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NATIONAL ADVISORY COMMITTEZ FOR AEBONAUTICS 

TECHNICAL MEMORAWDUM 1367 

HEAT TRANSFER, DIFFUSION, AND EVAPORATIONL 

By Wilhelm Nussel t  
N 
20 E Although it has long been known t h a t  t he  d i f f e r e n t i a l  equations of 

the heat- t ransfer  and diffusion processes are ident ica l ,  appl icat ion t o  
technica l  problems has only recent ly  been made. 
( r e f .  1) that the  speed of oxidation of the  carbon i n  i ron  ore  depends 
upon the  speed with which the  oxygen of the colnbustion air d i f fuses  
through the  core of gas surrounding the carbon surface.  The i d e n t i t y  
previously r e fe r r ed  t o  was then used t o  ca lcu la te  t he  amount of oxygen 
d i f fus ing  t o  the carbon surface on the  basis of t he  heat t r ans fe r  be-  
tween the gas stream and the  carbon surface. 
(ref. 2)  reversed that procedure; he used diffusion experiments t o  de- 

extended t h i s  work by experiment. A technically very important appl i -  
cat ion of the  iden t i ty  of heat t ransfer  and diffusion i s  tha t  of the  
cooling tower, s ince i n  this case both processes occur simultaneously. 
A r e l a t i o n  obtained i n  the course of such an analysis  w a s  given by 
L e w i s  (ref. 4) and checked by Robinson (ref. 5), Merkel ( re f .  6), and 
Wolff (ref. 7).  

In 1916 it w a s  shown 

Then i n  1921, H. Thorn 
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I n  the  following it w i l l  be shown that  more accurate equations 
must be subs t i tu ted  f o r  those used i n  the previous invest igat ions of 
the r e l a t i o n  between the  quantity of m t t e r  exchanged by d i f fus ion  and 
the  quant i ty  of heat t ransferred by conduction. 

A r i g i d  body having a uniform surface temperature Tw is cooled 
by an a i r  stream having a speed wo and a temperature TO. According 
t o  Fourier,  a quantity of heat 

i3T d2Q = -xS;; dF d t  

then flows i n t o  the  air stream i n  the  direct ion n normal t o  the  sur- 
face element through a surface element dF i n  the time dt .  I n  th i s  

'"WhmeGbergang, Diffusion und Verdunstung." Z.a.M.M., Bd. 10, 
Heft 2, Apr. 1930, pp. 105-121. 
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equation, aT i s  the instantaneous temperature gradient a t  the surface 
i n  the d i rec t ion  of the normal, and 1 i s  the  thermal conductivity of 
a i r .  
the  following d i f f e r e n t i a l  equation i s  obtained f o r  the temperature 
f i e l d  i n  an air  stream: 

3ii 4 

If equation (1) i s  applied t o  an  element of space i n  a gas stream, 
I 

2 

y density of air  

where 

cp 

X thermal conductivity of air 

spec i f i c  heat of un i t  mass 

Therefore, the Navier-Stokes equations of motion involving u, v, and 
w a re  t o  be understood. 

For the  diffusion problem, air can be t r ea t ed  approximately as a 
homogeneous body, s ince the  molecular weights of i t s  components 
nitrogen and oxygen a r e  only s l i g h t l y  d i f fe ren t .  
t o  be mixed with the  diffusing gas, f o r  example, ammonia o r  water 'I 

vapor. 
the  air stream is  designated C j  t h a t  is, f o r  example, there  axe c 
kilograms of ammonia i n  1 cubic meter of a i r .  
periment of Thoma (ref. 2),  the  surface of the  r i g i d  body w a s  made of 

b lo t t i ng  paper saturated with concentrated phosphoric acid.  
absorbed very ac t ive ly  by such a surface, so t h a t  t he  p a r t i a l  pressure 
and, hence, the  concentration of ammonia i s  very small. 
tower the diffusion stream proceeds i n  an outward d i rec t ion  from the  
water drops. The vapor pressure and, hence, the water-vapor concen- 
t r a t i o n  a t  the surface of the drop i s  accordingly dependent upon the  
water temperature. I f  pw i s  the p a r t i a l  pressure of t h e  diffusing 
gas at the surface of the body and t h a t  i n  the air stream, then 

Y 

A i r  i s  now considered 

The concentration of the  water vapor a t  an a r b i t r a r y  point i n  

I n  the  s imi l a r i t y  ex- 

Ammonia i s  

I n  a cooling 

po 
the driving force of the  diffusion stream i s  the par t ia l -pressure 
difference pw - PO. 

2The following nomenclature i s  used herein i n  the case of var iables  
dependent upon time and the three coordinates x, y, and z: 

-a= dT a T + , a T + , a T + ,  a T  
at dt a;; 5 

2 a2T + a2T a2T V T = -  - + -  
ax2 ay2 aZ2 
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If now, again, n is a running coordinate representing the normal 
to the surface element dF, then the quantity of vapor diffusing through I 

\the surface dF is given by the basic relation of Fick: 

b 

N 
(0 
UI r 

i 

\ 

in which 

bC d2Gl = -k an dF dt 

C vapor concentration, @/cu m 

&/an gradient of vapor concentration in direction normal to 
surface 

k diffusion coefficient, sq m/sec 

If an elenrent of space is taken in the air stream, exchange of 
vapor between such an element and its environment occurs partly through 
diffusion and partiy througn streamlng (sensible motionj. 
leads to the differential equation: 

