used to predict engine performance for only a limited range of altitudes and corrected engine speeds. From the engine pumping characteristics presented, jet thrust could be predicted for any desired flight Mach number and exhaust-gas temperature for engine-pressure ratios above approximately 1.4 at altitudes from 5000 to 50,000 feet. The decrease in temperaturelimited engine speed with increasing altitude indicated the need for a variable-area exhaust nozzle.

The specific fuel consumption at temperature-limited engine speed and a flight Mach number of 0.21 varied from 1.20 to 1.30 pounds per hour per pound of net thrust over the range of altitudes investigated. A minimum specific fuel consumption of 1.05 pounds per hour per pound of net thrust was obtained at an engine speed of approximately 6400 rpm at altitudes from 15,000 to 45,000 feet. Changes in flight Mach number at rated engine speed had no appreciable effect on specific fuel consumption. At lower engine speeds, however, the specific fuel consumption increased as the flight Mach number was raised. At an altitude of 25,000 feet, the internal drag of a windmilling engine varied from 2 percent of the available net thrust at a true airspeed of 200 miles per hour to 15 percent at a true airspeed of 650 miles per hour.

INTRODUCTION

An investigation has been conducted in the NACA Lewis altitude wind tunnel to determine the over-all performance, component performance, and operational characteristics of a J47 turbojet engine over a wide range of simulated flight conditions.

Data are presented in graphical form to show the engine performance over a range of altitudes from 5000 to 50,000 feet and flight Mach numbers from 0.21 to 0.97. The effect of altitude is shown at a flight Mach number of 0.21 and the effect of flight Mach number is shown at an altitude of 25,000 feet. Performance data are generalized by two methods to determine the range of flight conditions for which engine performance may be predicted from performance data obtained at a given flight condition. Curves are presented to show the windmilling characteristics of the engine. All engine performance data obtained in the investigation are also presented in tabular form.

DESCRIPTION OF ENGINE

The J47 turbojet engine used in the altitude-wind-tunnel investigation (fig. 1) has a sea-level static thrust rating of 5000 pounds at an engine speed of 7900 rpm and a turbine-outlet gas temperature of 1275° F. At this rating the air flow is approximately 94 pounds per second. The engine has a 12-stage axial-flow compressor with a pressure ratio of approximately 5.1 at rated engine speed, eight cylindrical direct-flow-type combustion chambers, a single-stage impulse turbine, and a fixedarea exhaust nozzle. The exhaust nozzle, which was used in this investigation and was designated standard, had an outlet area of 280 square inches. This exhaust nozzle produced a turbine-outlet temperature of approximately 1275° F at a flight Mach number of 0.21, an altitude of 5000 feet, and an engine speed of 7900 rpm. The over-all length of the engine excluding the exhaust nozzle is 143 inches, the maximum diameter is approximately 37 inches, and the total weight is 2475 pounds.

Air enters the engine through an annular inlet (fig. 2) and passes into the compressor through a row of inlet guide vanes. The air is discharged from the compressor through two rows of straightening vanes. From the annular outlet of the compressor, the air flows into the combustion chambers where it is mixed with fuel injected through duplex fuel nozzles. The mixture is burned and the hot gases of combustion flow through the turbine-inlet stator blades, the turbine, and into the atmosphere through the tail pipe and the exhaust nozzle.

INSTALLATION

The engine was mounted on a wing in the test section of the altitude wind tunnel (fig. 1). Dry refrigerated air was supplied to the engine from the tunnel make-up air system through a duct connected to the engine inlet. A frictionless slip joint in the duct made possible the measurement of engine thrust and drag by the tunnel balance scales. The air flow through the duct was throttled from approximately sea-level pressure to a total pressure at the engine inlet corresponding to the desired flight Mach number at a given altitude.

Instrumentation for measuring pressures and temperatures was installed at various stations in the engine (fig. 2). Instrumentation for measuring air flow was installed at the inlet-air-duct venturi throat (station r), the engine inlet (station 1), and the exhaust-nozzle outlet (station 7).

PROCEDURE

Thrust values were calculated from tunnel balance-scale measurements and also from values of gas flow and jet velocity obtained from measurements with the exhaust-nozzle survey rake. The exhaust-nozzle jet-velocity coefficient, defined as the ratio of scale jet thrust to rake jet thrust, is shown as a function of exhaust-nozzle pressure ratio in figure 3. Engine performance is based on thrust values obtained from the balance scales because this method includes the losses resulting from the inefficiency of the exhaust nozzle.

Symbols and methods of calculation are given in the appendix.

Performance data were obtained at the following altitudes and flight Mach numbers:

1159

Altitude (ft)	Flight Mach number
5,000	0.21
15,000	0.21, 0.53
25,000	0.21, 0.53, 0.72, 0.85, 0.97
35,000	0.21, 0.53, 0.72
45,000	0.21, 0.53
50,000	0.21

Complete ram-pressure recovery at the compressor inlet was assumed in the calculation of flight Mach number. The fuel used was AN-F-32 with a lower heating value of 18,550 Btu per pound. The engine-inlet air temperature was held at approximately NACA standard values for each simulated flight condition except those of high altitude and low Mach number. Engine-inlet air temperatures below 439° R were unobtainable.

