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NATIONAL ADVISORY COMMI_EE FOR AERONAUTICS

RESEARCH MEMORANDUM

HIGH-TEMPERATURE OXIDATION AND IGNITION OF METALS

By Paul R. Hill, David Adamson, Douglas H. Foland,

and Walter E. Bressette

SUMMARY

A study of the high-temperature oxidation of several aircraft con-

struction materials was undertaken to assess the possibility of ignition

under high-temperature flight conditions. Tests have been made both in

open and closed Jets, and, in addition, the burning of metals has been

observed under static conditions in a pressurized vessel containing either

air, oxygen, or nitrogen. When heated in an atmosphere of oxygen or when

heated and plunged into a supersonic airstream, titanium, iron, carbon

steel, and common alloys such as 4130 were found to have spontaneous-
ignition temperatures in the solid phase (below melting) and they melted

rapidly while burning. Inconel, copper, 18-8 stainless steel, Monel, and

aluminum could not be made to ignite spontaneously at temperatures up to

melting with the equipment available. Magnesium ignited spontaneously

in either type of test at temperatures Just above the melting temperature.

A theory for the spontaneous ignition of metals, based on the first

law of thermodynamics, is presented. Good correlation was obtained

between calculated spontaneous-ignition temperatures and values measured

in supersonic jet tests.

There appears at the present time to be no need for concern regarding

the spontaneous ignition of Inconel, the stainless steels, copper, alumi-

num, or magnesimn for ordinary supersonic airplane or missile applications

where the material temperature is kept within ordinary structural limits

or at least below melting. For hypersonic applications where the material

is to be melted away to absorb the heat of convection, the results of the

present tests do not apply sufficiently to allow a conclusion.

INTRODUCTION

In the engineering of missiles or other aircraft to fly at extremely

high speeds it has been customary to choose materials that retain strength

at design temperature. More recently, designers who have been concerned

with aircraft under transient thermal conditions have planned to use the

skin as a heat sink and, in some extreme cases, to use the heat of fusion,

or m_itJng, us a Dossiblc mca_ of absorb_ the aerodynamic heating.
V
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However, since most materials of construction are combustible if heated
sufficiently, the possible rapid oxidation at high temperatures makes
it necessary to consider the problem from a chemical as well as from
the thermodynamic viewpoint.

One of the main factors that tends to inhibit the oxidation of
metals is the formation of an oxide film which separates the air from
the base metal. The oxides of somemetals are very effective inhibitors.
Aluminumand chromiumare perhaps the two best knownexamples of metals
that form an effective protective oxide coating. On the other hand_
molybdenumand tungsten are examplesnoted for their porous, powdery
oxide that gives practically no protection.

Someexperience with the combustion of metals _s been obtained in
connection with oxygen cutting torches in standard shop practice. Here,
experience has shownthat most nonstainless steels cut readily, whether
plain carbon steels or commonalloys. However, for chrome-bearing steels,
the speed of cutting decreases, and the cutting temperature necessary
increases as the chrome content is increased.

Also, there has been considerable research on the oxidation of
metals, but most of it has consisted of measurementof corrosion rates
or the rate of scaling of various metals in air or other mediumsat high
temperature over prolonged periods. In the present paper_ however_
oxidation is considered from the viewpoint of possible ignition and com-
bustion due to the heat release from accelerated oxidation. It is pro-
posed that if the oxidation occurs with sufficient rapidity, the heat
of oxidation will overbalance the heat dissipated in various ways, and
ignition and combustion will follow.

EQUIPMENTANDTESTS

It is difficult to design equipment to investigate high-temperature
oxidation because oxidation destroys the equipment. Since, at this
time, no adequate ground-test facilities are available to determine
ignition temperatures and oxidation rates under very realistic con-
ditions, various phases of the problem have been investigated in the
facilities available by resorting to subterfuges to bring the material
tested up to temperature. In one of these, metal rods attached to a
radius-arm support were preheated in a coke furnace and then swung
quickly into a supersonic blowdownjet having a stagnation temperature
of 600° F.

The rod samples had hemispherical noses of 3/8-inch diameter which
were instrumented with chromel-alumel thermocouples. Whenpreheated to
2,400° F, rods of cold-rolled steel, 4130 steel, and Graphmotool steel
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rose almost instantly to their melting temperatures of approximately

2,600 ° F and burned. Combustion appeared to take place over the entire

nose and over the first inch of the cylinder, which usually necked down.

