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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL MORANDUM 13116 

NONLINEAR THEORY OF A HOT-WIRE AI1EMOMETER* 


By R. Betchov 

We study here the properties of a hot-wire anemometer under the 
supposition that the heat transfer from the wire to the air depends, 
first, on the difference in temperature and, second, on the square of 
that difference. This latter hypothesis is con1irmed by experience, 
and the consequences might be of great importance, that effect of non-
linearity is stronger than the effect of thermal conduction. 

I. THE NONLINEAR LAW OF KING 

The heat quantity Q removed per second by an air stream V from 
a wire of the diameter d and unit length is given by King in the form 

= (a + b/V)T
	

(i) 

where T denotes the temperature difference between wire and air. Kingts 
calculation, approximately confirmed by experience, yields 

a =	 b = 2tt6?cT	 (2) 

with x ' = thermal conductivity of the air, E' = density of the air, 
and c' = specific heat of the air for constant volume. 

These quantities may vary with T, and experience shows that a 
increases while b remains practically constant. Intuitively, one may 
interpret this effect by saying that the air in contact with the wire 
is heated which increases its conductivity. In compensation, its density 
decreases because the pressure varies only very slightly. Obviously, 
the effects on x' and ' compensate one another, and only a varies. 

*t?Therie non-linaire de l'anmomtre fil chaud." Koniniclijke 
Nederlandsche Akademie van Wetenschappen. Mededeling No. 61 uit het 
Laboratorium voor Aero- en Hydrodynamica der Technische Hogeschool te 
Delft. Reprinted from Proceedings Vol. LII, No. 3, l9I.9, pp. 195-207.



2
	

NACA TM l31-6 

King states in his original report (ref. 1) that a increases by 
0.11 14. percent per degree; he also describes there an effect of the 
diameter on that term a which we shall not discuss here. Thus it is 
advisable to write

Q=.[a(l+7T)+bd}T	 (3) 

where y takes the nonlinearity into account. 

One must not forget the hypotheses on which King bases his calcu-
lation: he contends that the air flow is without viscosity and that 
the heat flow in the immediate proximity of the wire is constant. He 
uses the specific heat at constant volume although the pressure is 
certainly more constant than the density. For that reason, we consider 
equation (3) as an empirical relation, valid for the wire unit length, 
and would wish to see King's problem made the subject of a more thorough 
investigation. 

Here we intend to study the effect of the term y on the properties 
of the hot wire; we simplify the notation by introducing P so that 

p=fi	 (14.) 

Q =a(l + P + yT)T
	

(5) 

II. GENERAL EQUATION OF TEE HOT WIRE 

We shall use the following symbols: 

S	 resistance of the wire, per unit length, at operating 
temperature 

S0	 resistance of the wire, per unit length, at ambient temperature 

I	 intensity of the electric current heating the wire 

a.	 coefficient of the variation of S according to the 
temperature 

m	 weight of the wire, per unit length
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c	 specific heat of the wire, in joule/grain and degree 

coefficient of the thermal conductivity of the wire in watt/cm 
and degree 

a	 wire cross-sectional area 

1	 semilength of the wire 

t	 time 

x	 coordinate of position, varying from 2 to -i 

We put

a + A=-(l+P)=	 (6) 

The equation of the hot wire must express the equilibrium between 
the heat supplied per second, the heat removed by the air stream, the 
heat required to raise the temperature of the wire, and the heat trans-
mitted by conduction. One obtains

(7) 
a2 S 2	 aS0 t aSo x2 

For the steady-state case, and introducing the parameters 

	

2	 Th = f	 xa	 = A-I	 - S0 I y =	
aS0A-i2)	 S01	

(8) 

2 ay	 12/A2	 - 2 y 1	 12/A 
G=2 (i- I2/A)2al+P(l_I2/A)2	 J 

one obtains the equation (7) in the form 

.2z Z+GZ2-----=l	 (9)
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III. EXACT INTEGRATION OF TUE STATIC CASE 

Multiplying equation (9) by Z/y and integrating, one obtains, 
with a constant

= Vz + Z2 - 2Z + const	 (10) 

