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1A
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1343

THE EXCITATION OF UNSTABLE PERTURBATIONS
IN A LAMINAR FRICTION LAYER*

By J. Pretsch

With the aid of the method of small oscillations which was used
successfully in the investigation of the stability of laminar velocity
distributions in the presence of two-dimensional perturbations, the
excitation of the unstable perturbations for the Hartree velocity
distributions occurring in plane boundary-layer flow for decreasing and
increasing pressure is calculated as a supplement to a former report.
The results of this investigation are to make a contribution toward
calculation of the transition point on cylindrical bodies.
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I. STATEMENT OF THE PROBLEM

If one wants to make a theoretical calculation of the profile drag
of bodies in a flow for a certain direction of air flow, one must know -
in addition to the pressure distribution - the position of the transition
zone where the laminar boundary layer becomes turbulent. The separation
point of the laminar layer forms a rearward limit for the transition
point on a section of this body surrounded by the flow. It lies in the
region of the pressure increase at the point where the velocity distri-
bution in the boundary layer has the wall shearing stress zero. This
separation point is a fixed point of the profile in the flow, the
position of which does not shift due to a variation of the Reynolds
Ugpt
v

number Re = (U, = velocity of air flow, t = chord of the body).

One may calculate it according to the well-known approximation method

of Pohlhausen which, for prescribed pressure distribution, provides for
every profile point a velocity distribution of the boundary layer with

a certain form parameter A (A = -12 separation). As forward limit for
the transition point, one may take the stability limit of the laminar
layer with respect to small two-dimensional perturbations which were
calculated in references 2 and 3 according to the method developed by

W. Tollmien (ref. 1). According to this method, there exists for every
form of velocity distribution in the boundary layer a so-called critical

%
Reynolds number Re*.,. = (?38 > (Ug = local potential velocity,
v
cr

% = local displacement thickness) below which all perturbations are

damped; its value increases as the form of the velocity profile becomes
%

fuller (with increasing \). Where the Reynolds number Re* = U??

formed with the actual potential velocity U; and the actual displace-

ment thickness ©% exceeds this critical Reynolds number, there begins
the instability of the boundary layer. In contrast to the laminar
separation point, this stability limit is therefore not fixed on the
profile for a normal pressure distribution but travels forward toward
the stagnation point on bodies in flows with increasing Reynolds

number Re (see fig. 1).

The actual transition point which lies between these two limits -~
stability 1limit and separation point - is known to likewise shift forward
with increasing Reynolds number Re. That it lies only a certain
distance behind the stability limit (as shown by a comparison of experi-
mental transition points and theoretical stability limits) is plausible,
because the excitation of the unstable perturbations starts only at this
limit point of the stability and must obviously have attained a certain
degree before the instability further downstream leads to the breakdown
of the laminar flow configuration.
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For this reason it seemed necessary to calculate, or at least to
estimate, for the velocity distributions in the laminar boundary layer
in the entire instability range of the latter, the excitation of the
unstable perturbations as well, with the objective of making an improved
calculation of the transition point possible.

For the velocity distribution on the flat plate in longitudinal
flow (Blasius profile), H. Schlichting (ref. 4) has already determined
the excitation quantity as a function of perturbation frequency and
Reynolds number in a part of the instability range; and for the velocity
distributions in the region of pressure increase, W. Tollmien (ref. 5)
has explained the behavior of the excitation (in first asymptotic
approximation for very large Reynolds numbers) in a very general manner,
neglecting the effects of internal friction.

II. THE GENERAL DIFFERENTIAL EQUATION

DESCRIBING THE PERTURBATION

Since the bases for the method of stability investigation have been
discussed in detail in an earlier report (ref. 3), we can refer to the
results attained there.

Let U(x,y) and V(x,y) be the tangential and normal components
of a plane steady boundary-layer flow; let x denote the length of the
arc and y the normal to the profile contour. The stream function of
the two-dimensional perturbation motion which we superpose on this
basic flow is assumed to be

ia(x-ct)

1]

Bitei(ax-Brt)

W(X’Y:t) = CP(X).V)e Cp(ny)e

C = cp + icy By = cia By = Cra

here t denotes the time, o +the spatial circular frequency of the
perturbation, the real part ¢, of c 1its phase velocity, and the

imaginary part ci a measure for 1ts excitation (c{> 0) or damping

(Ci < 0); besides Bi 1is the logarithmic increment of the excitation
of the perturbation amplitude, and B, the circular frequency in time
of the perturbation.
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If we substitute the motion originating by superposition of the -
boundary-layer flow U, V, and the perturbation motion

T = %g - q)|eion(x-ct) ®
> (2)
v =- o __ ia® + R\ ia(x-ct)
ox ox

into Navier-Stokes' differential equations, we obtain - as was proved
in reference 3 in detail - the differential equation describing the
perturbation in the form

(U - c)(cp" - o@cp) R —— (CPIV - 202" + on“cp)

aRe*
o o (3)
* = &
Re v .
Here the prime (') denotes differentiation with respect to the wall -

distance y; the velocities are referred to the local velocity Uag at

the boundary-layer limit, and the wall distance as well as the wave

length A = %; are referred to the local displacement thickness &%,

In order to avoid misunderstandings it should again be emphasized
that - in spite of the assumption that U, V, and ¢ be functions of
the arc length x - only the form of the local velocity distribution is
decisive for the stability investigation as one recognizes from
equation (3). The immediate effect of the pressure gradient, however,
is negligibly small as is also the influence of the x-dependence of the
perturbation amplitude .

The boundary conditions of the differential equation (3) result
from the condition that the perturbation velocities U, ¥ vanish at
the wall and that the friction effect at the outer boundary-layer limit
(U'* = 0) has disappeared. With their aid, the calculation of the
excitation of the unstable perturbations may be reduced to an eigenvalue
problem, the solution of which is discussed in section V.

