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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1367

HEAT TRANSFER, DIFFUSION, AND EVAPORATION:
By Wilhelm Nusselt

Although it has long been known that the differential equations of
the heat-transfer and diffusion processes are identical, application to
technical problems has only recently been made. In 1916 it was shown
(ref. 1) that the speed of oxidation of the carbon in iron ore depends
upon the speed with which the oxygen of the combustion air diffuses
through the core of gas surrounding the carbon surface. The identity
previously referred to was then used to calculate the amount of oxygen
diffusing to the carbon surface on the basis of the heat transfer be-
tween the gas stream and the carbon surface. Then in 1921, H. Thoma
(ref. 2) reversed that procedure; he used diffusion experiments to de-
termine heat-transfer coefficients. Recently Iohrisch {vef. 3) has
extended this work by experiment. A technically very important appli-
cation of the identity of heat transfer and diffusion is that of the
cooling tower, since in this case both processes. occur simultaneously.
A relation obtained in the course of such an analysis was given by
Lewis (ref. 4) and checked by Robinson (ref. 5), Merkel (ref. 6), and
Wolff (ref. 7).

In the followling it will be shown that more accurate equations
must be substituted for those used in the previous investigations of
the relation between the quantity of matter exchanged by diffusion and
the quantity of heat transferred by conduction.

A rigid body having a uniform surface temperature T, 1is cooled

by an air stream having a speed wo and a temperature To. According
to Fourier, a quantity of heat

2n _ 30T
d“Q = A3 dF dt (1)

then flows into the air stream in the direction n normal to the sur-
face element through a surface element dF in the time dt. In this

lvydrmeiibergang, Diffusion und Verdunstung." Z.a.M.M., Bd. 10,
Heft 2, Apr. 1930, pp. 105-121.
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equation, g% is the instantaneous temperature gradient at the surface

in the direction of the normal, and A 1is the thermal conductivity of
alr. If equation (1) is applied to an element of space in a gas stream,
the following differential equation is obtained for the temperature
field in an air stream:

aT

a2
TCp zx = AW T (2)

wherez

v density of air
cp specific heat of unit mass
A thermal conductivity of air

Therefore, the Navier-Stokes equations of motion involving u, v, and
w are to be understood.

For the diffusion problem, air can be treated approximately as a
homogeneous body, since the molecular weights of its components
nitrogen and oxygen are only slightly different. Air is now considered
to be mixed with the diffusing gas, for example, ammonia or water
vapor. The concentration of the water vapor at an arbitrary point in
the air stream is designated c¢; that is, for example, there are ¢
kilograms of ammonia in 1 cubic meter of air. In the similarity ex-
periment of Thoma (ref. 2), the surface of the rigid body was made of
blotting paper saturated with concentrated phosphoric acid. Ammonia is
absorbed very actively by such a surface, so that the partial pressure
and, hence, the concentration of ammonia is very small. In a cooling
tower the diffusion stream proceeds in an outward direction from the
water drops. The vapor pressure and, hence, the water-vapor concen-
tration at the surface of the drop is accordingly dependent upon the
water temperature. If p, 1is the partial pressure of the diffusing

gas at the surface of the body and pg that in the ailr stream, then

the driving force of the diffusion stream is the partial-pressure
difference py - Ppo-

2The following nomenclature is used herein in the case of variables
dependent upon time and the three coordinates x, y, and z:
aT _ oT oT oT oT
-—= +u + + W
& ox &y "o

vep - %, 3%, 3%
dx2  Jy2 dzo

2951
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If now, again, n is a running coordinate representing the normal
to the surface element dF, then the quantity of vapor diffusing through
\ the surface dF 1is given by the basic relation of Fick:

3
y 2 dc
d = -k dt
\ Gy 5; dar¥ (3)
in ‘which
c vapor concentration, kg/cu m

Bc/an gradient of vapor concentration in direction normal to
surface

k diffusion coefficient, sq m/sec

If an element of space is taken in the air stream, exchange of
vapor between such an element and its environment occurs partly through
diffusion and partly through streaming (sensible motion). This fact
leads to the differentiasl equation:

de 2
2=k 4
T = kVee (4)

The agreement between equations (1) and (3) as well as between (2)
and (4) is immediately recognizable. Accompanying a calculation of
temperature field from diffusion field or vice versa, there must also
exist, however, an equivalence of boundary conditions. The temperatures
Ty and Tgp of the heat transfer correspond to the gas concentrations

cy and cg of diffusion. But, while during heat transfer the gas

velocity is zero at the surface of the cooled body, there exists at
that point, in the case of diffusion, a finite gas-velocity component
normal to the body surface. This difference is easy to see iIf a one-
dimensional diffusion process is studled in a tube under steady-state
conditions. Suppose a tube 1 meters long is filled with air and
ammonia. Suppose also that by certain experimental means the concen-
trations at the ends of the tube are held at different, although con-
stant, values. Then a quantity Gy kilograms per hour of ammonia
diffuses through the tube in one direction, and a quantity of air G2

in the other direction. If x 1s & running coordinate, cy the
ammonia, and c5, the air concentration, then
de
Gy = -ky =
1= -k 3 (5)

d02
Gz = k2 3% (5a)

and



4 NACA TM 1367

where k; and kz are the diffusion coefficients. If the partial
pressures of ammonia and of air are pj and Pys respectively, then

dpy
GiR1T = -kl (8)
and
dpz
GoRRT = Ko <3y (6a)
Integration of equations (6) and (6a) yields®
G1R1T = -kjpy + C (7)
and
GoRoT = kppp + Co (7a)

hence a linear variation of partial pressures. If gravitational in-
fluence is now ignored, the total pressure pg in the tube is constant.