RESULTS AND DISCUSSION

All the data obtained in the performance investigation of the engine with a standard exhaust nozzle are compiled in table 1. The engine-inlet pressures and temperatures deviated slightly from the desired inlet conditions. The data presented graphically in non-generalized form have therefore been adjusted to NACA standard altitude conditions by means of the factors δ_a and θ_a (appendix A).

Engine Performance

Effect of altitude. - Engine-performance data obtained at a flight Mach number of 0.21 at altitudes from 5000 to 50,000 feet are presented to show the effects of altitude on net thrust, air flow, fuel flow, specific fuel consumption, fuel-air ratio, and exhaust-gas total temperature in figure 4. Engine net thrust, air flow, and fuel consumption decreased consistently as the altitude increased (figs. 4(a) to 4(c)). Data obtained at high engine speeds are not shown for an altitude of 15,000 feet because the flight Mach number was inconsistent with other altitudes. At altitudes above 15,000 feet, the maximum engine speed was limited by turbineoutlet temperature.

The specific fuel consumption (fig. 4(d)) was essentially constant for altitudes from 5000 to 45,000 feet at engine speeds above 7200 rpm and for altitudes from 15,000 to 45,000 feet at

engine speeds above 5750 rpm. In the engine-speed range between 4500 to 6600 rpm, the highest specific fuel consumption occurred at an altitude of 5000 feet; at engine speeds above 6600 rpm, the highest specific fuel consumption occurred at an altitude of 50,000 feet. The data indicated no consistent altitude effect at engine speeds below 5750 rpm, probably because of large variations in component efficiencies in the low engine-speed range. The minimum specific fuel consumption of 1.05 pounds per hour per pound of net thrust was obtained at an engine speed of approximately 6400 rpm at altitudes from 15,000 to 45,000 feet. The specific fuel consumption at temperature-limited engine speed varied from 1.20 to 1.30 over the range of altitudes investigated.

The engine fuel-air ratio (fig. 4(e)) increased with altitude at engine speeds above 4500 rpm. Data obtained at lower engine speeds indicated no consistent altitude effect.

The exhaust-gas temperature (fig. 4(f)) decreased with an increase in altitude at low engine speeds and increased with altitude at high engine speeds. A change in altitude from 5000 to 25,000 feet resulted in a decrease in temperature-limited engine speed from 7880 to 7550 rpm. The trend of the data indicates that an increase in altitude beyond 25,000 feet would further reduce the maximum permissible engine speed. Inasmuch as maximum thrust is obtained at full engine speed (7900 rpm), and maximum exhaust-gas total temperature, the desirability of using a variable-area exhaust nozzle to permit operation at full engine speed at all altitudes is evident.

Effect of flight Mach number. - Performance data obtained at an altitude of 25,000 feet and flight Mach numbers of 0.21 to 0.97 are presented in figure 5 to show the effect of flight Mach number on net thrust, air flow, fuel flow, specific fuel consumption, fuel-air ratio, and exhaust-gas total temperature.

As the flight Mach number was raised, the net thrust decreased at engine speeds below 6800 rpm and increased at higher engine speeds for flight Mach numbers above 0.53 (fig. 5 (a)). An increase in Mach number from 0.21 to 0.53 at engine speeds above 7000 rpm had no appreciable effect on the net thrust. The engine air flow (fig. 5(b)) increased consistently with an increase in flight Mach number. As the flight Mach number was increased, the engine fuel consumption (fig. 5(c)) decreased at engine speeds below 6150 rpm and increased at higher engine speeds. At temperature-limited engine speed, the specific fuel consumption based on net thrust (fig. 5(d)) increased from 1.21 to 1.43 as

1159

the flight Mach number increased from 0.21 to 0.97. This variation of specific fuel consumption based on net thrust with flight Mach number increased at the low engine speeds. The minimum specific fuel consumption of 1.05 pounds per hour per pound of net thrust occurred at a flight Mach number of 0.21 and an engine speed of approximately 6400 rpm.

The engine fuel-air ratio (fig. 5(e)) decreased at all engine speeds as the flight Mach number was raised. The exhaust-gas total temperature (fig. 5(f)) was, in general, reduced by an increase in flight Mach number at all engine speeds except between 7000 and 7500 rpm, where a change in flight Mach number had no appreciable effect. Maximum engine speed was limited by exhaust-gas total temperature at flight Mach numbers below 0.72.

Generalized performance. - Altitude performance data for a flight Mach number of 0.21 have been generalized to standard sealevel conditions by use of the correction factors δ and θ (reference 1). In the development of this method of generalization, it was shown that these correction factors alone were insufficient to reduce the results completely to a single curve. The use of additional parameters, such as flight Mach number and Reynolds number, may be necessary for a complete generalized description of engine characteristics. Changes in flight Mach number or changes in component efficiency associated with changes in Reynolds number therefore lessen the possibility of reducing data obtained at various altitudes to a single curve.

Performance data obtained at a flight Mach number of 0.21 at altitudes from 5000 to 50,000 feet are presented in figure 6 to show the effect of altitude on the corrected values of net thrust, air flow, fuel flow, specific fuel consumption, fuel-air ratio, and exhaust-gas total temperature.

