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NATIONAL ADVISORY COMMITTEE FOR AFRONAUTICS

TECHNICAL MEMORANDUM 1345

TRANSIATTONAL MOTION OF BODIES UNDER THE FREE SURFACE OF A
HEAVY FLUID OF FINITE DEPTH*

By M. D. Haskind

In reference 1, entitled "The Two~Dimensional Problem of the
Vibration of Bodies under the Surface of a Heavy Fluid of Finite Depth,"
the problem was to determine the wave motion of a heavy fluid excited
by the periodic vibrations of a body of arbitrary shape situated under
the free surface of the fluid of finite depth; the method of N. E. Kochin
(reference 2) was used.

In the present paper, the two-dimensional problem of the wave
motion produced in a heavy fluid of finite depth by the horizontal
rectilinear and uniform motion of a solid body of arbitrary shape
immersed under the surface of the fluid is considered by the same
method. :

1. Statement of the Problem

The problem of the translatory motion of a solid body under the
free surface of a heavy incompressible fluid of finite depth will be
considered. The case in which the motion of the body occurs with con-
stant horizontal velocity c¢ will be studied. The motion of the fluid
will be defined with reference to a moving system of coordinates Oxy
fixed to the body, the x-axis coinciding with the undisturbed level of
the fluid and directed along the direction of motion of the body, and
the y-~axis directed vertically upward.

it will be assumed that the motion of the fluid is potential and
steady relative to the body. From the integral of Lagrange for the
pressure within the fluid, '

1
P - DPg = pC %% -P3 vé - pgy (1.1)

*"0 postupatelnom dvizhenii tel pod svobodnoi poverkhnostiyu
tyazheloi zhidkosti konechnoi glubiny, Prikladnaya Matematika i
Mekhanika," vol. IX, Sept. 1945, pp. 67-78.
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where pgy is the'atmosphericvpressure, p the density of the fluid,

g the acceleration of gravity; o(x,y) +the potential of the absolute
motion of the fluid, and v = rgrad (plthe magnitude of the absolute
velocity of the fluid.

The function @(x,y) is determined from the boundary conditions;
the flow condition on the wetted contour of the body,

%% = ¢ cos(n,x) on C (1.2)

where n is the outer normal to the contour C;
on the free boundary p = Pgs and hence

c 0P -1 v2

3% " 3 - gy =C (1.3)

on the bottom of the channel for y = -hg, the following condition
applies

=0 (1.4)

¥

According to the theory of waves of small amplitude, condi-
tion (1.3) may be linearized. For this purpose the boundary condi-
tion (1.3) is referred to the x-axis and the term v2/2 neglected. In
place of condition (1.3),

R _Ey(x) =0 (1.5)

It is easily seen that on the free surface the following relation
holds

cy(x) = @ + const (1.8)

where ¢ 1is the stream function. In fact, when the stream function of

the motion of the fluid relative to the body is denoted by Vg, there
is obtained

Vo=V - ¢y
or

Cy:‘lf""o
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From this relation, equation (1.6) follows, since the boundary of
the fluid in the relative motion is represented by stream lines on which
¥y 1is constant. For the free surface, it may be assumed that Yo = O.

Hence, on the free surface,

cy(x) = ¥
and therefore boundary condition (1.5) assumes the form
%‘:-w;:O for y=0 (1‘7)
where
g
Y = ~== 108
£ (1.9)

From condition (1.5) 1t is seen that the equation of the free sur-
face will be

c [ov
R (1.9)

2. Fundamental Formulas of the Problem

The problem may be mathematically formulated as follows. It is
required to determine the characteristic function w(z) =@ + iy

(z = x + iy; 1 = AJ-1), satisfying the conditions:

1. For 0>y>-hy in the region occupied by the fluid, the deriv-

ative dw/dz is finite and at infinity for x < +«, the derivative
dw/dz vanishes.