Hence,
Py + P2 = Po (8)

It then follows from equations (7) and (7a) that
ky = kg = k (9)
and

G1R1T = GaReT = Vpp (10)

that is, the same volume, evaluated at the total pressure, diffuses in
both directions.4 Moreover, with the notation of figure 1,

" k '
V=% (p1' - P1 )=T (p2" - p2') (11)
and

k "
G =3 (c1' = cq") (12)

3These are obviously in error; x lacking.

4k1 and kp are equal, but it does not follow from this argument.

2957
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as well as

Gp = % (c2" - c2'") (12a)

Therefore, according to this example, the partial pressure and the con-
centration of ammonia vary linearly along the tube axis. Now, the
experimental situation in the case of the cooling tower and in the
diffusion research of Thoma (ref. 2) was otherwise. In the case of the
tube, the boundary conditions are different at one tube end. If that
end is closed with blotting paper saturated with phosphoric acid, there
is set up, for the case of linear (axial) diffusion, the equivalent of
Thoma's experiment; or, if that end is closed and the bottom covered
with water, a situation corresponding to that of the cooling tower is
obtained. Further, Stefan (ref. 8) and Winkelmann (ref. 9) determined
the diffusion coefficient k for the diffusion of water vapor in air
with this arrangement. It will now be shown that in this instance
linear variation of the partial pressure along the tube axis is not
attained in the case of the stationary diftusion stream. Once again,
alr and ammonia, or water vapor, are counterdiffusing. Since, however,
one end is impermeable to air, no transport of air along the tube can
take place. Because of the gradient of partial pressure of air, air
must diffuse in the axial direction. This molecular air transport must
work against a convective air transport; that is, a sensible flow of
gas in the direction of the tube axis must occur. This flow will be
represented by the symbol u. Then, for the flow of air the equation is

1562

dcz

G2=O=uc2+k§ (13)

or, after introduction of the partial pressure,

upz = -k = (13&)

For the ammonia stream the corresponding equations are

dCl ‘
Gy = uey - k Ix (14)

and

¢ | dpy
o G)R1T = up; - k == (14a)
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Now again
Pl + P2 = Po (8)
It follows then from equations (13a) and (14a) that

k 4y

M= -y O (15)

If equation (15) is substituted for u in equation (14a), the following
expression is obtalned for the partial pressure of ammonia:

kpy 4Py

GR1T = - 56—:f5I T (14v)

the solution of which, with regard to the boundary condition py = Py’
at x =0, is

GyR;T .
—_—=e (16)
Po - P1

Therefore, no linear variation of partial pressure along the tube axis
occurs in this case, but rather a logarithmic. If pj = p;" at x=1,

= kpo In po - pl"
1 RT2 PO - P1' (17)

G

This equation, given earlier by Stefan (ref. 8), shows that the rate of
gas diffusion through the tube is no longer proportional to the partial-
pressure gradient. First, if py 1is small compared with Pg> it is
again true that

Kk pl' - Pl" Cl' - cl
Gy = =k 18
1 RlT 1 1 ( )

From equations (15) and (16) it follows that

0

2951
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That is, the gas velocity u is identical with the volume of ammonia
gas streaming through a unit of surface of the tube cross section per
unit time, as measured at the total pressure Pye Hydrodynamically,

therefore, there exist in the ammonia problems sinks of strength u
corresponding to evaporation from the source of water. Since, in the
case of heat transfer, the velocity is at that point zero, an exact
similarity between heat transfer and diffusion is nonexistent in the
experiment of Thoma. Only at very small values of Gy hence at low
partial pressures of ammonia, can u be taken as zero. Only then does
similarity of the boundary conditions also exist. This will be dis-
cussed later. Similarity requires, however, identity of the hydro-
dynamic equations as well. In the experiment of Thoma, the temperature,
in the case of the diffusion work, is uniform throughout; while, in

the case of heat transfer, it varies. In this instance, the air
density varies with temperature. 1In the case of diffusion, the gas
densities vary with the concentrations. Similarity obtains, therefore,
only if

H‘ﬂi—]

(20)

S

0

In equation (20) Tw and Yo are the densities of the ammonia-air

mixture at the wall and in the free gas stream. Further, the variation
of viscosity with temperature and ammonia concentration must still be
considered. Since, however, as was shown previously, similarity is
possible only at small ammonia concentrations, the experiment gives the
heat-transfer coefficients only at very small temperature differences.

The similarity conditions are more favorable in the case of the
cooling tower. 1In this instance, a hot water surface is cooled by a
cold dry air stream. Accordingly, heat flows from the water to the
air, and simultaneously the water that diffuses into the air evaporates.5
In this instance, heat transfer and diffusion are, accordingly, super-
posed on each other under the same stream conditions. The same hydro-
%y?amic ?q?ations and boundary conditions are assoclated with equations

2) and (4).

In the following discussion, the relations that follow from
similarity considerations in the case of Thoma's experiment and in the
case of the cooling tower are derived.

