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NACA TM 1350 

NATIONAL ADVISORY COMMl'IirEE FOR AERONAUTICS 

TECHNICAL MEMORANDUM 

THE MICROSTRUCTURE OF TURBULENT FLOW* 

By A. M. Obukhoff and A. M. Yaglom 

In 1941 a general theory of locally isotropic turbulence was pro­
posed by Kolmogoroff which permitted the prediction of a number of laws 
of turbulent flow for large Reynolds numbers. The most ~portant of 
these laws, the dependence of the mean square of the difference in vel­
ocities at two points on their distance and the dependence of the coef­
ficient of turbulence diffusion on the scale of the phenomenon, were 
obtained by both Kolmogoroff (references 1 and 2) and Obukhoff (ref­
erence 3) in the same year. At the present time these laws have been 
experimentally confirmed by direct measurements carried out in aero­
dynamic wind tunnels in the laboratory (references 4 and 5), in the . 
atmosphere (references 6 and 7), and also on the ocean (reference 8).1 
In recent years in the Laboratory of Atmospheric Turbulence of the 
Geophysics Institute of the Soviet Academy of Sciences, a number of 
investigations have been conducted in which this theory was further 
developed. The resul~s of several of these investigations are pre­
sented in this paper. 

The fundamental physical concepts which are the basis of 
Kolmogoroff's theory may briefly by summarized as fo11ows. 3 A turbulent 
flow at large Reynolds numbers is considered to be the result of the 
imposing of disturbances (vortices or eddies) of all possible scales of 

*"Mikrostructura turbulentnogo potoka,~ Prikladnaya Matematika i 
Mekhanika, Vol. XV, 1951, pp. 3-26. 

~he applications of these laws to certain problems of the physics 
of the atmosphere may be found in references 9 and 10. 

2In addition to the results contained in the present article, ref­
erence may also be made to the theoretical investigation of the struc­
ture of the temperature field (or of the concentrations of any neutral 
additive) in the turbulent flow, presented in references 11 and 12. 
The applications of the latter results may be found in references 13 
and 14. 

3For a more detailed presentation see reference 15. 
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magnitude. Only the very largest of these vortices arise directly from 
the instability of the mean flow. The scale L of these large vortices 
is comparable with the distance over which the velocity of the mean flow 
changes (for ex~le, in a turbulent boundary layer, with the distance 
from the wall). 4 

The motion of the largest vortices is unstable and gives rise to 
smaller vortices of the second order; vortices of the second order give 
rise to still smaller vortices of the third order, and so forth, down 
to the smallest vortices which are stable (i.e. the characterizing 
Reynolds number is less than the critical value). Since for all vor­
tices, except the smallest ones, the characteristic Reynolds number is 
large, the viscosity has no appreciable effect on their motion. The 
motion of all vortices that are not too small is therefore not associ­
ated with any marked dissipation of energy; the vortices of the nth 
order use practically all the energy which is received from the vor­
tices of the (n -l)th order to form the vortices of the {n + l)th order. 
However, the motion of the smallest of the existing vortices is 
"laminar" and depends essentially on the molecular viscosity. In these 
very small vortices the entireeriergy that is transferred along the 
vortex cascade goes over into heat energy. 

The motion of all the vortices, except for the very largest, may 
be assumed homogeneous and isotropic. Any directional effect of the 
mean flow ceases to be appreciable for vortices of a relatively low 
order. It is also of importance that this motion may be assumed quasi­
stationary, that is, a change i~ the statistical characteristics of the 
motion of the vortices under consideration proceeds very slowly in com­
parison with the periods characteristic of these vortices. It follows 
that the motion of all vortices whose scales are considerably less than 
L (the microstructure or local structure of the flow) must be subject 
to certain general statistical laws which do not depend on the geometry 
of the flow and on the properties of the mean flow. The establisbment 
of these general laws, which have a wide range of applicability, con­
stitutes the theory of local isotropic turbulence. 

In the investigation of the laws of the local structure, consider­
ations from the theories of similitude and dimensions are of great value. 
It is only these considerations which permit obtaining a number of essen­
tial results. To apply these ideas it is necessary, first of all, to 
separate out those fundamental magnitudes on which the local structure 
of the flow may depend. On account of the homogeneous and isotropic 
character of the motion of the vortex system under consideration, the 

4The length L coincides with the length of the mixing path intro­
duced in the semiempirical theory of turbulence. 
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characteristics of the mean motion (of the type of length characteris-" 
tics, velocity characteristics, etc.) do not enter among these fUnda­
mental magnitudes. Therefore, only two magnitudes remain, the mean 
dissipation of energy per unit time per unit mass of the fluid £, 
which determines the intensity of the energy flow transferred along a 
cascade of vortices of different scales, and the kinematic viscosity v, 
which plays an essential role in the process of dissipation. 5 These 
two magnitudes thus playa fundamental part in the theory that is pre­
sented herein. 

" The dimensions of £ and \/ are: 

[e] = L2T-3 

[v] = L 2T-l 

From these two magnitudes, it is evidently possible to form a single 
combination in the dimension of length 

3 1/4 
Tl = (f ) 

The length Tl determines an internal scale characteristic of the local 
structure. By use of the previously described physical picture of tur­
bulent motion, it is possible to identify Tl with the scale of th~ 
smallest vortices in which a dissipation of energy occurs (since this 
picture does not contain any other characteristic length). The scale Tl 
was first introduced in the work of Kolmogoroff (reference 1); it is 
termed the internal (or local) scale of turbulence (in contrast to the 
external scale L). 

In the further analysis of the microstructure, two limiting cases 
may be considered separately to advantage: the case of scales much 
larger than TJ and that of scales much smaller than Tl. First, the 
system of vortices with dimensions much smaller than L but much greater 
than the scale TJ of the smallest vortices is considered. The motion 
of these vortices, as has already been pointed out, should not depend 

5 The fluid is assumed everywhere to be incompressible and to have 
a constant density p. The magnitude p is not included herein among 
the fundamental magnitudes because in the main part of the paper (sec­
tions 1 and 3), the purely kinematic characteristics of the flow, which 
of course cannot depend on the denSity, will be considered. When, how­
ever, the structure of the pressure field (section 2) is investigated, 
it is necessary to add p to t and \/. Information on the fundamen­
tal magnitudes on which the local structure of the temperature field 
may depend is found in references 11 and 12. 
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on the viscosity v, a circumstance which immediately facilitates the 
obtaining of concrete results by computation of the dimensions. In the 
second extreme case, for scales of motion much less than ~,the motion 
may be assumed laminar. However, in the intermediate range of scales 
of the order of ~,the theory of dimensions gives, as a rule, less 
concrete results. Thus, for example, it follows from this theory that 
any nondimensional function of the distance determined by the local 
structure should be a universal function of r/~. The form of this 
function for values of the argument of the order of unity remains how­
ever undetermined. 