2. On the contour C, the smooth flow condition applies

%f—l = ¢ cos(n,x)

3. On the free surface for y = O, the linearized condition holds
with regard to the constancy of the pressure

Re(aw/dz + ivw) = 0
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4. On the bottom of the channel for y = -hj,, the following condi-
tion holds

Im dw/dz = O

In the region occupied by the fluid, the point =z is taken and
two contours C; and C, are drawn, of which C, contains both the

-point z and the contour C, while the C; contains the contour C,

but not the point =z (fig. 1). By the formula of Cauchy for a single-
valued function dw/dz = ¥(z),

W) egm [ NP -mm [ R (2-2)
C1 Ce

where the bar over a letter indicates, as usual, the transition to the
complex conjugate value. The following notation is introduced

vy (z) = E%i ﬂzg—)_——%g Vp(z) = - —2—}(—1- | lz(‘;)?%ﬁ (2.2)
C1 Cen

Tt is evident that V1(z) is a holomorphic function in the entire
plane of the complex variable outside the contour C1is having at infin-

ity the order =z-l and capable of being continued analytically in the
entire part of the complex variable plane which lies outside the con-
tour C, while Vp(z) is a holomorphic function within the contour Ce,

by the extension of which an analytical continuation of this function
may be obtained over the entire strip O0>y> -hj.

The function Vp(z) may be represented in another form. For this
it is possible to find a function w(z), which in the strip O0>y> -hg

has a single pole of the first order £ = & + in with residue A/2ni
and which satisfies conditions 1, 3, and 4.

In fact, for a vortex of strength I, located at the complex point
£ = £ + in, an expression for the complex velocity was obtained by
Tikhonov (reference 3)
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T T
or(z) =23z ) " ZM(z - € 7 AEg)

(v+1) exp(- Mag) sh A(n + hy) cos A(z - &+ ihy) .

v gh Xho - N ch Ahy

a -

A -

. sh hy(n + hg)
Y vhg - chZ Aghg

where A 1is the real and positive root of the equation

sin o(z - &+ ihp) (2.3)

v sh Ahg = Ach \h (2.4)

For c2< Afgho, in all cases where the function to be integrated

has a singularity, the principal value in the sense of Cauchy is taken
under the integral. '

For 92>'A[gh0, equation (2.4) has only imaginary roots and the

‘fourth term of formula (2.3), which determines the presence of free
waves, is absent.

For a source of strength Q located at the complex point
£ = & + in, the expression of the complex velocity may be obtained in
the same manner as in the case of a vortex. Without the computations,
the final result is

. ~ Q Q
wg(z) = Zn(z - €) © 2n(z - T + 2ihg) ¥

B\J/r‘(\»+-X) exp(- \no) ch A(n + hy) sin A(z - g + ihg) N
0 )

7t v sh Xho - A ch Ahgy

ch A(n + hg)
Qv
vhy - ch? Xoho

By the use of expressions (2.3) and (2.5), to obtain the function
o(z) may be obtained without difficulty. For ‘this purpose, since
A =T + 1Q, the following expression is obtained after simple
transformations: A

cos Ay(z - E + ihg) (2.5)
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A A
w(z) = 2ni(z - §) ~ 2ni(z - § + 2ikg)
L7 X sin Mz - T + 21hy) - A sin A(z - ¢)
53 (v+2) exp(- \ng) Vel Aoy - Ach Ah wo
; _
_2!{ A cos A\y(z - T + 2ihy) - A cos Moz - £) (2.6)

vhy - ch® \ghy

Here, as in the preceding formulas, the fourth term, which deter-
mines the presence of free waves, is present only if cl< /\/gho.

When A = v({) d¢ is substituted in the previous formuls and
integration is carried out over the contour Cj,

s sin Mz - T + 2ihg)
v(z) = Vy(z) *f‘f ”(“{;—‘-—l—r *f“ﬂ) exp(- o) S Rms— Xer ng O -
ni L ¢ + 2ihg A h Aho b Mg

cos Ayfz - C +2ihg) | _ _ ) in Az - t)
™ vhg - én? Aobo }df; * 2xi oy v(g) b (v ) e}@(- Abo) v shs;-]IJlo -Z)\ ch hg A -

TV M}dg (2.7)

Vho - Chz Xoho
ac . QD

If both points 2z and { are situsted in the strip 0>y> -hg,
the following equation holds

L =-if1xp iMz - € + 2ihg)| da (2.8)
z-§+21ho A [ ]

With this equation taken in account, it is found from equation (2.7)

that the function V2(z) can be represented in the form



|
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Vo(z) = - -2—3'5\-/‘ v(z){f [— iexp [ix(z -T+ Ziho)j! +
c1 0

(v +1) exp(~ Ang) sin Mz - € + Ziho):‘dk o cos Ag(z - € + 2]‘.}10)}(1z .