One notes that Z/y is zero for a negative value of Z and may 
be zero for two positive values of Z. At the ends of the wire, one 
has S = S and Z = 0; at the center, Z must be positive and z/y 
zero. The range of interest for us lies, therefore, between Z = 0 and 

the first positive root which gives	 = 0 which we shall denote by 

Z=B. We put

Z(y) = B - X2(y)
	

(U) 

By virtue of the relation 

	

GB 3 + B2 - 2B + const = 0	 (12) 

one obtains

	

= -GX1 + EX2 + D	 (13) 

with

E=l+3GB	 D=2(l-B) -3GB2	 (1)4) 

Following, we shall consider B as a new integration constant 
indicating the temperature in the middle of the wire. At the center of 
the wire, one has X = 0 and

= D	 (15)
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which shows that B is positive and generally small. At the ends of 
the wire, Z=O and X=±. 

The roots of equation (13) are

(16) 
-20 

Introducing the parameter 	 so that 

sirth = sh = (17) 
E 

one can rrite equation (13) in the form 

= GF1-(ch + 1) - X2lr-(ch	 - 1) + xJ	 (18) 
JL20 

We define the angle cp, function of y, so that 

= /	
D	 sincp	

(19) 

	

VE ch	
- k2sin2q 

with

(20) 
2 ch 

Equation (18) then becomes 

dp	
=	 ch 3 dy	 (21) 

Ji - k2sin
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and we obtain the elliptic integral of the first kind 

dcp	 =	 ch 13y	 (22) u(k;cp) = I 
'JO i5i - k2sin2cp	

2 

The variable y varies from - to , with 

= i/i*	 (23) 

	

and we have, for y =	 and X2 = B 

_____	 max dcp	 (21) 

	

!	 ch 
=	 Vi - k2sin2 2 

with

D	 sincpmax	 (25) 

- k2sinPm 

This last equation may be written 

1	 _2	 D k +	 (26) 

sinpm -
	 EB ch 13 

From equation (20) one may deduce 

= 1 + tanh2(13/2) 	 (27) 

With 13 ranging from 0 to +o, k2 varies from 1 to 0.5.
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With G and B known, one may calculate successively D, E, 13, 
k, and	 A table of U(k,cp) then permits us to calculate 	 . 

Figure 1 gives the results obtained by this procedure and allows - 
starting out from a prescribed wire and with y known - to determine 
B from G and . 

The temperature distribution over the wire is given by Z as a 
function of y, or by X as a function of	 and cp a function of y. 

The relation cp(y) is given by the quotient of equations (22) and .(214), 
namely

dcp 

Jo Vl n2cp	
(28)


dp 

Vi -. k2sin2q 

From equations (19) and (25), one obtains a relation between cp and X, 
namely

- sin2cp	 - k2sinpm
(29) 

B - S1fl Pm	 1 - k2sin2cp 

The total resistance R of the wire is given by 

+1 2S012 * 
R= r Sdx=

A - i2
 U0 Z dy + 2S0 1	 (30) 

	

We introduce the cold resistance 	 and the function X 

R - R0 = R012 (B -
	

X2 dy	 (31) 

	

A-12 \	 0	 /
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We replace X according to equation (19) and dy according to equa-


	

tion (21), namely	 - 

R i2 /	 max 

	

°	
(B 

	

A -	 - (E ch)3/2f	 (1 - k2sin)3/2 d)
	 (32) 

The integral is equal to 2U/k 2 arid we obtain 

R - H0 = H012 (B -
	 2D	 tJ/k2'\	

(33) 
A_I2	 Echo	 U I 

The values of U/k2 can be deduced from a good table of U(k,cp) 
with sufficient approximation. 

If the wire were perfect, the expression in parentheses in equa-
tion (33) would have to be replaced by unity; therefore, we shall intro-
duce the quantity M so that 

M = 1 - B + 2D	 U/k2	 () 

	

Echo	 U 

The formula (33) then gives us 

R = R 1 - M12/A 

1 - 12/A 

and the important relation 

RI2	 _____ 

	

= Al + M (1 - 1 2/A)}	 (36) 
R-R0	 1.	 l-M 

This last equation permits easy determination of the wire charac-
teristics because R, R 0 , and I can be measured accurately and because 

the curves obtained as functions of R/R0 , for instance, indicate directly 

(35)
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the effects of conduction and of nonlinearity. We calculated the values 

of 1 M as a function of G and ; figure 2 shows our results. 