SStated precisely as written by Nusselt.
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I. MODEL EXPERIMENT OF THOMA

A body having a surface F and temperature Tw is cooled by an
air stream having a speed Wy and a temperature Tp- The heat loss of

the body has the value Q kilocalories per hour. A diffusion experi-
ment is now carried out by using a body of the same shape. The air
stream has the same speed Wy and is mixed with ammonia to the concen-
tration cg. Through the diffusion process, which occurs at the body
surface, the ammonia concentration has already attained the value c.

The diffusion experiment shows that the surface absorbs G kilograms

of ammonia per hour. What relation exists between Q and G? This
question is discussed in the following on the basis of different theories.

Similarity Theory

The similarity theory of reference 10 leads to the following ex-
pression for the rate of heat exchange:

Lwgy  Mcy8 )

Q= AL(T, - Ty) £ ('W » X (21)

where
A thermal conductivity of air
L dimension of body

f initially unknown function of two dimensionless fractions,
dependent on shape of body

e density of air
n  viscosity of air
Cp specific heat of air

For diffusion, correspondingly,

WOT

= - — e
G=kL (cg -cy) £ (Lgn , Yk> (22)

Bs51
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From these is obtained the relation sought:

pY/ c
=M_\an » J w0 (23)
k f(LWoT qg) Co = Cy
en Tk

It follows from most of the experimental work that the function f may
be represented as a product of two functions, that is,

Iw. T " c .
e (52) (5 =

Tv’haﬁa +ho Aannataontcoc ava darnon ant on the ane of +hn 'hanr Rafanraonna
waa T N N S hd s SR - N A A b N b W Whd Ul‘ur\— Albrd Wk Vbl

A
11 shows that, for the flow of gases through a cylindrlcal tube,

o

m= 0.786

and (25)

\ n= 0.85

Two| reasons then occur to set the two exponents equal to each other.
If it is assumed that the velocity profile over the cross section is
independent of density, the velocity components u, v, and w are
proportional, in the differential equation of heat conduction, to the
stream velocity at the center Lo} In this equation, the fraction

wvcp/x as a factor can be taken out. In the function f it mst
then follow that m = n. Since ncpg/x varies only slightly among

the different gases, the influence of the magnitude of n on Q is
slight. On that account an m = n was chosen, and in that manner a
very simple kind of equation was obtained. Such a choice was expressly
limited to gases, because it appeared, since the experimentation of
Stanton with water had given a greater value for m than Nusselt had
found for gases, that the power form is valid only in a narrow range

of values of x/ncpr. From the more recent work of Sonnecken and

Stender (see ref. 12) were obtained, depending on the experimental
conditions, values of m between 0.72 and 0.91 and values of n be-
tween 0.35 and 0.50. Merkel (ref. 13) gives for the same research

m= 0.87 and n = m/2 = 0.435. Rice (ref. 14) proposes for flow in
smooth tubes m= 5/6 = 0.83 and n = 1/2 = 0.50. Lately Schiller

and Burbach (ref. 15) have again grappled with this question. They find
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that the Nusselt relation for gases with m = n 1is also experimentally
confirmed for water and, further, support theoretically the equality of
the exponents. This important question will be discussed later.

Equations (23) and (24) lead to

n
vyeokY T, - T
Q6= %( xp ) . (232)

If the heat-transfer coefficient a is calculated with the use of

Q = oF(Ty - To) (26)

then

eIDY chk) 1
azfi(x P (27)

Relation of Thoma-Lohrisch

In the derivation of his relation whereby the heat-transfer
coefficient may be calculated from a diffusion experiment, Thoma pro-
ceeds on the basis that the following condition holds:

k= A (28)

In that circumstance the two differential equations (2) and (4) are
interchangeable. The temperature field is then proportional to the
concentration field, and it follows that the relation

oT

Sn_To " (29)
dc 0 - Sy

on

holds at any arbitrary point in the fields. From equations (1) and (3)
the relation sought follows immediately:

Ty - To

o - o (30)

=)
"k

(2lF 3]

2951
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which, using equation (28), can be also written

T, - T
= cpY v _ 90 (30a)
Co - CW

QO

If the heat-transfer coefficient a 1is calculated with equation (26),
there is obtained

G 1
oL == Yo ————— (31)

Equation (28) is not valid in the diffusion experiment with ammonia in
air, however.

According to Thoma, it is considered that

A _-1.25 28a
chk ( )

In this case, Thoma uses equation (30a) as well as (31). As a
correction factor he multiplies their right sides by the constant of
equation (28a). He therefore obtains

T, - T
A L Y (32)

rcpk P Co - Cy

Q.
G
from which equation (30) is obtained. Then it follows that

(32a)

Q
]
) Q
1>

o - Cy

Equation (27) assumes this form if n = O.

On the basis of this equation (32a), Thoma derives, from similarity
and impulse considerations, the equation for heat transfer:

Lwgy

G (53)

Q = gepIL(Ty, - Tp) o
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If this equation is written in the form

c 1 Lw.y
p'g 0
Q = XL(TW - To) Y —Eﬁ— (338.)

it is recognized as a special case of equation (21), to the extent that

Tvor  nepg)  nepe  [Iwor
0 D D 0
f = 34
(gn Y ) x N\ e (54)

is valid. From equation (33) it follows that

ge nL Iw.r

P 0
o = —_— 35
F *\7en (35)

which may also be written
gcyn Lvor

= AL Zol—— 35a
* » F ' \en (35a)

Thoma now uses equation (35a) to derive equation (32a) from (31). The
author cannot follow Thoma's reasoning, because if f 1is replaced in
equation (23) by Thoma's relation of equation (34), the following is
obtained:

Q _ W 0
G = YCp ———— (30a)
and

G
Q= F YCP m (31)

Thoma's superaddition leads back, therefore, via equation (34), to
equation (31) and does not give equation (32a), which was used by Thoma.