From this point back, molten metal in a very fluid state streamed over

the surface and terminated 4 to 5 inches back of the nose. Apparently

this stream of metal evaporated and joined the conflagration. The entire

rod was bathed in a luminous and ever-growing sheath of flame. Steels

with substantial chrome content, such as 18-8 stainless steel, did not

undergo spontaneous ignition, although these materials were heated close

to their melting temperatures.

A solid magnesium 20 ° total-angle cone was tested in a 1.5- by

4-inch nozzle at the Langley ll-inch hypersonic tunnel at a Mach number

of 5.2 and an air stagnation temperature of 630 ° F. A graphite electric

radiator with a radiating capacity of i00 kw/sq ft raised the magnesium

temperature to 1,150 ° F. Structural disintegration of the cone occurred

before an ignition temperature was reached.

An identical cone sample was placed in a l_-inch-diameter air Jet
2

issuing from an electrically heated stainless-steel pipe at a velocity
of 300 ft/sec and a temperature of 1,600 ° F. Ignition of the cone fol-

lowed a heating period during which about i/4 inch of the nose melted

off. The cone then burned steadily at the blunted nose until the entire
cone was consumed.

In order to study some of the details of the mechanism of ignition

under conditions of a controlled heat balance, wires of various materials

about 1/16 inch in diameter and 2 inches long were heated by passing a

high-amperage alternating current through the wire which, at the same

time, was immersed in a static atmosphere of air, oxygen, or nitrogen.

The wire was mounted normal to the axis of a _-inch-diameter cylinder

in which it was enclosed. The cylinder was able to withstand pressures
up to 800 lb/sq in. and had a quartz window in one end to allow obser-

vation of ignition and burning. The wires were instrumented with

chromel-alumel thermocouples 0.005 inch in diameter, capable of giving

temperature measurements to 2,400 ° F.

DEFINITIONS

Before proceeding further with a discussion of oxidation and igni-
tion, it seems in order to give some definitions and to examine the

basic principles of spontaneous ignition. The symbols used herein are

defined in the appendix. Consider a metallic surface oxidizing at high

temperature. Figure 1 is a schematic representation of two quantities:

The steeper curve represents the rate of heat released by oxidation,
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and the other curve represents the losses, which maybe composedof
convection, conduction, and radiation. The point where the rate of
oxidation is equal to the losses is a critical point. If the slope of
the oxidation-rate curve is greater than the slope of the losses curve,
as in this figure, the temperature is in unstable equilibrium at this
point. The temperature at this critical point will be referred to as
the spontaneous-ignition temperature. If the temperature exceeds the
spontaneous-ignition temperature it will continue to increase and_ because
of the exponential nature of the oxidation process with temperature, to
increase rapidly. If the temperature is less than the critical value
it will tend to decrease. Of course, the surface would never reach the
spontaneous-ignition temperature if it were not heated by someforcing
function, which is usually convection. In this case, convection rein-
forces oxidation and cannot be regarded as a loss. The spontaneous-
ignition temperature is obviously a function of the particular environ-
mental conditions as well as the material and, as is shownlater, also
depends on the history of temperature and environment. It may or may
not exist below the melting temperature of the material.

RESULTSANDANALYSIS

Figure 2 gives the results of heating a 1/16-inch-diameter wire in
an atmosphere of air at 500 ib/sq in. abs. The wire, although nominally
referred to as i010 steel, is believed to contain somewhatless than
i percent carbon. Figure 2(a) gives a time history of the wire temper-
ature whenheated with a 94-ampere current. For comparison, a time his-
tory of the temperature in an atmosphere of nitrogen at approximately
the samepressure is shown. Although there is not muchspread between
the two curves, the difference in slopes is significant. To obtain fig-
ure 2(b) the wire is considered as a calorimeter. The slopes of the
curves in figure 2(a) are plotted against temperature, but expressed as
an apparent heating rate by using weight and specific heat as conversion
factors. If the radiation and convection are assmnedto be essentially
the samein air and nitrogen at the samepressure and temperature, the
difference in the apparent heating rate is due to oxidation. The differ-
ence, or oxidation rate, is plotted against temperature in figure 2(c)
as the curve labeled 94 amp. The other curve, labeled 63 amp, is seen
to have a considerably lower oxidation rate. The reason for this is
shownin figure 2(d). The rate of oxidation, Btu/sec, is proportional
to the rate of growth of oxide thickness. If the oxidation rate is con-
verted to units of oxide thickness per second, if the oxide is assumed
to be Fe203 with a heat of formation of 2,155 Btu/ib and a density
of 327 ib/ft 3, and if the rate of thickness formation is integrated with
time, the oxide thickness shownin figure 2(d) is obtained for the two
heating rates. The wire with the slower heating rate has more time to
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oxidize and forms a greater thickness of oxide. The greater film thick-

ness inhibits oxidation and gives the lower oxidation rate, as shown in
fi e 2(c).