We deal first with establishing the particular solutions of the
differential equation (3), limiting ourselves to small values of the
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excitation quantity c4; thus, the general solution of the differential
equation describing the perturbation (3) may be represented in the form

There Py denotes the particular solutions for c¢i = O which are

obtained in the calculation of the limiting curve of the instability
range (neutral curve) in the a, Re*-plane (ref. 3), and the wy
signifies additional functions for c¢; > O.

We turn first to calculating the integrals @l*, @2* and the
additional functions w,, wo.

ITI. THE SOLUTIONS o.*, 9. *¥ OF THE DIFFERENTIAL
1> 72

EQUATION DESCRIBING THE FRICTIONLESS

PERTURBATION FOR FINITE EXCITATION

If aRe* is assumed to be very large, the differential equation (3)
is simplified to the so-called frictionless-perturbation equation

(U-c)(p'" -a2p) -U"'p =0 (5)

This differential equation has a pole of the first order at the location
U==c = cp + icy to which we coordinate the point yc* of the complex

y-plane. 1In the neighborhood of this singularity, a fundamental system
may be easily indicated by series development. In order to establish
the connection with the case of the purely real ¢ treated before

(see ref. 3), we first give the relation between the complex Yc* and

the wall distance y. of the "critical"” layer U = cp.

From

U(ye) = Cr (6)
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and
U(yc®) = er + deg (7)
there follows
U(yc*) - U(ye) = icq = (yc* - yC)UO' + ... (8)
and, with limitation to the terms linear in cj, therefore

y*zyc+'_ (9)

We shall now indicate the construction of the solutions ml*, me*

of equation (5) for those special velocity distributions U(y) by which
ve shall approximate the laminar boundary profiles of Hartree (ref. 6)
for the calculation of the excitation of the unstable perturbations

in the same manner as we did before in reference 3 for the calcula-
tion of their critical Reynclds numbers.

(a) Binomial Velocity Distribution
(Pressure Decrease)
In the region of the pressure decrease, we used the approximation
function
U=1-(@a-y)" n=2,3,4 ... (10)
where a denotes the coordinate of the point of Jjunction to the potential
velocity. !

With the new variable

y1 = = (11)
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and with

o = ala - ye) (12)

the perturbation equation (5) for indifferent perturbations then reads
a%p

ERECREAR[

dy;

Using the relations (9) and (11), we now introduce the complex variable

- a1%9) + n(n - 1)(1 - ¥y1)%2p = 0 (13)

y -y Ye - ¥ ic;
* c c c
y1 = =J - l"————i————' (14)
a - Jc & -Jc Up'(a - ye)
With the abbreviation
Cs c
£q =- 1 - 1 (15)

the differential equation describing the frictionless perturbation for
nondisappearing excitation then is transformed into the form

2, *
1 - (1 - yl*>n + nifl{ - (1 - y)n'l} a cp2 059" | +
dy;
a(n - 1) (1 - yl*)n'2 + (n - 2)ifl<l - yl*>n'3 =0  (16)

in which, according to our presupposition, only the terms linear in
f1 have been taken into consideration.
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If one writes equation (16) after multiplication by
yl*2
| 1 - (l - yl*>n + nifl[} - (l - yl*)n‘%]
and after division in the form
2, % o)
a=o *
*D * * i_
¥y =0 Y eyt -0 (17)
the first solution @* 1is given by
= ev = - —
a -y 1 ZV:O 1 a - ye 1 U’ 1
with
. ®
o =) &yyyY (19)
v=0
The series coefficients ev* are obtained from the Bv* according
to the recursion formula
v=1
* * % _ *
viv + 1)ey™ + § By_ue* =0 eg =1 (20)
=0
The solution @2* for all yl* is found to be
1 = P
* * *x__ ¥V * 1 *
=@ [~ dy =1 + y + 2, ——— 1Iny (21)
4% lj:pl*e f};bv 1 R 1
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In this equation, the logarithms are, however, ambiguous; one must cut
the complex y;*-plane in such a manner that

3 * n
- =T —
sT<arey, <z
If we put
0 . o0
by =) by v if1 Y bV (22)
v=2 v=2 v=1
cpe* may be represented for y, = real part of y;* >0 at first in the
form
00 . [+ ]
P =1 +)  byyV 4if; Yy myyV o+
v=2 v=1
2e (1 - if ) N, Y g,y1"
1 1)\a -Yc v=0
if icy
<ln ¥ +-§—l>=@2-—f‘°2 (23)
1l UO
with
2e,0 :
1 v v 191/1
Wy = -1lny +
2 a-nrc;_ A 1

2e; 1n y; ;)gvylv (2k)
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In the transformation of equation (21) into equation (23) the
relation -

e;” = el(l - if‘l) (25)

is put to use; it is easily obtained from the perturbation equation (5)
if U(y) and @1* for ¢y =0, and for ¢4y =0 1in the neighborhood
of the singularity U = c are developed into a Taylor series, since

. U T
ey = (a - y.)0 ‘ (26)
Up
and
U T
N Up'' + icjy 8 ;
2e;” = (a - ¥c) 5 ?'
Uo' + iCi 0
Uo'
[} iC'/U" Uovvv
~ (a - yc) 0 1 1 0
0 Uo'\Uo' Ug"'
Tt
= (a - ¥¢) (1 - ify) (27)
Uo' '

If we express in equation (27) the exact value

UO" UO"‘

UOI UO'I
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- again by the approximate value f,, this step is motivated by the fact
that due to the small value of cj, one deals here only with a correction

Tt
term for the value of O .