In the present paper an attempt is made to describe quantitatively 
the structure of the fundamental hydrodynamic fields (pressure, velocity, 
and acceleration6) for all distances less than L (i.e., for the entire 
range for which the theory of Kolmogoroff applies). For this purpose 
some additional·hypotheses are introduced which have a certain experi­
mental basis. The asymptotic formulas for r »~ and for r< < ~ 
obtained are in agreement with known earlier results where all the 
undetermined numerical coefficients that figure in these results are 
expressed in terms of a single constant S (asymmetry or skewness 
factor), the value of which has been experimentally determined by 
Townsend (reference 4). The nondimensional magnitude S (as well as 
the magnitudes ~ and v) enters only in the expression for the char­
acteristic scales so that with an accuracy up to the choice of units 
the measurements of the structure of all the fields considered under 
the assumed hypotheses are described by universal functions not depend­
ing on any experimental data (see figs. 1 to 3; the meaning of these 
functions will be explained in a later discussion). 

The investigation of the structure of the velocity field (section 1) 
is the work of A. M. Obukhoff; the investigation of the pressure field 
(section 2) was started by Obukhoff (reference 16) and continued by 
A. M. Yaglom; the investigation of the acceleration field (section 3) 
was carried out by Yaglom. Several results of the present work were 
first published in the form of separate short communications (refer­
ences 7, 16, and 17). 

1. Computation of structural functions of velocity field. In order 
to be able to make use of the concepts of locally isotropic turbulence in 
investigating the velocity field of a turbulent flow, it is first neces­
sary to separate out those characteristics of the field which depend 
only on the local structure. The true velocity v will essentially be 
determined by the mean flow. In the theory of turbulence the usual 
decomposition of the true velocity v into the mean velocity v and 
the fluctuating velocity VI = V - v gives a component VI not depend­
ing on this mean flow; but the theory does not solve the problem pro­
posed since the value of VI will be determined mainly by the very 

6The acceleration of the flow is considered herein to be the total 
acceleration dv/dt of the fluid particles moving in space. 
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large vortices, the scale of which is comparable with L. However, as 
was first noted by A. N. Kolmogoroff (reference I), the above mentioned 
required that a separation of the characteristics be effected by con­
sidering the difference of the velocities at two sufficiently near 
points (i.e., the relative motion of two neighboring elements of the 
fluid). It is clear that this difference will not be affected by the 
large vortices which transport the pair of points under consideration 
as a whole. Hence, in the theory of local isotropic turbulence, the 
following functions are taken as the fundamental quantitative charac­
teristics of the structure of the velocity field: 

where vi(M} is the ith component of the velocity vector v(M) at the 
point M.1 and the bar above a symbol denotes the average value. The 
function Dij(M,M'} is termed the structural function of the velocity 
field. According to the preceding discussion, for a distance r 
between the points M and M' much less than L, this fUnction depends 
only on the local structure of the flow. On account of the homogeneity 
and' isotropy of the motion of the vortices with scales much less than 
L, the function Dij (M,M'), for r < <L, is an invariant tensor function 
of the vector MM' and may therefore be represented in the form 

(1.2) 

where ~l' ~2' and ~3 are the c amponents of the vector MM' (so that 

~~12 + ~22 2 
+ ~3 = r) and 0 .. = 1 for i = j and 0ij = 0 for , l.J 

i I j. 

When first VI = v. = v where v is the projection of the 
velocity vector on a ce~tainndirection ~erpendicular to the vector 
MM' and then Vi = Vj = vl where vl is the projection of v on the 
direction of the vector MM' are set into this formula, it is readily 
shown that equation (1.2) may be represented in the form 

(1.3) 

where the functions D11(r) and Dnn(r) (the longitudinal and trans­
verse structural fUnctions) have the simple physical meaning: 
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C1.4) 

The determination of these functions, D11Cr) and Dnn(r), will be 
the main object of this section.? 

In the theory of local isotropic turbulence it is possible to con­
sider the functions DZ1(r) and DnnCr) as independent of the time. 
As a matter of fact, a quasi-stationary statistical regime in a region 
of sufficiently small turbulence scale is assumed. From the consider­
ations of the theory of similarity, it follows that in the range of 
applicability of the theory of locally isotropic turbulence (i.e., for 
r«L), the functions Dn Cr) and DnnCr) are representable in the 
form 

Dn (r) = ;"fVi dn (*) 

Dnn Cr) = '\/Ve dnn(*) 
(1.5) 

3 -1 1/4 
where ~ = (v &) is the internal scale of turbulence and dZZ(x) 
and dnnCx) are universal functions. Formulas (1.5) may also be 
represented in the form 

?In the theory of isotropic turbulence, the correlation functions 
(longitudinal and transverse) are usually employed. 

The structural functions in the isotropic case are connected with the 
correlation functions by the following relations: 

Dll(r) = 2(B(0) - Bll(r)) 

Dnn(r) = 2(BCO) - Bnn(r)) 

where B(O) = B1Z (0). = Bnn(O). 
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where 

Dnn(r) = U12~nn(~1) 

4 

~1 = k1~': 
4 

u l = k 2 ...[Vi 

7 

(1.6) 

(1. 7) 

The numerical factors kl and 

will always be assumed to be of the 
~nn(x) are new universal functions 
the graphs of the functions dll(x) 
scales along the x and y axes. 

k2 can be chosen by inspection and 

order of unity, and ~n (x) and 
the graphs of which are obtained fram 
and· dnn (x) by a simple change of 

Since for r»l1 the functions Dn(r) and Dnn(r), on account 
of the stated physical considerations, should not depend on the viscos­
ity v, the asymptotic equations should hold 

for x »1 

The same equations also hold, of course, in relation to the 
functions ~n (x) and ~nn(x). Whence it follows that for r»l1 

(1.8) 

D (r). = C 2/3 2/3 n t r . (1.9) 

2/3 2/3 
Dnn(r) = CIt r 
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(the so-called 2/3 law). In the other extreme case, for r< < Tj, the 
difference of the velocities v(M') - v(M) will be of the first order 
of smallness with respect to r (for such distances the velocity at a 
point of the flow is continuous and is a differentiable function of 
the coordinates), so that in this case 

D (r) '" Ar2 n 

D (r) '" A'r2 
nn 

(1.10) 

The more complete theory based on the equations of hydrodynamics 
is now discussed. First use of the equation of continuity 

3 

L (loll) 
i=l 

shows with little difficulty that 

(1.12) 

and that 

[v(W) - v(M)][p(W) - p(M)] = 0 (1.13) 

where p(M) is the pressure at point M (see, for eXmaple, refer­
ences2 and 15 and compare also references 18 and 19). Now with the 
aid of equations (1.12) and (1.13) and the equations of motion 

dV. ~ dVi ' 
1. + L-" v dt .. 1 j dX:.= 

J= J 

(i = 1,2,3) (1.14 ) 
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it may be shown that the function D11(r) is connected with the struc­
tural function of the third order 