Hitherto it has always been assumed that an alteration of a field
is effective only in the vicinity of a body. If the whole stream
cross section is affected, then another definition of a 1s necessary.
Set

2951
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dQ = adF(Ty - T) (36)

wherein T is the temperature in the center of the stream cross section
that encounters the body surface element dF.

Moreover, the equation
Q = Vorep(Tp - Tg) (37)

applies, in which Vp 1s the air volume swept out by the body in unit
time, and I, - Tp the temperature rise of that air caused by the hot

body. From equations (36) and (37) it follows® that

Vo,YC.. T'w' - TO ( )
Q= =t Jnp S~ 38
If
To - T
2 0
-l © (39)
then
Vore
_ 0¥ Cp In 1 (38a)
F l1-£Z
In the diffusion work for the same air volume VO’ there is
obtained
Ch = C
e=0" ‘2 (40)

€0 - Cw

provided ¢co 1is the ammonia concentration behind (downstream of) the

body. For the first special case, which is presupposed by the validity
of equation (28), there would be

E=c¢ (41)

and hence the heat-transfer coefficient sought:

6It follows only if certain additional assumptions are made.
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VareC
- 0% qp 1 (42)
T - ¢

a

In the general case, Thoma and Lohrisch, as in the preceding, follow
equation (28a) and put

V
@=_X2 0%, _1 (43) 3
chk F 1l -¢ %
hence,
Vo A 1
a=——=2=21n 43a
F k 1l -e¢ ( )

The correct relation is obtained as in the following. The
temperature T, is eliminated between equations (37) and (38), and

VayYce
= O Pln 1
F Q (44)

" Vorep(Ty - To)

(o

Now, according to equation (23a)

n
£ fYepk 1
TG—lT=EG P)c-c (232)
w 0 A 0 W
If it is noted that
G = Vo(cp - co) (45)
then
. n
Q __X ch Co - C2
T, - Top k VO( Y o - Cw (46)

is obtained, and, therefore, from equations (44) and (40),

Vore 1
= 9P, (47)

- F \ -n
1- (chk)l & .
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This equation should therefore replace equation (43a) of Thoma-
Lohrisch. According to Thoma's research, ¢ is in the vicinity of 0.25.
If the numerical value of equation (28a) is inserted in equation (47)
and, further, the values n = m= 0.6, equation (47) yields a value of
a some 11 percent smaller than Thoma's equation (43a).

An additional inaccuracy arises also in the calculation of ¢
according to equation (40). Thoma, in that equation, put ey = 0,
since he assumed that in consequence of the strong absorption of am-
monia by phosphoric acid the partial pressure of ammonia in that re-
gion is zero. Since, however, the ammonia must diffuse through the
boundary layer, a finite vapor pressure of ammonia must exist at the
surface. It can naturally be quite small, but it is necessary, first,
to measure it once. Lohrisch also employed Thoma's experimental tech-
nique in the case of water vapor, to the extent that he saturated with
water the blotting paper comprising the body surface. In the calcu-
lation of €, he assumed that the vapor pressure at the body surface
corresponds to the water temperature. In section II, concerning
evaporation in a cooling tower, it is shown that the vapor pressure
at a body surface is smaller than the saturation pressure.

Boundary-Layer Theory

In its most primitive and simplest form, this theory supposes that
an air stream flowing past a body may be considered to consist of
two contiguous but sharply demarcated portions, namely, the boundary
layer adjacent to the body surface, and the balance of the air stream.
The one is associated with a laminar flow, the other with a turbulent,
which in the first approximation is treated as a potential flow. Then
it is assumed that in the latter a complete equalization of temperature
or of ammonia concentration occurs. Figure 2 exhibits this distri-
bution of temperature T and concentration c¢ 1in the case of heat
transfer or of a similarity experiment. The width of the boundary
layer is indicated by y. For heat transfer, then,

XF(Tw - TO)
= —— 48
- (48)
and for diffusion
kKF(cn - c.)
G=—20 ¥ (49)

y
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Accordingly, there is obtained on the basis of elementary boundary-
layer theory

o _rTw-To (50)
G_kCO-Cw
and also
G,=_G._—-———-— (51)
FkCO-CW

which is identical with the equation (32b) of Thoma and with equation
(27) when n = O.

Impulse Theory
Impulse theory is a carry-over of gas-kinetic considerations into the
domain of turbulent motions of a fluid. In its simplest form it is as-

sumed, as an explanation of heat transfer,that a volume of gas V having
the temperature T, moves from the turbulent fluid stream to the wall,

where it is heated to a temperature T, and then brought back to the core
of the fluid stream. It therefore takes from the wall the heat

Q = Vrep(T, - To) (52)

which is given up to the fluid. It must at the same time be true that

a = P (53)

The volume V contains in the case of diffusion o kilograms of

ammonia. On impact against the body surface, ammonia is absorbed until
the concentration is ¢. Hence,

G = V(CO - CW) (54)
From equations (52) and (54) it follows that

Tw - To

Q_
G_ch CO_CW

(55)

2951
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and, accordingly7,

1

CO-C

G
Q= =7C
F P v

(56)

which follows also from equation (27) when n = 1.