Uo'

For Y < 0, @2* is represented by the expression

foe) q)*
P =1 + E bv*yl*v + Eel*___l__<1n|yl*| + i arg yl*>
v a - JYc

= 1_CZL _3 * x
Po Uy W < 5T <argy < 5 (28)
. with
? = 2e®1/1
. Wr = —o— Vp —— = — - 1n +
2 a-y. g;; Y1 a - yel\Y1 'yl'
0
2ey In|yy| ) gy |+
V=0
q) o]
2ine, . gvylv (29)
a - yC v=0

The term with i arg y,* in equation (28) was obtained by
1

H. Schlichting (ref. 4) and W. Tollmien (ref. 5) by a discussion of the
general perturbation equation (3) in the neighborhood of the singularity
U =rc¢p. + icy in a similar manner as the "transition substitution” in

the critical layer for purely real ¢ by taking the friction effect
into consideration.

Since we are, in the calculation of the transition substitution,
concerned with a representation of e; of maximum accuracy, we shall

replace ey by the expression (26) of the Taylor development of the
exact Hartree profile.
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For the linear and the parabolic approximate distribution
n=1, n=2 in equations (10) and (l6i] H. Schlichting (ref. 4)
has already given the solutions @l*, @2*. This calculation was con-

tinued for n =3 and n = 4. The coefficients By*, ey*, ¥,

By hy are compiled numerically in table 1. For the convergence of

the power series, the reflections made in reference 3 are valid.

(b) Sinusoidal Velocity Distribution
(Pressure Increase)

In the region of pressure increase, the Hartree velocity distri-
butions in the boundary layer (see ref. 3) were approximated by
formulation in terms of a sine formula introduced by W. Tollmien

ref. 5). ’

U=Ug+ (1- Us)sin@ L §> (30)

where s denotes the wall distance of the inflection point.

With the new resal variable

yp =g e (31)
and with
ap = %(a - 8)a (32)

the perturbation equation (5) for the indifferent perturbations then
read

d?@
E;in(y2 - y28> + sin yegl a.;_g - QQQCP + sin <y2 - y28>q) =0 (33)
2

*
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where Ypg -Was put equal to

S -
Yoo = T ——° (34)

We now introduce the complex variable

* * :
¥ _ Ny -y T Yo - Ye icq T
T e ———— o = -
2 2 a-s Y2ty Tas 2 Up' 2(a - s) (35)

With the abbreviation

cy i - ci
Uy' 2(a - s) (1 - Ug)cos yoq (36)

fo =

the frictionless differential equation, describing the perturbation
for non-vanishing excitation, then is transformed into

sin (yg* - yes) + sin yoq - ifg{cos <y2* - ygs> - cos yes}

aco*
<d s - cx,22(p* + [sin @2* - y23>-if2 cos <y2* _ yQSE, (p* =0

J2
(37)
If (37) is written like equation (16) in the form
20 % CJ
d N
yo*2 20 gt ) Bi*yott =0 (38)

the solutions cpl* » ®* are determined by analogy with the equations
(18), (23), and (28). One has
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with
00
® = > gvyev (40)
V=0

For y2 > 0, the solution Po is obtained

3 <ar * T
-2 gy < -
( 2 2 73 (81)
If one puts
o0 [+ o] 0
E by ¥y *Y =) byys' + if, Yy hyysV (42)
V= V=2 V=l
wg* for Yo >0 may be represented in the form
ifo \

00 [oe]
* v . v
Pn” =1 + E b,y + if E hy + 2e7/1 + —
¢ vz Ve 9T Ve I\ 7 ST vas cos v2s)

ey ) = ifp
—_ 4+ if § Vifln + —
(2(8. - S) 2 v=0 gva ) < ve y

2

ics

= @2 - _]—'(152 (143)
UO'

with
= 2ne @
_ n vV 1Vv1 1 In yo
(DQ - 2(a S) Z hvy2 oo — + . +

- v=1 2(a - s) \yo sin ypg cos ypg

0]
Eel 1n Yo %;g gvygv (k)
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In transforming (41) into (43), one makes use of the relation

if
er® = eyfl + 2 (45)
sin ypg €Os Yyog
which follows from the two equations
11
e =2:-80"" (46)
n UO'
and
U tre
(a9 0 v
€1” = 1t Tt
U
U~' + ic:
i U
- (a - s).UO" 1. ici/UO" : Up'"'
Eid UO' Uo'\UO' UOII
a - 8) Upn'' if
_ ) %[, : 2 (47)
7 UO' sin yog COS ¥og

cp2* for Yo < 0, is represented by the expression

00
Z % n * . *

i
Up!

1
©
N
]
g
V]
njw

n L arg ye* < g->(u8)



"6 ' NACA TM 1343

with

7 i " 1n
ooty e Inve
2 " 2(a - 8) = a - 8\yo sin ypg cOS Yypg

- y(q)l

00
v .
2e; 1lnly E g2.Y + 2ire - -
1 I zlv=0 Ve 1 2(a - s) sin Ypg COS Yo

g__‘o gvy2V> (49)

For the calculation of the transition substitution, we shall
replace the term ej, as in section III(a), by the accurate value

(equation (46)) of the Taylor development of the exact Hartree profile.

