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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
RESEARCH MEMORANDUM

APPLICATION OF THEODORSEN 'S THEORY
TO PROPELLER DESIGN

By John L. Crigler
/ SUMMARY

A theoretical analysis is presented for obtaining by use of
Theodorsen 's propeller theory the load distribution along a propeller
radius, to give the optimum propeller efficiency for any design condition.
The efficiencies realized by designing for the optimum load distribution
are given in graphs, and the optimum efficiency for any design condition
may be read directly from the graph without any laborious calculations.
Examples are included to illustrate the method of obtaining the optimum
load distributions for both single-rotating and dval-rotating propellers.

INTRODUCTION

Recent contributions to the theory of propellers have been made by
Theodorsen in a series of reports (references 1 to 4). In the first
report of the series (reference 1) a method based on electrical analogy
was devised for obtaining the ideal circulation functions for single-
rotating propellers. These circulation functions were shown to be in
good agreement with the theoretical calculations made by Goldstein in
reference 5 for two- and four-blade single-rotating propellers and with
the extrapolations to other numbers of blades made by Lock and Yeatman
in reference 6. The electrical-analogy method of measuring these
functions was also applied to more difficult cases for which no theo-
retical calculations had previously been made; in particular, to the case
of dvual-rotating propellers.

Theodorsen in reference 1 introduced the concept of the mass
coefficient k, which is an integrated value of the circulation functions.
The mass coefficient represents the effective cross section of the column
of the medium pushed by the propeller divided by the projected-propeller-
wake area.

This mass coefficient is made use of in the development of
Theodorsen 's theory. In reference 4, expressions are given for computing
the thrust, the energy loss, and the efficiency of any propeller with
ideal circulation distribution based on the conditions in the final wake

in terms of the mass coefficient. It is of interest to mention that the

mass coefficient or mass of air operated on by the dual-rotating propeller
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is much greater than that affected by the single-rotating propeller for
the same set of operating conditions. This large difference in the mass
coefficients for the two cases indicates that calculations for dual-
rotating propellers based on the ideal circulation functions for single-
rotating propellers are inadequate.

Theodorsen 's theory, as previously mentioned, is based on the
conditions in the final wake. The present analysis attempts to inter-
relate the conditions in the final wake to the propeller and to give the
information necessary to design a propeller for any desired operating
condition. For single-rotating propellers, the method yields the same
results as the conventional vortex theory with the Goldstein tip correc-
tions applied. By the conventional vortex theory, however, it is
necessary to determine the optimum blade-load distribution and then to
make element strip-theory calculations in order to obtain the optimum
efficiency for a given design condition. This procedure has been followed
in reference 7 for a wide range of operating conditions. By Theodorsen's
theory the optimum efficiency 7 can be obtained directly for any design
condition from its relationship to the mass coefficient without laborious
calculations. Thus, in the selection of a propeller for any design
condition, a close estimate of the efficiency can be obtained before the
design is made.

The circulation functions and mass coefficients for the dual-rotating
propeller were obtained in reference 1 for the ideal case and refer to
conditions in the ultimate wake. Both propellers were assumed to operate
in the same plane. Obviously, this condition is unattainable in the
design of an actual propeller. The degree to which the ideal case can be
realized in practice, or the applicability of the ideal functions to a
given case, require further consideration and confirmation.

SYMBOLS
B nuﬁber of propelier blades
b chord of propeller-blade element
c3 gection drag coefficient
cy gection 1ift coefficient
. ideal power coefficient (cs + e)
Pep total-power coefficient (Pc + tr)

Cg . thrust coefficient. S L
Ik VEF'
§p
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Cam net thrust coefficient (cg - tg )
D diameter of propeller
d drag of propeller section
D - diameter of wake helix surface
E ideal energy loss in wake (pFrcw2 (% w o+ %V>>
Ep energy loss due to blade drag
e induced energy loss coefficient ( I_l%§{>
5 pV-F
F projected area of helix (at infinity)
K(x) circulation function ‘
i 1lift of propeller section
n propeller rotational speed, revolutions per second
P input poﬁer to propeller
R . tip radius
r radius to any blade element
AL thrust of propeller
it power loss due to drag (nondimensional)
ta axial power loss due to drag
tr rotational power loss due to drag
v forward axial velocity of propeller
e axial interference velocity (at propeller)
?A average axial interference velocity (at propeller)
Vi resultant interference velocity (at propeller)