This fact 

dc -I kV2C 
dt 

The agreement between equations (1) and (3) as well as between (2) 
and (4) is immediately recognizable. 
temperature field from diffusion field or vice versa, there must also 
exist, however, an equivalence of boundary conditions. The temperatures 
Tw and To of the heat transfer correspond to the gas concentrations 
cw and co of diffusion. But, while during heat transfer the gas 
velocity is zero at the surface of the cooled body, there exists at 
that point, in the case of diffusion, a finite gas-velocity component 
normal to the body surface. This difference is easy to see if a one- 
dimensional diffusion process is studied in a tube under steady-state 
conditions. Suppose a tube 2 meters long is filled with air and 
ammonia. Suppose also that by certain experimental means the concen- 
trations at the ends of the tube are held at different, although con- 
stant, values. Then a quantity G1 kilograms per hour of ammonia 
diffuses through the tube in one direction, and a quantity of air G2 
in the other direction. If x is a running coordinate, c1 the 
amonia, and c2 the air concentration, then 

Accompanying a calculation of 
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where kl and k2 are the diffusion coefficients. If the partial 
pressures of ammonia and of air are p1 and p2, respectively, then 

and 

Integration of equations (6) and (sa) yields3 

hence a linear variation of partial pressures. 
fluence is now ignored, the total pressure 
Hence, 

If gravitational in- 
in the tube is constant. 

(81 
P1 + P2 = Po 

It then follows from equations (7) and (7a) that 

and 

that is, the same volume, evaluated at the total pressure, diffuses in 
both directions.* Moreover, with the notation of figure 1, 

and 

3These are obviously in error; x 
*k1 and k2 

lacking. 
are equal, but it does not follow from this argument. 

. 

. 
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J 

J 

as w e l l  as 

Therefore, according t o  t h i s  example, the p a r t i a l  pressure and t h e  con- 
cent ra t ion  of ammonia vary l i n e a r l y  along the tube ax is .  Now, t h e  
experimental s i t u a t i o n  i n  the case of the cooling tower and i n  the 
d i f fus ion  research of Thoma (ref. 2 )  w a s  otherwise. I n  the  case of the 
tube, the  boundary conditions are d i f fe ren t  at one tube end. If t h a t  
end i s  closed w i t h  b lo t t i ng  paper saturated w i t h  phosphoric acid,  there 
i s  set up, f o r  the case of l i nea r  (axial)  diffusion,  the equivalent of 
Thorn's experiment; or ,  i f  tha t  end is closed and the bottom covered 
wi th  water, a s i t u a t i o n  corresponding t o  that of the cooling tower is  
obtained. 
t he  d i f fus ion  coef f ic ien t  k f o r  the d i f fus ion  of w a t e r  vapor i n  a i r  
w i t h  t h i s  arrangement. It w i l l  now be shown tha t  i n  this instance 
l i n e a r  va r i a t ion  of the partial pressure along the  tube a x i s  i s  not 
a t t a ined  i n  the case of the s ta t ionary d i f fus ion  stream. Wnce again, 
a i r  and ammonia, or water vapor, are  counterdiffusing. Since, however, 
one end i s  impermeable t o  air, no transport  of air along the tube can 
take place.  Because of the  gradient of p a r t i a l  pressure of air ,  air  
must d i f fuse  i n  the a x i a l  d i rec t ion .  This molecular a i r  t ranspor t  must 
work against  a convective air transport;  t h a t  is, a sens ib le  flow of 
gas i n  the d i r ec t ion  of the tube axis must occur. This flow w i l l  be 
represented by the synibol u. Then, f o r  the f l o w  of a i r  the equation i s  

Further,  Stefan (ref. 8) and Winkelmann (ref. 9 )  determined 

% 

or, after introduct ion of the p a r t i a l  pressure, 

and 

dp2 
kdx  up2 = - 

For the ammonia stream the corresponding equations are 
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Now again 

P1+ P2 = PO 

It follows then from equations (13a) and (14a) that 

0-J 
N If equation (15) is substituted for 

expression is obtained for the partial pressure of ammonia: 
u in equation (14a), the following 

the solution of which, with regard to the boundary condition 
at x = 0, is 

p1 = p1' 

Therefore, no linear variation of partial pressure along the tube axis 
occurs in this case, but rather a logarithmic. If p1 LC ply' at x = 2 ,  

This equation, given earlier by Stefan (ref. 81, shows that the rate of 
gas diffusion through the tube is no longer proportional to the partial- 
pressure gradient. First, if p1 is small compared with po, it is 
again true that 

From equations (15) and (16) it follows that 
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That is, the gas velocity u is identical with the volume of ammonia 

unit time, as measured at the total pressure po. Hydrodynamically, 

corresponding to evaporation from the source of water. Since, in the 
case of heat transfer, the velocity is at that point zero, an exact 
similarity between heat transfer and diffusion is nonexistent in the 
experiment of Thoma. Only at very small values of G1, hence at low 

similarity of the boundary conditions also exist. 
cussed later. Similarity requires, however, identity of the hydro- 
dynamic equations as well. 
in the case of the diffusion work, is uniform throughout; while, in 
the case of heat transfer, it varies. In this instance, the air 
density varies with temperature. In the case of diffusion, the gas 
densities vary with the concentrations. 
only if 

v gas streaming through a unit of surface of the tube cross section per 

b therefore, there exist in the ammonia problems sinks of strength u 

n3 partial pressures of ammonia, can u be taken as zero. Only then does 
UI r 
(0 This will be dis- 

In the experiment of Thoma, the temperature, 

Similarity obtains, therefore, 

In equation (20) yw and yo are the densities of the ammonia-air 
mixture at the wall and in the free gas stream. 
of viscosity with temperature and ammonia concentration must still be 
considered. Since, however, as was shown previously, similarity is 
possible only at small amnia concentrations, the experiment gives the 
heat-transfer coefficients only at very small temperature differences. 

