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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL MEMORANDUM 1330 

THEORY OF DYNAMIC CREEP* 

By A. A. Predvoditelev and B. A. Smirnov 

An analysis is given of the causes of the increase in the creep of 
a material under dynamic loads. A theory of dynamic creep is proposed 
based on the after-effect theory of Becker. 

The term creep is applied to the phenomenon of the deformation of a 
metal as a function of ti~e without any increase in the stress. The 
creep of metals is generaily investigated at constant stress. The char­
acteristic curve obtained is shown in figure 1. There is no doubt that 
the testing for creep at constant load is of great importance. Under 
real conditions) however) metals are almost always subjected to the ac­
tion of dynamic loads which can essentially change the creep of the 
metal . The few investigations that have been made in this direction 
show that the curves of dynamic creep are similar to the creep curves 
at constant loads and reveal the same three stages distinguishable on 
figure 1 except that the creep of the metals increases considerably. 

Attempts to explain the increase in the creep for dynamic loads 
only by the nonlinearity of the dependence of the deformation on the 
load are not always satisfactory) because the creep under dynamic l oads 
is greater than the creep corresponding to the static load equal to the 
maximum load acting during the cycle. 

In a theoretical treatment of dynamic creep three circumstances 
must be taken into account: 

1. The instantaneous creep rate depends not only on the magnitude 
of the instantaneous stress but also on the rate of change of the stress. 
This is particularly important for plastic materials because their de­
formation is strongly influenced particularly by the rate of deformation . 

2 . Variable stresses have an important effect on various metal­
lurgical changes. The cyclic stresses may accelerate the aging) the re­
crystallization) etc . 

*"K teorii dinamicheskoi polzuchesti. II Vestnik Moskovskogo Univ.) 
Phys.) vol . 8) no. 8 ) 1953) pp . 79- 86 . 
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3. Dynamic loads, in contrast to static, may facilitate or give 
rise to slip or other forms of lattice deformation, which differ from 
static deformation. 

The neglect of these circumstances can lead to incorrect results 
and a large difference between theory and experiment. 

In the theory of dynamic creep presented herein, an attempt is made 
to take into account those circumstances which are associated with the 
presence of dynamic loads, namely the dependence of the instantaneous 
creep rate not only on the magnitude but also on the rate of change of 
the load . The basic idea is that the presence of a dynamic load gives 
rise to a certain finite rate of deformation which in turn can in an 
essential way facilitate slip deformation . 

The effect of vibrations on the metallurgical changes is very dif­
ficult to estimate, and therefore the present theory omits this factor 
for the present. 

The theory of dynamic creep represents an extension of the theory 
of after-effect of Becker (ref. 1) to dynamic loads . According to this 
theory, the reason for the after-effect phenomena is the nonuniformity 
of the metallic structure . The nonuniformity of the material is under­
stood in the sense that the individual grains may differ greatly from 
each other in their plastic limit, modulus of elasticity, shape, and so 
forth and therefore may possess a varying capacity for deformation . 
Under these conditions the applied stress produces different deformations 
of the grains . The weak particles will be more strongly deformed and 
will therefore carry a smaller load than they would have to carry if the 
load were uniformly distributed among all particles. This gives rise to 
an overstressing in the neighboring grains and leads to the additional 
deformation of the body. 

As a result of his consideration of such a model of deformation of 
a polycrystalline body Becker arrived at the expression 

N 

E; = 1: [00 + A L (0 - 0 ~ (1) 
E 0 o i 

i=l 

where 0
0 

is the initial stress, uniform over all grains, o. 
l 

the 

stress in the ith grain at the time instant t, A is a coefficient ex­

pressing the relation between-the local deformation of the ith grain 
and the macroscopic deformation of the body . 

In computing the magnitude cri Becker assumes that the plastic 

weakening of the ith particle is proportional to the stress o. and the 
l 

time 

" 
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(2) 

where POi is a certain coefficient of slip (or a magn~tude inverse to 

the internal friction of the material) for the ith grain. In its di­
mensions POi is inversely proportional to the time and according to 

the Maxwell point of view ~ = ~ should denote the relaxation time. 
Oi POi 

In applying the theory of Becker to dynamic loading, two observa­
tions must be made. The first one refers to the coefficient of slip p. 