In a comparison of the relations (24) and (4k4) or (27) and (47) or
(29) and (49), it is striking that, in the expressions for e;* and w,

for the sinusoidal boundary-layer profiles in case of pressure increase,
the product sin yp,g cos Ypg @appears in the denominator of several

terms. The sign of this product is negative when the inflection point
of the velocity distribution lies more closely to the wall than the
critical layer CYQS < O); the critical layer thus lies in the part of

the velocity profile showing concave curvature. The sign of the expres-
sions divided by sin Yog CO8B ¥oq then is the same as the sign of the

corresponding terms in the solutions for the velocity distributions in
case of pressure decrease which, as is known, have concave curvature at
every wall distance. If, in contrast, the critical layer is located
between point of inflection and wall <y2s > O), then, in the part of the

velocity profile having convex curvature the signs discussed are reversed.
In that case, when the critical layer shifts to the point of inflection
itself (yes = O), the behavior of el* and oo 1is regular since then

ics if
ep¥ = - 1 0 (50)
2(1 - Ug) 2




3A NACA TM 1343 17

* and -

w = —_— Yo' + ~————1lny
2(¥e = 8) 2(a - 8) I;; Bv¥2 2(a - 8) 2 (Ye > 0)
ﬂq)l
2(yc =s) 2(a - s) E%i: Vy2 v 2(a - s) ln|y2| -

—_1 < 0) (52)
2(a - s) , <y2 )

(51)

The series coefficients BV*, ev*, bv*: gy, hy Tfor the

sinusoidal basic velocity are given numerically in table 2. For the
convergence of the series developments, the explanations of the earlier
report (ref. 3) are again valid.

IV. THE FRICTION SOLUTION ®3* FOR

FINITE EXCITATION

Besides playing a role in the critical layer U = c, the friction
of the fluid is of importance also in the neighborhood of the wall where
it occasions two more solutions Qs*, @h* of the general differential

equation describing the perturbation (3).

If we introduce the variable

*
n* = -~ e (53)

with

| -1/3
e* = | aRe* (?O' + icy %?——> / (54)
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we obtain from equation (3) in the limiting process ¢ — 0 for large
Reynolds numbers the differential equation

. b *
id7p
____21&_ + 0 —227 =0 (55)
an* ! dn*2

The solutions of this differential equation are just as independent of
the form of the velocity distribution U(y) as was the case for the
solutions @3, ¢y for the excitation zero (ref. 1); they read

corresponding to reference 2:

uld n*
@3,)+* =f dT]’t/‘ ﬂ*l/2H1/3(l) »(2) E—(iq*)3/2:| d'q* (56)

1
where H( ),(2) signifies the Hankel function of the first and second
kind, respectively.

Since the Hankel function of the first kind increases for large
wall distance beyond all limits, it cannot be contained in the general
integral (4) so that we there may put Cj = O.

V. STATEMENT AND SOLUTION OF
THE EIGENVALUE PROBLEM

After having found the particular solutions of the differential
equation describing the perturbation (3), we now state the eigenvalue
problem, (which results from the boundary conditions of the perturbation
equation) for investigation of the excitation of the unstable pertur-

bations.

At the wall, the tangential as well as the normal component of the
perturbation velocity disappear; thus one has

Cy 0%y + Co¥ap"y + 03*®3*w =0 (57)

Crfor"y + Co @y + C3¥eg*, =0 (58)
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At the point of juction y = a to the region of constant velocity,

U" is zero and therewith ¢* - a2¢* = 0, that is o* = e, so that
the third boundary condition reads

C1%0 %, + C¥e%, = 0 (59)
with

' *

Qv*a = q)'v*a tap gy Vo= 1, 2, ., (60)

A term 033* does not appear because the particular friction solution

@3* has already been damped at the point of Jjunction.

In order that the three homogeneous equations (57), (58), and (59)
may have a solution different from zero, the determinant must disappear

q)l*w' @2*w" q)3*»1' =0 (61)

The solution of this determinant yields the equation

* * * *
3w P le*a - 91"w%2"a (62)
® * v 7 * vx ¥ _ * 'Q *
3w Py 017g - P1w $27a
or with Schlichting's abbreviations
1 »;* D(ng*)
Bw _ 2000 pnon) - e (63)

é*ﬂo* cp3*w' no*
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»* »* ¥ n_*
1 P %17 - PP s

) yC* q)*w'q’l%a - ¢l*w'®2*a = B {aser,e1) (64)

finally
F* = E*(a,cr,ci) (65)

Therein
no" = - Zi_* (66)

The complex equation (65) is equivalent to two real equations in which
the parameters a, Re*, cp, and ci are contained. If one limits

oneself to the case of indifferent perturbations (ci = 0), one obtains
from them after elimination of ¢, a relation between the Reynolds

number Re* and the wave length %g of the perturbation. That is the

equation of the neutral curve or the curve of constant zero excitation
by which the stable and unstable perturbation states are separated and
the lowest Reynolds number of which is the so-called critical Reynolds
number Re*cr; when this critical Reynolds number is exceeded, the

excitation of the unstable perturbations begins.

These neutral curves were determined in a previous report (ref. 3)
for the velocity profiles for decreasing and for increasing pressure
calculated by Hartree.

In the present investigation, we shall assume the excitation
quantity cy to be different from zero and investigate the curves of
constant excitation enclosed by this neutral curve.

For this purpose, we shall solve the complex equation (65) in a
somewhat simpler manner than Schlichting (ref. 4), by determining not

d cy dcy

the differential quotients — and ———L at the location of the
d a d Re*

neutral curve, but the curves of constant excitation c¢j > O directly

by a method similar to that applied for the neutral curve c¢; = 0

however, without making use of this curve itself. We consider first
the left side of equation (65).
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Since we intend to limit ourselves to small values of excitation,
we develop F¥* 1in the form

F* = F(n0*> = F(“o) + (no* - no) <£;>‘lo*=ﬂo ... (67)

where g as before in reference 1 is defined by the relation

) +1/3 (68)

no = - Ye (G.Re*UO'

According to equations (9), (54), (66), and (68) one now has

. ic icqUp'!’ 1/3
no¥ = - ¥ (1 + =% aRe*Uo'<1 + _1°_>

UO'YC Uo'2

b4

i (]
Ye aRe*UO')l/3 1+ __gl_ 1+ J¢ HQT'
Uo Ye¢ 3 Vo

1+

ic Yo Un'!
if,¢%

, , (69)
Up'Ye 3 U

o
Thus equation (67) becomes

ic Un'!
F(ﬂo*) ~ F(ﬂo) + .i noll + ic 2 L

F*

G(no,cr,ci) (70)
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One sees therefore that the form of velocity distribution which does
not enter into the exact solution F no* according to equations (63)

and (56) does appear explicitly in the development of F(no*) with

respect to cj.