W rotational interference velocity (at propeller)
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Vr average rotational interference velocity (behind each
propeller)
W resultant velocity on the propeller at radius r
Wg local self-interference velocity
W rearward displacement velocity of helical vortex surface
w ratio of displacement velocity to forward velocity (W/V)
x radial location of blade element (r/R)
o? angle of attack, degrees
i induced angle of attack, degrees
B blade angle, degrees
A advance ratio (}- V—*’—"")
1 nDy
Xg geometric advance ratio (V/mnD)
1
K mass coefficient | 2| K(x)x dx
0
€ axial energy loss factor
ller effici °s "~ ‘a
n propeller efficiency ?Z—:_E;
N iaeal propeller efficiency (cs/PC)
P mass density of air
o propeller element solidity (Bb/2nr)
acy propeller element load coefficient
2n(V + w)w
r circulation at radius x <F(x) = ——l—ig;——l—-K(x)>
P angle of resultant velocity W at plane of rotation
e <L VD
Py = tan =

w angular velocity
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Subscripts:

¥ front

R rear

0.7R : at 0.7 radius

OPTIMUM PROPELLER DESIGN

Single-Rotating Propellers

Velocity diagram.- The velocity diagram for the single-rotating
propeller is shown in figure 1. This figure is a reproduction of
figure 13, reference 2, with some additional designations. The relation-
ship between the axial interference velocity at the radius r, as given
by the vortex theory, to the displacement velocity w of the vortex sheet
is calculated in reference 2 and is shown in figure 1. The forward axial
velocity of the propeller is V and the tangential velocity with respect
to the air at rest is wr. The vector bd is the resultant interference
velocity Vy of the air with respect to the air at rest. Thus, the

resultant velocity W of a point on the propeller at the radius r 1is
given by the vector cd. The 1lift force 1 is perpendicular to this
vector and the drag force d 1is exactly opposite in direction to W as
indicated. ZFrom this figure a comparison of the method of analysis
presented herein may be made with the conventional vortex-theory method.

{ It is required to find the point d in order to locate the end of the

< velocity vector W and the angle ¢ that the vector W makes with

\the direction of rotation. By the conventional vortex theory, the
point d is located by starting with point b obtained from the V/nD
of the undisturbed flow, proceeding in the V direction the distance V,,

and then teking the perpendicular to this direction a distance V.

N e g
(See reference 8.) The angle ¢ is given by tan @ = somet
ik
V+V .
and W = _EEE—%' In the calculation of interference velocities Vg

and Vy the local tip correction or Goldstein factor must be used to
obtain the correct location of the point 4.

With the method developed in references 1 to 4, only the value
of %-w, which remains constant with radius, need be used. With this
concept it is possible to use the integrated values of the mass coef-
ficient as determined by the electrical analogy of reference 1 to obtain
the detailed information needed at any radius. By this method the
point d can be located by proceeding from point b a distance % w in

the V direction to the point e and then down the direction of the
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velocity vector W a distance de, where de is obtained from the

geometry of the figure as % w 8in @ and

V o+ l'w
tan @ = £ (1)
wr
The resultant velocity is
vV + %'w 1
W Smas e K ot i
sin @ 2 PRECEY
ils 1k 2
= T 2
e < + 5 W cos @) (2)

The interference velocities may be obtained from the geometry of the
figure by

<
[
Il

—w cos @

2
Vg =V; cos @ =>w cos™@
and

V.=V 8in @ = %'w sin @ cosrm

Optimum blade-load distribution.- The design problem of an optimum
propeller consists essentially in obtaining the value of the element
load coefficient bcy at each radius of the propeller blade. With the
direction and magnitude of the relative velocity given at each station
there remains only the choice of a section to give efficiently such a
1lift at the appropriate angle of attack.: The value of c; should be

at or near the ideal lift coefficient for the section in order to give
minimum drag coefficient.

The method developed in references 1 to 4 treats the velocity w
as an independent parameter upon which all the other quantities depend.
This reversal of procedure is convenient since all quantities are
actually functions of w. The velocity w is related to the power
coefficient PC of the propeller and also to the element load coef-

ficient ocy- The relation of w to ocy; 1is developed herein and the
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relation of w to P,, which must be obtained in order to use it for

design, is given subsequently in the section "PROCEDURE FOR PROPELLER
DESIGN. "

The required ideal circulation I'(x) is given in reference 1 by

I‘(X) = %‘_Q%w*_w)‘i K(x)

- e (3)

In order to determine the element load coefficient bcz the relation

for the equality of the force on a vortex element and on an element of
a lifting surface is given as

pI'W = % pweczb

where b is the chord of the element. Hence,

r = Lo (4)

where W is given in equation (2), and thus

aL i 1 2
I'=5 = <V+§wcosq>)czb (5)