(1.15) 

by the known relation of Kolmogoroff (reference 2).8 

4 
= - 5" er (1.16) 

8In the case of homogeneous and isotropic turbulence, the equation 
relative to the correlation functions (references 18 and 19) is easi"ly 
derived from equation (1.14): 

where 

dB11 (dB111 4 ) (
d2Bll 4 dB11\ 

d't" = dr + r Bn 1 + 2"'~ dr2 + r ~) 

When the correlation functions are replaced by the structural 
functions given by the formulas in the previous footnote (and by an 
analogous formula for ~ll)' the following is obtained: 

( d 4)(, dD11 ) -4e = dr + r \DZ n - 6 \I dr (
t = _ ~ dB(O)' 

2 dt / 

from which equation (1.16) is obtained after a single integration with 
respect to r. In a similar manner, equations (1.12) and (1.13) may 
be obtained from known results relative to isotropic turbulence. It 
may likewise be shown that equations (1.12), (1.13), and (1.16) are 
also valid within the framework of the theory of a locally isotropic 
flow. 
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For r« T], the term DIll (r) may be neglected in this relation 
(since for these valu~s of r the fUnction Dlll(r) will be of 
third-order smallness with respect to r) and therefore, equations (1.16) 
and (1.12) give the solutions 

for r« T] (1.17) 

This is an improvement in the accuracy of reXations (1.10). On 
the other hand, for r»T] the term with the viscosity may be rejected 
since 

4 = - - er 
5 

for (1.18) 

The nondimensional magnitude, the asymmetry of distribution of the 
probabilities for the longitudinal component of the velocity difference 
is now introduced 

(1.19) 

From the considerations of the theory of dimensions, it follows 
that for r»T] the magnitude S should have a constant value (it 
can depend only on. r and on &, but from these two magnitudes it is 
not possible to obtain any nondimensional combination). From equa­
tions (1.19), (LIS), and (1.12) it follows that for r»T] 
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The coefficients 
with the asymmetry 8 

(1.20) 

C and C' of formulas (1.9) are thus connected 
by the following simple relations: 

4 
C' = - C 

3 

(1.21) 

It follows that 8 is always negative: 8 = - 181. Formulas 
(1.17), (1.9), and (1.21) were obtained by A. N. Kolmogoroff in 1941 
(references 1 and 2). Up to that time, the results obtained from the 
equations of hydrodynamics only slightly improved the accuracy of the 
results obtained previously from a dimensional analysis and they 
referred only to the two extreme cases: r> >TJ and r< < TJ. In the 
matter of the computation of Dn(r) for the intermediate values of r, 
the single relation (1.16) is of course not sufficient. In this rela­
tion are two unknown functions D11(r) and D111(r), and therefore 
still another relation between them is required for their determination. 
The theory does not give this needed relation, but an attempt may be 
made to derive it from experimental data. 

At the present time, results are known of the direct measurements 
of the magnitude 8 for various distances, conducted by Townsend 
(reference 4) in wind-tunnel tests at very high Reynolds numbers for 
the purpose of checking the theory of Kolmogoroff. These measurements 
have shown that the asymmetry 8 may, with a sufficient degree of 
accuracy, be assumed as constant not only for r» TJ but in general 
for all values of r lying within the range of applicability of the 
theory of locally isotropic turbulence. The experimental value of 8 
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for all values of r is approximately -0.4. 9 This experimental fact 
provides the additional relation between Dll(r) and Dlll(r), which 
permits the determination of these functions uniquely for all values of 
r. 

Thus the asymmetry 8 is assumed constant. From equations (1.16) 
and (1.19) 

dDn 6v -- + dr 
4 = - e:r 5' (1.22) 

where 18 I is constant. This equation in the function Dll(r) with 

coefficients depending on v, e j and 181 is considerably simplified 
if transfer is made to nondimensional magnitudes and the as yet unde­
termined numerical factors kl and k2 are in the expressions for the 

scales (i.e., use is made of formulas (1.6) and (1.7)). Then for 
1322 (x), 

(1.23) 

The magnitudes €. and v no longer enter into this equation. 
For a corresponding ch~ice of the constants kl , __ and k2' i-t is also 

possible to eliminate the experimental constant 181 and obtain for 
I3ll (x) an equation with numerical coefficients. It is convenient to 

choose kl and k2 such that 

2 
2 kl 
----1 
15 k22 

(1.24) 

9The experimentally determined values of 8 fluctuate between 
the limits -0.36 and -0.42. This scatter lies within the limits of 
accuracy of the measurements. As the most probable value of 8 
Townsend gives the value -0.38. However, this value may not be assumed 
reliable for purposes of this report. 
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that is, to set 
4 

kl = 4Vs 1 5.035 
~ WI: 1ST 

(1.25 ) 
4 

k2 = 4 '1/2 1 1. 838 

J4S 1ST '" 1ST 

The equation for ~~~(x) is then 

dl3n (x) [4 ()]3/2 
-=--- + - 13" x = x dx 3 'd. 

(1.26) 

Equation (1.26) together with the initial condition 

uniquely determines the nondimensional longitudinal strllctural function 
~~l(x) which describes the structure of the velocity field. lO 

10The structure of a turbulent flow may likewise be described with 
the a.id of the spectral energy distribution. In this case, E(p) 
denotes the energy of the system ·of disturbances the wave number of, 
which is larger tha.n p (the scale of disturbance is inversely propor­
tiona.l to the wave number). In the statistical theory of homogeneous 
(stationary) processes and fields, it is shown that there exists ·a one 
to one correspondence between the correlational (structural) functions 
and the functions E(p); the formulas that permit expressing one of 
these functions in terms of the other approximate in type the Fourier 
transformation (cf. references 20 and 31). The 2/3 law for the struc­
tural functions, equations (1.9), is equivalent to the ratiq of the 
spectral function E(p) for P«Pl' to the magnitude p-2/3 (i .e., 

the ratio of the spectral density dE(p)/dp = E'(p) to the magnitude 

p-5/3). The scale ~ corresponds in the spectral theory to the critical 
wave number PI = l/~. The 2/3 law was first obtained in this form by 
A. M. Obukhoff (reference 3) in 1941. The complete description given 
in the text of the structural function Dn(r) is equivalent to the 

determination of the spectral function not only for P«Pl but also, 
in general, for all values of p. There are a number of attempts 
(references 3, 21, 22 and 5) at a direct theoretical computation of the 
function E(p) for all p. The results thereby obtained are however 
difficult to compare with experimental data. 
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The corresponding nondimensional transverse structural function ~nn(x) 
is determined from the relation (1.12) which, after sUbstitution from 
equation (1.6), may be represented in the form 

(1. 27) 