The differential quotient

wag determined by graphic differentiation of the function F(no). The

numerical values of its real and imaginary part are given numerically
in table 3. Since real and imaginary parts nowhere disappear simultane-
ously, the function F(qo*) will be free from singularities in region
around the function F(no) and the development (67) will be thus per-
missible. '

We now consider the right side of equation (65) which is defined
by the relation (64).

Remembering the splitting of the frictionless solutions
@Vﬂ& = 1,2) in the form of equation (4), we first put

ic
* i
°v a - ¢va RS QVa
Uo
with
' ~
lya =Wy + Wy ~
furthermore g (7T1)
* icy
Pv w = Pyw - o Cvw
0 J
* v ' icy '
w T Py - — Byw
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values of the additional functions

®y

For the binomial velocity distribution U =1 - (a - y)? the

Vaa)

o’ w,' are given by the equations
w
[e]
®1a = E:: &y
V=0
S 28]_([)
(Dga = Z hV + la
a8 - Yejv=l a - Ye
1
W' = T 2 Ve,
a - Yc =1
t 1 ® 2el 2Cp
(8 - yc)2 V=T (a - y.)2\ & -¥¢
oo
P1v T gvylw
2elq)lw 1
Wn,, = — - lnlyjyloiw) +
2w a_yCZb.Vlw a_ycylw I Wl w
U |
. Q w
2e, 1n|ylw|wlw +in Wy
UO a - yc
. 15 1
— V-
Dy T T E:: VEyY 1w

& - Yo 571

Vo and their derivatives

8

23

F(72)
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For the sinusoidal velocity distribution
= 1-Us)sin(X =282
U Us+( S) (—82

in contrast, the corresponding formulas read

-]
v
W1g = % g&Voa

_ r v, ™1%Plaf1 1n yoq
Wy = —————-[i hvyga + (- + )+

2(a - 8)jy=1 a- 8 \yng 8in ¥pg cOS ypg

2e; In yanlJ

00
! n v-1l
= v
®1a 2(a < s) V;l EyY2a
) n2 i vol ey ®1a 1
Wy, = = 2 Vhyy, V- o+ - +
28 W(a - 8)2 i3 PvY2a 2(a - 5)2|2(a - s)< Yoa?

1n
N 1 + Q)la‘ —-l— + . y2a +
Yog 81N Ypg CO8 ypg Ypa  B1lD Y¥pg COS Yog

Mg 2(a - s)

+ 1ln yzamla'
Y2a "
- v

Oy = i & Yoy

v=0

£ e, @ 1 1n Iygwl

Woy = [ ) hy Lef L, _ +

2(a - 8) | =1 a-s \y2w sin ypg cos ypq

UO' ’/ - ﬂ@lw
2eq7 1n w + in - W
1 |Y2w| 1w UO'\Q(a - 8)sin ypg cos Yog lw>

00

' bi v-1l
®y = 2(a - 5) Z Ve&yYow

V=0
7\'2 2] N v-ol ,\-Qel ﬂq)lw 1
"= ‘—"—_Z Viyyoy T+ - +
Pow k(a - 8)2 y=1 v 2(a - s8)2|2(a - s)( You?

i 1 r Py 1n ly2w| '
Yoy 8in Yo COS yog You sin Yog €O8 ¥og

T

oy 2(a - s)

U - 1\‘Cpl !
s 2D dffuny| ¢ i 2 v
Yow n aw| 1w Up ' \2(a - 8)sin ypg cos yog

= “)lw'>

-~
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If the critical point shifts to the inflection point of the velocity
distribution (y. = s, yog = O) the equations for wp,, wQa s Wous

woy'  (equation (T4)) are simplified to

Pla
w = y + ————— 1n
2a ZhVQa 28 - 3) y%

-

2(a - 8) |V=2

2 2 P
v ™ v-1 1la !
I = - vh,y ¥ —+ 0 Iny
e e [ e o %
7 E v TP1w 1T-Q1y
w, = —— hy + ——=2_ _1n |y - e TLW
"2V o(g - g) vl ' 2w 2(a - 8) | 2w h(a - s8)2
2 el 1
' bit v-1 q’lw
w, = E Y. + + @ 1n |y -
v W(a - 8)2 | V=1 Wy 2(a - 8)y, 1w | 2%[]
11301y
L(a - g)°
~

We now split Poys wzw', Wory wa' into real and imaginary
parts according to the formulas )

' , (75)

Doy Al + iB2 Wy = M2 + 1N2

then one obtains
-~
c c
* 1 .

Py = Ay EST Ny + 1<Bl - == Ml)

> (76)

J
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Then we put the expression (64) into the form
E*(q,cr,ci) = E(a,cr)|1 + Ci(zl + izgi] (77)

where E, as previously defined in reference 1, is defined by

Powd - P10
1 wlla 1w¥2a (78)

E=-== 1 v
) Yo Doy 915 = Piw P22

First, limiting oneself to.the terms linear in cj one has

s |

* . % i
N S P gav‘(Nl‘Dla * Blﬂla> +

C-

1
—- (AlQla + Mld)la)

i| B+ 0 -
1%¥1a UO

* . % ici
P wP2 a2 ~ P1Poa " Uy" (‘”lwq’Ea ¥ q’1w92a>

> (79)

* Tk Ci
Doy ®1a ~Al1a * U—O'(N2®la ¥ B2Qla> +

. Ci .
i B2¢1a - U—,—(AQQla + Mé”laﬂ
0

* tg ¥ ' icy 1 '
Py ®27a ~ Pry Q28 - " (‘”lw ®og + P1y %a)
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Hence, there results after a short intermediate calculation