Using equations (3) and (5) for TI' gives at once the identity

bCZ = M K(x) 2 P q) 2
Bn V + Lw cos P
e
Introducing the nondimensional velocity w = \‘%, the
Bb Vit
solidity o = , and ‘tan ¢ = —=— (equation (1)) gives the non-
enr 2nrn

dimensional relation
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1l +w oK (x Siﬂz@ . (6)

(x)
(l+}.§r_><l+]—'w cosgq>> SORP
2 2

O'Cl =

The selection of a propeller for a given airplane installation may
be based on a method of evaluating a series of propellers for various
operating conditions in order to determine the most suitable propeller.

It is probable that several propellers, varying in diameter, blade

number, propeller operational speed, and direction of rotation are
equally as efficient for the design condition so that other considerations
may enter into the propeller selection. However, the optimum efficiency
for the propeller selected may be obtained from the charts, and therefore
the load distribution along the radius that will give this optimum
efficiency remains to be determined.

The value of ocy may be calculated for any radius from the

relation
1+ s1n
acy = WK (x) i
3 1+iw\1+ivw coszw et n
2 2
where
llVl+-21—v N l+%ﬁ
=htanle = — ———— —ttans - N, —————
P e S an g = (7)

Dual-Rotating Propellers

In the design of dual-rotating propellers, it has been customary to
select two propellers designed for single rotation and to use them as a
dual-rotating propeller. - The fact that the circulation functions and the
mass coefficients obtained by the electrical-analogy method (reference 1)
are very much larger for the dual-rotating propeller than the sum of the
values for the two single-rotating propellers indicates that the functions
as used heretofore are not proper. The electrical-analogy method
represents the case of an idealized dual-rotating propeller in which the
two components are in the same plane with the same load distribution on
each component and with equal power absorption. Since actual propellers
cannot conform to this ideal case, the applicability of the ideal
functions requires further confirmation. Nevertheless, the optimum
distribution for the dual-rotating propeller is essentially different
from the single-rotating propeller, and in this analysis the loading
functions and the mass coefficients as determined by the electrical-
analogy method are assumed to apply to the optimum dual-rotating
propeller.
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Interference velocities for duval-rotating propellers.- The average
axial interference velocity far behind the propeller obtained from the
momentum considerations is

where K 1is the mass coefficient and w is the axial displacement
velocity. This mean value is equally due to each of the two. oppositely
rotating propellers. The average axial interference velocity due to
each is therefore exactly

The average interference velocity at the propeller plane is one-half the
value in the final wake and, therefore,

Va = Kw

N |-
=i

where %-?g represents"the average axial interference velocity at the

propeller plane due to each component of the dual-rotating propeller.
With the two propellers separated by a small axial distance, this
velocity refers to a plane between the two propellers. The interference
velocity at the front propeller is smaller and at the rear propeller is
larger than at the plane between the propellers. In the following
treatment, the propellers are considered to be very close together so
that the axial interference velocity is the same on both propellers.

In the final wake, the mean value of the rotational interference
velocity for the ideal case is given by

&N =0

For an infinite number of right and left blades equally loaded, rota-
tional components would cancel exactly. However, the average rotational
interference velocity immediately behind each propeller may be considered
as

<
I
ST

kw tan @
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In summary, the mean interference velocities acting on the front
propeller from the rear propeller are:

Axial:

n |-

—
Vi, = =KkKw
& Ay

Rotational:

<
i
o

The mean interference velocities acting on the rear propeller from the
front propeller are:

Axial: LV, = kv
2 4
Rotational: V} = % Kw tan @

It is useful to recognize that the mean self-interference of each
propeller in its own plane is

Axial:

=
2

Rotational: % kw tan @

| Velocity diagram for the dual-rotating propellers.- The velocity
diagram for the dual-rotating propellers is shown in figure 2. As in
the case for the single-rotating propeller, the axial displacement

gives the mean axial interference velocity i kw of each propeller

|
|
velocity at the propeller is equal to %'w- In figure 2 the vector AB
acting on the other propeller. The vector BC gives the mean rotational
\
|

interference velocity % kw tan @ of the front propeller acting on the
rear propeller. The total interference velocity acting on the front
propeller from the rear propeller is therefore given by AB, and the
totel interference velocity acting on the rear propeller from the front
propeller is equal to the vector AC. The local self-interference

velocity of the front propeller is given by WSF’ and the corresponding

helix angle is given by @F. The local self-interference velocity of the
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rear propeller is given by WSR’ and the corresponding helix angle is

given by @g- The angle @ 1is slightly larger than the ideal helix
angle @ given by the displacement velocity %'w and Qg 1is glightly
smaller than @. The design condition of most interest is the one for
which PE‘ for each blade of the front propeller is equal to FR for each

blade of the rear propeller. The number of blades on the front and rear
propeller are considered equal and the rotational speeds the same. This
condition gives the self-interference velocity on the front propeller
equal to the self-interference velocity on the rear propeller and means
that D and E must be at the same horizontal level.

