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TECHNICAL MEMORANJXJM 1387

THEORY OF REVERSIBLE AND NONREVERSIBLE CRACKS IN SOLIDS*

By Y. 1. Frenkel

THEORY OF GRIFFITH

The existence of incipient cracks on the surface or inside of solid
bodies is, as is known, the reason for the sharp decrease in their actual
strength in unilateral tension as compsred with the theoretical strength
value derived from the electron theory of the forces of a molecular chain,
According to the theory of Griffith (ref. 1), in the presence of a crack
the tensile force applied to the body, which usually is represented as a
cylindrical rod, is distributed nesr the edge of the crack. When this
‘superstress’ attains a value corresponding to the theoretical strength
of the body the crack starts to deepen suddenly as though ‘slitting’ the
body; this constitutes the mechanism of its rupture.

The theory of Griffith is usually presented in a somewhat different
form, associated with the importance not of the forces but, of the poten-
tial ener~ of the body under consideration, more accurately, with the
change in this energy which is produced by the cracks of given length
(or depth ). In the case of the two-dimensional problem this change, ac~
cording to Griffith snd other authors, may be expressed by a two-termed
formula

F222
u=-~+2u2

where 2 is the length of the crack, F is the
stress (in the absence of a crack or at a large

(1)

mean vslue of the tensile
distsnce from the latter),

E is Young’s modulus, and u is the surface stress. The first term U
is the decrease in energy due to the formation of cracks of length 2 (in
the separating of its edges). The second term represents the correspond-
ing increase in the surface energy on the assumption that the edges of
the crack are sepsrated by a distance where the forces of the molecular
chain may be neglected. The dependence of U on 2 expressed by for-
mula (1) is graphically represented in figure lj the mesn stress F pl~-
ing the part of a psrameter. The maximum of the curve U(2) corresponds

*“Teoriya obratimjkh i neobratimykh treshchin v tverdykh telskh)”
Zhurnal Tekhnicheskoi Fiziki, Vol. 22, No. 11} Nov. 1952, Pp. 1857-1866.
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to the critical value of this parsmeter Fk = F(zk), at

lengthening of the crack becomes favorable, that is, to
which can be measured under the usual test conditions.

NACA TM 1387

which the further

the stress failure
The experimental

value 2 = Zk, corresponding to the given VEibIe F = Fk, characterizes the

critical length of the crack at which its further lengthening becomes
favorable. The relation between Fk and Zk is expressed by the well

known formula of Griffith (derived from the condition aU/~2 = O)

[

2uEFk= —
Zk

(2)

AS Fk increases, tk decreases as seen in figure 1; the curves

F1 snd F2 correspond to two different values of F for the condition

F2 >F1. In the theory of Griffith the crack is a through hole of ellip-

tical shape with its major setiaxis equal to 2/2 and its minor semiaxis
proportional to the mean value of the applied stress F. The magnitude
of the true stress ‘o at the edges of the crack (that is, at the ends of

the major axis) is inversely proportional to
of the ellipse at the corresponding vertices
Fk by the formula

the
and

For F. to have a finite value, the radius

radius of curvature b
is expressed in terms of

(3)

of curvature 8 must

likewise be finite. If it is assumed, in conformity with the molec-
ular concept of the structure of solids, that the minimum value of the
radius of curvature of the crack should be equal in order of magnitude to
the distance between the neighboring atoms or molecules (5 = 10-8 cm) and
if, further, the theoretical strength is identified with the value of
Young’s modulus E which is in agreement with the electron theory of the
forces of a moleculsr chain and if, finally, account is taken that the
surface stress is equal in order of magnitude to the product of the modu-
hS E by b, the value of F. obtained from formula (3) is practically

identical with that which is determined by formula (2).