The variation of corrected net thrust with altitude was sufficiently small that data obtained at all altitudes from 5000 to 50,000 feet could be represented by a single curve (fig. 6(a)). The corrected engine air flow (fig. 6(b)) decreased as the altitude was increased at corrected engine speeds above 5400 rpm. For corrected engine speeds below 5400 rpm, the data appear to reduce to a single curve.

Generalized performance parameters depending on fuel consumption formed a single curve only near maximum engine speed and at altitudes below 35,000 feet. Above 35,000 feet and at reduced engine speeds, the corrected fuel consumption (fig. 6(c)) increased as the altitude was raised. Near maximum engine speed, the corrected specific fuel

consumption (fig. 6(d)) formed a single curve for data obtained at altitudes below 35,000 feet; however, higher corrected specific fuel consumptions were obtained at altitudes of 45,000 and 50,000 feet. At low engine speeds the trend of the data with increasing altitude was inconsistent. The corrected engine fuelair ratio (fig. 6(e)) and the corrected exhaust-gas temperature (fig. 6(f)) increased with altitude at all corrected engine speeds; however, the increase in corrected engine fuel-air ratio was insignificant at a corrected engine speed of 7900 rpm and altitudes up to 35,000 feet.

<u>Generalization in terms of pumping characteristics.</u> - If a turbojet engine is considered as a pump that increases the energy level of the working fluid as it passes through the engine, the thrust may be determined by an evaluation of the energy change. This change in available energy is determined by the change in total pressure and total temperature of the air flowing through the engine. In this method of generalization, as in the method previously discussed, changes in component efficiencies including the effects of Reynolds number lessen the possibility of generalizing the data obtained at various altitudes to a single curve.

The variation of engine total-temperature ratio with engine total-pressure ratio is shown in figure 7(a) for altitudes from 5000 to 50,000 feet at a flight Mach number of 0.21 and in figure 7(b) for flight Mach numbers from 0.21 to 0.97 at an altitude of 25,000 feet. As the altitude was increased, the enginetotal-temperature ratio increased at all values of engine-totalpressure ratio. The data for the range of flight Mach numbers investigated at an altitude of 25,000 feet plotted as a single curve at all engine-pressure ratios above approximately 1.4. Similar data obtained over a range of flight Mach numbers at other altitudes also formed a single curve for each altitude at engine total-pressure ratios above approximately 1.4. From the data presented in figure 7, the total pressure at the exhaustnozzle outlet can be determined for any flight Mach number and exhaust-gas temperature at altitudes between 5000 and 50,000 feet and engine-total-pressure ratios above approximately 1.4. The jet thrust can then be calculated by use of equation (8) or (9) presented in the appendix.

Engine Windmilling Characteristics

The engine windmilling speed is shown in figure 8 as a function of true airspeed for altitudes from 5000 to 45,000 feet. The engine windmilling speed was unaffected by changes in altitude in the range of airspeeds investigated. The internal drag of a windmilling turbojet engine is of interest, particularly on multiengine airplanes when it may be desirable to cruise with one or more engines inoperative. The ratio of windmilling drag to net thrust at maximum permissible engine speed is shown in figure 9 as a function of true airspeed for an altitude of 25,000 feet. The internal drag of a windmilling engine varied from 2 percent of the available net thrust at a true airspeed of 200 miles per hour to 15 percent at a true airspeed of 650 miles per hour. The desirability of blocking the inlet of an inoperative engine is apparent.

SUMMARY OF RESULTS

The following results were obtained from an investigation of a J47 turbojet engine in the NACA Lewis altitude wind tunnel at simulated altitudes from 5000 to 50,000 feet and simulated flight Mach numbers from 0.21 to 0.97:

1. The correction factors commonly used to generalize turbojetengine performance can be used to predict performance for only a limited range of altitudes and corrected engine speeds.

2. From the engine pumping characteristics, jet thrust could be predicted for any desired flight Mach number and exhaust-gas temperature at altitudes from 5000 to 50,000 feet and enginepressure ratios above approximately 1.4.

3. The temperature-limited engine speed decreased with increasing altitude, which indicated the need for a variable-area exhaust nozzle.

4. In general, the exhaust-gas temperature was reduced at all engine speeds by an increase in flight Mach number.

5. The specific fuel consumption at temperature-limited engine speed and a flight Mach number of 0.21 varied from 1.20 to 1.30 pounds per hour per pound of net thrust over the range of altitudes investigated. Minimum specific fuel consumption of 1.05 pounds per hour per pound of net thrust was obtained at an engine speed of approximately 6400 rpm at altitudes from 15,000 to 45,000 feet.

6. As the flight Mach number was increased from 0.21 to 0.97 at temperature-limited engine speed, the specific fuel consumption increased from 1.21 to 1.43 pounds per hour per pound of net thrust. At low engine speeds the increase was much larger.

7. At an altitude of 25,000 feet, the internal drag of a windmilling engine varied from 2 percent of the available net thrust at a true airspeed of 200 miles per hour to 15 percent at a true airspeed of 650 miles per hour.

Lewis Flight Propulsion Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio.