As @p and @ are needed in the design of the propeller, it is

seen from figure 2 that the associated displacement velocity on the front
and rear propellers has been increased and decreased, respectively, by
the amount

2

Ow = L gy ten )
4
- The displacement velocity is therefore
Front: L W (l + L K tan2@>
2 2
: 1 1 2 )
Rear: =w(l -=EK tan
& ( 2 i

From figure 2, the velocity Wp 1s shown to be given by the
relationship

Wp = ‘T‘I—- + L kw sin ?,
sin @ .
O
T T <l P sin2q>o> (8)
sin P L

and the angle Pp is given by




12 NACA RM No. L8F30

vV + %w<l+%nta.n2cp>

tan P

F

L@y Tiefy 5 1 2)
=58 = [? + 5 W <l + 5 K tan @:]

(9)
where @ 1s given by the relationship
O
tan @ = 2
wr
nD nx 2
Similarly,
Vi 1 \ 1l
Wp = ——— + = Kw sin + = kw tan cos
R~ sin P, k4 %o 2 %o Po
= i + i Kw 8in @
sin ¢, 4 o
\ o
= ___—_—-<l o é-nw sin2p ) (10)
sin @ 4 o
o)
and
V+%w(l-—ntm@@>
oo QR i wr
bl 1 = i 2)
= —=—=1|14+ = l-=kt il
nD nx [: 2" < 2 o @:] (11)

Optimum blade-load distribution.- The optimum distribution of
blade loading is obtained from the determination of the element load
coefficient bcl at each radius from the fundamental relation

i 2
E prZW = pI'W
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-where I' has been given in equation (3) by

Pl BT e
Bn
Eliminaﬁing I' gives
V +
L Bbe,W = MK(X)
2
but %-g;;-= o 1s the solidity of each component of the dual-rotating

propeller, if the number of blades in each component are assumed to be
equal. Therefore,

v i
0C W = ——(1 + W)WV K(x
; (1 + WY K(x)

For the front propeller, this equation may be solved by use of
equation (8) and

1 + w)w sin
2@0 K(x) (12)
KW sin o

F nDT(Xl

g

=

and for the rear propeller by use of equation (10)

2 2 K(x) (13)

Use of Design Formulas

In order to use the relation for oc,, note that it contains not

only the independent variable W but also the function K(x) and the

angle @. The parameter K(x) should be expressed as a function of Vﬁ; ..
| o]

B4

which is based on the wake helix diameter. As was shown in reference 85
however, DO differs only slightly from the propeller diameter D and in

the present design procedure . D is used instead of Dy« The function K(x)
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for single-rotating propellers is plotted against Yéiili in figures 3

to 7. Similar plots for dual-rotating propellers were taken from

reference 1 and are presented in figures 8 to 10.

EQUATIONS FOR PERFORMANCE CALCULATIONS

Single-Rotating Propellers

In reference 4 the thrust has been given by

T = pFkw [% + w<:%-+ %E}

end the ideal energy loss in the wake has been given by

b= 2( ¢ 1
E = pFkw (iﬁ-w + §'V>

With the introduction of the nondimensional quantity W

coefficient in nondimensional form is

I
o
=
]
+
|

A~

-
+
> |a

and the induced loss coefficient is

gl
L 3
5 pV-F

-2/ 1 € =
2 Ao A
W(QJ,KW)

The power coefficient P, = cg + e 1s given by

the thrust

(14)

(15)
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Po = 2kW(l + W) (1 E i-»?) (16)

The efficiency 1s given by

(17)

e o)
Q |

’]i=

These formulas are all that are necessary for single-rotating
propellers. The performence of the dual-rotating propeller is computed
by the same formulas.