CRITICISM OF GRIFFITH’S ‘ITIEORY

Griffith’s theory is unsatisfactory both in principle and in regard
to its agreement with experimental facts. Leaving these facts aside for
the moment, the defects of Griffith’s theory with respect to fundamental
principle will be considered first in order to construct a theory of
cracks which is free from defects.
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It is first necessary to note the following qualification.
a given value F

If for

= Fk the length of the crack would be found greater

than the corresponding value Zk (formula (2) or (3)) then, according to

Griffith’s theory this crack should have increased in a catastrophic
manner. This conclusion which expresses the essentisl chsracter of
Griffith’s theory is generally considered entirely natural and undisput-
able. However, an entirely different result is obtained if the initial
length of the crack is assumed less than Zk. In this case> according

to the very meaning of the theory of Griffith, the crack should have spon-
taneously closed, that is, gradually decreased in length and would have
finally disappeared entirely. As fsr as is known to the author, such a
conclusion from the theory of Griffith has never been drawn by any one
at sny time. Griffith himself assumed, and in this, all his followers
agreed with him, that for a stress F less than the critical value Fk~

which corresponds to the given length of the crack 2 = Zk, the latter

maintains its length for an unlimited timej in other words, for Z < Zk,

the length 2 instead of decreasing catastrophically (similarly to its
catastrophic increase for the case Z>zk) remains constant. This assump-

tion is a necesssry condition for the applicability of Griffithls theory
to real solid bodies but is at the same time contradictory to it (gener-
ally without explicit awareness of it). Esrly in the concept of the
theory it was established that the initial incipient crack has> even in
the absence of tensile forces, a finite width considerably greater than
the interatomic distance 5, representating, as it were, a cut in the body
not connected with the action of the tensile forces and therefore, incap-
able of spontaneously closing when the tensile forces sre removed. With
increase in the latter up to the value Fk, the initial crack maintaining

a constant length can only widen, and only when F exceeds this vslue
would it begin to lengthen.

This contrasting of the initial structure of the crack (’crack with
hollow!) with the structure which it develops on further lengthening is
however, entirely arbitrary and is inconsistent with experimental facts.
In fact, from this supposition the result follows that if on passing
through the critical value Fk and not allowing the crack the possibility

of stsrting to lengthen during a certain time interval. At, end when the
applied tensile force is suddenly removed} the crack will spontaneously
close to its initial length. A test of this kind has not up to this time
been conducted. There exists, however, every reason to believe that actu-
ally the initial length of the crack plays no essential psrt, and that in
the absence of tensile forces the crack should be entirely closed.

This defect in the principle of the theory of Griffith may be formal-
ly reduced to the statement that the curve U(2) for F = constant has
only a single extreme point which corresponds to the maximum of the ener-
gy, that is, to an unstable state of the body in the presence of a given
tensile force.
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This qualification deprives Griffith’s theory of any physical mean-
ing. To obtain a physical meaning of the theory, it is necessary to es-
tablish a relation between U and 2 such that, together with the msxi-
mum, which corresponds to the unconditional existing limiting value
z = 2“, there should be a minimum for a somewhat smaller value 2 = 21
which corresponds to the stable state of the body. Such a relation may
be graphically represented by the curve shown in figure 2, which is remi-
niscent of one of the isothermal in the theory of Van der Waals (turned
upside down).

Curves of precisely this type sre, in fact, obtained when the theory
is constructed on the basis of a true representation of the geometry of
the cracks and not on the entirely arbitrary and actually incorrect repre-
sentation by Griffith, which is that elliptical holes with finite curva-
ture at the ends of the major axis sre formed. The present theory related
to the representation of stable elastic cracks arising from the action of
tensile forces (external or internal) is in agreement with the investiga-
tions of P. A. Rebinder on the effect of adsorbing substances or of a
gaseous medium in which the solid under tension is located on its differ-
ent mechanical properties. This theory corresponds also to the tests of
Obreimoff on the splitting of sheets of mica slong the cleavage planes
(ref. 2).