1ci

UO'yc

E* ~B|1l - +

4 I(N1®1a + B101a) + i(wlwboa + Prwlla - A1la - M101a)

UO'L A0y - P1yPoa + iB1%14

1
(M2%1a + Bo%a) + i(®1w %2a + Plw fpa - Apfhs - Mpli1a) (80)
Bpbiy - P1y'00g + iBolig

We put for abbreviation
N0y * Bitha =1
W1yPog + Plufos - A101a - M1%1g = m
Npbpg + Bolg = mo
. > (81)
Wy ' Oog + Py fog - Aofia - Ma®15 = np
A0y, - 91004 = K1

' —_—
Axliy - Py P20 = K
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Then there follows from equation (80)

' icy cy | mp + in + in
e Bl - ‘1 + % 1 : 1 _ = : 2
Up've Up'[Ky +1By®1, Kp + 1Baby,
S L S, Ci[lel + B @, moKy + moByl
1
Uo'¥ec  Uo [K12 + B12015° K2 + Bp201,°
L

icy ImKy - mBj®1a noKp - mpBolig

- (82)
Uo' K12 + B12©1a2 Ko® + Bo201 42
If we finally introduce the designations
2 = L mKy + mB1®14  moKp + npBpdig
Up' |K12 + B1201,° K2 + BpP0p,°
nqK; - myB,0 - myBo®
2y = - —= 4 L (0f1 " MPiPis  Tofp - BOs (83)

Uo've Uy [K12 + B12015°  KpP + B %142

the representation (77) is attained.

By means of the equations (70), (77), and (83) we thus have divided
the two functions F* and E* (a,cp,ci) appearing in equation (65) into
- real and imaginary parts and can now graphically solve this equation.

For this purpose, we plot for constant cy for several values Y. the

imaginary part of the function F*

i Cs t
I * =IFT\O + 1 1 ]_+XEU.£_._§I. (81L)
= - 0 0 T~ &
Uo ¥e 3 U Jdno
against its real part
1t
C4 Ye U aF's
R(FY) = BE(“oﬂ " g {1+ 2 )= (85)
Uo ¥e 3 Up' Jdng
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and plot in this polar diagram to the same values ci and Y., the
imaginary part of the function E*(a,cr,ci)

{(E*) = I(E)(1 + cjz1) + cizpR(E) ' (86)
against its real part
R(E¥) = R(E)(1 + cy21) - cizoL(E) (87)

The points of intersection of the functions F* and E* connected one
to the other by the same pairs of values cy, ci Yyield first the values

0 pertaining to the corresponding a-values, and then with (68) the
curve o(Re*) of the constant excitation cj. This plotting and cal-

culation then are repeated for other values cj.

VI. RESULTS OF THE CALCULATION

As immediate result of the rather extensive calculations, the polar
diagrams with the curves E*(a,ci,cr) and F* = F(ny*) for several

Hartree velocity distributions U(y) in the laminar boundary layer are
represented in figures 2 to 21. These boundary-layer profiles belong
to the special class of pressure distributions

Uy = const. xI (88)

and are rigorous solutions of Prandtl's boundary-layer equations which
were obtained with the aid of a Bush apparatus (ref. 6). We use,
according to Hartree, for characterization of these boundary-layer pro-
files the parameter

R (89)

The profiles with m > 0, B > 0O occur in case of decreasing pressure;
the profiles with m< 0, B <O in case of increasing pressure. The

profile B =1 1is the exact Hiemenz profile at the stagnation point of
a cylindrical body, the profile B =0 1s the exact Blasius profile at
the flat plate in longitudinal flow, and the profile B = -0.198 is a

separation profile (wall shearing stress zero).
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is the dimensionless wall distance used by Hartree and the coordinate
a of the point of Jjunction to the potential velocity Uz is connected

with the displacement thickness by the relation

a taZ - p
F o (92)

the quantity kg*(B) may be found plotted graphically in figure 2 of
reference 3.

The wall distance QC of the critical layer indicated in figures 2
to 21 is obtained if in equation (91) y is replaced by yc.

The following basic remarks should be made concerning the graphic
solution of the eigenvalue problem in figures 2 to 21:

Since c; has been presupposed so small that only the variations

of the particular solutions @V* linear in c¢; need to be taken into

1

consideration compared to the solutions ¢, for c; = O, the curves E¥*

i
and F* appear for equal cj-interval as "equidistant" curve families

in the sense of equations (77) and (70). Actually, this "equidistance"
will be lost in case of higher values of cji; however, the calculation

expenditure would increase intolerably even if only, for instance, the
terms quadratic in c3 were to be taken into consideration. In this
sense, the curves

* *

Us Ua

against ad® represented in figures 22 to 26 (from now on we use dimen-
sional quantities) which result from the evaluation of the polar diagrams
also are to be interpreted as approximations (in this and the following
figures, the value B3 which is, according to equation (1), physically

more important and which characterizes the logarithmic increment of the
excited perturbation amplitude has been plotted instead of cj). Here,

~as in Schlichting's report (ref. 4) mentioned before, only the derivative

d [33'_5*
a(ad*)\ Ug
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; % Byd"

at the location = 0, that is, the slope of the T, cwrve at

Ug
the ad*-axis is rigorously correct. H. Schlichting interpolated
between the base points at which he had determined the slope directly,
although with a much higher calculation expenditure, with a curve of the

third degree

_ * *)2 *)3
T, = ag + al(ab )+ 32(G5 e o+ a3(a6 )
where the four constants are fixed by the coordinates of the base

points and the values of the curve slope in them. Thereby,
*

B.
Schlichting obtained for the Blasius profile higher values 1 than
U
a
those occurring in figure 25 whereas the values of the slope are in

. 5%
agreement. Actually, the curves Ei-(a&*) in the center part of the
a
(ad*)-region enclosed in each case will run somewhat higher or lower
than indicated by figures 22 to 26. At any rate, however, they may be
interpreted as a first approximation in the usual sense.