Comparison of Boundary-Layer and Impulse Theories

It will now be assumed that in the turbulent core neither perfect
equalization of speed nor, therefore, of temperature or concentration
is attained. On the core side of the boundary layer, the temperature
Te and concentration c, are then, respectively, different from
Tp and co* Within the boundary layer, exchange occurs in accordance

with boundary-layer theory. In the free gas stream, impulse theory

applies.

Then, in the boundary layer,

a=2rm, - 1) (57)
and
6= XF(ee - o) (s8)
Hence,
Q_ 2 (T__W_ _ Te) (59)
G k\ceg - c,
In the turbulent stream, on the other hand,
Q = Vrep(Te - To) (60)
and
G = V(g - ce) - (61)
therefore,
Q Te = To (62)

7Equation (56) is identical with (31).
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It can now be assumed that, approximately,

T‘w - Te

—_— = g 63

T (63)
that is, is equal to a constant.8 Also,

c -

LA (64)

CO - CW

From equations (63) and (64) it follows that

T, - T
e _9_31.a (83a)
Ty - To
and
cnh - C
L . 1.9 (64a)
Co - Cy

In that case, equations (59) and (62) become

Q_rxaw~ 0 (59a)

and

(62a)

8Recently, Prandtl (ref. 16) has given for this quantity the value

8
gcph l\, en
A WOdY
' c 8
1+(g 1 1)e _en_
A Wody

in which the value of the parameter e 1is uncertain. It lies between
1.1 and 1.75.

2951
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From the last equations,

Te k \
a
=8 - (l-a) Xp (65)
There is obtained, therefore, the desired relation:
ye k| T, -T
% = % a + (l-a) —E ¥ 0 (e6)

A o " Cw

If this is compared with equation (23a), it is seen that the two
functions can be distinguished only with respect to the dependency on
the fraction rcpk/x. Since n >0 and O < a< 1, both relations lead
to increasing values [of Q/G] with increasing values of rcpk/x. In

the case of gases, only a small range of variation of this fraction, in
the vicinity of unity, occurs and is, therefore; of gignificance. If
agreement of the two relations is demanded, there is obtained as the
connection between two constants the expression9

n=1-a (67)

Then, if n = 0.4, a = 0.8.

II. EVAPORATION OF WATER

Stefans should be credited with having first recognized that the
evaporation of water is a problem of diffusion. At the same time, he
developed the theory of diffusion. It is necessary to distinguish
among several different cases in connection with diffusion.

Consider first a quiet surface of water at the same temperature as
the overlying air. If the relative humidity of the air is less than
100 percent, water evaporates; that is, superheated water vapor diffuses
into the air from the water surface. Since, under the same conditions,
water is lighter than alr, an air-streaming occurs. Above the water a
rising current of air develops that sucks dry air over the water sur-
face. Through that mechanism the evaporation is increased. If a wind
blows over the water surface, a further increase in evaporation occurs
as a consequence of turbulence. If the water temperature differs from

“This, from a + (1-a) (1+4) = (144)%,

or a+ 1+A-8-38\=1+ nA +...etc.
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the air temperature, an intrinsic influencing of the evaporation occurs,
while because of the resulting heat exchange the convection is
influenced.

Evaporation in Still Air and in Uniform Temperature Field

Above a surface of water of area F having a representative
dimension L, a layer of air exists, the density of which, at some
distance away, is yp and the specific humidity of which is co- At

the water surface the humidity content of the air is c,. At any point

above the [water] plane the vapor content of the air increases as a
consequence of evaporation; it becomes lighter and suffers a 1lift Z
in the amount

z= (c - ¢) (“11 - 1) (68)

where u 1is the apparent molecular weight of dry air and uy that of

damp air. For the diffusion field, diffusion equation {4) then applies.
The Navier-Stokes equations of motion are required for the determina-
tion of the velocity components appearing therein (eq. 4); in these
equations, the 1ift Z gppears as an external force acting in the
direction of negative gravity; and, therefore,

T

0 av _ 2

gdt_z+nvw (69)
In this expression, the air density yg can be assumed constant.

A similarity consideration leads to the expression for the concentration
gradient at the water surface:

LYY A
_gS:Cw‘CO¢I> L “l'l)(cw'co) &n (70)
dz L 2 ? kr

en

The vapor mass evaporating per unit time from the water surface
G is calculated according to equation (14). If the value of u accord-
ing to equation (19) and the following value of ¢y
Py
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are substituted in equation (14), then

G = —F

&8

(72)

Mk

where p 1is the total pressure.

If the concentration gradient is now replaced by its equivalent
according to equation (70), the rate of vapor evaporation becomes

(ey - c)F fLST‘“Ll "D (v - co) g (73)
S

Evaporation in Wind and in Uniform Temperature Field

Over a water surface a wind passes whose speed at some distance
from water has the uniform value Vg The air and water temperatures
are identical. Gravitational influences can accordingly be ignored if
the airspeed exceeds several meters per second. Therefore, the ob-
servations and formulas of section I apply (ref. 17). It follows that,
by equation (22), the rate of water evaporation is

Lway
0
G = kL(ey - ) T <—gn_ ‘ %5?) 2

If the assumption is now made that the velocity wu arising from
the evaporation normal to the water surface can be ignored, the function
f of equation (22) can be taken over from the corresponding heat-
transfer problem in accordance with equation (21). The results of
reference 17 should be considered here. A copper plate heated elec-
trically to 50° C, and having a dimension on a side of 0.5 meter is
cooled by an air stream having a temperature of 20° C. For w> 5
meters per second, the following value was obtained:

a = 6.l4woo'78 kcal/(m?)(hr)(oC) ' (74)

It follows that in equation (24), if m = n,
0.78

chpL
f = 0.065 XI (75)
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In equation (22) there is obtained, accordingly,
0.78

woL
f = 0.065 \— (75a)

Therefore, the expression for the amount of water evaporating from
a water area of F square meters in an hour becomes

0.22
k 0.7 :
G = 39F (i) wo "% (ew - cg) ke/nr (76)

where k is the diffusion coefficient according to the research of
Mache (ref. 18):

1.89
0.078 (T
k = 5 (573) sq m/hr (77)

in which the total pressure p 1is to be used.