~ Figure 1 shows. the graphs of the graphs of the functions ~~~(x)· 

and ~nn(x), where ~l~(x) was determined with the aid of numerical 

integrationll of equation (1.26) for the conditions ~ll(O) = 0, and 

~nn(x) was computed with the aid of ~~l(x) from relation (1.27). 
The dotted curves denote the asymptotic values of these functions for 
small and large values of x: 

~n(x) 1 2 -x 
2 

for x« 1 (1.28) 

for x»l (1. 29) 

These formulas correspond to the asymptotic equations (1.17) and (1.20) 
for the structural functions. The particularly simple form of the 
asymptotic formulas for the function ~nn(x) permits'a very simple 
determination of the magnitudes of 111 and ul of equation (1.6) from 
the transverse structural function ~ (x) which was obtained from nn 

11 For large values of x (for 
use of the asymptotic expansion for 

x> 8) , it is convenient to make 
I3n (x) : 

~ (x} ... ~ x 2/3 (1 _ .! x -4/3 _ ~ -8/3 ) 
~l 4 \ 3 36 x + •.• 
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experiment. 12 It is for this reason that the previously mentioned values 
for the coefficients kl and k2 were chosen. 

A direct comparison of the computed curves with the experimental 
curves obtained in wind-tunnel 'measurements is technically difficult 
to make because of the smallness of the scale ~. In wind-tunnel 
measurements it is thus usually possible only to check the agreement 
With the 2/3 law (see for example references 4 and 5). With relation 
to the results which refer to the trend of the curve for r - ~l' 

it is necessary to be satisfied with an indirect check of the type used 
in checking the accuracy of the constancy of the asymmetry factor. 
From this point of view measurements in the free atmosphere are evi­
dently more convenient because here the scale ~l is somewhat larger 

(of the order of several mm). Nevertheless, such experiments are very 
complicated and up to this time only one investigation containing data 
referring to scales of the order of ~l is known. This is the investi-

gation of Godecke (reference 23') in which the ,mean absolute differences' 
in velocity in a direction perpendicular to the base (which corresponds 
to the transverse structural function) is measured for distances of ,r 
varying from 0.1 to 80 centimeters at an altitude of 1.15 meters [1]. " 
The evaluation of these data (reference 7) has shown that they are in 
good agreement with the theoretical curve obtained herein for ~nn(x) 

where ~l = 0.54 centimeter and ul = 2.02 centimeters per second. 

2. Computation of structural function of pressure field. The 
study of the local structure of the field of pressures in a turbulent 

12 
~echnically, the measurement of Dnn(r) can be affected much 

more simply than the measurement of D11(r). For this reason Dnn(r) 
is generally mea.sured in experimental work. Approximation of the curve 
obtained for D (r) to a parabola for small values of r to a parab-nn 
ola and to the 2/3 law for large values of r gives precisely the mag­
nitudes of ~l and u

1
2, the coordinates of the point of intersection 

of these two asymptotic expressions. The above construction is con­
veniently carried out on logarithmic scale; the parabola and the 2/3 law 
are thereby represented by two straight lines (cf. reference 7). 
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flow is considered in this section.13 As a quantitative characteristic 
of this structure, as in the case of the velocity field, the corres­
ponding structural function is chosen 

(2.1) 

In the case of a locally isotropic flow, the function I[(M,M'), 
for a distance r- between the points M and M' much less than the 
external scale of turbulence L, will depend only on r: 

rt (M ,M') = TI (r ) (2.2) 

and will be entirely determined-by the local structure of the flow. 

From considerations of the theory of dimensions it follows that 

_where 

tr(r) = q 2~(r) - 1 1)1 

1; 1)1 = k ~ 
1 e 

q = pu 2 = -k 2 p 4Vi 
112 

(2.3) 

(2.4) 

the numerical coefficients kl and k2 being assumed to coincide with 

the coefficients in equation (1.25) and ~(x) being a universal func­
tion. Further, since for r»1) the structural formula TI(r) should 
not depend on the viscosity v, the asymptotic equation is 

for x»l (2.5) 

and therefore 

13 From the fact that when deriving the fundamental equation connect­
ing the second and third moments of the velocity field of an isotropic 
(locally isotropic) incompressible flow, the pressure is excluded (see 
references 18 and 19 and also equation (1.13», it does not follow tha.t 
in an isotropic (locally isotropic) turbulent flow fluctuations of the 
pressure are a.bsent. Such an erroneous conclusion has been drawn by 
M. D. Millionshtchikov (reference 24). 
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It will now be shown how the numerical coefficient in this formula 
and, in general, the entire trend of the function n(x) may be approx­
imately computed. 

For this purpose use. is made of equations (1.14). If the ith 
equation is differentiated with respect to xi and summed over i, then 
on account of relation (1.11) the terms with dVi/dt and with ~vi 
drop out and 

or 

3 
~p = -p ~ 

i,j=l 

(the equation of continuity is again applied). 

(2.7) 

(2.8) 

From equation (2.8) it is not difficult to derive the differential 
equation for the function IT(r). It is simplest to proceed as follows 
At first the assumption is made that the velocity field and pressure 
field are statistically homogeneous and isotropic (and not only locally 
homogeneous and locally isotropic). In this case., the left and right 
sides of equation (2.8), written out for the point M with coordinates 
xl' x2 ' x3 ' are multiplied correspondingly by the left and right sides 
of the analogous equation for the point M' with coordinates xi, xz' 
x3' and the result is averaged and after taking into account the fact 

that in the case of a homogeneous and isotropic pressure field 

where when differentiation is carried out on the right side with 
respect to the components ~i = xl - Xi of the vector MM' 

L dvi(M) dVj(M) dvk(M') dV! (M') 
~2p(M)P(M' ) = p2 (2.9) 

i,j,k,2 dXj dXi dX' d~ 2 

It should now be noted that in the case of a. homogeneous and iso­
tropic flow the correlation function p(M)p(M') is connected with the 
structural function (2.1) by the relation (see previous footnote): 
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nCr) = 2[P2 - p(M)p(M')] 

Equation (2.9) may therefore be rewritten in the form 

= _2p2 L 
i,j,k,'l 

== d
4
TI(r) +! d3

:rr(r) 
dr4 r dr3 

Ovi(M) ovj(M) 6vk (M') OV'l(M') 

dX j dX i dXi a~ 
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(2.10) 

(2.11) 

This is the required equation. It also has a meaning in the case 
of locally homogeneous and locally isotropic (but not homogeneous and 
isotropic) flow, and with the aid of more complicated considerations 
it may also be derived without the assumption of homogeneity and iso­
tropy. 