CRACKS FORMED IN AXIAL SPLITTING OF CRYSTALLINE PLATES

The cracks formed in a solid should not have rounded edges, as is
implicitly assumed in the theory of Griffith, but sharp edges correspond-
ing to the gradual asymptotic approach of both surfaces separating the
crack to the normsl distance b, which in a crystalline body may be de-
fined as the constant of the crystal lattice in the corresponding direc-
tion, and which in general is identical in order of magnitude to the
normal distance between the neighboring atoms or molecules. From a
purely geometrical point of view these normal distances between neighbor-
ing layers of particles could be treated as cracks, plane in the case of
crystalline bodies, and more or less curved in the case of bodies with
vitreous structure, and the entire solid could be considered as pierced
in all possible (in particular crystallographic) directions by a system
of holes of atomic width. However, from a dynamic point of view these
intervals between neighboring layers of particles (atoms, molecules)
become actual cracks only when the distance between them is increased
relative to the normal distance, that is, becomes equal to b + Yj if the
widening y (the difference between the actual distance and its normal
value) is considerably greater than 5, even though at a certain limited
psrt of the body nesr the surface or far from it rather than at the corre-
sponding parts, the edges of the cracks may be considered completely dis-
connected. Such a slit-shaped crack is represented in figure 3(a) for the

case of a crack on the surface of the body and in figure 3(b) for the case
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of an internal crack. The abscissa here denotes the distsnce measured
&Long the crack and the ordinate the corresponding widening y or, more
accurately, hslf of it (thus the value y = O characterizes the normsl
distance between the neighboring lsyers of psrticles).l

Although under the observed conditions, the length of the crack
strictly speaking is infinite, practically it msy be assumed that the
crack, in the actual sense of the word, ends where the distance between
its edges becomes equal, say, to twice the vslue of the normal distance
?3,that is, where y = 5.

A less srbitrsry and physically more justified definition of the
effective length of the crack may be obtsined on the basis of the depend-
ence of the mutual interaction between the oppositely lying parts of the
walls of the crack, snd on the distsnce between them y (or, more accu-
rately, 6 + y). This force, referred to unit area, is denoted by f(y) .
For sufficiently small (in comparison with 5) vslues of y, the force
should, evidently, be proportional to Y) reducing to ~ attraction in
the case y>(lland to a repulsion in the case y<O. This dependence
may be expressed by the formula:

(4)

where f>O corresponds to an attraction, and f<O to a repulsion.
Since for y>>6,f is equsl to O, it follows that for a certain
value y . y* the force f attains its msximum value f*, which may be
identified with the theoretical strength of the material in rupture.
Since y* is near in vslue to 5, f* should be nesr in vslue to E, as
is clear from formula (4) which may be approximately extended to this
case but becomes entirely unsuitable for y>y*.

The dependence of f on y is graphically shown in figure 4. It
may be analytically represented by the very simple formula

f . Aye-ay (5)

where A = E/b and the coefficient a is equal to the reciprocal of the
distance y+. For simplicity in this report CL will be
1/8 .

identified with

%he difference between our proposed description of
the description that follows from the theory of Griffith

the crack and
does not require

explanation. We may remark only that the ‘rounding’ of the edges of the
Griffith cracks with a radius of curvature b would correspond, from
our point of view, to the cracks for which the widening y, instead of
asymptotically approaching zero, becomes zero in a more or less sharp
manner. The assumption made by equating the minimum value of the radius
of curvature to 5 is entirely without foundation.
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Formula (5) may be replaced by a two-term expression of the type

f=
b

(v-~>o) (5a)
(b+ay)~- (b+y)v

in which the first term characterizes the forces of attraction and the
second (generally omitted in considering the suxface energy), the forces
of repulsion.