Numerous experimental investigations (refs. 2 and 3~ of the effect of 
the rate of deformation on the microstructure of a polycrystalline metal 
show that high rates of deformation intensify the Slip process in each 
of its grains. Furthermore, the phenomenon of twinning is known to oc­
cur under the action of variable stresses, impacts, and so forth. This 
indicates that the coefficient of slip p, which figures in the theory of 
Becker, must not be considered as constant but as a certain function of 
the rate of deformation: P = Pof(l il ) . It should be noted that the 
function f(lel) may characterize not only magnitude of the slip in the 
monocrystal but may formally include also the increase in the denSity of 
the slip zone on increasing the deformation rate. 

For a clear representation of the dependence of the coefficient of 
slip on the velocity a simple, although rough, analogy may be drawn with 
dry friction. The slip in the crystal may be imagined as similar to 
motion with friction which, as is known, depends strongly on the velocity, 
the friction at rest being greater than the friction in motion. An anal­
ogous hypothesis had been earlier applied by Y. I. Frenkel (ref. 4) for 
the consideration of the problem of discontinuous creep which is ob­
served on monocrystals at small stresses . 

What are the physical causes which facilitate slip on increasing 
the rate of deformation? Under cyclic loads, as is known, hysteresis 
phenomena are always observed which indicate the dissipation of the en­
ergy of deformation. The amount of dissipated energy is expressed by 
the area of the hysteresis loop. Undoubtedly a certain part of this 
work is transformed into heat energy. At large rates of deformation, 
the heat energy does not have time to diSSipate, so that a disturbance 
of the isothermal process is obtained and the specimen undergoes an in­
crease in temperature. 

The effect of static and dynamic compression on the diffusion of a 
K~ doublet was studied by N. Davidenkov and Y. Terminasov (ref. 5) who 

showed that the transition from static to impact loads leads to certain 
changes in the physical nature of the plastic deformation. This is ex­
pressed in the local rise in temperature over the Blip planes. 



4 NACA TM 1330 

The possibility of a local r ise in temperature over the slip planes 
is indicated also by the data of A. 8tepanov (ref . 6) who, studying the 
plastic deformation of monocrystals of rock salt, showed that the tem­
perature near the pl ane of slip may in the process of deformation even 
approach the melting pOint . For metals this effect, on account of their 
considerable thermal conductivity, should of course be less pronounced 
although at large deformation rates it may undoubtedly playa very im­
portant part . 

There should also be mentioned the effect of Krovs - Tanavski, inves­
tigated by N. Davidenkov and I . Mirolyubov (ref. 7), indicating a local 
increase in temperature up to austenite conversion during impact defor­
mations of steel. It is thus possible that local increase in tempera­
ture is capable of facilitating the process of slip under dynamic loads. 

The second remark concerns the coefficient ~ O' In the theory of 
Becker, this coefficient connects the deformation in the grain with the 
total deformation of the body. In the mathematical formulation of his 
theory Becker assumes that the grains of the metal do not mutually af­
fect each other, that is, the metal represents the simple sum of its in­
dividual grains. As a matter of fact, the grains act on one another 
through the intercrystalline layers . The deformation of a polycrystal­
line body proceeds in an extremely complicated manner, not only within 
the grain, but also within the entire formation. On loading a poly­
crystal, in addition to the deformation within the crystal, a character­
istic sl ip also takes place between the grains . Thus in the deformation 
of a real pol ycrystal the following processes occur : (1) deformation 
within the crystals or grains, (2) displacement of the crystals with 
re spect to each other accompanied by the rupture of the structure and 
the partial rupture of the bond between the grains (ref. 8). It fol ­
lows that the deformation of a polycrystalline body should be charac ­
terized by two coefficients. If the slip in the cyrstallites or grains, 
as indicated above, is characterized by the slip coefficient p, the 
intercrystalline slip should be characterized by the coefficient ~O 

expressing the relation between the deformation in the individual grain 
and the entire microscopic deformation of the specimen. 