APPENDIX - CALCULATIONS

Symbols

The following symbols were used in the calculations and on the figures:

A cross-sectional area, sq ft

B thrust scale reading, 1b

- Cj jet-velocity coefficient, ratio of actual jet velocity or thrust to ideal velocity or thrust after expansion to free-stream static pressure
- Ct ratio of hot exhaust-nozzle area to cold exhaust-nozzle area (1.01 at 1570° R)
- D external drag of installation, 1b
- D_r exhaust-nozzle tail-rake drag, 1b
- D_w windmilling drag, 1b
- F, jet thrust, lb
- F_n net thrust, 1b
- f/a fuel-air ratio
- g acceleration due to gravity, 32.2 ft/sec²

M flight Mach number

N engine speed, rpm

- P total pressure, lb/sq ft absolute
- p static pressure, lb/sq ft absolute
- R gas constant, 53.3 ft-lb/(lb)(^OR)
- T total temperature, R
- T, indicated temperature, R

1159

t static temperature, R

- V velocity, ft/sec
- Wa air flow, lb/sec
- We fuel flow, 1b/hr
- W_f/F_n specific fuel consumption based on net thrust, lb/(hr) (lb thrust)
- γ ratio of specific heats
- δ ratio of tunnel static pressure p₀ to absolute static pressure of NACA standard atmosphere at sea level
- δ_a ratio of tunnel static pressure p₀ to absolute static pressure of NACA standard atmosphere at desired altitude
- θ ratio of absolute equivalent ambient static temperature to absolute static temperature of NACA standard atmosphere at sea level
- θ_a ratio of absolute equivalent ambient static temperature to absolute static temperature of NACA standard atmosphere at desired altitude

Subscripts:

- 0 free-air stream
- 1 engine inlet
- 6 turbine outlet
- 7 l inch upstream of exhaust-nozzle outlet
- 8 exhaust-nozzle outlet
- e equivalent
- r venturi throat rake in make-up air duct
- s scale
- x inlet duct at frictionless slip joint

1159

Methods of Calculation

Flight Mach number. - Complete ram-pressure recovery at the engine inlet was assumed. The flight Mach number was then determined from the following expression:

$$M_{0} = \sqrt{\frac{2}{\gamma - 1} \left[\left(\frac{P_{1}}{P_{0}} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]}$$
(1)

<u>Temperatures.</u> - Total temperature was obtained from indicated temperature by the use of an experimentally determined thermocouple impact-recovery factor of 0.85 in the following equation:

$$T = \frac{T_{1} \left(\frac{P}{p}\right)^{\frac{\gamma-1}{\gamma}}}{1 + 0.85 \left[\left(\frac{P}{p}\right)^{\frac{\gamma-1}{\gamma}} - 1\right]}$$
(2)

Equivalent temperature. - Equivalent temperature was obtained from tunnel static pressure and engine-inlet total pressure and temperature.

$$t_{e} = \frac{T_{1}}{\left(\frac{P_{1}}{P_{0}}\right)^{\gamma}}$$
(3)

Air flow. - Engine air flow was calculated from pressure and temperature measurements obtained at the engine inlet (station 1) by use of the equation

$$W_{a} = A_{l} p_{l} \sqrt{\frac{2\gamma g}{t_{l} R(\gamma-1)}} \left[\left(\frac{P_{l}}{P_{l}} \right)^{\frac{\gamma-l}{\gamma}} - 1 \right]$$
(4)

Air-flow values obtained from measurements in the venturi of the inlet-air duct and at the exhaust nozzle agreed within 3 percent with those obtained from measurements at the engine inlet.

<u>Thrust.</u> - The thrust of the installation was independently determined from balance-scale measurements and also from pressures and temperatures measured near the exhaust-nozzle outlet by means of a survey rake. Because of the inefficiency of the exhaust nozzle, the scale thrust is less than the rake thrust.

Jet thrust was determined from balance-scale measurements by the use of the following equation:

$$F_{j,s} = D + B + D_r + \frac{W_a V_x}{g} + A_x (p_x - p_0)$$
 (5)

Net thrust is then given by the equation

$$F_{n,s} = F_{j,s} - \frac{W_a}{g} V_e$$
 (6)

The last two terms of equation (5) represent the momentum and the pressure forces on the installation at the slip joint in the inletair duct. The drag of the installation was determined by runs with the engine inoperative and with a blocking plate installed in the inlet to prevent air flow through the engine.

The rake thrust, which is the ideal thrust available, is given by the following equation and values obtained at station 7, 1 inch upstream of the nozzle outlet:

$$F_{j,r} = \frac{2C_{t}A_{7}p_{7}\gamma_{7}}{\gamma_{7}-1} \left[\left(\frac{p_{7}}{p_{7}} \right)^{\frac{\gamma_{8}-1}{\gamma_{8}}} - 1 \right] + C_{t}A_{7}(p_{7}-p_{0})$$
(7)

that $\frac{\text{Alternate thrust equation.}}{P_7 = P_8}$, an alternate equation for jet thrust is as follows:

$$F_{j} = \frac{2\gamma_{8}}{\gamma_{8}-1} C_{t}A_{8}p_{8} \left[\left(\frac{P_{8}}{P_{8}} \right)^{\frac{\gamma_{8}-1}{\gamma_{8}}} - 1 \right] + A_{8}C_{t}(p_{8}-p_{0})$$
(8)
$$p_{8} = \frac{P_{8}}{\left(\frac{\gamma_{8}+1}{2} \right)^{\frac{\gamma_{8}}{\gamma_{8}}-1}}$$

where

and for supersonic jet velocities where

$$\frac{P_8}{P_0} > 1.9$$

For subsonic jet velocities where

$$\frac{P_8}{P_0} < 1.9$$

equation (8) reduces to

$$\mathbf{F}_{j} = \frac{2\gamma_{8}A_{8}p_{0}C_{t}}{\gamma_{8}-1} \left[\begin{pmatrix} \frac{\gamma_{8}-1}{\gamma_{8}} \\ \frac{p_{0}}{p_{0}} \end{pmatrix}^{\gamma_{8}} -1 \right]$$
(9)

1159

REFERENCE

1. Sanders, Newell D.: Performance Parameters for Jet-Propulsion Engines. NACA TN 1106, 1946.

			1									1		1	1.	1	1	1	1	1	1	-	1	· · · · ·
				0	-111						•	tion st))			ores.)					1 let			M	re
-)	te		eme			low	-	ump bru		tem	al r t al	peed	st	nlet 6		fue on r		38.8	ure	atu
		ati	mber	pre:	(oR)	N	at			Lr f		cons		OR)	tot Ig f	0	hru	(0)	con VB)	fic ed (0)	air	st.	6331	tedu
		0 L	nu	ftc	amb.	d,	inle	E.	Fun	t al ec)	Νf	el (1 t tr (1)	tio	tot 7. (Let lb/s	ngin	t t	ngin ',1	161 /(5	bas Fn,	-1e1-	hau atu	-pr	-te
		Inst	lach	sq	nt, t	pee	R) t	st,	st,	nle b/s	. W	fu	ra.	gas Tr	out]	d er	d ne	d er	P. W.	ton Vf/(fra)	nper	ptal //Pl	TT/T
	tude	pres	1t B	el (1b/	ale	100	ess ate	ihru	hru	10-1	flo r)	fic on	air	st- ure	ne- P6	cte (r	cte (1)	cte low ec)	ton ion	t, t	cted	ter (oF	e Pr	E H
-	un lti ft)	am-j 1/p	11.81	unne 0.	qui	ngin	ndi d	lb)	lb)	ngir a, 1°	lo/h	peci ased	lel- a	chau	urbi ure,	WB,	brre	rre r f b/s	b/h	nsu rus rus	rre tio	tal (0,	gin tio	gin tio
t	1 5,000	1.038	G.230	1740	비 다 507	四0 7895	509	4880	4237	EI.08	岳〇	1.251	토 4 0,0182	E Q	E 5 3465	0 Z	5160	0 8	6523	the C	0 0 9	000 000 H	HE REA	En 200
	2 5,000 3 5,000	1.037	.225	1756	509 506	7692	511 510	4593 4305	3957 3660	81.07	4800	1.213	.0164	1631	3352	7769	4770	96.72	5842	1.225	.0167	1665	1.790	3.173
	4 5,000	1.036 1.034	.220	1742	508 507	6993 6459	511 511	3650	3053	76.94	3550	1.162	.0128	1396	2984	7070	3720	92.46	4359	1.175	.0130	1426	1.605	2.721
	6 5,000	1.033	.210	1744	506	5944 5024	510	2085	1615	63.66	2060	1.275	.0090	1170	2403	6021	1962	76.23	2532	1.183	.0109	1297	1.454	2.477
	8 5,000	1.034	.215	1749	504	4091	509	669	413	34.21	1050	2.542	.0078	1125	1924	4152	499	40.78	1665	1.675	.0079	1127	1.149	2.149
1	0 5,000	1.032	.210	1738	504	2046	509	129	10	16.42	474	3.857	.0096	1134	1852	2077	169	28.36	1009 585	5.940	.0098	1202	1.017	2.293
1	2 15,000	1.030	.205	1188	479	6459	481	2219	1863	51.80	2020	1.097	.0126	1386	1896	6724	4137 3320	96.42	4733 3745	1.142	.0137	1506 1358	1.664	2.870 2.596
1	4 15,000	1.030	.205	1186	471	5024	475	1000	755	36.00	980	1.127	.0092	1145	1707	6211 5275	2450	79.54	2885 1836	1.178	.0100	1253 1138	1.367	2.390
11	6 15,000	1.031	.205	1190	470	3147	474	304	169	19.42	605	2.043	.0087	1060	1320	4296	670 300	41.76 32.85	1438	2.145	.0095	1167	1.076	2.232
1	8 15,000	1.204	.195	1188	468	2046 7895	472 498	4016	2936	8.58	371 4130	3.675	.0120	1105 1754	1213 2685	2154	179	14.51	696	3.870	.0133	1225	.992	2.341
100	0 15,000	1.210	.530	1186	477 480	7692 7500	502 505	3912 3698	2776 2563	64.50	3730 3395	1.344	.0161	1614 1544	2625 2549								1.781	3.202
N CN C	2 15,000	1.205	.525	1190	480	6993 6459	504 506	3210 2430	2132 1441	61.72 56.77	2720 1990	1.275	.0122	1362 1200	2334 2029								1.577	2.692
4 64	4 15,000	1.203	.520	1190	480 479	5944 5024	505 504	1753 904	869 227	50.82 38.87	1380	1.590 3.392	.0075	1058 914	1765 1458								1.212	2.091
N CA	5 15,000 6 15,000	1.203	.520	1190	481 478	4091 3147	506 503	419 197	-68	27.95 21.99	549 361		.0055	880 801	1340								.929	1.736
NN	7 25,000 8 25,000	1.037	.225	777 774	447 450	7692 7500	450 453	2409 2175	2127 1895	38.38 38.02	2610 2200	1.228	.0189	1783 1580	1661 1549	8284	5790 5181	97.04	7654	1.323	.0218	2.067	1.990	3.945
CN NO	9 25,000 0 25,000	1.036	.220	777	451 451	6993 6459	454 453	1876 1565	1603 1318	37.39 35.39	1780 1420	1.111	.0132	1388	1433	7503	4360	94.89	5201	1.191	.0152	1598	1.735	3.044
CN CN	1 25,000 2 25,000	1.033	.210	778 778	452 451	5944 5024	455	1178 598	955 431	31.96	1070	1.120	.0093	1121	1155	6366	2597	81.17	3115	1.200	.0128	1287	1.412	2.458
33	3 25,000 4 25,000	1.030	.205	777	452	4091 3147	455	305	184	18.10	560	3.043	.0086	1034	870	4381	501	46.02	1633	3.259	.0091	1188	1.082	2.268
5 6	5 25,000	1.030	.205	774	451	2046	455	80	22	8.70	366	1 330	.0117	1152	790	2195	59	22.17	1074	17.89	.0115	1323	.996	2.401
3 3	7 25,000	1.209	.530	774	441	7692	463	2884	2136	44.25	2725	1.277	.0171	1661	1834								1.952	3.806
3	9 25,000	1.213	.535	774	431	6993	454	2470	1724	44.24	2030	1.178	.0157	1359	1658								1.859	3.397