\)thho—)\chxho VhO—Chz)‘OhO

—lr ;(C){/‘(v + 1) exp(- ’*ho) sin Az - &) & - Mi:_c_‘_)_ i
21{1\—/0: Jo v sh Ahg - N\ ch ?\ho Vi - chz b

0

(2.9)
The conjugate complex functions are introduced for real A
B(A) = | () exp - antat,  E(A) = | v(f) exp ixfdl
Cy - Cq , (2.10)

By an interchange in equation (2.9) of the order of integration,
and by simple transformations, there is readily cbtained

Va(z) =—;‘;{[[ﬁ(— ) e@[ik(z + Ziho)] +

Z(SVS; ;;Oeicpi_czhgf)lo) (ﬁ(- 2) exp [ix(z + Ziho)] - T exp[— ir(z + Ziho)] -

H(\) exp idz + H(- \) exp(- nz)) )

aiv

2o - o? Ighg) (ﬁ(- Ao) exp irg(z + 2ihg) + H(ag) exp [- Molz + Ziho)] -

H(\q) exp ixgz - H(- ny) exp(- ixo-a))} (2.11)

It is of interest to find the character of the waves that remain
behind the moving body. For this purpose the asymptotic expression of
the complex velocity is first obtained for x-+- « 1in the case of a
vortex and source. In reference 3, the asymptotic expression of the
complex velocity in the case of a vortex is of the form
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shxg(n + bo)
Vho - Chz )\Oho

(r), ,  w =~ 2DV sin ag(z - & + ing)  (2.12)

In a similar manner, the asymptotic expression of the complex
velocity is obtained in the case of a source. Without the computations,
the final result is

ch Ag(n + hg) ]
(wQ)x~> .= - 2Qv Tho - ob% noho coshg(z - £ + ihg)  (2.13)

For the function o(z), having a polarity with residue A/2ni, the
following asymptotic expression is obtained:

A cos Xo(z - €+ Ziho) - A cos )\o(z - ¢)

5 (2.14)
vhy - ch koho

((D)x»..n = - 1v

Setting A = v(¢) df and integrating over the contour C; yields
the asymptotic expression of the function v(z) = dw/dz:

dw) iv [—- . .
= = - H(- A o) exp p(z + 2ihy) +
(dz X+ —oo0 2(vhg - ch? oho) 0 0 0

F(ng) exp[ - Dolz + 2ing]] - HOG) exp Doz - E(- No) exp(- ixoz)] |
‘ (2.15)

Finally, from the formula

c dw
x = — Re honhidy

it is readily found that for x--e sinusoldal waves of length er/ko

are formed behind the amplitude of which, after some simple transforma-
tions, may be represented in the form

ch )‘Oho
- c(vho - ch® Aobo

a ] |'ﬁ(xo) exp \ghg - H(- Ag) exp - ’\ohoi

" (2.16)



NACA TM 1345 ' 9

3. Formulas for Determining the Forces

The forces acting on the contour C are now computed. The 1ift
force of the contour is denoted by P, the resistance by R, and the
moment of the forces on the contour about the origin by M. These
forces will be computed by the formulas of Chaplygin-Blasius:

P~ diR = = -%f'\_rzo(z) dZ; M = Re %fz?rzo(Z) dz
C C

2 2 (S.i)

where C, is an arbitrary contour, situated in the region O0>y> -h,
and containing the contour C; and Qb(z) is the complex velocity in

the relative motion obtained by superposing on the absolute flow a
uniform motion of the fluid with velocity ¢ in the direction of the
negative x-axis. Thus,

_V-0(Z) = Vl(Z) + Vz(Z) - C
where the contour Cl is chosen to lie between C ahd CZ'

Formulas (3.1) do not take into account the buoyancy ‘force of
Archimedes, equal to gpS, and it moment, equal to -gpSx,, where S

is the area that bounds the contour C, and x, is the abscissa of the
center of gravity of this area.