We shall attempt from this point of view to evaluate the coefficient 
AO' For this purpose let us consider the elementary act of deformation 
occurring under a constant load . As a result of the plastic deformation 

of the ith grain and its weakening? the remaining grains receive an add­
itional load of the order (00 - 0i)8i , where 8i is the cross - sectional 

area of the ith grain. Because of the action of this force, further de ­
formation of the remaining N - 1 grains will take place . Becker assumes 
that this additional deformation is instantaneously established and obey s 
Hook's law, that is, the grains do not show on their boundaries any in­
teraction on each other . This is a very rough approximation . As a 
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matter of fact,the additional deformation under the action of the force 
(crO - cri)Si will occur not instantaneously but after a certain finite 
time interval ~ as though there existed some retarding viscous forces. 

We shall make a qualitative estimate of the coefficient AO' 

additional force (cro - cri)Si produces a flow of the material. If 
is the internal friction of the material we may write 

The 

<'d 

characterizes the slip between the grains. As a result of the strength­
ening the flow does not continue for an infinitely long time but ceases 

and equilibrium is again restored. Thus E~ ~pgd(crO - cri) where ~ 

is the time of flow. 

On the other hand let us turn to equation (1). From the latter it 
follows that in plastic deformation of the ith grain an additional de­
formation is obtained of the order 

Comparing the two last equations we can conclude that Ao N ~d that is, , 
AO has the sense of a certain coefficient of slip. Earlier it was shown 

that the slip coefficient should depend on the rate of deformation. 
Hence the dynamic coefficient A should be expressed by the relation 

A..ItP~df( I i I) or A = \)f( I e I), which was to be expected since p and A 
are similar in their physical significance 
of slip. The difference between them lies 
terizes the inter crystalline slip while A 
stalline slip. 

and characterize the processes 
in the fact that p charac­
characterizes the intercry-

In the light of what was said above the plastic unloading in the ith 
grain should be expressed not by formula (2) but by the relation 

With a varying load there must be added to the plastic change of stress 
in the ith grain the further elastic change 

dP. 
l dcr 
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where dPi is the part of the total load assumed by the nth grain. 

The total change of stress over the interval dt will be 

. dP· 
dcri = - POf( It I)cr

l
. dt + _ l 

8i 

where f(lel), generally speaking, is a function of the time . Whence we 
obtain the required relation 

To compute the entire sum appearing in expression (1) it is necessary to 
be given the distribution function F(p) for the coefficients 
P = Po f( Iii). Then 

To obtain the concrete expression ~(t) we must know F(p) . Notwith­
standing the fact that F(p) uniquely determines the after- effect func­
tion, it is in no way determined by the experimentally observed after­
effect function. There is therefore great arbitrariness in the choice 
of the function F(p). As is shown by experiment, the after- effect 
function is of the order l/~. In order to satisfy this condition, it 
is sufficient to take the distribution function in the form proposed by 
Becker: 

F(p) c 
p 

" 
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where rand R are the minimum and maximum coefficients of slip in 
the grains for the deformation rate E = o. 

Under these conditions we obtain the integral equa tion: 

a (t) 
poNf ( I ~(U I) 

-

7 

x 

where Po is the mean value of the sl ip coefficient over all the grains 

for the deformation rate e = o. 

Representing the periodic load of frequency y in the form of a 
Fourier series we obtain the following expression: 

cos 2nv ntl + J..cr j4>("tld' + 

n=l 1t(rYn ~ ~ sin 2nv n, + bn cos 2nv n'l 4>("tld~ 

where ~(S,t) is the after- effect function. By solving this equation 
for e, for the given relation cr(t), the answer may be obtained to the 
question of the dynamic creep of a polycrystalline material. 