The structural function nCr) is thus seen to be a solution of 
equation (2.11), in the right side of which appears a combination of 
four moments of the derivatives of the velocity field. Unfortunately 
these moments are not known, and in order that any use may be derived 
from equation (2.11), it is necessary to make an additional assumption 
which will permit computing these"moments. The assumption adopted herein 
is that proposed by M. D. Millionshtchikov (reference 24) which states 
that the fourth moments of the velocity field are expressed in terms 
of the second moments in the same manner as in the case of the normal 
Gaussian distribution. 14 As a first approximation this assumption 
appears to be an entirely natural one. This assumption finds a certain 
justification in the measurements of Townsend (reference 4) which show 
that the experimental value of the fourth moment for the velocity deriv­
ative ovljaxl differs by no more than 15 percent from the value com-

puted by the measured value "of the second moment on the assumption of 
normal distribution. 

For any four chance magnitudes wl ' w2 ' w3 , and w4 subject to a 
four-dimensional normal-distribution law, the equation holds (see for 
example, refer~nce 25): 

14It is noted that in the recent work of Heisenberg (reference 21) 
a hypothesis with regard to the spectral functions of an isotropic tur­
bulent flow precisely equivalent to that proposed by M. D. Millionsctchikov 
was used. 
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When this formula is applied to the product of the four derivatives 
of the velocity field which enter into the right side of eq~ation (2.11), 
the following equation is obtained: 

L L 
i,j,k,'Z i,j,k,'Z 

L (2.12) 
i,j,k,'Z 

The first term on the right-hand side of the equation is propor-­
tional to 6PCM) 6PCM'). In the case of a locally isotropic flow, it 
is easily verified that this term becomes zero, as can be derived, for 
example, from equations (1.3) and (1.12). The last two terms of equa­
tion (2.12) are equal to ~ach other. It is further noted that in the 
case of a locally isotropic flow 

ax' l 

1 0
2 

Dik (M,M' ) 

= '2 d~ja~Z 

where .Dik is the structural function in equation (1.1) and 

~j = xj - xj • From this it follows that for the assumption made about 

the relation of the second and fourth moments, equation (2.11) may be 
represented in the form 

d
4
II(r) + ! d3II(r) = _p2 ~ 
dr4 r dr3 i,j,k,l 

(2.14) 

The function on the right side of this equation depends, of course, 
only on r 

q,(M,M') = ~ 
i,j,k,l 

2 
d Dik(M,M') 

d~j a~l 

2 a D j 1 (M ,M' ) 

a~i a~k 
= q,(r) (2.15) 
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With the aid of equations (1.3) and (1.12), equation (2.15) may be 
reduced, after rather long transformations, to the form 

~dD)2 dD d~ ~2D )2 q, (r) = ...§.. ---1! + 20 -1! --.!! + 4 --1.l 
2 dr r dr d 2 d2 r r r 

(2.16) 

In accordance with the definition (2.1), the function tIer) is 
even and assumes the value zero for r = O. Therefore, the two bound­
ary conditions which result are: 

nCo) = 0 

II'(O)=0 

As a third boundary condition .use is made of15 

for r ...... 

(2.17) 

(2.18) 

(2.19) 

Equation (2.14), for the conditions of equations (2.17), (2.18), 
and (2.19), has a unique solution which is the required structural. 
function. 16 

Since all linearly independent solutions of the homogeneous equa­
tion corresponding to equation (2.14) are found without difficulty 
(they are 1, r, r2 and r-l ), the required solution of the nonhomo­
geneous equation can be constructed with the aid of Green's functions. 
It is easily verified that in the case of the boundary conditions 
expressed in equations (2.17), (2.18), and (2.19), this function for 
equation (2.14) has the form 

15It may be shown that this condition is required so that the 
correlation between the differences in the values of the pressures at 
two pairs of points will approach zero as one pair of points recedes 
infinitely from the other (the distance between the points for each 
pair is assumed to be fixed). 

16It may appear strange that only three boundary conditions are 
used, whereas equation (2.14) is of the fourth order. The fact is, 
however, that equation (2.17) is a double condition: Zero is a singu­
lar point of equation (2.14) and therefore one boundary condition will 
be the requirement that the function have regularity at zero. 
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for r ~ I; 

(2.20) 

for r ~I; 

The required solution for TI(r) may be represented in the form 

(2.21) 

The function ~(r), given by equation (2.16), may, on account of 
relations (1.6) and (1.7), be represented in the form 

(2.22) 

where kl' k2' and ~l are determined from equations (1.25) and (1.7) 
and ~(x) is the universal function: 

~(x) 

. 3 
dJ3n d J3n + 4 -- ----.;..:.. 

dx dx3 

(2.23) 

When equations (2.20) and (2.22) are substituted in equation (2.21) 
and a change of variables is made (cf. equations (2.3) and (2.4) 

(2.24) 

where 

n{x) % _ ~ + xt +-~ ~(~)d~ + x S ~(~)d~ j X( 3 2 4) lCD 2 
2 2 6x x 6 

= _ ~ l x t3~(t)d~ + ~ rx t2~(Od~ + ~ rx ~4~(~)d~ + ~21CD t~(~)d~ 
o Jo xJo x 

(2.25) 
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Thus the universal function n(x) of equation (2.3) is connected 
with the function ~22(x)) which was computed in the preceding section) 
by use of rela.tions (2.25) and (2.23). Ec::}.uation (1.26) expresses the 
derivative d~22/dx in terms of the function ~12(x). When this equa­
tion is applied several times) the second and third derivatives of 
these functions can be expressed in terms of ~22(x) and therefore 
also the function ~(x). Thus) with knowledge of the function ~22(x) 
from section 1) ~(x) can be determined and all the integrals in equa­
tion (2.25) ca.n be numerically computed) that is) the function n(x)) 
which determines (due to a relation with equation (2.3)) the structure 
of the pressure field can be computed. The graph of the function n(x) 
thus obtained is given in figure 2. 

The dotted curves in figure 2 show the asymptotic behavior of 
n(x) for small and large values of x. Since the motion of the fluid 
for scales much smaller than 1)1 is laminar) for x«l 

(2.26) 

(See the analogous derivation for the structural functions of the vel­
ocity field.) The coefficient a in this formula can easily be 
obtained from equation (2.25) as follows. From equation (1.2S)) 
~n (x) .. x2/2 for x< <1. Hence the function ~ (x)) for such values 
of x) may be considered as constant: ~(x) :::: 30. When this value is 
substituted in equation (2.25)) the term proportional to x2 gives 
only the last of the integrals in equation (2.25) and 

a = ~l'" ~cp(Od~ ,., O.S 
. 0 

(2.27) 

(This value has been obtained with the aid of numerical integration.) 
The curve 

n(x) = 0.S3 x2 

is the first of the asymptotic curves drawn in figure 2. 