The following integral is now computed:

J =\J/r\;O2(Z) dz =;J/fﬁV12(Z) dz +L)/r1(V2(Z) - c)?dz + ZLJ/r\Vl(VZ - c) dz
Jes Ca Cz C2

But the first and second integrals on the right are equal to zero
because the function V;(z) is holomorphic outside the contour Cp

and has at infinity a zero of at least the first order, while the func-
tion Vy(z) is holomorphic within the contour C,. Hence,

J=2\fVlVZ dz—Zcf(Vl+V2}.dz=2fVlV2 dz - 2c v(z) dz

2 2
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The velocity circulation sbout any contour that contains the con~
tour C 1is denoted by I', so that

r= | v(z) dz

therefore

P—m=~prlV2dz+pcr (3.2)
Ca

By the use of expressions (2.2) and (2.11), the follow1ng expression is
obtailned

Vi (z) Vo(z) az —--Z—Ez _“fz > C{\/‘[ﬁ(-k) exp ir(z + 2ihy) +
Co o

H(- 1) exp ir(z + 2ihg) - ﬁ(x)'ex_‘p[- in(z + 2ihy)] )

YV + A
exp(~ Aho) vsh Nhg - X cb Abg
v,q+)\ H(A) exp iz - H(-A) exp(- iAz)
7 o (- Mo) v 8 Abg - Ach Mg

v H(- Ag) exp hg(z + 2ihy) + H(xo) exp [ - Dolz + Ziho)]

2 . vho - Ch )xoho
iy H()‘O) exp iipz + H(— )\o)- exp (- iloz) at az
2 vhy - ch? Aghg

Since the point ¢, which belongs to the contour C;, lies within
the contour -Cp, with an interchange in the order of integration and

by the following formula,

- .
1 f etilz _ _tiag
2ni z - ¢ :

Ca

There is obtained
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fvl(z) Vo(z) dz = Eli{f DH(—)\)IZ exp(~ 2i\bg) +
Co 0

H(- %) |2 exp(- 2hhg) - | H(N)|2 exp 2ahy:
VJ?:X exp(~ o) | i Jipsh}sh)‘lgo-  ch Xhg = ho]d)‘“

xv B(= 2o} |2 exp(- 2aghy) + | B(Ap) |2 exp 2hghg - 2H(Ag) E(- A )

2 . Vho - Ch2 Xoho
3.3)
Hence, formula (2.3) assumes the form
P - iR = peT - £= [ ||B(-1)]? exp(~ 2ag) +
0
[E(- %)% exp(- 2Ang) - |EQ) |2 exp tho]
(v + k).exp(- Ahg) Z(v sb Abg - X ch Ahg) an +

ivp.lH(")to)lz exp(- 2phg) + lE(Xo)lz exp 2hghg - 2H(Ng) EH(- 2g)
4 vhy - ch? Aghg ' (3.4)

Separating the real and imaginary parts and adding to P the
Archimedes force, not taken into account by the Chaplygin-~Blasius for-

mula, results in

P = pcl - %f[lﬂ(-x)lz.exp(- 2ang) + (v + 1) exp(- Ahg) x
0]

[E(- 2)|2 exp(~ 2ahg) -|E(N) |2 exp 2xh Im{ () H(- Ag)
2{v sn Abg - X ch Ahg) ]d" Tve z(gho (_) ohZ *oflo% *+ &5 (3.5)
oy [EOO)? e oty + [E(-1o) ¥ exp(- Agho) - 2 FelE@() B-Rolp

= -

4 vhg - ch? Aghg
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Formuls (3.6) may be given another form, namely
2
R - oV I_H-()\o) €xp )LOhO -~ H(- )‘0) exp(- koho)'
4 ch2 )\Oho - Vhg

It can be readily shown that the total resistance of the underwater
wing consists only of the wave resistance. In fact, by the following
well-known formula for computing the wave resistance in the case of a
fluid of finite depth,

(3.7)

2\nh,
- 3 2 - 00
R =7 pga (1 g \) (3.8)

I

.and with the value of the amplitude a from formula (2.16), for-
mula (3.7) is obtained after some transformations.

v The moment of the acting forces on the contour C 1s now com-
puted. When the moment of the Archimedes force is takén into account,

M = - gpSxc + Re %f z[Vl(Z) + Va(z) - c|? az (3.9)
. oy

This expression is computed in an entirely similar manner to the
computation of the expression P - iR.