It is not, however, possible to solve this equation fully. The 
matter is made still more complicated by the fact that the form of the 
function f( Iii ) giving the dependence of the slip coefficient on the 
deformation rate remains at the present time unknown. Hence, to obtain 
a concrete computational expression, methods must be found for the ap­
proximate solution of the equation . 

The above relation gives the possibility of qualitatively inves­
tigating the character of the solution of this integral equation . 
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Evidently, the required solution t(t) will consist of the instanta­
neous deformation eo due to the action a and of the deformation 

tcr(t) due to the action of a. On these deformations will be superposed 

the periodic elastic deformation e:l(t) due to the action of the vari­
able component of the external force, and finally a certain after-effect 

* deformation einel(t) due to the same variable component. Thus 

and the deformation rate will be: 

The after-effects are extremely small effects. Hence the deformation 

rate e:l(t) will be many times (103 - 104 ) as large as t~(t) and 

£inel(t). Whence it follows that I~(t) I appearing in the integral 

equation may to a first approximation be replaced simply by the rate of 
elastic deformation, which is easily computed since the loading law is 
given. For simplifying the computations, 1~(t)1 may also be replaced 
by the average rate of elastic deformation. Such approximation is es­
pecially good in that it permits obtaining a final computational expres­
sion without the explicit form of the function f(lel). Thanks to this 
simplification the integral equation for e(t) is obtained as a solution 

with respect to e(t), and the deformation rate le:ll will enter as a 

parameter determined by the conditions of the experiment. 

Replacing, for simplicity of computation, the lower limit of inte­
gration in the after-effect function ~(~,t) by zero and making a change 
of variable ~ = t - ~, equation (3) may be transformed into the form: 
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dt) sin 2:rr\l nt + bn cos 2nv nt) + 

OD ± 
APoN \"' 

(R - r) L sin 2nv ntl (an cos 2:rrv n~ + bn sin 2:rrv ~) 

n=l 

OD 

APoN \"' 
(R - r) ~ 

n=l 

t 

cos 2nv nt 1 n~ + bn cos 2:rrv ~ 

9 

For the comparison of experimental with theoretical data the obtained 
relation must be averaged over a period since the existing types of test 
machines do not determine any instantaneous deformations occurring in 
the course of a cycle but determine only an integral effect. 

It may be shown that the last two integrals practically do not de­
pend on the time since they very rapidly tend to their limiting values 
(they depend on the time only the first few seconds; the time is negli­
gible in comparison with the duration of the creep test). Renee, the 
last two components after averaging over a period vanish, and the follow­
ing expression is obtained : 
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v(t) =~~ + ~P~r off-
l/V 

a v ~ a(t)dt 

where 

Carrying out the integration and eliminating the instantaneous defor­

mation yield 

AorsoN ---:- -r -,', -I" 1 
~(t) = E(R _ r) f( 'el)aL?5772 + In Rf( £ )t - Ei( - Rf( £ )t~ 

(l;t 

where Ei(-~t) =1 e-~/~ d~ the values of which are obtained from 

tables. ... 
The form of relation (4) resembles the expression obtained by 

Becker but differs from it in the presence of a rate factor. 

(4) 

The obtained relation explains the increase in the creep of a mate­

rial under dynamic loads and likewise explains the experimentally ob­

served increase in dynamic creep with increase in frequency and ampli­

tude. In fact, both an increase in frequency and an increase in amp­

litude lead to an increase in the deformation rate and, as follows from 

the theory, the increase in the deformation rate should lead to an in­

crease in dynamic creep. 

In conclusion it is necessary to remark that the theory gives the 

possibility of obtaining also the temperature dependence of the dynamic 

creep if the corresponding temperature characteristics of the modulus of 

elasticity E and the relaxation time ~ are explicitly given in the 

equation. 

A discussion of the obtained results and their comparison with vari­

ous experimental data will be presented in a subsequent paper. 

Translated by S. Reiss 
National Advisory Committee 
for Aeronautics 

---------------
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Figure 1. 

NACA - Langley Field, Va. 