In the E}econd limiting case) for x»ll equation (1.29) shows 
~n (x) :::: 3x2 j3/4) and therefore ~(x):::: 7x-S 3/1S .. Equation (2.25) is 

now represented in the form 
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1f(X) = rX (_ ~ + xt
2 

+ ~'7 C8/ 3 d~ + reo x2t Y-. ~-8/3 d~+ Jo 2 2 6x)f8 Jx 6 18 

(2.28) 

It is not difficult to see that the values of the· integrals on the 
right side of equation (2.28) for X-+ CD will not increase any faster 
than the first degree of x, so that the/~rinciPal term of the asymptotic 
formula for 1f(x) will be the term 9x4 /16. Thus, the numerical 
coefficient in equation (2.5) is equal to 9/16 and the symbol of the 
asymptotic equation (2.5) means only that 

for x»l 

or 

for r»TJl 

The difference 1f(x) - 9x4/ 3/16, however, increases without limit 
as x increases. 

To obtain the succeeding terms of the asymptotic formula for 
1f(x), equation (2.28) is further transformed: 



24 NACA 'I'M 1350 

(2.29) 

Here the integrals over the range from 0 to ~ converge very 
rapidly and may be numerically computed while the last integral over 
the range from x to aD may be evaluated for x> > 1 with the a id of 
the asymptotic formula given in a previous note. It should be noted 
that this integral adds only an insignificant increment to the constant 
term of the asymptotic formula for rr(x). Finally, with an accuracy 
up to terms approaching zero as x ~ aD 

rr(x) -- 1
9
6 x

4
/

3 - o.oex + 0.e5 for x»l (2.30) 

This is the equation for the asymptotic curve for large values of 
x plotted in figure 2. 

No knowledge of any experimental data on the structure of the pres­
sure field which could be compared with the results obtained herein is 
known to the authors .. It should be remarked that the computations pre­
sented previously show that the mean square values of the differences 
in pressures are found to be so small, as a rule, that their measure­
ment would be associated with very great experimental difficulties. It 
does not follow from this, however, that the computation of the struc­
tural function of the pressure field is practically useless. In the 
folloWing section it will be shown that the values of the local pressure 
gradients thereby obtained are very large so that the accelerations pro­
duced by the fluctuations of pressure may play an essential roie in 
processes which arise in turbulent flow. 
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3. Computation of correlation functions of acceleration field. A 
study of the acceleration field of the fluid particles in a turbulent 
flow is now undertaken. This field differs from the fields considered 
in the previous sections in that the very smallest and not the largest 
vortices17 are essentially responsible for values of the acceleration at 
a poipt, as is the case for the velocity and pressure fluctuations. For 
this reason, in the case of the field of accelerations of the local 
flow structure, not only the statistical characteristics of the differ­
ence in values of the field at two points (e.g., the structure function) 
are determined, but also the statistical characteristics of the values 
of the field. The most important of these characteristics is the corre­
lation function, the mean value of the product of the values of the 
field at two points (i.e., in the case·under consideration, the mean 
value of the product of the acceleration components).18 The computation 
of this correlation function is the main concern in this section. 

The value of the correlation function at zero is determined first, 
that is, the mean square of the acceleration of a fluid particle at a 
single point. This magnitude is the numerical characteristic of most 
interest of the acceleration field. From the equations of motion (1.14), 
the acceleration components of the fluid particle 

dv. dV
i 

3 dV 
Wi = dt

1 = ~ + ~ Vj dXi 
(i = 1,2,3) (3.1) 

j=l 

17From considera.tions of the theory of dimensions it follows that 
to vortices of the scale of l, where l> > TJ, there corresponds the 

characteristic period Tl = (22 /e )1/3 such that the velocity chara.cter-
1/3 

istic for these vortices is equal to vl = l/Tl = (tl) and the char-

acteristic accelera.tion is WI = l/T1
2 = (e2/1)1/3. Thus it is observed 

that when the scale of lengths is decreased, characteristic velocity 
decreases while the characteristic acceleration increases. From this 
it follows that the very small vortices of scales I~ TJ are mainly 
responsible for the value of the accelera.tion at a point of the flow 
(for such vortices, the dimensional considerations adduced herein do not 
correspond, of course, to actual conditions, for the motion of these 
vortices essentially depends on the viscosity). 

18It is clear tha.t the correlation function is a more significant 
characteristic of the field than the structural function. Knowledge of 
the correlation function always allows determination of the structural 
function a.lso. The converse does not hold true. 
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are equal to 

1 dP w
1
' = - - ~ + v /::"v. pox. 1 

1 

from which is obtained 

3 

1 ~(dP )2 
p2 1=1 dX i 

3 

+ v 2 L (/::,.vi )2 

i=l 

(3.2) 

(3.3) 

The first and third term on the right side of this equation may 
be expressed, without difficulty, in terms of the structural functions 
of the velocity and pressure fields, equations (1.1) and (2.1): 

:L-L= 3 (d )2 
i=l dXi 

(3.4) 

(3.5) 

The middle term on the right side may be expressed through the 
interrelated structural functions 

of the velocity and pressure fields. Since in the case of incompressible 
local isotropic flow these functions should be equal to zero (see equa­
tion (1.13)), the middle term on the right side of equation (3.3) 
becomes zero, and therefore 

3 - 2 2 (3 J ~ 2 = ~ d nCo) _ ~ /::,.2 ~ D .. (0) 
~w. 2 2 2 ~ II 
i=l 1 2p dr i=l 

(3.7) 

But on account of equations (2.24), (1.7), (1.25), (2.26), and 
(2.27) 
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0.15 2 -1/2 3/2 0.74 p2 v -l/2 3/2 .. 1ST 4. 96p v e .. 1ST e 
(3.8) 

Hence19 

(3.9) 

Further use is made of the fact that for any choice of coordinate 
systems 

3 
~ D .. (r) = D,,(r) + 2Dnn(r) 
i=l 11 "" 

and of equation (1.12), the following is obtained: 

dDn (r)) 
+r-~­

dr 

(3.10) 

(3.11) 

With the aid of formulas (1.6) and (1.7), the change from D1.1.(r) 
to the nondimensional function ~1.1.(x) gives 

19 The computation of the magnitude Igrad pl2 for locally isotropic 
turbulence is also contained in the work of Heisenberg (reference 21) .. 
The method of Heisenberg is based on the employment of the spectral 
function E (p) and requires considerably more complicated computations. 
Moreover, in the final formula of Heisenberg, magnitudes enter which 
cannot be separately measured in tests. 
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It is now noted from equation (1.25) that 

k 2 
2 --= 

k 4 
1 

181\1'2 
120rJ5 
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(3.12) 

(3.13) 

and that ~ll(x) is an even function of x which may be expanded in 
the neighborhood of zero in a power series in x2 : 

(3.14) 

From equations (3.12), (3.13), and (3.14) the following is obtained: 

~2(t D"(O~= 181,[2 v-
5

/
2 

(.3/2 840 b = 7..J2181 b v-5/ 2 (,3/2 
i=l II J) 12045 2 ,J5 2 

(3.15) 

By use of this method, only the determination of the coefficient 
b2 in equation (3.14) remains. From the first of equations (1.28) it 
follows that bl = 1/2. When the expansion (3.14) is substituted in 
equation (1.26) and the coefficients of r3 are equated (or, what is 
equivalent, differentiating equation (1.26) with respect to r three 
times and then setting r = 0), the following equation is readily 
obtained: 