For very large absolute values of z the following expansion can
be employed :

V(=) = ziifvégz 2§ = ziizf?’(m L TR
c C1

and, hence,

2
L//W Z'Vlz(z) dz = %%{, Rekj/r‘z Vlz(z) dz = 0
c Co .

2

Further,
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L//\ z(Vz - c)2 dz = 0
/Co

and therefore,

M = - gpSx, + Rep z V1 (Vy - c) dz
Cz

or, since the function Vso(z) is holomorphic within the contour Ca

M= - goSx, - pc Re\J/f\iG(z) dz + p Rek//r\z V1(z) Vo(z) dz
C2 Ca (3.10)

It is noted that

BN =3 - - 1f gv(t) exp(- 1) a8
Cz

The integrals in formula (3.10) are computed in the same manner as in
the expression (3.3), and as a result there is obtained the formula

M= - goSx, - pc Re [1H' +p Re{ f EI'( 2) H(~- %) exp(- 2:ghg) +

é(évsz :ioeicpi_;hgio) (H'(- 2) H(- X) exp(- 2ahg) + H'(A) E(A) exp 2\ng -

H%-X)HQ)—IK-X)H%K»]dX-

v
4(vhg - ch® Agho)

(H'(- 2o) (= Ag) exp(- 2aghg) - Hf(Xg) E(hg) exp 2Aghg -

H'(- ng) H(Ag) + H(- Ag) H'(XO))} (3.11)
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Formulas (3.5), (3.7), and (3.11) in the limiting case for hg=+®
agree with the formulas obtained by Kochin in reference 2.

The function H(A) in formulas (3.5), (3.7), and (3.11) does not
depend on the contour C;, and for example, the contour C or some

other contour which contains the contour C may be taken for the con-
tour of integration. Moreover, the value of the function H(A) does
not change if, instead of the complex velocity v(z) of the absolute
motion, the complex velocity of the relative motion vo(z) is taken,

because these two functions differ by a constant c. The properties
of the function H(A) will be used in the following section.

4. Examples

~ In the preceding sections expressions were found in terms of the
function H(A) of a number of important magnitudes, namely, the ampli-
tude of the waves formed, the wave resistance, the 1ift force, and the
moment of the forces acting on the contour. Thus, the function

H(\) UP;(C) exp(- 1A§) 4t ifdw exp(- Ing) (4.1)
C C

plays a fundamental part for the problem under consideration. In order
to compute this function, it is necessary to know the expression for
the complex velocity, i.e., the solution of the hydrodynamic problem.
In case the relative depth of the submerged contour C 1is sufficiently
large, however, a good approximation is obtained if, in place of the
function +v(z), there is substituted in formulas (4.1) the expression

~ of the complex velocity which corresponds to the motion of the con-
‘tour C in an infinite fluid.

Several examples of such an spproximate solution of the problem
will be considered

1. The motion of a circular cylinder. - The circular cylinder of
radius b, situated at the depth h under the free surface of the
fluid, is assumed to move with constant horizontal forward velocity e,
since the circulation about the contour of the cylinder has a given '
value T. 1In this case, the characteristic function for the infinite
fluid is known: ‘

cb? T .
(z) = - 11 * 3 In(z + ih)
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Hence,
2
- cb T :
viz) = + - 4.2
(2) (z + hi)2 2ni(z + ih) (¢.2)
By formula (4.1) the function H(A) is now conmstructed:
2
b r
H(A) = c + o exp - iAz dz
() (z + p1)2  em(z +n1) | P
Since the contour C contains one singular point 2z = -ih, there
1s obtained by the theorem on residues
H(A) = (T + 2ncb®\) exp - Ah (¢.3)

With the use of formula (3.7), the expression for the wave resist-
ance of the cylinder is obtained ’

[1" sh Ag(hg - h) + 2nelgb? chAg(hg - h)]z
R=ev ch? Aghg - vhg

and by the use of formula (3.5) the expression for the 1lift force of
the cylinder is obtained :

(4.4)

pcbzI‘ npc2b4

e i
A e ATy TR

(T2 + 2x%cZ4N2Y sh 2A(hy - h) + 4ncb2TA ch 2M(h, - b)
if (v + ) exp(~ o) 9 o M v es  (45)
o