48"

These curves 5 over ad® represent sections through the

a
"excitation mountain range" enclosed by the neutral curve as base curve,
along the lines yc = Const. or c¢, = Const. By interpolation one

obtains from them the maps of excitation represented in figures 27 to 32,

. &%

in which the lines of equal excitation -= = Const., can be interpreted
a

as "contour lines” of the "excitation mountain range."” Instead of the

lines of intersection c, = Const., we plotted in figures 27 to 32 the
lines

the significance of which will be discussed later in section VII. Even
at first consideration of these excitation maps, a fundamental difference
in the shape of the excitation mountain range is conspicuous according
to whether the velocity profiles of the laminar friction layer lie in
the region of decreasing pressure (B > 0) or of increasing pressure

(B <0).

In the region of decreasing pressure, the "excitation mountain
range" has the form of a mountain with pronounced peak which is steeply
ascending for a small Reynolds number Re*, slowly flattens after a
larger Re* and shrinks to zero width and height for Re*-—w. The
absolute height of the peak, that is, the maximum excitation increases
with decreasing B.
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In the region of increasing pressure, in contrast, the excitation
mountain range changes behind the peak with growing Re* into a
"mountain ridge" of constant width and constant contour profile.

The properties of this "ridge" have been thoroughly investigated
by W. Tollmien (ref. 5). Since we made use of Tollmien's theory, we
must now briefly represent its results.

Searching for a general instability criterion, W. Tollmien estab-
lished that the frictionless perturbation equation (5) possesses for the
laminar velocity profiles in the region of pressure increase - which
have a point of inflection in contrast to those of the region of

decreasing pressure - for Re*-—+ o aside from the neutral solution
existing for all profiles with the parameters

@=0 cp=0 =0 (93)

in addition, the neutral solution with the parameters

o = ag cr = Ug PnII = Ps (9%)

the subscript 8 therein denotes the point of inflection.

W. Tollmien calculated the eigenvalue ag and the eigenfunction

@y for the sinusoidal velocity distribution (30) which we also used
from the frictionless perturbation equation (5)

(aa)g = - p cot p P_. u (95)

oy - P E <v<d
gin ps
a

(96)
[

womp el oy

sin =—
a J
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For this second neutral eigensolution, the phase velocity c¢, therefore
equals the velocity of the basic flow at the point of inflection Ug.

For the excitation 84 and the circular frequency B, 1in the
neighborhood of the neutral frequencies ad* =0 and ad* = (ad%*)g,
W. Tollmien has derived the following formulas

B %

s
a = 0: =1 Uw' Ua3(a8*)3, EEX Re* = I{a*(GS*)g (97)
Ug Uy, L g*2 Ug? U, %

where the subscript w signifies that the values have to be taken at
the wall y = O, and that

&% )
o = ag: P ='B[§18*)3 - (GSB*)EGBE], 555 Re*

Ug a
U BE Ug'° 3 2
s
= U ad” - — 5§777[§18*) - (agd®) a%%] (98)
with
(o]
ttr f ¢sd.y
Ug 0
B = 5 ﬁgU TS . (99)
Us U 6*2E:2 + S ]
a U
s
where ‘
S-¢ te 0 e
E = lim Y olay+ U o2y (100)
€—0 278 (U -Ug)2 '®
o (U - Us) s+e€ - Vs

We have calculated the "ridge contour profiles" of the excitation
and the circular frequency according to the formulas (97) and (98) for
the Hartree velocity distributions B = -0.10, -0.14, -0.16, -0.18,
-0.198; the values for the derivatives of the velocity were not taken
from the sinusoidal approximation distribution but from the exact
velocity distribution. These "ridge contour profiles”" of the excitation
and the circular frequency have been plotted in figures 33 and 34. The
curves corresponding to the formulas just mentioned have been drawn in
solid lines; the transitions between the two curve arcs, interpolated
somewhat arbitrarily, have been drawn in dashed lines. In the range
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of very large Re¥*, the lines of constant excitation and constant cir-
cular frequency were transferred from figures 33 and 34 into figures 31
and 32.

Figure 35 represents the variation of the maximum excitation

)
Ua /max

against the form parameter P, separately for the excitation for finite
Re® (peak of the excitation mountain range) and for Re* ) o (ridge
of the excitation mountain range). For B < -0.10 these two values
seem more and more to approach one another so that with decreasing B
the peak becomes less and less pronounced, and the excitation starting
from small Re* monotonically increases to the values of the "ridge
contour profile."

This figure and the preceding ones show clearly that the maximum
excitation and accordingly the excitation in general is considerably
larger in the region of pressure increase than in that of pressure
decrease for smaller Re* as well.

After thus having estimated the magnitude of excitation in the
entire instability range of all velocity distributions occurring in the
laminar friction layer, we shall discuss the physical conclusions
resulting from our calculations for the position of the transition point.

VII. DISCUSSION OF THE RESULTS

Let the pressure distribution Ua(x) against the arc length of

the cross section profile, and the oscillation of circular time‘frequency
Br be prescribed. Then this oscillation superposed on the boundary-

layer flow travels downstream on a curve

BpV
—_ = f(x)
Ug?