Evidently, integrating f with respect to y between the limits

O and ~, results in the work of the total division of the body into two
parts, that is, twice the vslue of the surface energy (or of the smface
stress in the case of absolute zero temperature). Therefore,

J2U0 = o- fdy

If,
taken a9
entirely

as the upper limit in this integrsl sn infinite value of y is
a measure of the surface energy for the cracks (slits) not having
sepsrated edges, this expression applies

As in the case of formula (5)

Zu(yl) =3
[ 11- (ylu+l)e-ayl (6)

For Yl+ ‘, this expression reduces to 200 = A/azj hence, in the

relation A = E/b (that is, A/cL= E), there is obtained the formula

●
(6a)

which practically agrees with the relation between the surface stress and
the rupture strength that was identified earlier with E.

More accurately, this strength is expressed by the formula

f*=: e = Ee = 2.72E

The accmacy is, however,

approximate character the

When the slit-shaped
taken into consideration,

illusory because formula (5) possesse= a roughly
same as the identification of y*(= l/cL)with 5.

crack represented in figure 3(a) or (b) is
it is assumed that the surface energy of its
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principal part (corresponding to y>b) is equsl in unit width to 2U02,

where 2 is the effective len@hj while the surface energy of the deeper
part of the crack may be represented with a sufficient degree of accuracy
by the integral

tsken along x

of the expression

JY
2 fdy = 2

0

fromx=2 tox

(7)

That the surface energy of a narrow crack should be less than that
of a wide crack was noted by Rebinder in his work on the strength of
solids under the action of substances adsorbed on their surfaces.
Rebinder, however, restricted himself to only a qualitative determination
of the function a(y) .

DEPENDENCE OF LENGTH OF CRACK ON THE MAGNITUDE OF

TENSILE FORCES FOR A SPLIT PLATE

Imagine a horizontal plate of infinite length split under the effect
of two oppositely directed forces dj? applied perpendicular to its plane
and to its edge from above and from below, respectively (fig. 5).
The width of the plate (in the direction perpendicular to the plane) is
taken to be unity. The thickness of the plate is denoted by 2b which
is assumed to be small in comparison with the effective length 2 of
the forming crack (lengthened in the form of a gradually nsrrowing slit).

To determine 2 as a function of F requires that each of the two
similsr hslves into which the plate splits be considered as a beam bending
under the action of a force concentrated on the free end and the cohesive
forces on the other half of the plate, which me distributed along the
surface directed toward this half, and attaining a maximum vslue at the
required distance 2. In the work of Obreimoff (ref. 2), account was taken
only of the wide part of the crack or its *mouth~, while its slit-shaped
part, extending from x = 2 to x = ., which is the usual concept of a
crack of finite length, was not taken into account at all. These surface
forces take the place of the forces which in the ususl theory of the bend-
ing of a beam are reduced to the reaction of the wsll to which one of its
ends is clsmped.

Under these conditions the shape of the plate, or more accurately,
of one of its halves (the lower for example) is determined by the differ-
ential equation

—
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(8)

where y denotes the displacement of the corresponding point of the
half-plate under consideration, because the lower half-plate is taken to
be positive downwards, E is Young’s modulus, I = b3/3 is the moment of
inertia of a plsne section, and M the moment of the forces applied to
the hti-plate with respect to the point x = O. This moment is expressed
by the following formula

s

x
M=Fx- fc u (8a)

o

where f is the surface force referred to unit length. Differentiating
this expression with respect to x gives

Equation (8) is thus,
equation

where f is a function of

dMF—=
ax - fx

equivalent to

d3y
=&(F-

2

(8b)

the following third-order

fx) (9)

y determinedly formula (5) or (5a).

For the solution to the problem of the dependence of the effective
length of the crack on the externsl force F, an exact solution of equa-
tion (9) is not necesssry. The problem may be solved by an approximate
method taking into account that for large values of x the derivative
d3y/ti3 should approach zero. Since it is then possible to put

F~=@.gy.__) the dependence of y on x in the slit-shaped part

should be expressible by the asymptotic formula

obtained from

from equation

the

For

following

y.;: (lo)

equation (9) under the condition d3y/dx3 = O. In fact,

(10) it follows that d3y/ti3 =

corrected

the purpose of this

expression for y

y=g(l+;Q?$

report the correction

6F5” 1
E‘—7’

which leads to

(lOa)

term will be neglected.
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It is understood by the effective length 2 of the crack that
value of x, for which the value of y is equal to 8, corresponds
proximately) to the maximum vslue of the force. Thus the following
-relation between 2 and F can be obtained

z=;