Evaporation with Heat Exchange in Still Air

It will now be assumed that the temperature T, of the water sur-
face is different from the temperature T, of the air. Hence, heat

transfer occurs in addition to diffusion. In this instance, both
processes are coupled through the resulting air stream to the extent
that ajr-lifting is caused by both the lesser specific gravity of the
water vapor and the heating of the air. Instead of equation (68) of
section II, the 1ift Z per cubic meter has the value

Z = vor(T - Tg) + (c - co)(ﬁz - l) (68a)

Here T and c¢ are the temperature and specific humidity at any place
in the field, Yo is the specific gravity of dry air at a great dis-

tance from the water surface at which the conditions pp and Tp pre-
vail, and r 1is the coefficient of expansion of air:

r=1/T (78)
In the case of excesses of temperature that are not too great,

r = 1/T, (78a)
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approximately. Then

T
Z = %(T - Tg) + (c - co)(—l - 1) (68b)

becomes the value of the body force in the equation of motion (69).
Moreover, equation (2) of heat conduction and equation (4) of diffusion
must be used. With the abbreviations

_ Lro(Ty, - Tp) )

gﬂzTo

&cpn P (79)

similarity considerations lead to the relations

[}
i

= kL(cy - cg) ¥ (B,E,C,D) (80)

and

Q = AL(Ty - To) $o (B,E,C,D,) (80a)

where & 1 and &, are initially unknown functions of the variables
B, E, C, and D.

The formulation is significantly simpler and clearer if it is
assumed that equation (28) applies, that is,

k= A . (28)

for then
, c=p | (28a)



24 NACA TM 1367

In this case T and c¢ are proportional to each other. Equation (29)
applies and, then,

X(Tw - TO) T, - To

Q_ - w9
G~ kicw - coi - Yocpcw - ¢

(81)

The exchanged heat and evaporated moisture stand, therefore, in a very
simple relation to each other. If the values of G and Q according
to equations (80) and (80a) are substituted in equation (81),

é = @2 (Bla)

which is valid only if equation (28) obtains. For the determination of
the function & there is introduced, as a matter of expediency, a new
dependent variable:

Q=T-T +TO(Ll 1)( ) (82)
= - = |- - c -c
0" 7o 0
which then leads to the differential equations
YO dw

g at -~
and (83)

YO 2
-,]—:,652+T]VW

ag
Yocp & = VPR

from which, through consideration of similarity involving the gradient
at the water surface, it follows that

Ty - T * i—g (Lﬁ% - ) (cw - co)f IEB+E)’ c] (84)

sl

This gradient can also be calculated by the use of equation (82), from
which it follows that

(85)
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If the divergence ("speed of expansion") u at the water surface is
considered negligible, equations (1) and (3) apply:

3
Q= ¥ S (1)

and

G=-kFFn (5)

From equations (1), (3), (81), (84), and (85):

KF (cyy - cp)
G = T f E?+E), D ]

and (86)

—_

= )ﬂT-EI:—TO—)f EB+E), C] J

The second of the equations (86) must also apply for the case
Cy - ¢g = O, and therefore when E = O. The equation then goes over

into the usual form for heat transfer. If the latter is known, the
rate of evaporation G can thus be calculated.

On the basis of heat-transfer research (ref. 19), for large values

of B/C, the following can be written:
5:2¢ (1. - T.)° 1/4
pYw 0
(87)

L
(Ty - Ty) = C1x f[ T,

F (B
Q=C\7 (5

/4
)1

in which the coefficient Cl is dependent upon the form and orientation
with respect to gravity.

With equation (87), one now obtains from equation (86)
4
F _ _|IB+E

G=0Cky 5 (cw - cp)

4
3 S (e _ -
kT *

F
C.k =
17 L
0]
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It should be observed, above all, that this equation is valid only
if equation (28) is valid, and, hence, C = D. The values k, A\, T5 T,
and p pertain to the vapor-air mixture and, indeed, are to be taken
as mean values over the whole field. The term k 1is given by equation
(77). The thermal conductivity of air 3 1is in the following form in
reference 10:

L o.oowv(11++oi<§30194ﬂ?> VT ca1/ (m) (nr) () (89)

T

Since the thermal conductivity of water vapor in the germane tem-
perature range is only slightly less than that of air, the thermal
conductivity of the vapor-air mixture can be assumed equal to that of
air. The terms y and cp are to be calculated according to the

relation appropriate for a mixture of gases. Thus, there are obtained

at t =0 50° ¢

(90)
A
K
Ye,

0.87 0.84

This fraction is different from unity for this vapor-air mixture.
Accordingly, equations (80) and (80a) apply. Since equations (80) and
(80a) become equations (87) and (88) in the limiting case C = D, in
general, in the first approximation, the following can be written:

4
C1kF (e, - cq)
1 W 0 B+E
G = T 5 (91)

and

4
Q=20 T G (92)

Then the following is obtained:
G k C &w - €0 (
I .= W,_ — 93)
Q A YD T, - To
or

(94)

D2
1]
> =
'
*UO >
S ‘
=1l e)
® |5
1

e}
O’_] (@]
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If the temperature within the domain falls below the dewpoint, fog
formation is initiated and the equations become invalid.