1 
b2 = -- (3.16) - 3"-16 

The substitution of this value of b 2 in equation (3.15) gives 

1 I 
-1/2 3/2 

0.3 8 v t 

(3.17) 
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Since Is I ~ 0.4, it follows from a comparison of equation (3.9) 
with equa.tion (3.17) that the acceleration of the fluid particles in a 
turbulent flow is essentially determined by the fluctuating pressure 
gradients and not by the friction forces. The term with IIII(O) in 
equation (3.7) is more than 20 times as large as the term depending on 
the viscosity" It shall be seen that this greatly simplifies the compu­
tation of the correlation functions of the acceleration field. 

the 
When equations (3.9) and, (3.17) are substituted in equation (3.7), 

following formula is obtained for the computation of the mean square 
of the. acceleration wO: 

2 ~ -( 2 (1 1 .1 I') -1/2 3/2 Wo = L-! wi) '" _.- + 0.3 S v e 
i=l lSI 

(3.18) 

Since lsi = 0.4, equation (3.18) may be replaced by the simple 
relation 

(3.19) 

This general relation permits the estimation of the order of mag­
nitude of Wo in specific cases of turbulent flow without difficulty. 

As an example, formula (3.19) is a.pplied to the computation of the 
mean square acceleration in certain turbulent flows behind a screen (or 
grid) in wind tunnels and in turbulent atmosphere. In the case where 
isotropic turbulence was produced by screens in wind tunnels, the dissi­
pation e may be defined either as 

3 dv l2 
e=-zV(iX" 

where V l2 is the mean square of the velocity fluctuation, V the 
mean velocity, x the distance from the screen, or as 

15vv l2 
t = 

A2 

where A is the length introduced by Taylor, experimentally determin­
able by inscribing a parabola in the graph of the correlation function 
B~~(r). When the dissipation t is known, Wo can be computed from 
the formula 

(3.20) 
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obtained by substituting the air viscosity v = 0.15 sq cm/sec in equa­
tion (3.19). 

In particular, when use is made of some of the data given by 
Townsend (reference 4) (these data refer to the flow in a wind tunnel 
behind a square screen with size of mesh M = 6 inches at a distance 
x = 30.5 M from the screen for various values of the velocity V), the 
following values for t; and Wo are obtained: 

V m sec-l ~ cm2 sec-3 Wo cm sec-2 

12.2 60.5 60.4 
24.4 312.4 206.8 
30.5 559.8 320.3 

From this table it is observed that the instantaneous values of 
the acceleration in turbulent flow behind the screen will be of the 
order of several meters per second per second. 

The application of formula (3.19) or (3.20) to the computation of 
the accelerations in a turbulent atmosphere is rendered difficult by 
the fact that at the present time there are no available measurements 
of energy dissipation for this case. However, for the degree of accur­
acy of the computations, much justification exists for employing an 
estimate of the magnitude of t; for a turbulent atmosphere by the 
formula.s of the theory of the logarithmic boundary layer. It is known 
(reference 15) that for the logarithmic boundary layer 

3 
1 v* 

t = X -y- (3.21) 

where y is the distance from the wall, x is a nondimensional con­
stant (Karman constant) equal approximately to 0.4, and v* =J~07p 
(~O is the friction stress, p the density) is the so-called dynamic 
velocity determined by the difference of the mean velocities at two 
points or by the mean velocity at one point and the magnitude of the 
roughness. Substitution in formula (3.19) of expression (3.21) for 
the dissipation a.nd v = 0.15 sq cm/sec gives a computational formula 
which determines the mean square acceleration in a logarithmic boundary 
air layer: 

cm 
--2 
sec 

(3.22) 
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Since .v* is proportional to th~ mean velocity V, 

Wo ... V9/ 4 (3.23) 

that is, Wo increases rapidly with V. For the example, the magnitude 
of the roughness is assumed to be hO = 3 cm (it is noted incidentally 
that the computations following depend relatively little on the magni­
tude of the roughness) and the mean velocity of the wind at the height 
150 cm is denoted by V. Then 

xV 
v = .,,...In.....,(Fy.:.,,7ho~) .. 0.1 V (3.24) 

and for the mean square acceleration wo at various velocities V the 
following values are obtained: 

V, m sec~l 1 3 5 6 8 

wo' cm sec -2 22 260 830 1200 2400 

The mean square acceleration under the conditions considered for 
a mean velocity of the wind V = 5.5 m/sec thus attains the magnitude 
of the acceleration of gravity g, and for a greater wind velocity may 
considerably exceed this acceleration. It is natural to assume that 
such large accelerations may play a significant part in many physical 
processes in the atmosphere (e.g., in the phenomenon of the condensation 
of fogs). 

The computation of the correlation function of the acceleration 
field is now considered: 

(3.25) 

Again, substitution of equation (3.2) gives 

A .. (M,M') = ..1.. op op' - ~ (Op ~'v! 
l J 2 dx':'" ax! p dx':'" J 

p l J l 

op,) + v2~v.~'v! 
db{! l J 

j . 
+ ~vi 

(3.26) 

The magnitudes without the primes refer to point M and those with 
primes to the point M'. The middle term on the right side may be 
neglected for the same reasons for which the middle term on the right 
side of equa.tion (3.3) was previously rejected, and the first and third 
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terms may easily be expressed in terms of the structural functions (1.1) 
and (2.1). Therefore, 

(3.27) 

where ';i and .; j are the components of the vector MM' and 

6.v 6.'v' = - l6.
2
D (M M') (6. :;: L + L + d

2 V (3.28) 
i j 2 ij' ~.; 2 de; 2 de; 2 

123 

The transformation of equations (3.27) and (3.28) follows. Since 

. / 2 2 2 
II: (M ,M') depends only on the distance r = 'V.; 1 +'; 2 +'; 3' 

d
2

n(M,M') = d [dn(r) ';j~ = [d
2
n(r) _ l dTI(r~ ';i';j + 1:. dII(r) 

d';i a.; j ~ l dr r f l dr2 r dr J r2 r dr °ij 

(3,29) 

Replacement of Dij(M,M') by means of equations (1.3) and (1.12) 
yields 

which gives the following: 

2 ). ( ) ';i';j ( ) 6. Dij (M,M' = Dl r -·-2- + D2 r 0ij 
r 

(3.30) 

where 

(3.31) 

(3.32) 

Thus 

(3.33) 
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where' 

(3.34) 

). 2 
A (r) = _1_ dTI(r - ~ D (r) 

2 2 dr 22 
2p r 

(3.35) 

and Dl(r) and D2{r) are determined by formulas (3.31) and (3.32). 