Further, the variation 

The similarity conditions are mre favorable in the case of the 
In this instance, a hot water surface is cooled by a cooling tower. 

cold dry air stream. 
air, and simultaneously the water that diffuses into the air  evaporate^.^ 
In this instance, heat transfer and diffusion are, accordingly, super- 
posed on each other under the same stream conditions. The same hydro- 
dynamic equations and boundary conditions are associated with equations 
(2) and (4) .  

Accordingly, heat flows from the water to the 

In the following discussion, the relations that follow from 
similarity considerations in the case of Thoma's experiment and in the 
case of the cooling tower are derived. 

5Stated precisely as written by Nusselt. 
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I. mDEL EPERIMENT OF THOMA 

A body having a surface F and temperature Tw i s  cooled by an 
air stream having a speed wo and a temperature To. The heat loss of 
the  body has t he  value Q k i loca lo r i e s  per hour. A di f fus ion  experi-  
ment i s  now ca r r i ed  out by using a body of t he  same shape. 
stream has t h e  same speed 
t r a t i o n  co. Through the  d i f fus ion  process, which occurs a t  the body 
surface,  the ammonia concentration has already a t t a ined  the  value 
The d i f fus ion  experiment shows t h a t  the surface absorbs G kilograms 
of ammonia per hour. What r e l a t i o n  e x i s t s  between Q and G? This 
question i s  discussed i n  the  following on the  basis of d i f f e r e n t  theor ies .  

The a i r  
wo and i s  mixed w i t h  ammonia t o  the  concen- 

cw. 

S imi la r i ty  Theory 

The s imi l a r i t y  theory of reference 10 leads t o  the  following ex- 
pression fo r  t he  rate of heat exchange: 

where 

X thermal conductivity of air 

L dimension of body 

f i n i t i a l l y  unknown function of two dimensionless f r ac t ions ,  
dependent on shape of body 

y density of a i r  

q viscos i ty  of air 

cp spec i f ic  heat of air 

For diffusion,  correspondingly, 

G = kL (CO - Cw) f fx wOY , g) 
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From these i s  obtained the r e l a t i o n  sought: 
*' I 

N 
(D cn 
P 

v 
I :. 

e 

w 
I 

b 

It follows from most of the experimental work that  the funct ion 
be represented as a product of two functions, t h a t  is ,  

f may 

=here the  cms tan t s  are dqendent  on the E h q x  of t h e  bo*. Reierexe 
11 shows that, f o r  t he  flow of gases through a cy l ind r i ca l  tube, 

and 

i 

(25 1 

Two reasons then occur t o  set the two exponents equal t o  each other .  
If t is  assumed that the  ve loc i ty  p ro f i l e  over the  cross sec t ion  i s  
i n  pendent of density,  the  ve loc i ty  components u, v, and w are 
proportional,  i n  the d i f f e r e n t i a l  equation of heat conduction, t o  the 
stream veloc i ty  a t  the  center wo. In  t h i s  equation, the f r a c t i o n  
wrcP/X as a f ac to r  can be taken out. I n  the function f it must 
then follow that  m = n. Since qc g/?, va r i e s  only s l i g h t l y  among 
the d i f f e r e n t  gases, the  influence of the magnitude of n on Q i s  
s l i g h t .  On tha t  account an m =  n was chosen, and i n  that manner a 
very simple kind of equation was obtained. 
l imi ted  t o  gases, because i t  appeared, s ince the  experimentation of 
Stanton w i t h  water had given a greater  value f o r  
found f o r  gases, that the power form is  va l id  only i n  a narrow range 
of values of A/qcpy. 
Stender (see ref.  1 2 )  were obtained, depending on the experimental 
conditions,  values of m between 0.72 and 0.91 and values of n be- 
tween 0.35 and 0.50. Merkel ( ref .  13) gives f o r  the  same research 

i 
P 

Such a choice w a s  expressly 

m than Nusselt had 

From the more recent work of Sonnecken and 

m =  0.87 and n = 2 I 0.435. Rice ( re f .  14) proposes f o r  flow i n  
smooth tubes m = = 0.83 and n = 1/2 = 0.50. Lately Sch i l l e r  
and Burbach (ref. have again grappled with t h i s  question. They f ind  
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t h a t  the Nusselt r e l a t i o n  fo r  gases w i t h  i s  a l s o  experimentally 
confirmed f o r  water and, fur ther ,  support t heo re t i ca l ly  the  equal i ty  of 
the  exponents. 

m = n 

This important question w i l l  be discussed later.  

Equations (23) and (24) lead t o  

If  the heat- t ransfer  coef f ic ien t  a i s  calculated with the use of 

n then 

Relation of Thoma-Lohrisch 

I n  the der ivat ion of h i s  r e l a t i o n  whereby the  heat- t ransfer  
coef f ic ien t  may be calculated from a d i f fus ion  experiment, Thoma pro- 
ceeds on the bas i s  t h a t  the following condition holss: 

I n  t h a t  circumstance the  two d i f f e r e n t i a l  equations (2) and (4) are 
interchangeable. The temperature f i e l d  i s  then proportional t o  the 
concentration f i e l d ,  and it follows t h a t  t he  r e l a t i o n  

holds a t  any a r b i t r a r y  point i n  the  f ields.  
the  r e l a t i o n  sought follows immediately: 

From equations (1) and (3) 

Q h Tw - TO 
E =  ii co - cw 
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N a 
VI 
i-J 

c 

which, using equation (28), can be also written 

If the heat-transfer coefficient a is calculated with equation (261, 
there is obtained 

G 1 
F YCP co - cw a =  

Equation (28) 
air, however. 

is not valid in the diffusion experiment with amonia in 

According to Thoma, it is considered that 

In this case, Thoma uses equation (30a) as well as (31). A s  a 
correction factor he multiplies their right sides by the constant of 
equation (28a). He therefore obtains 

from which equation (30) is obtained. Then it follows that 

G X  1 a = - -  F k co - cW 

C 

Equation (27) assumes this form if n = 0. 