Equation (87), along with equations (88), (91), and (93), is
applicable only at large differences of temperature and water-vapor
concentration. For small differences, the function f(B/C) can be
expressed only by means of a graphical representation. By such a
representation, it can be shown that for B + E = 0, f approaches a
constant value.

If the air temperature Tb is greater than the temperature of the
water surface Ty, it is possible, for finite values of Ty - Ty and

Cyw - Cg» that B + E = 0. In this case, no convective streaming occurs,
but rather only a molecular transport of heat and vapor. Hence, for

B = -E (95)
or
oW T (E— - 1) (95a)
G - % VYo \H1
there is obtained
G = CokL(cy - cg) (986)
and
Q = CaAL(Ty - Ty) (97)
Therefore,
C - C
c%= % TZ - T?, (%8)

The coefficient Cy, 1is dependent upon the shape of the water surface.

Evaporation with Heat Exchange and Air Flow

As in the case of Evaporation in Wind and in Uniform Temperature
Field, a wind having a speed Vg flows by a water surface. However,
the water temperature T, and the air temperature To are now dif-

ferent. With a small partial pressure of water vapor assumed, equations
(21), (22), and (23) of section I apply here as well. Since, however,
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at 50° C the partial pressure of water vapor has already attained a
value of 0.125 atmosphere, they must be modified. For the Reynolds
number the following will, for brevity, be used:

LWOYO
egn

On the basis of similarity theory one has again, first of all, the
relations

Re =

(79a)

Ty - T
- érg = —W—L—O £ (Re,C) (99)

and
- 52 = -0 t(re,D) (99a)

In these, in the case of a smooth water surface such as a tank,lo L 1is
the principal dimension; and for a water drop, it is the diameter. At
the water surface there exists, further, between the rate of evaporation
and the concentration gradient the following relation:

= ucy - k g% (149

= Q

where, according to equation (19),
GR; T,

o (19a)

u =

and Ry, in this equation, is the gas constant of water vapor, and p is

the total pressure. There is then obtained

Gpy
ucy = Fo- (100)
in which py; 1is the partial pressure of water vapor at the water surface.

If the value of equation (100) is used in equation (14a), the concen-
tration gradient at the water surface becomes

P
i %E I il (lkF' fi) (101)

100y pond or pool.
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By the same reasoning, the following applies for heat transport:

3 ure, (Ty - Tp) - A (14b)

and, with equation (19a),
T 1
-F-3 [q - @ & ep(, - TO)] (102)

From equations (99), (99a), (101), and (102), the relation sought
between Q@ and G is

Q2D

) (1 3 Pw) MTy - To)f(Re,C) )Ty - ) (103)

— +
P k(e, - cg)f(Re,D) Hy

If the value of f given by equation (24) is substituted in
equation (103),

k\*' T, -
Q. (1 -B¥\a (YOCP ) Ww-To,pw ep(Ty - Tp) (103a)
G P Jk A Cy = Co Hqy

From equations (101) and (99a) there is obtained, with equation
(24),

) bkF (e, - cg) Re- (108)
(-3) ™
P

and, at the same time, from equation (103a),

bF(T,. - T,) peok(ey, - C
qo = To) fa , wepklew - o) |oom (205)
L cn _ Eﬂ)jpn
H1 D

If cy = Cp» DO evaporation occurs and equation (105) becomes

equation (24),
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Vapor Pressure at Water Surface

It is natural to assume that,at the evaporating water surface, the
vapor pressure is equal to the pressure at the saturation value corre-

sponding to the water temperature T,» and that, therefore, p, = Pg-

At the same time, the vapor concentration at the water surface then
becomes

that is, it is equal to the saturation density. That this, however, is
not the case has already been conjectured by Winkelmann (ref. 9) and
then demonstrated by Mache (ref. 18), who found, on the basis of a
thorough research on evaporation in a cylindrical tube, that the follow-
ing relation exists between the rate of evaporation and the pressure in
question:

%= Ko (Ps - Pw) (107)

that 1s, the vapor pressure over the water- surface, during evaporation,
is always smaller than the saturation pressure corresponding to the
temperature of the water surface. The coefficient K, 1is a temperature

function that unfortunately has not yet been precisely determined. If
the density of vapor instead of the partial pressure is introduced in
equation (107),

G

7= Bp(c" - cy) (108)
where c¢" 1is the saturation concentration of water vapor at the water
temperature Ty, and 7 1s a constant dependent upon temperature,
which, according to the researches of Mache, assumes values dependent
upon the water temperature as indicated in the following table of values:

tys °C | Ky, 1/hr | By, m/br

92.4 0.0086 148
87.8 .0080 133
82.1 .0084 108
27.5 .084 925

Unfortunately, it is precisely in the technically important temperature

]
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range between 0° and 50° C that only a single experimental value is
available.