. .

. .

TABLE I - ENGINE PERFORMANCE DATA

NACA RM E9G09

.

1

NACA

40 25,000 1,211	0.530	778	434	64.59	456	1973	1269	41.79	1590	1.253	0 0106	1200	1460							-	1 510	0.000
41 25,000 1,208	.530	785	436	5944	458	1415	776	38 14	1130	1 467	0093	1045	1260								1.510	2.620
42 25 000 1 203	520	778	442	5024	466	767	200	20 06	600	0 005	.0000	1010	1209								1.512	2.272
43 25 000 1 202	520	701	110	4001	465	341	200	01 00	405	2.000	.0059	900	999								1.056	1.931
44 25 000 1 204	525	701	147	3147	165	150	-101	15 00	300		.0056	831	885								.938	1.783
45 05 000 1 100	- 020	101	440	0000	400	150	-101	10.02	300		.0057	785	800								.884	1.688
45 25,000 1.199	.515	778	440	2121	400	96	-130	13.71	266		.0054	753	816								.872	1.626
46 25,000 1.412	.720	774	425	7895	467	3692	2520	51.82	3410	1.353	.0183	1763	2199								1.946	3.759
47 25,000 1.403	.715	776	431	7692	472	3545	2400	50.79	3150	1.313	.0172	1673	2133								1.894	3.522
48 25,000 1.403	.715	781	434	7500	475	3274	2125	50.75	2750	1.293	.0151	1530	2022								1.795	3.201
49 25,000 1.413	.720	780	433	6993	476	2927	1777	50.34	2220	1.249	.0123	1358	1867								1.642	2.841
50 25,000 1.410	.720	783	432	6459	475	2357	1274	47.59	1660	1.303	.0097	1174	1631								1.432	2.461
51 25,000 1.415	.725	781	435	5944	479	1649	656	43.26	1020	1.556	.0065	982	1350								1,190	2 046
52 25,000 1.406	.720	781	433	5024	476	798	50	32.96	469	9.380	.0040	780	1036								000	1 635
53 25,000 1.603	.850	778	429	7895	488	4196	2647	57.76	3660	1.383	.0176	1701	2411								1 071	3 464
54 25,000 1.611	.855	774	435	7500	496	3752	2217	56.50	3050	1.376	.0150	1546	2237								1 740	3 104
55 25,000 1.611	.855	781	437	6993	499	3257	1785	54.06	2420	1.357	.0124	1359	2048								1.740	0 717
56 25.000 1.609	.850	781	437	6459	499	2530	1144	50.99	1680	1 469	0002	1157	1744								1.011	2.713
57 25,000 1,603	.850	781	435	5944	497	1751	526	45.33	970	1 946	0050	041	1416								1.302	2.309
58 25,000 1,612	.855	781	438	5024	502	800	-172	35 63	346	1.010	.0005	717	1410								1.108	1.890
59 25 000 1 857	082	746	401	7005	100	1705	0047	67 45	1000	1 400	.0027	117	1059								.827	1.428
60 25 000 1 817	065	770	431	7600	499	4795	0674	00.40	4000	1.400	.0175	1705	2659								1860	3.396
61 25,000 1 930	. 300	110	471	7092	509	4020	2074	63.95	5750	1.394	.0162	1629	2598								1.784	3.188
62 05 000 1 040	.975	112	401	7500	510	4448	2479	63.83	3400	1.372	.0148	1554	2532								1.724	3.029
62 25,000 1.840	.975	114	432	6993	512	3876	1988	61.07	2640	1.327	.0120	1365	2292								1.551	2.656
63 35,000 1.032	.210	496	440	7692	442	1526	1360	24.42	1719	1.264	.0196	1814	1063	8354	5810	95.93	7964	1.372	0.0231	2140	2.008	4.086
64 35,000 1.034	.215	493	441	7500	443	1429	1258	24.43	1505	1.194	.0171	1681	1010	8138	5399	96.64	7008	1.295	.0202	1980	1.916	3.778
65 35,000 1.036	.220	496	441	6993	444	1250	1076	24.05	1184	1.100	.0137	1428	928	7587	4590	94.56	5480	1.194	.0161	1681	1.749	3.202
66 35,000 1.032	.210	496	441	6459	443	1014	859	22.87	944	1.098	.0115	1273	846	7008	3663	89.92	4369	1.192	.0135	1498	1.605	2.861
67 35,000 1.030	.205	493	441	5944	444	734	598	20.57	723	1.210	.0098	1138	740	6449	2570	81.37	3367	1.312	.0115	1341	1.425	2.557
68 35,000 1.030	.205	494	441	5024	445	440	335	15.99	497	1.485	.0086	1018	617	5451	1437	63.12	2310	1.610	.0101	1198	1.194	2 288