A good approximation is given by 

M	 1	
(37)


1-MB0 

	

where B0 corresponds to B, in the case 	 = 

+ /1 + 6G - 1
(38) 

3G 

IV. A FEW USEFUL APPROXIMATIONS 

In performing the calculations necessary for the plotting of fig-
ure 1, we have noted that one may assign to k the value unity without 
introducing large errors. 

This implies 13 = 0 and equation (19) then gives 

	

X=tanq	 (39) 

The integral (22) becomes 

= r	
dcp	

o) 

J0 cosq	 2	 l-sincp	 2 

whence, one deduces

ch(2U) = 1 + sin	 = ch(y)	 i) 
1-sin2cp



10	 NACA TM 13)4-6 

x2 =	 ( ch iffy - 1)	 (Ii.2.) 

At the. limits, one has

B = .(ch	 - 1)	 (3) 
2E 

which gives

B	 (1chy	 ()4i) 
1 - 1/ch [E'\	 ch JJ 

In order to calculate M, one must put 

1	 ____ d - 1/sin p 

k1	 =	 - ____ -
	 (7) 

which gives

M=l-	
B	

"1	
Th\/'\ 

1 - 1/ch	 - 

One can see that, due to the nonlinearity, . is replaced by V, 

and the central temperature is lowered. 

If one takes equation (4-) as solution of equation (9), one sees 
that the equation is satisfied for a term of approximately (ch /y/ch J)2; 
and that B is given approximately by 

B

	

	
(' 

+ 6G - 
') l - l/ch i)	 (7) 

3G
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with

El+6G	 (148) 

We shall take an example that represents an extreme case. We 
choose a platinum wire with 10 percent of iridium, a diameter of 7 microns, 
and a length of 21 = i.i 1- mm. Exposed to an air stream of 5 rn/sec and 
heated with 75 mA, it gives us 

P=2.9	 A=l.2X102	 12/A=0.li-7 

1*015mm	 =3.75 

Assumin€, y = 1.2 x	 and with the aid of figures 1 and 2, we 
determined

G = 0.25	 B = 0.76	 E = 1.56	 M = 0.-

The other parameters have the following calculated values: 

k = 0.99756	 max ='7S 

sh3=0.li-	 D=0.04-77	 U=2.3)4 

In figure 3, we show the profile of the temperatures calculated 
exactly, the profile calculated with the approximation k = 1, and the 
profile calculated with 7 = 0. It can be seen that the nonlinearity 
offers a more uniform temperature distribution, and that the approxi-
mation is sufficient. 

	

By means of equation (35) one calculates	 = 1.5, whereas the 

calculation with y = 0 would give the result 1.9. The mean tempera-

ture giving	 = 1.5 would be 380°. 

As to the term R12/R - R0 , it changes from the value l.2 A when 
the current is very weak to the value 1.35 A when I attains 75 mA.
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R	 R It varies therefore by about 10 percent between - = 1 and - = 1.5 
no	 no 

which is of the same order as the variations obseried. 

Thus this magnitude is constant at 10 percent and King's law is 
verified; however, we shall see later on that the thermal inertia is 
very different from the expected value. 

V. THE DYNAMIC EQUATION OF THE HOT WERE 

In order to calculate the variation of the total resistance of the 
wire when the current or the air stream fluctuate, one must go back to 
the equation (7). Replacing in this equation I, S, and V (contained 

in the term A) by I + ie3t, S + sejWt , and V + vePt , one obtains 
after suppressing the terms of the order zero, two, and more as well as 
the factor ePt 

2SIi + i2 =	 (s - s0 ) + As + 2ay c - s0)	
mc . 