On the basis of this equation (32a), Thoma derives, from similarity 
and impulse considerations, the equation for heat transfer: 
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If this equation is written in the form 

it is recognized as a special case of equation (21), to the extent that 

is valid. From equation (33) it follows that 

which may also be written 

(34) 

d 
LD m 
N 

Thoma now uses equation (35a) to derive equation (32a) from (31). 
author cannot follow Thorn's reasoning, because if f 
equation (23) by Thorn's relation of equation (34), the following is 
obtained: 

The 
is replaced in 

; = ycp Tw - To 
co - cw 

and 

G 1 
a = P YCP co - cw 

Thoma's superaddition leads back, therefore, via equation (34), to 
equation (31) and does not give equation (32a), which was used by Thorn. 

Hitherto it has always been assumed that an alteration of a field 
is effective only in the vicinity of a body. 
cross section is affected, then another definition of a is necessary. 
Set 

If the whole stream 
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wherein T 
that encounters the body surface element 

is the temperature in the center of the stream cross section 
dF. 

Moreover, the equation 

applies, in which Vo 
time, and T2 - To 
body. 

is the air volume swept out by the body in unit 
the temperature rise of that air caused by the hot 

From equations (36) and (37) it follows6 that 

If 

then 

In the diffusion work for the same air volume Vo, there is 
obtained 

co - c2 
co - cw c =  

provided c2 is the ammonia concentration behind (downstream of) the 
body. 
of equation (28), there would be 

For the first special case, which is presupposed by the validity 

E = &  

and hence the heat-transfer coefficient sought: 

~ 

61t follows only if certain additional assumptions are made. 



14 NACA TM 1367 

I n  t h e  general case, Thoma and Lohrisch, as i n  the  preceding, follow 
equation (28a) and put 

hence, 

vo x 1 ~ = ~ ~ l n -  
1 - E  

(43 1 

The cor rec t  r e l a t i o n  i s  obtained as i n  the  following. The 
temperature T2 i s  eliminated between equations (37) and (38), and 

Now, according t o  equation (23a) 

If i t  i s  noted t h a t  

then 

i s  obtained, and, therefore ,  from equations (44) and (40), 
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This equation should therefore  replace equation (43a) of Thoma- 
Lohrisch. According t o  Thoma's research, e i s  i n  the v i c i n i t y  of 0.25. 
If the  numerical value. of equation (28a) i s  in se r t ed  i n  equation (47) 
and, fu r the r ,  the  values n = m = 0 . 6 ,  equation (47) y i e lds  a value of 
a some 11 percent smaller than Thoma's equation (43a). 

An addi t iona l  inaccuracy arises a l s o  i n  the ca lcu la t ion  of e 
Thorn, i n  t h a t  equation, put cw = 0, according t o  equation (40). 

s ince he assumed t h a t  i n  consequence of t he  s t rong absorption of am- 
monia by phosphoric ac id  the  p a r t i a l  pressure of ammonia i n  t h a t  re: 
gion i s  zero. Since, however, the ammonia must d i f fuse  through the 
boundary layer ,  a f i n i t e  vapor pressure of ammonia must e x i s t  a t  the  
surface.  It can na tura l ly  be qui te  small, but  it i s  necessary, first,  
t o  measure it once. Lohrisch a l s o  employed Thoma's experimental tech- 
nique i n  the case of water vapor, t o  the  extent  t h a t  he sa tura ted  with 
water the  b l o t t i n g  paper comprising the body surface.  I n  the  calcu- 
l a t i o n  of e ,  he assumed t h a t  the vapor pressure a t  the  body surface 
corresponds t o  the water temperature. I n  sec t ion  11, concerning 
evaporation i n  a cooling tower, it i s  shown t h a t  the vapor pressure 
a t  a body surface i s  smaller than the sa tu ra t ion  pressure.  

Boundary-Layer Theory 

I n  i t s  most primitive and simplest form, this  theory supposes t h a t  
an a i r  stream flowing past  a body may be considered t o  consis t  of 
two contiguous but sharply demarcated portions,  namely, the boundary 
layer  adjacent t o  the body surface, and the  balance of the a i r  stream. 
The one i s  associated w i t h  a laminar flow, t h e  o ther  w i t h  a turbulent ,  
which i n  the f irst  approximation i s  t r ea t ed  as a po ten t i a l  flow. Then 
it i s  assumed t h a t  i n  the la t ter  a complete equal izat ion of temperature 
or of ammonia concentration occurs. Figure 2 exh ib i t s  t h i s  d i s t r i -  
bution of temperature T and concentration c i n  the  case of heat  
t r ans fe r  or of a s imi l a r i t y  experiment. 
layer  i s  indicated by y. For heat t ransfer ,  then, 

The width of the boundary 

and f o r  d i f fus ion  

c 

(49 1 
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Accordingly, there  i s  obtained on the  bas i s  of elementary boundary- 
layer  theory 

and also 

which i s  iden t i ca l  w i t h  the equation (32b) of Thoma and w i t h  equation 
(27) when n = 0. 