If the electric power was cut off at any time during the 63-ampere

test, the temperature immediately fell off, showing that the losses were

greater than the oxidation heat rate.

The leveling off, or negative slope, of the oxldation-rate curve

above 2,200 ° F for the 94-ampere case is believed to be due to a nitrogen

enrichment in the immediate vicinity of the wire, resulting from the high

rate of oxygen usage and the small flow of air by natural convection.

This belief is strengthened by the observed behavior of the temperature

when the electric power was cut off at about 2,200 ° F. The temperature

rose, showing that the losses were exceeded, but after rising a few hundred

degrees the upswing stopped and the temperature fell back. This could

hardly be due to anything other than exhaustion of the local supply of

oxygen. With a replenishment of air the temperature started up again.

This process was repeated as many as three times in a few seconds, after

which the wire cooled off. It was therefore thought that wire tests in

an atmosphere of oxygen would give more information pertinent to high-

speed flight conditions in which oxygen supply is sufficient for spon-
taneous ignition.

Theoretically, the gas pressure does not affect the oxidation rate.

A series of tests were made on steel wires in an atmosphere of oxygen to

determine whether the pressure had a noticeable effect on the rate of

oxidation. The pressure was varied from 1/2 atmosphere to 53 atmospheres.

Any effect of pressure on oxidation rate was too small to be determined.

A pressure of 33 atmospheres or 500 ib/sq in. abs was chosen for further

work, and the results are shown in figure 3.

Figure 3(a) shows the rate of oxidation for three heating rates,

and the curve labeled losses intersects the other curves at spontaneous-

ignition temperatures. If the electric power was cut off at higher tem-

peratures, the temperature rose rapidly, after which the wire burned until

it was consumed. The integrated oxide thicknesses for the same heating

rates are shown in figure 3(b).

Constant-temperature cross plots of figures 3(a) and 3(b) yield oxi-

dation rate as a function of oxide thickness, as shown in figure 3(c).

The points are experimental values obtained from the cross plots and

were used to establish the coefficients of the engineering formula for

oxidation rate,

42170

134500 T
% - e (1)
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which is represented by the solid lines in figure 3(c). The form of the

dependence of oxidation rate on the temperature conforms to the Arrhenius

law which adequately describes a large number of diverse chemical reac-

tions. The denominator contains simply the oxide thickness 5. The

dependence of the oxidation rate on the reciprocal of the oxide thick-

ness is in conformity with the ion diffusion theory developed by Wagner.

It agrees with the present data for fast rates of oxidation and also agrees

with much of the oxidation data in the literature obtained on steels at

lower oxidation rates. The form of equation (i) was obtained by making

the observation that the diffusion function Consta_t/5 and the Arrhenius

temperature function Ae-B/T are independent of each other, so that a

combined equation can be obtained simply as the product of the two func-

tions. This equation can be expressed as a rate of weight gain instead

of rate of heat release_ and integrated with respect to time at constant

temperature. In that form it is known as the parabolic law of oxidation

because the weight gain is proportional to the square root of the time

(ref. i). The parabolic law agrees with much of the constant-temperature

test data in the literature for the oxidation of both ferrous and non-

ferrous n_tals which have nonporous or nonpowdery oxides, such as certain

steels, chrome, copper, and aluminum. It follows that the form of the

diffusion formula herein presented should apply for these metals over any

range of conditions for which their oxidation characteristics have been

shown to fit the parabolic law of oxidation. The constants must be

adjusted for the particular metal according to test results.

However, the application of this formula has certain limitations.

It obviously cannot apply at oxide thicknesses approaching zero. How-

ever, this formula apparently applies for a coating as thin as 0.0001

or 0.0002 inch. Strictly, the constants in the equation are adjusted for

oxygen, but the equation may be used with air provided the surface is

fully supplied with oxygen so that it remains saturated in spite of the

rapid usage of oxygen. This point is illustrated in a subsequent para-

graph. For aerodynamic ignition, saturation of the surface with oxygen
seems to imply only that there must be a substantial mass flow of air

or a substantial stagnation pressure. These conditions are usually pre-
sent with high rates of heat transfer.