. an vsh)\ho-x chXhO

The integral component of this formula may be computed by the
method of mechanical quadratures. In the limiting cases v =0 and
v = », this component can be very accurately computed. Moreover, if
this integral component is considered as a function of the parameter
a = 1/(vhg) = ¢2/(ghg), it can be shown that for « = 1 this component

suffers a discontinuity. In the particular case when the radius b of
the cylinder is taken equal to zero, i.e., when the motion of a vortex
under a free surface is considered, formulas (4.4) and (4.5) lead to
the expressions established by Tikhonov. It is noted further that for-
mulas (4.4) and (4.5) have been derived on the assumption that c2< ghy-

For c2>'gho, no free waves are formed behind the cylinder and the wave
resistance R 1s equal to zero. '
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For the moment of the forces exerted by the fluid on the cylinder,
the following expression is obtained by formula (3.11):

H'(- Ag) H(- Ag) exp(- 2Aghg) - EF (M) H(hg) exp 2hghg .

= . by :
T Vho - ch? Agh
ov B'(= 2) B(hg) - E(- 2) B (o)
4 vhy - chz‘koho

But from equation (4.3), it is evident that
H'(A) = - hE()) + 2ncb? exp(- Ah)
Ht(- A\) = hH(~ A\) - 2ncb? exp Ah
Hence, after simple transformations,

T sh? Ag(hg - h) + mcbhg sh 2hg(hg - h)
Chz koho - Vho

M = hR - 2rpch?v (4.8)

The point of intersection with the y-axis of the resultant force
on the body is determined by the formula

2
% = -h+ &neb (4.7)
I + 2ncb?\g cth Ag(hg - h)

It is evident that for R>0 this resultant never passes through
the center of the cylinder.

2. Motion of an elliptic cylinder. - An ellipse, having a center
at the depth h and having axes 2o and 2B directed parallel to
the axes of coordinates x and ¥y, is allowed to move with a constant
velocity c¢ in the direction of the x-axis. The circulation I' 1is,
for simplicity, taken equal to zero. In this case, the flow of an
infinite fluid about the contour C 1is determined with the aid of an
auxiliary variable and the formula

2
z==—ih+-%‘/\joo2-[32 (u+l), w=—~§/\/oc,2_—[32(u+—1-1'1—-)

u
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where T = ’\/(a + B)/(ax - B) and Jul = r is the equation of the cir-
cle in the u-plane which corresponds to the contour of the ellipse C.
The exterior of this circle corresponds to the exterior of the ellipse.
The following function is set up: -

H(A) =fe@(- 1)\2) dw =
Je

VS ) T S W B N

_ u
u =r

When the substitution u = iv is made, there is obtained

i (2= 2
\H(k)=-3'2—c-: a? - g2 exp(~ \h) f(l+§§)e@%’Vm2—Bz (V-TJ;) dv

|vi=r
But by the theory of Bessel functions it is known that
e f———xp( -3) - m
vl =r
hence,
H(A) = ne AfaZ - 2 exp(- xh){J_l(xm + erl(wm)}
From the formula
J_l(z) = - J]_(Z)

and the value of r, the following expression is obtained

H(A) = 2ncsl\/§ as g exp(- Ah) J; (MNGZ - g2) (4.8)

The computation is restricted to the wave resistance. By
formula (3.7),
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2
ch® A - h
R = 4nBpgp2 &+ B olto - B) le(kof\faz - p2) (4.9)

From this formula, it follows that for certain Ay and, therefore,
for a certain velocity c <ﬂdgho, the wave resistance is equal to zero;

i.e., the amplitude of the waves formed behind the moving body becomes
zero. This will be the case if the following relation is satisfied:

2o AJo? - B2 = 5y (k=1,2, . . .)

where s; is the positive root of the Bessel function Ji(s) The
first root of this function is

§] = 3.832

Since the parameter V = g/c? is connected with Ay Dby the
equation :

c2

the first velocity at which the wave resistance becomes zero is deter-
mined by the formula

3.832
= 0.51 »\/g/\,lcx,z - B2 th ’\[_2._1_132. (4.10)
- B

Moreover,

hence,

¢ < 0.51 AfaAla? - g2 (4.11)

In a similar manner a number of other examples may be considered.
Moreover, as in reference 2, it is possible in this case to set up a
functional equation for determining the function H(\) and the values
of the circulation T from the condition of the finite velocity at the
sharp edge. These equations may be obtained by the same method. Their
final form will be somewhat more compllcated as compared with the case
of the infinite fluid.
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