Impulse Theory 

Impulse theory i s  a carry-over of gas-kinetic considerations i n t o  the  
domain of turbulent  motions of a f l u i d .  I n  i t s  simplest form it i s  as- 
sumed, as an explanation of heat t r ans fe r , t ha t  a volume of gas 
the  temperature To moves from the turbulent  f l u i d  stream t o  the  w a l l ,  
where it is  heated t o  a temperature 
of the  f l u i d  stream. It therefore  takes from the w a l l  t he  heat 

V having 

Tw and then brought back t o  the  core 

Q = VYcP(Tw - To) (52) 

which i s  given up t o  the f l u i d .  It must a t  t he  same t i m e  be t rue  t h a t  

The volume V contains i n  the  case of d i f fus ion  co kilograms of 
ammonia. 
the concentration i s  +. Hence, 

On impact against  t h e  body surface,  ammonia i s  absorbed u n t i l  

G = V(CO - cW) (54 1 
From equations (52) and (54) i t  follows t h a t  

Q Tw - To 
E =  P co - cw ( 5 5 )  
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c 

and, accordingly 7 , 

G 1 
a = F rcP co - cw 

which follows a l s o  from equation (27) when n = 1. 

Comparison of Boundary-Layer and Impulse Theories 

It w i l l  now be assumed t h a t  i n  the  turbulent  core ne i ther  per fec t  
equal izat ion of speed nor, therefore,  of temperature or  concentration 
i s  a t t a ined .  On the core s i d e  of the boundary layer ,  the  temperature 
Te and concentration ce are then, respect ively,  d i f fe ren t  from 
TO and co. Within the boundary layer,  exchange occurs i n  accordance 
with boundary-layer theory. In  the  free gas stream, impulse theory 
appl ies .  

Then, i n  the boundary layer,  

and 

Hence, 

I n  the turbulent  stream, on the other hand, 

therefore ,  

Q Te - TO 
E = YCP co - ce 

'Equation (56) is i den t i ca l  with (31). 

(57 1 

(58)  
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It can now be assumed that, approximately, 

that is, is equal to a constant.8 Also, 

From equations (63) and ‘(64) it follows that 

and 

= l - b  ‘0 - ‘e 
c o - c w  

In that case, equations (59) and (62) become 

T - To 
G k b  co - cW 9 = X a  

and 

(594 

8Recently, Prandtl (ref. 16) has given for this quantity the value 

gcpq - 
a =  h 

l+(!+)eVT w d r  

in which the value of the parameter e is uncertain. It lies between 
1.1 and 1.75. 
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N 
(D 
tJl 
P 

. 

From the last equations, 

There is obtained, therefore, the desired relation: 

co - cw 
If this is compared with equation (23a), it is seen that the two 

functions can be distinguished only with respect to the dependency on 
the fraction ycpk/i. Since n > 0 and 0 < a< 1, both relations lead 
to increasing values [of' &/GI with increasing values of In 
the case of gases, only a small range of variation of this fraction, in 
the vicinity nf =city, CCCK-S 2nd is, therefnrei cf significnnce, If 
agreement of the two relations is demanded, there is obtained as the 
connection between two constants the expression9 

ycpk/X. 

n =  1 - a  (67) 

Then, if n = 0.4, a = 0.6. 

11. EVAPORATION OF WATER 

Stefans should be credited with having first recognized that the 
evaporation of water is a problem of diffusion. At the same time, he 
developed the theory of diffusion. 
among several different cases in connection with diffusion. 

It is necessary to distinguish 

Consider first a quiet surface of water at the same temperature as 
the overlying air. If the relative humidity of the air is less than 
100 percent, water evaporates; that is, superheated water vapor diffuses 
into the air from the water surface. Since, under the same conditions, 
water is lighter than air, an air-streaming occurs. Above the water a 
rising current of air develops that sucks dry air over the water sur- 
face. If a wind 
blows over the water surface, a further increase in evaporation occurs 
as a consequence of turbulence. If the water temperature differs from 

Through that mechanism the evaporation is increased. 

'This, from a + (1-a) {l+A) = (l+A)", 

or a + 1 + A - a - a0 = 1 + n0 +... etc. 
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(70) 
L 3 7 g  - 1) (CW - co) 

d2 L [ g# 

dc ‘w - * 
The vapor mass evaporating per unit time from the water surface 

G is calculated according to equation (14). If the value of u accord- 
ing to equation (19) and the following value of c1 

(71) 
P W cw = - RT 

L -  

the air temperature, an intrinsic influencing of the evaporation occurs, 
while because of the resulting heat exchange the convection is 
influenced. 

. 
- 

Evaporation in Still Air and in Uniform Temperature Field 

Above a surface of water of area F having a representative 
dimension L, a layer of air exists, the density of which, at sone 
distance away, is yo and the specific humidity of which is co. At 
the water surface the humidity content of the air is 
above the [water] plane the vapor content of the air increases as a 
consequence of evaporation; it becomes lighter and suffers a lift 
in the amount 

%. At any point 

Z 

rl 
In cn 
N 

z = (c - co) (k - 1) 

where p is the apparent molecular weight of dry air and p1 that of 
damp air. 
The Navier-Stokes equations of motion are required for the determina- 
tion of the velocity components appearing therein (eq. 4);  in these 
equations, the lift Z appears as an external force acting in the 
direction of negative gravity; and, therefore, 

For the diffusion field, diffusion equation (4) then applies. 

In this expression, the air density 
A similarity consideration leads to the expression for the concentration 
gradient at the water surface: 

yo can be assumed constant. 
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are subs t i tu ted  i n  equation (14), then 

N 
(D cn 
P 

- k ~  dc 
PW dz 
P 

G = - -  

1 - -  

where p i s  the t o t a l  pressure. 