Dual-Rotating Propellers

The thrust of the front propeller is given by

1 2
Ty = 5 p(2nr)Wp <0c1)F cos @ dr
and with (ocl) from equation (12) and Wy from equation (8)
F

1

' cos
Tp = ]_). \4 w(l + w)l (1 + %K‘.W gin qu> == zz‘ K(x) dx (18)
0

=

Similarly, for the rear propeller 2

T = ]l% w(l + w)l f (l + = k¥ 8in q)o> e $R K(x) ax (19)
o

The coefficients Cqys © and P for the dual-rotating propellers

2

are given in the same form as in equations (14), (15), and (16) for single-
rotating propellers. The only difference in the coefficients results from
differences in the values of K, v_r, and G/K which are substituted in

the equations.
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Blade -Drag Losses

The frictional loss or loss in efficiency due to the profile drag
of the blade is

R

P 3
ED =80 § deW dr
0

The drag force per unit length is %apwzbcd where W, the resultant

velocity of the blade element, has been given in equation (2) for single-
rotating propellers by

1 2 2 )
W = v =
sinq>< +2wcosq9

For the design condition, w 1is small, and because of the obvious
uncertainties in the determination of the value of Cq, 1t is not

necessary to retain the second term %-w cosgm- Introducing the

solidity factor o = gé— permits the drag loss to be given Dby
T

1L
gc
Ep = RV BT
0 sin~@
or in nondimensional form
N S
R T
= oV nR
Elil
3t
oc
0 sin”Q

The component power losses are then, to the same degree of
approximation in nondimensional form,
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1
gc
Rotational: t, = —2 4 3 ax (21)
N sin @
0
1
Axial: Faap 9% x ax (22)
sin @
0

For the dual-rotating propeller operating at the design conditions, the
terms containing w are small, as is the case with the single—rotatlng
propeller, and a close approx1matlon to the drag loss is obtained if
these terms are neglected. Furthermore, if it is assumed that the
average of the resultant velocity W for the dual combination is equal
to W for the single propeller, the equations (20) to (22) may be used
for the dual-rotating propellers. Of courge, for conditions other than
the design condition, especially for very heavy loadings, exact drag-
loss claculations require that the exact equations be used for either
single-rotating or dual-rotating propellers.

In summary, the equations for obtaining the propeller performance
are given by the quantities cg, e, and P, and the drag-loss factors

are given by ty and tg.

The net thrust power is

ne
Car i =le = tau‘ (23)
T .
The power input is
\
i I{i g
PCT =Cg + € + £, =0P; + b, (24)
The efficiency is
Cq - t Cs
PC +0G, PCT

where from equation (16)

B =2m—r(l+v7)<l+ iw)
K
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The total power is also given by

e pV3ﬂR2PCT (26)

\Y)

It should be remembered that the calculation is based on a given w.
This procedure may seem unjustifiable since this parameter is not given
by the specification but is the end result of a calculation based on the
original data. The induced loss does not depend on the total-power
coefficient PCT, but actually depends only on P., and the quantity

cannot be obtained from the total-power coefficient. However, the
value of PCT in most cases exceeds P, by not more than 2 percent or

Po = 0.98 Por

Since P, 1in equation (16) is based on the w and the diameter
of the final wake, and the value of PCT in equation (24) is based on

the propeller diameter which is glightly larger than the diameter of

the final wake, a very close approximation to W is usually given by
equation (16). Therefore,

Pop & Po = 2ri(1 + W)(l + ;-»7)

In some cases it may be necessary to calculate tr to obtain a more
exact value of Ps, especially if the blade profile drag is large.

PROCEDURE FOR DESIGN OF PROPELLER

Figures Used in Propeller Design

The information necessary to design a propeller for any operating
condition is given in the figures. Figures 3 to 7 give the circulation
function K(x) interpolated for even fractions for two-, three-,. four-,
8ix-, and eight-blade single-rotating propellers. The circulation
function for the two-blade propeller was taken directly from reference 5;
for the three-blade propeller, from reference 6; and for the propellers
having a greater number of blades was recalculated from the Goldstein
tip correction factors as given in reference 7. Figures 8, 9, and 10
give K(x) for dual-rotating propellers with four, eight, and twelve
blades, respectively. These values for the dual -rotating propellers
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were taken from reference 1. Figure 11 gives the mass coefficient kK
for various numbers of blades for single-rotating propellers. Figure 12,
which was taken from reference 1, gives K for dual-rotating propellers.
The ideal efficiency n; is plotted against W for a range of

values e/R in figure 13, against cs/K in figure 14, and against PC/K

in figure 15. The data for figures 13 and 14 were taken directly from
reference 4 and the data for figure 15 was recalculated by the use of
equation (16) and figure 13. Figures 13 to 15 apply to either single-
or dual-rotating propellers. The propeller efficiency may be calculated
from either of these figures; however, in this report the efficiency has
been determined from Pc/k as given in figure 15.