69 35,000 1.028	.195	497	443	4091	445	225	153	11.23	381	2.490	.0094	1062	563	4431	655	44.15	1757	2.695	0110	1245	1 004	2 391
70 35,000 1.204	.525	494	425	7692	446	1863	1395	28.55	1870	1.341	.0182	1723	1199					2.000	.0110	1610	1 057	2 046
71 35,000 1.211	.530	493	424	7500	446	1774	1297	28.66	1690	1.302	.0164	1598	1150								1.900	3 500
72 35.000 1.208	. 530	495	425	6993	447	1511	1043	28.26	1300	1 946	0129	1306	1056								1.091	3.007
73 35,000 1,200	.520	496	424	64.59	446	1251	825	26 25	1000	1 010	0106	1013	045								1.706	3.087
74 35,000 1,202	.520	496	425	5944	446	010	590	04 30	760	1 457	.0100	1051	017								1.539	2.714
75 35,000 1,198	.515	495	424	5024	446	450	154	10 00	130	0 700	.0087	1051	817								1.337	2.346
76 35 000 1 409	720	101	106	7000	146	0410	104	27 74	400	2.792	.0005	870	044								1.067	1.964
77 35 000 1 411	720	404	400	7600	440	0754	1075	33.74	2295	1.371	.0189	1784	1427								1.990	3.978
79 35 000 1 411	0.20	100	400	7092	440	2004	1007	00.80	2105	1.347	.0178	1724	1403								1.950	3.857
78 35,000 1.411	.720	490	404	7500	444	2220	1468	34.14	1950	1.328	.0159	1579	1350								1.870	3.540
79 35,000 1.413	.720	496	403	6993	443	1987	1243	33.76	1550	1.248	.0128	1373	1236								1.710	3.085
80 35,000 1.407	.720	496	403	6459	443	1623	918	32.19	1175	1.278	.0101	1197	1101								1.530	2.696
81 35,000 1.411	.720	494	401	5944	440	1213	575	29.09	820	1.426	.0078	998	924								1.294	2.258
82 35,000 1.405	.715	496	401	5455	441	820	251	26.10	544	2.165	.0058	849	772								1.090	1.921
83 45,000 1.037	.225	298	437	7500	440	924	817	14.72	1030	1.261	.0194	1793	637	8175	5810	95.90	7972	1.375	.0230	2130	1.994	4.057
84 45,000 1.029	.200	308	442	6993	444	795	701	14.43	788	1.124	.0152	1510	582	7580	4810	91.45	5869	1.218	.0178	1775	1.773	3.386
85 45,000 1.037	.225	297	438	6459	442	623	523	13.78	615	1.176	.0124	1316	510	7034	3730	90.16	4772	1.280	.0147	1561	1.604	2.971
86 45,000 1.033	.210	306	441	5944	443	472	386	12.42	474	1.228	.0106	1176	466	6449	2668	79.16	3557	1.334	.0125	1387	1.440	2.643
87 45,000 1.030	.205	303	440	5024	444	250	185	9.81	326	1.762	.0092	1076	378	54 56	1202	63 08	2472	1 010	0100	1007	1 100	0 403
88 45,000 1.206	. 528	301	422	7692	443	1180	896	17.28	1225	1.367	.0197	1830	750			00.00	N'IIN	1.010	.0105	1210	0.000	4 110
89 45,000 1.209	.530	301	422	7500	444	1105	811	17.77	1093	1.347	.0171	1710	713								1 007	3 074
90 45.000 1.198	.515	303	422	6993	442	965	696	16.67	847	1.217	0141	1456	649								1.093	2.004
91 45,000 1,204	. 525	304	420	6459	441	774	510	16 19	655	1 004	0110	1057	570								1.725	5.279
92 45,000 1 205	525	303	420	5944	440	560	317	14 07	405	1 560	.0112	1200	578								1.527	2.828
93 45 000 1 203	520	206	420	5004	440	310	127	11 75	1 191	1.008	.0093	1087	502								1.342	2.454
94 50 000 1 000	100	005	140	7500	442	518	100	11.05	271	2.005	.0066	915	388								1.070	2.065
05 50,000 1.027	105	030	440	1000	441	068	600	10.97	173	1.289	.0196	1812	469	8145	5630	94.99	7894	1.401	.0231	2140	1.974	4.090
06 50,000 1.025	.105	206	440	0993	441	580	514	11.00	637	1.240	.0161	1554	446	7594	4600	90.82	6204	1.350	.0190	1835	1.785	3.508
50,000 1.025	.185	238	438	0459	440	475	413	10.34	493	1.193	.0132	1346	404	7034	3650	84.42	4774	1.308	.0156	1595	1.606	3.052
19/100.000 11.025	.185	239	437	5944	439	391	333	9.62	416	1.249	.0120	1221	365	6479	2950	78.14	4015	1,362	.0143	1453	1.453	2.775