If the  concentration gradient i s  now r laced by it equivalent 
according t o  equation (70), the r a t e  of vapor evaporation becomes 

Evaporation i n  Wind and i n  Uniform Temperature F ie ld  

Over a water surface a wind passes whose speed a t  some dis tance 
from w a t e r  has the  uniform value wo. 
are iden t i ca l .  Gravi ta t ional  influences can accordingly be ignored i f  
the  airspeed exceeds several  meters per second. Therefore, the  ob- 
servat ions and formulas of sect ion I apply (ref. 17).  
by equation (22), the  rate of water evaporation i s  

The a i r  and water teqperatures 

It follows t h a t ,  

I f  the assumption i s  now made tha t  t he  ve loc i ty  u a r i s ing  f r o m  
the  evaporation normal t o  the water surface can be ignored, the funct ion 
f 
t r ans fe r  problem i n  accordance with equation (21) .  
reference 17 should be considered here. 
t r i c a l l y  t o  50° C, and having a dimension on a s ide  of 0.5 meter i s  
cooled by an a i r  stream having a temperature of 20° C.  
meters per second, the following value w a s  obtained: 

of equation (22) can be taken over from the  corresponding heat-  
The r e s u l t s  of 

A copper p l a t e  heated elec-  

For w > 5 

0.78 
a = 6.14~0 kcal/(m2) (h r )  (OC) (74) 

It follows t h a t  i n  equation (24), i f  m = n, 

. (75) 
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I n  equation (22) there  i s  obtained, accordingly, 
0.78 

f = 0.065 r$) ( 7 5 4  

Therefore, the  expression f o r  the  amount of water evaporating from 
a water area of F square meters i n  an hour becomes 

0.22 
0.78 G = 39F (:) wo (CW - eo) kg/hr 

where k i s  the  diffusion coef f ic ien t  according t o  the research of 
Mache (ref. 18): 

i n  which the  t o t a l  pressure p i s  t o  be used. , 

Evaporation with Heat Exchange i n  S t i l l  A i r  

It w i l l  now be assumed t h a t  the temperature Tw of t he  water sur- 
face  i s  d i f f e ren t  from the temperature To of t he  a i r .  Hence, heat 
t ransfer  occurs i n  addi t ion t o  diffusion.  I n  t h i s  instance,  both 
processes are coupled through the r e su l t i ng  air stream t o  the  extent  
t h a t  a i r - l i f t i n g  i s  caused by both the  l e s se r  spec i f i c  grav i ty  of the  
water vapor and the  heating of the a i r .  Instead of equation (68) of 
sect ion 11, the  l i f t  Z per cubic meter has the value 

Here T and c are the  temperature and spec i f i c  humidity a t  any place 
i n  the  f i e l d ,  yo 

tance from the water surface a t  which the  conditions po and To pre- 
v a i l ,  and r i s  the coef f ic ien t  of expansion of air:  

i s  the spec i f ic  grav i ty  of dry a i r  a t  a grea t  d i s -  

r = 1 / T  (78) 

I n  the  case of excesses of temperature t h a t  a r e  not too grea t ,  

r = l /TO 

I 
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approximately. Then 

Z = -(T YO - To) + (c - c o ) ( k  - 1) 
TO p1 

becomes the value of the body force in the equation of motion (69). 
Moreover, equation (2) of heat conduction and equation (4) of diffusion 
must be used. With the abbreviations 

and 

c = x /  
@;%V 

L3Y0 (k - 1) (cw - co) 
E =  n 

similarity considerations lead to the relations 

and 

( 7 9 )  

where + l  and 62 are initially unknown functions of the variables 
B, E, C, and D. 

The formulation is significantly simpler and clearer if it is 
assumed that equation (28) applies, that is, 

k = -  x 
cpYO 

for then 
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I n  t h i s  case T and c a r e  proportional t o  each 
appl ies  and, then, 
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other .  Equation (29) 

The exchanged heat  and evaporated moisture stand, 
simple r e l a t ion  t o  each other .  If the values of G and Q according 4 

t o  equations (80) and (ma) are subs t i t u t ed  i n  equation (81), 
v) cn cu 

(81) 

therefore ,  i n  a very 

which i s  v a l i d  only i f  equation (28) obtains. 
the function 9 there is introduced, as a matter of expediency, a new 
dependent var iab le  : 

For the  determination of 

which then leads t o  the  d i f f e r e n t i a l  equations 

and (83) 

from which, through consideration of s imi l a r i t y  involving the  gradient  
a t  the  water surface, it follows that 

This  gradient can a l s o  be calculated by the  use of equation (82),  from 
which i t  follows tha t  

. 
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If the  divergence (“speed of expansion”) u 
considered negl igible ,  equations (1) and (3) apply: 

at t h e  water surface i s  

and 

and 

cw - 
i n t o  
r a t e  

BT Q =  -XFz 

B C  G =  -kF% 

From equations (l), (3), (81), (84), and (85): 
\ 

I 

(3)  

The second of the  equations (86) must a l s o  apply  f o r  the  case 
co = 0, and therefore  when E = 0. The equation then goes over 
t h e  usual form for heat t ransfer .  If the la t ter  i s  known, the  
of evaporation G can thus be calculated. 

On t h e  bas i s  of heat- t ransfer  research (ref. 19), f o r  large values 
of B/C, t h e  following can be w r i t t e n :  

i n  which the  coef f ic ien t  
with respect t o  gravi ty .  