Figures 16 and 17 give values of ¢, k, and ¢/k for two- and four-
blade single-rotating propellers and figures 18 to 20 give values for
four-, eight-, and twelve-blade dual-rotating propellers. The values
of ¢ for a propeller with a finite number of blades have not previously
been published, but the values of ¢ and e/n for an infinite number of
blades are given in figure 4 of reference 4. The method for calculating
¢/k and ¢ 1is given in the following section.

Propeller Selection

In the selection of a propeller for a given airplane installation,
the engine power, the forward speed, and the design altitude are usually
specified. The selection consists of the determination of the number of
blades, the propeller solidity, the propeller diameter, and the rotative
speed. The ideal propeller efficiency.for any combinations of these
variables can be readily obtained with the use of the charts. The
procedure for a given blade number, propeller diameter, and rotative
speed for either single or dual rotation is as follows:

Firét, calculate the total-power-coefficient

P, = o Paga
T pV3 i D2

4

ST

and then use this value for the ideal coefficient

Pep ® Po =2nw(1+w)<1 - E—v—r)

o' Bind “twe:
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It was shown in reference 4 that the dependence of the efficiency
on ¢/k 1in the efficiency formulas is very small and that it is suffi-
cient to know only the approximate value of e/n- An examination of the
formulas for cg and P, shows that their dependence on €/k 1is also
small. It was further concluded in reference L4 that €/k 1is only
slightly greater than k and that the practice of using e/n instead
of k 1s considered satisfactory for design purposes. However, there
appears to exist a simple relation between the axial-loss factor ¢ and

the total-loss factor k. This relation takes on the form of a
differential equation

€ 1 A dk
K 2 K dx
where
)\,=£V+W
7 nDO

This relation has been checked and found to be exact for an infinite
number of blades, and numerical checks for a two-blade propeller were
in very close agreement. It is considered accurate for an empirical
relation for design purposes for propellers of other numbers of blades.

ihslteait obtain

2
Bl=

as a first approximation to A for use in the calculations. Then read

off Kk and dk/d\. from the appropriate charts of k against g%(l + )
for several values of w (figs. il and 12). Curves of €, k, and ¢/k
are plotted against g%(l + W) in figures 16 to 20. Next plot a curve
for the right side of the equation for P, against Ww. Where this

curve intersects the horizontal line, P, = PCT is the desired point.

This value may be checked from the chart by inserting the values obtained
from the plot in the equation. Thus are obtained k, W, gf(l + W),

and e/n- From the chart of Pc/k (fig. 15), the optimum efficiency may
be obtained.
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The following examples illustrate the method of determining the
optimum distribution of bc; along the radius for both single-rotating

and dual-rotating propellers that give the maximum possible efficiency
(neglecting blade profile drag) that can be obtained with either
propeller for one specified design condition.

I1llustrative Examples

Single rotation.- Let the following data specify the propeller |
design conditions:

Power, HOrSEPOWEY -« « ¢ o o o o & s o » o & s o s s & o' o & o' 2000
Denslty, alugs per cublc foobie s s ' fe e ¢ el colmh e ol L OROOBOGH

The propeller selection has been made to the extent that the following
data specify the propeller:

Velocity, miles per hour' « « o o o o = o o o & 2'6 o o o s o o o yo5
Rotational speed, n; revolutions per second « « ¢ o ¢ o o o o o o . 23
|

Propeller diameter, D, feet . . . « « o o ¢ ¢ o ¢ o o o o ¢ o o o & 12
Number of blades, B - « o « « ¢ o o o o o o o o o o o o o o o o o+ o L
V/nD » . . . . . . . Al . . . . . . L] . . . Ll . . . . . . . . . . 2‘258

The total PCT from the given conditions is

Pl |
C - |
T % pV3nR2 |

o (2000) (550) < = 0.075
5(0.001065)(623)3:((6)

The value of P, should be based on the wake diameter D, instead

of on the propeller diameter D and used to calculate Ww. Both P, and

the contraction may be obtained by successive approximations but the two
effects tend to cancel each other and generally PCT based on the propeller

diameter is sufficiently accurate to use in the calculation of Ww. The
relation between w and P, 1is given by equation (16) as

e = oo
P, _enw(i+w)<l+h—_w>
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If values of w are selected to cover the range and the curve for the
four-blade propeller in figure 17 is used, the following table is

obtained for the four-blade single-rotating propeller:

W P
(assumed ) K ¢ [k c
0 0.245 0.340 0
X .215 +313 .0488
2 .191 .289 .0970

A plot of P, against w gives a value of w = 0.155 at P, = 0.075,
Then, »

:-5(1 + W) = (2.258)(1.155) = 2.61

From figure 17, k is read at g%(l + W) = 2.61, and the optimm

propeller efficiency uf} for a four-blade single-rotating propeller
is read from figure 15. Thus

K =0.201
Eg =0-313
K
and
n. = 0.929

3k

With w determined, gcy for the gingle-rotating propeller may
be found by a direct calculation from equation (6)
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L e
1+Ww 0 sin“Q
ocy = v K(x) &p T

<l + %’-F) <l + %F cos%)

Values of the circulation function X(x)
from figure 4 at ;%(l + W) = 2.61 and the angle of the relative velocity

at each station are obtained

at the propeller is given for each station by

Ji=

l+=w

Xaanbear
nD X

n

tan @ =

A |-

Performing these calculations for w = 0.155 glves the values of ocy
in the following table (the blade-width distribution, in feet,

and bcl

for a constant cy

of 0.5 is also given):

: b be
X tan @ K(x) oc boy (?‘t) 07/( 7’)0 TR
0.1 T-Th 0.033 0.0842 0.079 0.158 0.167
ot 3.870 .078 .0967 .182 .36k4 .386
L 2.580 +138 1054 .298 .596 .631
b 1.935 .185 104 .393 .g86 .833
.5 1.548 .225 -0952 <4k .898 .952
.6 1.290 .260 .0855 . 1483 .966 1.023
P 1.106 271 .0716 72 NS 1.000
.8 .968 257 .0554 B sl .834 .880
.G .860 .204 0364 .309 .618 .655
.95 .815 <146 0241 .216 432 458

Dual rotation.- The procedure is repeated for a 12-foot-diameter
four-blade dual-rotating propeller for the same design conditions as used
for the single-rotating propeller. The following table is obtalned for
the four-blade dual-rotating propeller (values of Kk and G/K. were found
from figure 18):

w K /K P
0 0.472 0.589 0

1 432 547 1002
e .398 .519 211
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In this case a plot of P, against W gives a value of W = 0.075
at Pc = 0.075. Therefore,

nlD(l + %) = 2.426
k= 0.442
P?C = 0.170
and
= 0.964

It is seen that the important parameter, the mass-flow coefficient,

is 0.442 for the dual-rotating propeller and is only 0.201 for the
single-rotating propeller. The efficiency (without drag) is 96.k4 percent
for the dual-rotating propeller but is only 92.9 percent for the single-
rotating propeller.

For the dual-rotating propeller the values of oc; may be found
for the front component from equation (12); thus,

= ___l_l_(l+w)w sin CPOK(X)
( )F nD nx 7

++

kw sin P,

and for the rear propeller from equation (13)

v 1 (1 + W)W sin @,

ocy) = — — K(x)
( >R 3OS 1+ im? sineq)o

Equation (9) gives @p by
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and @, 1is given in equation (11) by

v 1 1 = 1 2 )
it = ol e WilG) = 3 g 75)
an @R = [- + 2.w < 5 K tan Q.J

Values of the circulation function X(x) are obtained from figure 8 at
the appropriate value of e o
for .V =623, n =23, D =12, ¥ = 0.075, and k = 0.442 gives the values
of tan @ and oc,; 1n the following table:

b
x K(x) | tan @ | tan o (°°z>F. (001>R (bcz)F ( CI)R
0.1 0.575 | 10.768 | L.145 0.326 0.321 G616 0.606
53 .565 2.608 | 2.363 -0995 .0985 564 .557
A .551 1.916 | 1.812 .0692 .0683 . 522 515
.5 +539 1.518 | 1.465 .0501 .0k96 72 467
.6 .530 1.288 | 1.927.|. ".0870 .0366 .418 41k
T 455 1.075.| 1.056 .0268 .0267 .354 .352
.8 St ig30 .926 .0191 .0190 .288 .287
.9 .307 .833 .824 .0122 .0122 .207 207
.95 233 .789 <780 .0085 [ .0085 152 .152

A comparison of the optimum distribution of bc,; along the blade

for the dual-rotating propeller from this table with the optimum distri-
bution for the single-rotating propeller as given in the preceding
section shows that, if approximately constant cy; 1s absorbed along the

blade, wide differences in blade plan form will result for the two
propellers designed for the same operating condition. For the operating
conditions selected, the maximm bcZ for the single-rotating propeller

occurs near the 0.6 radius and tapers rapidly towards the tip and the
hub, being only slightly over 16 percent of its maximum value at the
0.1 radius. On the other hand, the minimum value of bc; for optimum

distribution for the dual-rotating propeller occurs at the propeller tip
and progressively increases toward the inner radii. The value of bey

at the 0.1 radius is four times its value at the 0.95 radius.