In order to determine whether the spontaneous-ignition temperature

can be calculated for steel in a supersonic airstream_ computations were

made for the conditions of the rotund-nose rods tested in the preflight

jet of the Langley Pilotless Aircraft Research Station at Wallops

Island, Va. The test conditions are stated at the top of figure 4. The

spontaneous-ignition temperature equation, which is a form of the first

law of thermodynamics, is
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Conduction is omitted because the rods were quite uniformly heated. The

first term represents oxidation and is taken from equation (I). The

second term is Sibulkin's theory for the heat transfer on a hemispherical

nose, which, in this case, had a diameter of 3/8 inch. The last term is

the usual expression for radiation. The value of emissivity was taken

as 0.88. The unknown quantity T, the surface temperature for equilibrium

conditions, appears in each term. The solutions of this equation for
oxide thicknesses of O.O001 and O.OO1 are plotted in figure 4. The theory

shows a slight drop in spontaneous-ignition temperature with airspeed

because the convection represents a loss. The measured spontaneous-

ignition temperatures also show a slight drop with speed at the higher

speed range. At 150 ft/sec, no ignition was obtained although the speci-
mens were heated to near melting. Insufficient oxygen, together with

nitrogen enrichment of the boundary layer, seems to be the most probable

cause of the failure to ignite at low airspeed, although reduced erosion

may possibly affect the result.

Some nonferrous materials such as Inconel and copper were tested to

temperatures approaching melting in a supersonic blowdown jet with a

stagnation temperature of 600 ° F, without obtaining ignition. The same

results were obtained from the simple heated-wire tests in an atmosphere

of oxygen. Figure 5 shows temperature-time histories for wires of sev-

eral materials tested in oxygen at 500 lb/sq in. abs. Although the

Inconel and copper were heated until they melted, no ignition was obtained.

The rate of oxidation of these materials was too small to be measured by

the techniques used. The break in the titanium curve is not associated

with oxidation but is believed to result from the heat absOrption by the

alotropic transformation. When the electric power was cut off at 2,100 ° F

the titanium spontaneously ignited and burned vigorously. Titanium was

also found to burn vigorously in an atmosphere of pure nitrogen as well

as in an atmosphere of air. The spontaneous ignition temperature in air

at a pressure of 1 atmosphere was 2,900 ° F. Magnesium was observed to

ignite when it melted, possibly because some of the protective oxide

coating was floated off.

CONCLUSIONS

Tests of low-carbon steel and several other materials heated artifi-

cially in wind tunnels, in _ir Jets, and under static conditions in

atmospheres of air, oxygen,_ud nitrogen_m ndicate the following:
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i. Whenrapidly heated in an atmosphere of oxygen or whenheated
and plunged into a supersonic jet at Mach 1.4 or 2.0,

(a) Iron or carbon steel and com_onalloys such as 4130 were
found to have spontaneous ignition temperatures in the solid phase
(below melting) and melted very rapidly while burning.

(b) Inconel, copper, 18-8 stainless steel, Monel, and aluminum
did not have a spontaneous ignition temperature in the solid phase,
nor could they be madeto ignite at, or close to, melting with the
equipment available.

(c) Titanium burned in atmospheres of air, oxygen, or nitrogen.

2. A good correlation of experimental and theoretical spontaneous-
ignition temperatures was obtained for steel in supersonic airstreams.
Comparablespontaneous-ignition temperatures were obtained by simulation
in an atmosphere of oxygen.

3- The fact that the oxidation rate of somematerials varies inversely
with the oxide thickness suggests that, for somematerials, catastrophic
release of heat by oxidation maybe prevented either by heating gradually
or by prior oxidation.

4. There appears at the present time to be no need for concern
regarding the ignition of Inconel, the stainless steels, copper, or mag-
nesium for any ordinary supersonic airplane or missile applications where
the material temperature is kept within ordinary structural limits or at
least below melting. For hypersonic applications where the material is
to be melted away to absorb the heat of convection, the results of the
present tests do not apply sufficiently to allow a conclusion.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics_

l_ngley Field, Va., November3, 1955.
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SYMBOLS

Prandlt number

rate of heat generated by oxidation, Btu/sec-ft 2

rate of heat loss, Btu/sec-ft 2

rate of convective heat loss, Btu/sec-ft 2

rate of radiation loss, Btu/sec-ft 2

Reynolds number (based on nose diameter)

temperature, OF abs

adiabatic wall temperature, OF abs

nose diameter of specimen, ft

conductivity of air, Btu_ sec-ft 2)(OF/ft)

oxide thickness, in.

emissivity, Btu/(sec-ft2)(°F)

REFERENCE

i. Miley, H.A.: Fundamentals of Oxidation and Tarnish. The Corrosion

Handbook, Herbert H. Uhlig, ed., John Wiley & Sons, Inc., 1948,
pp. 11-20.
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WIFE TESTS
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