With equation (87), 

C1 i s  dependent upon the  form and or ien ta t ion  

one now obtains from equation (86) 

G = Clk 

= Clk 

I 
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It should be observed, above a l l ,  t ha t  t h i s  equation i s  va l id  only 

cp 

i f  equation (28)  i s  val id ,  and, hence, C = D. 
and 
as mean values over the whole f i e l d .  The term k i s  given by equation 
( 7 7 ) .  
reference 10: 

The values k, A ,  y, T> 
per ta in  t o  the vapor-air mixture and, indeed, a r e  t o  be taken 

i s  i n  the following form i n  The thermal conductivity of a i r  

Since the thermal conductivity of water vapor i n  the  germane tem- 
perature range i s  only s l i g h t l y  less than t h a t  of air ,  the thermal 
conductivity of the vapor-air mixture can be assumed equal t o  tha t  of 
a i r .  The terms y and cp are t o  be calculated according t o  the 
r e l a t i o n  appropriate for  a mixture of gases. Thus, there  a r e  obtained 

a t  t = O  

500 c \  
- = 0.87 0.84 J 
kr  cp 

This f r ac t ion  i s  d i f fe ren t  from uni ty  f o r  t h i s  vapor-air mixture. 
Since equations (80) and Accordingly, equations (80) and (ma) apply. 

(ma) become equations (87) and (88) i n  the l imi t ing  case 
general, i n  the f i r s t  approximation, the following can be writ ten: 

C = D, i n  

4 

and 

Then the  following i s  obtained: 

or 

4- 

(93 1 

(94) 
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M 
$ 
P 

If the temperature within the domain falls below the dewpoint, fog 
formation is initiated and the equations become invalid. 

Equation ( 8 7 ) ,  along with equations (881, (91), and (931, is 
applicable only at large differences of temperature and water-vapor 
concentration. For small differences, the function f (B/C) can be 
expressed only by means of a graphical representation. 
representation, it can be shown that for B + E = 0, f approaches a 
constant value. 

By such a 

If the air temperature To is greater than the temperature of the 
water surface Tw, it is possible, for finite values of TO - Tw and 
cw - co, that B + E = 0. 
but rather only a molecular transport of heat and vapor. 

In this case, no convective streaming occurs, 
Hence, for 

B = -E (95 )  

or 

there is obtained 

and 

Q = CzXL(T0 - Tw) (97 1 
Therefore, 

The coefficient C2 is dependent upon the shape of the water surface. 

Evaporation with Heat Exchange and Air Flow 

A s  in the case of Evaporation in Wind and in Uniform Temperature 
Field, a wind having a speed wo flows by a water surface. However, 

ferent. 
(21), (22), and (23) of section I apply here as well. 

the water temperature Tw and the air temperature TO are now dif- 
With a small partial pressure of water vapor -assumed, equations 

Since, however, 
c 
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a t  50' C t h e  p a r t i a l  pressure of water vapor has already a t t a ined  a 
value of 0.125 atmosphere, they must be modified. For the  Reynolds 
number the following w i l l ,  f o r  brevi ty ,  be used: 

On the basis of s imi l a r i t y  theory one has again, f i rs t  of a l l ,  the  
r e l a t ions  ~ 

and 

- cw - f(Re,D) 6n= L ( 9 9 4  

I n  these,  i n  the  case of a smooth water surface such as a tank," L i s  
the pr inc ipa l  dimension; and f o r  a water drop, it i s  the  diameter. A t  
t he  water surface there  ex i s t s ,  fu r the r ,  between the  rate of evaporation 
and the  concentration gradient the  following re la t ion :  ~ 

where, according t o  equation (19), 

and R1, i n  t h i s  equation, i s  the  gas constant of water vapor, and p i s  

the  t o t a l  pressure. There i s  then obtained 
G.Pw 

ucw = Fp 
i n  which pw 
If the  value of equation (100) i s  used i n  equation (14a), the concen- 
t r a t i o n  gradient a t  t he  water surface becomes 

i s  the  p a r t i a l  pressure of water vapor a t  t he  water surface. 

lOOr pond o r  pool. 
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L 

By the  same reasoning, the  following appl ies  f o r  heat  t ranspor t :  

and, with equation (19a), 

From equations (99), (99a), (101), and (102), the  r e l a t i o n  sought 
between Q and G i s  

If the  value of f given by equation (24) i s  subs t i t u t ed  i n  
equation (103), 

From equations (101) and (99a) there i s  obtained, with equation 
(24) 3 

If cw = coI no evaporation occurs and equation (105) becomes 
equation (24). 
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tw, OC 
92.4 
87.8 
82.1 
27.5 

Vapor Pressure at Water Surface 

Kg, l/hr P1,  m/hr 
0.0086 148 
.0080 133 . 00 84 10 8 
.084 925 

NACA TM 1367 

It is natural to assume that,at the evaporating water surface, the 
vapor pressure is equal to the pressure at the saturation value corre- 
sponding to the water temperature 
At the same time, the vapor concentration at the water surface then 
be comes 

Tw, and that, therefore, pw = ps. 

that is, it is equal to the saturation density. That this, however, is 
not the case has already been conjectured by Winkelmann (ref. 9) and 
then demonstrated by Mache (ref. IS), who found, on the basis of a 
thorough research on evaporation in a cylindrical tube, that the follow- 
ing relation exists between the rate of evaporation and the pressure in 
question: 

that is, the vapor pressure over the water. surface, during evaporation, 
is always smaller than the saturation pressure corresponding to the 
temperature of the water surface. The coefficient KO is a temperature - 
function that unfortunately has not yet been precisely determined. If 
the density of vapor instead of the partial pressure is introduced in 
equation (107), 

G = pl(cll - cw) 
where c" 
temperature Tw, and p1 is a constant dependent upon temperature, 
which, according to the researches of Mache, assumes values dependent 
upon the water temperature as indicated in the following table of values: 

is the saturation concentration of water vapor at the water 

Unfortunately, it is precisely in the technically important temperature 
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range between Oo and 50' C that only a single experimental value is 
available. 