Since the design of the dual-rotating propeller calls for high
loading over the inner sections, the efficiency of the dual-rotating
propeller is less susceptible to compressibility losses which normally
occur near the propeller tip for operation at high tip Mach numbers.

The compressibility logses may be reduced by reducing the width of these
sections or by reducing the operating 1lift coefficient.

= g;(l + W). Performing these calculations
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Effect of blade drag on efficiency.- The loss in efficiency due to
the profile drag of the blades can be calculated from equations (20)
to (22) if the blade-width distribution and profile-drag coefficients
at the operating c; are known. Inasmuch as structural requirements may

determine the shape of the blade, especially over the inner radii, only
one example is given. The equations, however, may be applied to any plan
form. The example selected 1s for the four-blade single-rotating
propeller on which the induced efficiency has been previously calculated.
The shank sections of the propeller blade were assumed to be round,
similar to the Hamilton Standard Propeller No. 3155-6 and the blade plan
form from x =0.3 to x = 1.0 was made optimum for a cy of 0.5. The
profile-drag coefficients for the several radil are the same as given in
reference 7 for the Hamilton Standard Propeller No. 3155-6 which has
Clark Y sections and are given in the following table. It is assumed that
a spinner covers the inner 0.2 of the radius. The distribution of ocy

with x and of sin @ with x have been included in the table:

oCy . aCy .3

>¢ ocy o cd sin @ SO x e X
0.2 0.0967 0.1934 0400 0.968 0.01600 0.00064
24 .1054 .2108 .100 .932 .00697 .00061
Wb .1044 .2088 .020 .889 .00188 .00030
5 -0952 .1904 .010 .840 .00113 .00028
-6 .0855 .1710 .008 .790 .00104 .00037
T L0716 -Ih32 .007 .Th2 .00095 .00046
.8 .0554 .1108 .006 .696 .00077 .00049
49 .036k4 .0728 .006 .652 .00060 .00049

Performing the integrations and substituting in the formulas gives
for rotational-drag-loss coefficient

1.0
gca

gin @

Bt e X3 ax -
2
Xg 002

2
0.000348) = 0.001k
- 516( 348)

and for the axial-drag-loss coefficient

ik B i)
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1.0
CCd
a gin 9 *
52

2(0.00213) = 0.0043

The induced thrust coefficient has been given by equation (1k4) as

By = 2kW [l + F<%+ %ﬂ

= 2(0.201)(0.155) "1 + 0.155 <% T 0.29>:| = 0.0700

and the induced power coefficient by equation (16) as

2kw (1 + W) <1 + %W)

2(0.201)(0.155) (1.155) (1.045) = 0.075k

The induced efficiency is

0.0754 -

With drag included, the total thrust is given by

c =°s'ta

0.0700 - 0.0043 = 0.0657

27
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and
Pon = Po + tr
= 0.0754 + 0.001% = 0.0768
The efficiency is
e C

Thus it is seen that the blade drag of the magnitude given in the
- preceding table reduces the propeller efficiency from 92.9 percent
to 85.5 percent for the propeller operating conditions given.

CONCLUDING REMARKS

A comparison of Theodorsen's propeller theory with the conventional
vortex theory shows that the optimum load distribution along the blade
for single-rotating propellers obtained by the two theories is essentially
ldentical and as a result the optimum efficiencies-are the same for a
given operating condition. Theodorsen's theory has the advantage, - however
that the optimum efficiency for any design condition can be obtained
quickly and accurately by the use of the mass coefficient - kK - without any
laborious calculations and before the final design is made.

)

The distribution of the circulation function K(x) for the idealized
dual-rotating propeller is radically different from the existing values
for the single-rotating propeller that have been previously used for the
dual-rotating propeller. Also, the mass coefficient k for the dual-
rotating propeller is larger than the sum of the values for two single -
rotating propellers. These quantities, which are not available from
mathematical computations but are obtained from the electrical -analogy
method of Theodorsen, are used herein for obtaining the optimum load
distribution along the blade for the dual-rotating propeller.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.
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Figure 2.-
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Velocity diagram for dual-rotating propeller.
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for various numbers of blades
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Figure 13.- Propeller efficiency against % (reference 4).
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