Application to Psychrometer of August

For many technical applications of the diffusion relations pre-
viously developed, it is appropriate to calculate the evaporation
coefficient on the basis of the heat-transfer analog, as has already
been done in the treatment of burning and vaporization of the carbon in
iron ore (ref. 1). Set

G = BF(c" - cg) kg/hr ‘ (109)
from which the dimensions of the evaporation coefficient are
B = m/hr (110)

In the case of August's psychrometer, evaporation takes place from
a moist thermometer in still air. 1In such an instance, equation (91)
applies in the calculation of the mass of water evaporating per unit
time. If, further, an evaporation coefficient BB is inserted, where

4
k B+ E '
Bo = cli;\ 5 (111)
then, equation (91) becomes
G = BaF(cy - cp) (91a)

Further, equation (108) still applies. If the unknown concentration
cy 1s eliminated between equations (108) and (91a), the evaporation
coefficient B in equation (109) becomes

pes

11
=EI+B—2_ (112)

When the heat transferred along the stem of the thermometer is ignored,
the heat balance of the wetted thermometer may be expressed as

Q=G [r + cp(Ty - Ts)] (113)

In this expression, T, 1is the temperature of the wetted thermometer,
Tg the saturation temperature corresponding to the partial pressure
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Py of the water vapor at the surface of the wetted thermometer, r the

heat of vaporization at the pressure py, and p the specific heat of

the limiting curve [?] at the same pressure.

If Ty is the environment temperature, as measured with a dry
thermometer, the heat extracted from the surroundings is

Q= oF(Tg - Ty) (114)

The heat-transfer coefficient « consists of two parts, several terms
of a sum a, covering the heat conveyed by thermal conduction to the

thermometer, and a portion ag that gives the magnitude of heat radia-

tion. The latter is
A% 4
100 100 (115)
W

is the radiation coefficient of water, that is,ll

where Cs

Cg = 3.35 keal/(m?)(°c*) (116)

and TO' is the mean temperature of the fixed body surrounding the

wetted thermometer with which radiation 1s exchanged. It is certainly
approximately equal to the ambient-air temperature Ty, yet surely not

gquite precisely equal. Herein, under certain conditions, exists a not
unimportant source of error in psychrometry. This source of error can
successfully be eliminated (as was communicated to the author by
Dipl.-Ing. Kaissling) by surrounding the wet thermometer by a radiation
shield, which consists, as does the wet thermometer itself, of a
wetted surface.

If Ty' = Tp and the attainment of room temperature is assumed,
equation (115) becomes, approximately,t2
ag = Cg (115a)

Llpimension time~1 apparently missing in equation (116).

lzThis does not seem to be correct,

2951



NACA TM 1367 33

The heat-transfer coefficient o, is dependent upon the flow conditions

in the vicinity of the thermometer. If the psychrometer is hanging in
a region in which the air is quiet, then, according to equation (92),

(117)

in which the constant C; 1is dependent upon the configuration of the
thermometer well. For a cylindrical well of height H,

Cy = 0.83 (118)
In equation (116 [117]), L 1is replaced by H.
If the wetted thermometer is placed in a current of air, there is
obtained, for example, for a plate-shaped thermometer, the following

relation (ref. 20):

0.78 4 — -0.000028Re
. +
a, = 0.069 % Re + 0.83 % T e (119)

wherein it is supposed that the wind flows along the thermometer well
in a horizontal direction.

If, in the energy equation (113), the value of G from equation
(109) is inserted, and that of Q from (114), the following psy-
chrometer formula is obtained:

[r + cp(Ty - Ts)] (c" - ¢g) = (ay, + Cg) (Bil- + %) (T - Ty) (120)

For the diffusion constant of a plate-shaped, wetted thermometer, the
following is obtained with equations (119), (111), and (117):
0.78

wol
CRE 4 -0.000028 (—k-)
k (%0 k
B, = 0.069 T, (T) +0.83 3 5 ; Ee (121)

Equation (120) gives a decrease of the psychrometer constant with
increase of airspeed, which has been well confirmed by the investi-
gations of Edelmann, Sworykin, and Recknagel.
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Application to Theory of Cooling Tower

In this [apparatus], finely divided warm water trickles downward
and is cooled by a rising current of cold air. If,at some point, wy

is the relative speed of the water and air with respect to each other,
equations (103), (104), and (105) apply for the heat transfer and
evaporation. If the heat-transfer coefficient a and the evaporation
coefficient B, are now evaluated according to equations (26) and

(92a),

n
a Pw \A (Tocpk) "
T— ma l - —— - + — C (c - C ) <122)

and, with equation (112),

n
b A Yoc k
a W
7= (l-—P-)E( XP)+—cp(cw-co)+
n ( ) n
ba_ | [gepn ), Hepklcy - c0) fgn m
BT (x >+ YoE Re (123)

Py
s ( - ‘p‘)

Material on the technical applications of the formulas here pre-
sented will soon be published elsewhere.t

Translated by H. H. Lowell
National Advisory Committee
for Aeronautics

13Since the transmission of the original manuscript to the editor's
office on May 16, 1929, the following papers have appeared: E. Schmidt,
Verdunstung und Wirmelibergang, Gesundheitsing., 1929, p. 525.; R.
Mollier, Das ix-Diagramm fiir Dampfluftgemische, Stodolafestschr.,

Zﬁrich, 1929, p. 438; H. Thiesenhusen, Untersuchungen lber die

Wasserverdunstungsgeschwindigkeit in Abhingigkeit von der Temperatur
des Wassers, der Luftfeuchtigkeit und Windgeschwindigkeit,
Gesundheitsing., 1930, p. 113,
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