5 + JWS - - - 

	

2aS0 V	 ct2S02	 o	 o 2 

(14.9) 

We introduce

A -
(50) 

s0 i2 

and, identical to the formula (9) of our MededelingNo. 55 (ref. 5) 

aS 
= —2-(A - i2)	 (51) 

mc 

One then obtains, after introduction of Z 

2 + 2 j 12/A z - i P	 Z	
= z(l + 3GZ + jw/w*)

- 
I	 11_12/A	 2l+Pl_I2/AV

(52)



NACA TM l3ii6	 13 

The function Z(y) appears twice in this differential equation, and we 
must utilize the approximation k = 1 in order to avoid great compli-
cations. Writing the expression Z according to equation ( lii-), one 
obtains

/	 3GB	 +	 3GB	 ______
— + z(1 + 
2	 \	 1 - l/ch	 - ch	 - 1 ch

	 =	 + c ch Y

2 cii

(53) 

with 

Cj=211+	 12/A	 B	 '\ lv ! P	 1	 B 
- 2/ 1 - 1/ch	 - 2 V1 + 1 - 12/A 1 - 1/ch

(514) 

12/A	 B	 lv( P	 1	 B 
92 = -2 I 1 - 1

2/A 1 - 1/ch	 2 V\1 + 1 - 12/A 1 - l/ch

(55) 

The solution without the second member of equation (53) is a 
Mathieu function taken for a purely imaginary value of the argument., 
but if [E is large enough, for instance, more than 4 . , one may neglect 
the term with chy of the member on the left side of equation (53). 
Actually it is important only when y is close to ; however, we shall 
take as a limiting condition z() = 0, and the product z chV'y will 
never be important. We shall also neglect the term l/ch \ff in the 
denominator of one of the terms on the left side of equation (53) which 
amounts to taking Z = B in the factor term of z. 

Taking the definition of E into account, one then has 

2
+ z(E + jw/*) =	 + 2 ch y	 (56) 

y2	 ch IE 

the solution of which - null for y = ± - is 

C1 /	 ch p'/y\ + C2 fch \Ty ch p1y\ 
z —Il 

Ep2 \ - ch ri )	 w/w*chvfE - ch pf)
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with

p = /l + j/*	 (58) 

It can be seen that due to the nonlinearity the characteristic 
frequency w is replaced by a new frequency which is higher by a fac-
tor E. (Conrpare with equation (8) of ref. 5.) The aniplitudes according 
to C1 and C2 also are modified by the nonlinearity. 

The variation r of the total resistance R will be 

RI2 

	

r= I	 sdx= °
	 fzdy	 (59) 

i-i	 A-I2 

The integration gives 

RoI2Cl(	

tanh p\	 2 J_(tanh	 - tanh PV'	 (60) 
A-I	 -	 p	 iJ 

We assumed above that V' is sufficiently large; also, we may 
assign to the hyperbolic tangents the value unity (the presence of a 
complex argument is here not of importance). 

One then obtains 

	

____	
C2 1 p-ic) 

	

RoI2fCi	
- i/pV) + 

jU)//W*	 p	
( 61) r=

A-I 

VI. RESPONSE TO A FLUCTUATION OF TIlE CURRENT 

If one assumes v = 0 in equations (51i.) and (55), one may trans-
form equation (61), suppressing the terms containing l/ch 

2iR0 I2/A f(i - 1 2/A(1 - B))(l - l/p) - B1 2/A u*(p_-_l


	

rI = (1 - 12/A)2 L	 Ep2	
(62)
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This formula gives the alternating electromotive force produced 
at the boundaries of the hot wire by the modulation current i in 
addition to the normal electromotive force Ri. Although this formula 
seems to be complicated, it can be adapted to the needs of practice. 
If the frequency w/2t tends toward infinity, equation (62) becomes 

2iR0I2/A	 (1 - 12/A(l - B) - I2/AB/V) 	 (63) rI =
(1 - 12/A)2 

If one takes into account that equation (35) gives R, that equation #6) 
gives M, and that equation (51) gives w*, one finds 

	

rI = - j iCRI2	 with	 C =	 (61i.) (65)

itmc 

The constant C • corresponds to that of our former publications, 
and equation (61-) shows that the electromotive force rI taken at high 
frequency permits to measure C without being impeded by either con-
duction or nonlinearity. The method described in reference Ii- is there-
fore indicated rather than the one consisting of measuring the phase 
displacements, with w being of the order of w*. 