Application to Psychrometer of August 

For many technical applications of the diffusion relations pre- 
viously developed, it is appropriate to calculate the evaporation 
coefficient on the basis of the heat-transfer analog, as has already 
been done in the treatment of burning and vaporization of the carbon in 
iron ore (ref. 1). Set 

from which the dimensions of  the evaporation coefficient are 

p = m/hr 

In the case of August's psychrometer, evaporation takes place from 
a moist thermometer in still air. 
applies in the calculation of the mass of water evaporating per unit 
time. If, further, an evaporation coefficient p2 is inserted, where 

In such an instance, equation (91) 

then, equation (91) becomes 

Further, equation (108) still applies. 
cw 
coefficient p in equation (109) becomes 

If the unknown concentration 
is eliminated between equations (108) and (9la), the evaporation 

1 1 1  - -  + -  p - B ;  Pz 
When the heat transferred along the stem of the thermometer is ignored, 
the heat balance of the wetted 

& = G  

In this expression, Tw is the 
Ts the saturation temperature 

thermometer may be expressed as 

temperature of the wetted thermometer, 
corresponding to the partial pressure 
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pw the 
heat of vaporization at the pressure pw, and c the specific heat of 
the limiting curve [ ? ]  at the same pressure. 

of the water vapor at the surface of the wetted thermometer, r 

P 

If To is the environment temperature, as measured with a dry 
thermometer, the heat extracted from the surroundings is 

The heat-transfer coefficient a consists of two parts, several terms 
of a sum c[a, covering the heat'conveyed by thermal conduction to the 
thermometer, and a portion as that gives the magnitude of heat radia- 
tion. The latter is (q - -  p)" 

100 100 
a, = CS 

To - Tw 

where C, is the radiation coefficient of water, that is, 11 

C s  = 3.35 kcal/(m2)(OC4) (116) 

and To' 
wetted thermometer with which radiation is exchanged. It is certainly 
approximately equal to the ambient-air temperature To, yet surely not 
quite precisely equal. Herein, under certain conditions, exists a not 
unimportant source of error in psychrometry. This source of error can 
successfully be eliminated (as was communicated to the author by 
Dip1.-Ing. Kaissling) by surrounding the wet thermometer by a radiation 
shield, which consists, GS does the wet thermometer itself, of a 
wetted surface. 

is the mean temperature of the fixed body surrounding the 

If TO' = To and the attainment of room temperature is assumed, 
equation (115) becomes, approximately, 12 

as = cs (115a) 

"Dimension tirne'l apparently missing in equation (116). 

l2This does not seem to be correct. 
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The heat-transfer coefficient % is dependent upon the flow conditions 
in the vicinity of the thermometer. 
a region in which the air is quiet, then, according to equation (92), 

If the psychrometer is hanging in 

in which the constant 
thermometer well. For a cylindrical well of height H, 

C1 is dependent upon the configuration of the 
I 
1 

! 

C1 = 0.83 (118 1 

In equation (116 [ 1171 ), L is replaced by H. 

If the wetted thermometer is placed in a current of air, there is 
obtained, for example, for a plate-shaped thermometer, the following 
relation (ref. 20): 

-0.00002 8Re 

e (119) 
0.78 

% = 0.069 1 Re + 0.83 8 

wherein it is supposed that the wind flows along the thermometer well 
I in a horizontal direction. 

If, in the energy equation (113), the value of G from equation 
(109) is inserted, and that of 
chrometer formula is obtained: 

Q from (114), the following psy- 

For the diffusion constant of a plate-shaped, wetted thermometer, the 
following is obtained with equations (119), (ill), and (117): 

0.78 

0.78 -0.00002 8 ( F) WOL 

p2 = 0.069 e) + 0.83 q q e  (121) 

Equation (120) gives a decrease of the psychrometer constant with 
increase of airspeed, which has been well confirmed by the investi- 
gations of Edelmnn, Sworykin, and Recknagel. 

c 
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Application to Theory of Cooling Tower 

NACA TM 1367 

In this [apparatus], finely divided warm water trickles downward * 
and is cooled by a rising current of cold air. 
is the relative speed of the water and air with respect to each other, 
equations (103), (104), and (105) apply for the heat transfer and 
evaporation. If the heat-transfer coefficient a and the evaporation 
coefficient B2 are now evaluated according to equations (26) and 

If, at some point, wo 
R 

(924, 

and, with equation (112), 

;= (1-;)&) Yocpk + cp(cw - CO) + 
p1 

Material on the technical applications of the formulas here pre- 
sented will soon be published elsewhere. l3 

Translated by H. H. Lowell 
National Advisory Committee 
for Aeronautics 

l3Since the transmission of the original manuscript to the editor’s 
office on May 16, 1929, the following papers have appeared: E. Schmidt, 
Verdunstung und WXrmeGbergang, Gesundheitsing., 1929, p. 525. ; R. 
Mollier, Das 12-Diagram fiir Dampfluftgemische, Stodolafestschr., 
Zhich, 1929, p. 438; H. Thiesenhusen, Untersuchungen Gber die 
Wasserverdunstungsgeschwindigkeit in Abh’angigkeit von der Temperatur 
des Wassers, der Luftfeuchtigkeit und Windgeschwindigkeit, 
Gesundheitsing., 1930, p. 113. 
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