9

the
(ap-
linear

(u)

ENERGY OF CRACK IN SPLITTING OF A PLATE AND STRENGTH OF THE LATTER

The preceding results may elso be obtained from the condition of the
maximum total energy of the system under consideration (half-plate). This
energy U breaks up into three parts: (a) the elastic energy Ul of the

externsl part treated as a beam of length 2 with load F on the free
endj (b) surface energy of the open part of the crack U2 = 2u02j and (c)

the energy of the incipient slit-shaped part corresponding to x>2. For
part (c), formula (7) may be used with formula (10), which gives

(12)

Part (a) is obtained by the expression

ul = - ; FYO

where Y. is the maximum deflection, that is, the velue of y for

x= o. This may be expressed by the approximate formula

which is obtained by
M = Fx, that is, not

z%?
Yo=~

the integration of eqyation (8) substituting in it
taking into account explicity the internal forces

but schematically using the conditions y =0 anddy/dx=O for x=2.

Thus, the total energy of the plate, or more accurately, the half-
plate of the splitting force F over the effective depth 2 may be ap-
proximately represented by the following fornmla

lJ.
F2Z3

- — + 20.2
6EI

which of course is applicable to the case
(These values will not, in this reportbe

+ F25

m
(13)

of very smsll values of e.
taken into account.)
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The dependence of U on 2 “expressed by formula (13) is graphi-
cally shown by the curve of the same type as in figure 3 with the differ-
ence that when 2 approaches O, U approaches = (in reality it ap-
proaches a finite vslue). In figure 6 is shown a fsmily of curves u(z)
corresponding to different values of the splitting force F (isodynes)

in the order of increase of the latter. For a value that is not too large
the curve has two extremities: a minimum for 2 = 2’ and a maximum for
z = 2“>2’. By increasing F these points approach each other and
finally for a certain value F = Fc (the critical point analogous to the

criticsl temperature in the theory of Van der Wads) they coalesce.

For F<-=FC, the minimum of the function U practically coincides

with the minimum Of the sum

and corresponds to the following value

r2’=F ~
2Eu0

(14)

Since, accorting to equation (6a) IJo= E5/2 this expression may be

written in the form

l’=; (14a)

which agrees with the previously derived expression (11) for the effective
length of the crack due to the action of the force F. From this it is
clear that the length’of crack, which was considered earlier, represents
a stable value, corresponding to the minimum of the potential ener~ U
and characterized by the stable equilibrium of the split plate.

The maximum value of U corresponds to the unstable equilibrium of
the plate at which the length of the crack, having attained a certain
value 2“>2’ under the action of a very smsll disturbance, either re-
turns to the value 2 = 2’, or suddenly increases. For the condition
F Fe,= this length practically retices to that which corresponds to the

F2Z3
maximum of the function U1 + U2 = - ~ + 2002 and is expressed by the

formula
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Compsring equations (14a) and (15) we msy write the relation between 2
and 2’ in the form

211*V=
r

1 ~b3
z

(15a)

Evidently the value Fc corresponding to the agreement of 2’ and
~t? simply represents the strength limit of the plate relative to the
action considered, that is, the minimum force introduced by the sudden
formation of the lengthening crack.2 In order of
may be determined by identifying expression (14a)
simply it may be computed with the aid of formula

and

Fc = Elc

_tud&, this force
with (15). Still more

(16)

(16a)

When 5 = 1o-8 centtieter and b . 1
+10 +12

meter and Fe = 10 dynes (for E = 10

centimeter. 2. = 10-2 centi-, L

dynes/cm2) are obtained.
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21n contrast to the theory of Griffith this force is not connected
with the existence of an slready existing crack of a certain finite
length.
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