×

.

1

.

8

.

NACA

Figure 1. - View of J47 turbojet engine installed in test section of altitude wind tunnel.

Figure 2. - Cross section of turbojet-engine installation showing sections at which instrumentation was installed.

N

Figure 3. - Variation of exhaust-nozzle jet-velocity coefficient with exhaust-nozzle pressure ratio.

*

.

.

.

NACA RM E9G09

.

5

NACA RM E9G09

++CC

(c) Fuel flow.

Figure 4. - Continued. Effect of altitude on variation of engine performance with engine speed at flight Mach number of 0.21.

Figure 4. - Continued. Effect of altitude on variation of engine performance with engine speed at flight Mach number of 0.21.

26

Figure 4. - Continued. Effect of altitude on variation of engine performance with engine speed at flight Mach number of 0.21.

Figure 4. - Concluded. Effect of altitude on variation of engine performance with engine speed at flight Mach number of 0.21.

(a) Net thrust.

Figure 5. - Effect of flight Mach number on variation of engine performance with engine speed at altitude of 25,000 feet.

(b) Air flow.

Figure 5. - Continued. Effect of flight Mach number on variation of engine performance with engine speed at altitude of 25,000 feet.

(c) Fuel flow.

Figure 5. - Continued. Effect of flight Mach number on variation of engine performance with engine speed at altitude of 25,000 feet.

(d) Specific fuel consumption.

Figure 5. - Continued. Effect of flight Mach number on variation of engine performance with engine speed at altitude of 25,000 feet.

1159

(e) Fuel-air ratio.

Figure 5. - Continued. Effect of flight Mach number on variation of engine performance with engine speed at altitude of 25,000 feet.

.

(f) Exhaust-gas total temperature.

Figure 5. - Concluded. Effect of flight Mach number on variation of engine performance with engine speed at altitude of 25,000 feet.

NACA RM E9G09

Altitude (ft) 5,000 15,000 25,000 35,000 45,000 50,000 Δ D XO Corrected net thrust, F_n/δ , 1b NACA, 9 x 10³ 5 6 7 Corrected engine speed, $N/\sqrt{\Theta}$, rpm

(a) Net thrust.

Figure 6. - Effect of altitude on variation of corrected engine performance with corrected engine speed at flight Mach number of 0.21.

(b) Air flow.

Figure 6. - Continued. Effect of altitude on variation of corrected engine performance with corrected engine speed at flight Mach number of 0.21.

(c) Fuel flow.

⁽d) Specific fuel consumption.

Figure 6. - Continued. Effect of altitude on variation of corrected engine performance with corrected engine speed at flight Mach number of 0.21.

38

NACA RM E9G09

(e) Fuel-air ratio.

Figure 6. - Continued. Effect of altitude on variation of corrected engine performance with corrected engine speed at flight Mach number of 0.21.

Figure 7. - Variation of engine total-temperature ratio with engine total-pressure ratio.

, 1159

Altitude (ft) 5,000 15,000 25,000 35,000 45,000 0 5000 A rpm 4000 Engine windmilling speed, N, B 3000 40 2000 AD. 0 0 1000 A NACA 100 200 300 400 500 600 700 800 True airspeed, Vo, mph

Figure 8. - Variation of engine windmilling speed with true airspeed at altitudes from 5000 to 45,000 feet.

NACA RM E9G09

1159

DM Windmilling drag Net thrust at maximum permissible engine speed .16 .12 .08 .04 NACA 0100 300 400 500True airspeed, V₀, mph 200 600 700

Figure 9. - Variation of ratio of windmilling drag to net thrust at maximum permissible engine speed with true airspeed at altitude of 25,000 feet.

.

NACA RM E9G09

4

.

.

6STT

44

NACA-Langley - 11-15-49 - 400

.

.

SECURITY INFORMATION CONFIDENTIAL

1

CONFIDENTIAL