1

As we mentioned at the beginning, there pertains to every point x of
the profile in the flow a fixed value of the Pohlhausen parameter A
which characterizes by way of approximation the velocity distribution
in ‘the boundary layer at this point. According to figure 34 in refer-
ence 3 one may coordinate to this parameter A the Hartree parameter 8
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and therewith one of the excitation maps calculated in the present

report (figs. 27 to 32). 1In order to obtain the excitation of the

perturbation By at a certain point x of the profile, one has there-
B, &*

fore to read off the excitation (number of the "contour line")
a
on the corresponding excitation map at the point of the map determined

by the pair of values of the Reynolds number

U, 5%
Re* = 2 = g(x)
v

and the dimensionless circular frequency

We shall start the discussion of the results of our above excitation
Ut

calculations with the limiting case of a small Reynolds number Re = - ¢

According to the explanations in section I (compare fig. 1) the stability
limit lies, for small Reynolds numbers only, at the point where the
laminar boundary layer separates. If the perturbation waves are so

long that the curve

ByY
— = f(x)
a

o]

intersects the instability region for the separation profile (B = -0.198),
it is very violently excited when entering this zone and leads quickly

to transition to the turbulent flow pattern. The transition point then
practically coincides with the separation point which we had denoted

its rearward limit. If, on the other hand, the perturbation waves are
very short so that the curve

does not intersect the instability region, the laminar layer separates
without transition.
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E%E increases, the stability limit

shifts forward in the direction toward the pressure minimum (fig. 1),
the perturbation enters a region of instability further upstream for a
larger value of the parameter B or the Pohlhausen parameter X\, and
is there initially excited to a degree which decreases the more the
stability limit shifts forward but which increases due to the fact that
the perturbation downstream (with decreasing B or \) reaches insta-
bility zones with rapidly increasing excitation. The transition point
shifts frontward corresponding to the excitation which started earlier
and is still strong.

If the Reynolds number Re

- If we finally increase the Reynolds number Re = H%E so that the
stability limit shifts ahead of the pressure minimum, the excitation in
turn starts accordingly sooner; however - and this must be regarded as
the most important result of our calculations for the time being - in
the region of decreasing pressure, the excitation is so slight that it
generally attains amounts equalling the excitations produced in the
cases treated Jjust now only after having passed the pressure minimum.

In this manner, one may easily give the theoretical explanation
for the fact proved by many experiments, that the transition point even
in case of very high Reynolds numbers rarely ever shifts shead of the
pressure minimum. Only in cases of very long acceleration sections
and perturbations with very long waves where the perturbation does not
too soon leave the instability region again, the limited excitation of
the region of decreasing pressure will be sufficient to induce the
transition still in the region of pressure decrease. However, these
cases are rare in technical application.

A detailed calculation of the degree of excitation which causes
the transition is meaningful only in connection with corresponding
experiments. Therefore, it will be postponed until these experiments,
now in the preparatory stage, have been carried out. Probably one will
have to regard the form of the pressure distribution in the region of
pressure increase as the most important test condition since, according
to our theoretical deliberations, the contributions to the excitation
of perturbations in the region of pressure decrease are insignificant.
The aim of this experimental investigation and of the excitation cal-
culation to be performed simultaneously on the basis of the present
report will be to find a connection® between the pressure-distribution
form and the degree of excitation attained at the measured transition
point so that it will be possible to calculate, inversely, the transition
point for a prescribed pressure distribution from this relation.
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VIII. SUMMARY

As a contribution to the soclution of the important problem of the
calculation of the transition point of a plane laminar flow, we had
first determined (in an earlier report, according to Tollmien's method
of small oscillations for the Hartree velocity distributions appearing
in the boundary layer in case of decreasing and of increasing pressure)
only the critical Reynolds number beyond which the perturbations super-
posed on the laminar flow are excited. In connection with those cal-
culations now, the excitation itself in the entire instability range
of the perturbations was calculated. The excitation in the narrow
instability range of decreasing pressure turns out to be very much
smaller than the excitation in the more extensive instability range of
increasing pressure; thus the known fact that the transition point
generally does not shift ahead of the pressure minimum even in case of
high Reynolds numbers may be explained on a theoretical basis, as shown
in tables 1, 2, and 3.

Systematic experimental measurements of the transition point,
together with calculations to be performed on the basis of the results
given here, are to establish the connection between the variation of
the pressure gradient and the degree of excitation which produces the
transition and thereby a basis for determination of the transition point
for prescribed pressure variation by calculation.

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics
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TABLE 2
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VALUES

TABLE 3

45

OF THE DIFFERENTIAL QUOTIENTS OF THE REAL AND OF THE IMAGINARY

PART OF THE FUNCTION F(

) WITH RESPECT TO 7,

oF,. oF { oF,. oF 4
n — — n — —
° Ong Mo ° Mo Mo
-2 0.135 -0.226 -3.6 0.396 -0.066
-2.1 .121 -.230 -3.7 .399 -.030
-2.2 17 -.235 -3.8 .395 -.010
-2.3 .118 -.239 -3.9 .379 -.055
2.4 .121 -2k -4.0 . 360 -.100
-2.5 .128 -.2L5 -4.1 .330 -.155
-2.6 .135 -.246 | k.2 .297 -.205
2.7 .145 -.2L6 -4.3 .250 -.270
-2.8 .157 -.243 bk .180 -.338
-2.9 172 -.237 -4.5 .080 -.3h
-3.0 .191 -.226 -4.6 .020 -.282
-3.1 .219 -.210 b7 -.026 -.226
-3.2 .256 -.188 -4.8 -.0L45 -.182
-3.3 .296 -.162 -4.9 -.057 -.150
-3.h .3k0 -.133 -5.0 -.062 -.118
-3.5 .380 -.102
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Figures 11, 12, and 13.- Polar diagrams for determination of the curves of
constant excitation.
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Figures 14, 15, and 16.- Polar diagrams for determination of the curves of
constant excitation.
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Figures 17 and 18.- Polar diagrams for determination of the curves of con-
stant excitation,
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Fiqure 28

Figures 27 and 28.- The curves of constant excitation in the instability regions
of a few laminar boundary-layer profiles.
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