The functions Al(r) and A2 (r) are expressed in terms of the 

longitudinal and transverse correlation functions of the acceleration 
field determined by the equations 

(3.36) 

where wZ(M) and w2(M') are the projections of the accelerations at 
the points M and M' on the direction of the vector MM', and ,wn(M) 
and wn(M') are the projections of the accelerations at these points 
in a direction perpendicular to the vector MM'. In fact, the acceler­
ation field of a locally isotropic turbulent flow is isotropic in the 
usual sense, and therefore 

An(r) - Ann(r) 
Aij(M,W) = 2 ~i~j + ~n(r)oij 

r 
(3.37) 

(see reference 19 and equation (1.3) herein). Comparing equations 
(3.33) and (3.37) and taking into account equations (3.34) and (3.35) 
yields 

_ ~ d2n(r) v
2 

AZZ(r) = Al(r) + A2(r) - 2p2 dr2 -:2 (Dl(r) + D2(r)) 

(3.38) 

(3.39) 

In formulas (3.38) and (3.39) it is possible, in the usual manner, 
to pass to nondimensional functions. These may be further computed 
with the aid of the results of sections 1 and 2. 
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It may be noted that in these computations the terms with Dl{r) 
and D2(r) may be neglected without introducing any appreciable error. 
In fact, it was shown previously that for r = 0 the terms depending 
on the viscosity, that is, the terms containing Dl(r) and D2{r), are 
negligibly pmall compared with the terms determining the pressure gra­
dients. With increasing r both terms decrease asymptotically, the 
terms depending on the viscosity decreasing much more rapidly than 
those determined by the pressure gradient. From formulas (2.6) and 
(1.9) it follows that for r»T)l 

d
2n(r) ... r-2/ 3 

dr2 

! dII(r) ... r-2/ 3 
r dr 

r 
-10/3 

D (r) ... r-10/ 3 
2 . 

(3.40) 

(3.41) 

Thus, for both small and large r, the terms of equations (3.38) 
and (3.39) containing v are considerably smaller than the terms 
depending on ITCr). In this connection, the investigation of the struc­
ture of the acceleration field in a turbulent flow permits the rejection 
of terms with viscosity in the equations of motion, and the assumption 
that 

(i = 1,2,3) (3.42) 

(3.43) 

For the longitudinal and transverse correlation functions (3.36), 
there is then obtained 

(3.44) 
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. With the aid of formulas (2.24), (1.7),and (1.25), the change to 
nondimensional magnitudes is made, and using equation (2.25) 

~l(r) - ::: .-1/2 .3/2"'z1(~:)· Isr .-1/2.3/2 "'z1(~) (3.45) 

where ~l(x) and ann (x) are universal functions which are given by 
the formulas 

(3.47) 

l x 1 1-1 1 x 1 
a (x) = -- t2~(~)d~ - ---- ~4~(~)d~ + -

nn 4x 12x3 0 6 x 

(3.48) 

As in the case of the velocity and pressure fields, for x« 1 and ,for 
x» 1, it is possible to obtain for the functions introduc€!d in the 
theory described herein .simple asymptotic formulas. It is clear first 
of all that 

~~(O) = a (0) =!I ~~(~)d~ = 0.83 (3.49) [,,, nn 6 0 

If in formulas (3.47) and (3.48) x is assumed much less than 1 
(x«l), use may be made of the fact that for these values of x, as 
shown in the first formula of equation (1.28), ~ll(x) = x2/2, and there-
fore ~(x) = 30; whence . 

~l (x) '" ~l (0) 
3 2 

- - x 
2 

1 2 
a (x) = a (0) - -2 x nn nn 

for x«l (3.50) 
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In the sec ond extreme case, for x> > 1, the asyinptot ic behavior 
of azz(x) and a (x) is· determined with the aid of formulas (2.30) 
and (3.44). nn 

for x> >1 (3.51) 

() 3 -2/3 
a x "" - x nn 8 

The computation of the functions an (x) and <Inn (x) for x'" 1 
may be carried out numerically by using the data contained in sections 
1 and 2. It is convenient in place of aZZ(x) ·and Onn(x) to intro­
duce the normalized functions 

Rn(x) 
~l(x) 

= azZ(O) 
(3.52) 

Onn(x) 
Rnn(x) = 

Onn(O) 

These functions are equal respectively to the correlation coeffi­
cient of the longitudinal and transverse components of the acceleration 
at two points a distance r = xT}l from each other. The graphs of the 

functions RZZ(x) and Rnn(x), which were determined by numerical inte­
gration of the integrals appearing in the right sides of equations (3.47) 
and (3.48), are shown in figure 3. It is seen that the longitudinal 
correlation function RZZ(x) rapidly decreases, and for x~l.l it 
m&y practically be considered equal to zero. The function Rnn(x), on 
the contrary, decreases at a relatively slow rate, and for x = 3 is 
approximately equal to 0.17. When the magnitudes. of these functions are 
estimated for relatively large values of x (of the order of 10 and 
above), formulas (3.51) may be used. From these formulas, when x = 10, 
for example, R1Z(10) "" 0.03. (In fig. 3 the range of applicability of 
formulas (3.51) is not represented,since to do so it would be necessary 
to choose a much smaller scale.) 

It may be noted further that the form of the correlation functions 
of the acceleration field shown in figure 3 differs sharply from the 
form of the.correlation functions of the velocity field for isotropic 
turbulence. In the case of the velocity field; the graph of the longi­
tudinal correlation function is· generally located above the graph of 
the transverse function and the axis of the abscissas intersects the 
second and not the first of these curves. This difference in behavior 
of the correlation functions for the velocities and accelerations is 
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explained by the fact that the velocity field in an incompressible fluid 
is a solenoidal vector field, whereas the acceleration field is con­
sidered as a potential vector field" (see equation (3.42)). From this 
it follows that the functions Rnex) and Rnn(x) are interconnected 
by the relation 

dRnn(x) 
R., ", (x) = R (x) + x ---j,,, nn dx (3.53) 

[This relation, which is a necessary and sufficient condition for the 
isotropic potential vector field having the correlation functions 
Rn (x) and Rnn(x), was obtained by A. M. Obukhoff,while the correla­
tion functions Bn(r) and Bnn(r) of the velocity field satisfy the 
Karman condition (cf. reference 19 and equation (1.13)J: 

r dBn(r) 
"Bnn(r) = Bn(r) +"2 dr (3~54) 

Conditions (3.53) and (3.54), in addition to the factor 1/2 in 
the second term on the right, differ in the interchange of the roles 
of the longitudinal and transverse functions. It is not surprising, 
therefore,that the functions RII(x) and Rnn(x) behave in a manner 
opposite to the behavior of the functions BI1(r) and Bnn(r). 

In conclusion, the authors wish to express thanks to 
A. V. Perepelkina and Y. V. Prokhorova,who carried out the numerical 
computations for sections 2 and 3. 

Translated by S. Reiss 
National Advisory Committee 
for Aeronautics 
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