One may immediately verify this point by assuming w in the equa-
tion (ti9) as very large, thus making the effect of the terms of conduction 
and of nonlinearity negligible. 

When w tends toward zero, the electromotive force becomes 

2iRoI2/A	
11 -	 M - _(l - I2/A(1 -	 (66)
rI =

(1 - 12/A)2 E I	 A	 2 

Thus the complex function rI according to equaticn (62) will change 
from equation (61i-) into equation (66) when w varies from 0 to a large 
value. The complex trace of this function gives practically a semicircle 
which permits to put approximately 

rI(w = 0) rI =

	

	 (67)

1 + jU)/W**



- i2/(i - . B) 

-	 1 - i2/	 J
W-X-3f = (68) 

16	 NACA TM l34-6 

where u** denotes the effective characteristic frequency. In fig-
ure Ii-, we plotted the semicircle and indicated a few values of w/w**. 
From equation (62), and in the case of the preceding example, we calcu-
lated the electromotive forces rI for a few values of w/Ew*. One 
can see that the two functions blend, at low frequencies, if one assumes 

= 1.1Th* = 1.7*. At high frequency, equations (6 1i-) and (67) will 
be equal which permits calculation of a satisfactory value of w	 when 
the effect of thermal inertia is important. One obtains 

In the case treated one finds w* = 1. 23Eui *, that is, CD = l.9^D*: 
the effective characteristic frequency is almost twice the expected 
value; therefore, the approximation (67) gives a correct plot of the 
function, but the phases according to equation (68) will be only within 
a 10-percent accuracy. 

The denominator of equation (68) depends chiefly on , and it 
increases the characteristic frequency. Instead of compensating each 
other as in the static case, the two effects reduce the thermal inertia. 

Intuitively, one may say that the conduction shortens the hot part 
of the wire and thus reduces the heat required for modifying the central 
temperature; the nonlinearity depends on •the presence of hot air around 
the wire, and the thermal inertia of the air is negligible which improves 
the spherical response of the anemometer. 

When the wire is dusty, the quantity of inmiobile air is greater, 
and the experience shows that the term a in equation (3) is increased 
while b remains unchanged. One must therefore expect a dynamic action 
of the dust of the wire to the extent that E is modified. The dynamic 
effect may be more important than the static effect 

The wire in the quoted example demonstrates that, with a term 
R12/R - R0 constant at 10 percent, the characteristic frequency may be 
almost twice the normally foreseen value.
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VII. RESPONSE TO A FLUCTUATION OF TI AIR STREAM 

Assuming i = 0 in the formulas (51i.) and (55), and maintaining v, 
one may transform equation (61) into 

	

lv p	 R013/A	 B rI = -	
+	 (1 - 12/A) 2 1 - 1/ch

(69) 

{l_1/\I	 (&p-1 1 1>. 

Ep2	 JO) P 

With w tending toward zero, one has

	

1i	 11 
1 v _____ R013/A	 B	 -	 L rI = - - _____ ___________ ____________ _________ 
2Vl+P(1I2/A)21l/ch[L E J 

If w tends toward infinity, one has 

1	 p	 R013/A	 B	 J	 (ja) rI = - - _____ ___________ ____________ _______ 
2 Vi + (i - 1 2/A) 2 1- l/ch	 Ljw/w*J 

and one may approximately replace equation (69) by the semicircle 

rI = rI(w = 0)	
(72) 

1 + 

with

(&E = Ej* 1 -	 (73) 
1 - 1/\f 

which, in the case of the example treated above, gives w** = 1.81u*.
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Thus there is, on principle, no equality between the dynaniic reac-
tion to a variation i and to a variation v. 

This difficulty arises due to the terru 	 namely to the conduction 
the nonlinearity tends toward diminishing its importance (factor 

We hope to publish some empirical results, and the calculation of 
the differences indicated by different authors, in the near future. 

Thanslated by Mary L. Mahier 
National Advisory Committee 
for Aeronautics
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Figure 4. - Study of the tension rI. The semicircle corresponds to 
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