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NATIONAL ADVISORY COMMIT’17EEFOR AERONAUTICS
-P, .

TECHNICAL MEMORANDUM 1314

ON THE TURBULENT FRICTION LAYER FOR RISING PRESSURE*

By K. Wieghardt and W. Tillmann
1

Abstract: As a supplement to the UM report 6603, measurements in tur-
bulent frictionlayers along a flat plate with rising pres- 1

sure are further evaluated. The investigation was performed
on
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behalf of the Aerodynamischen Versuchsanstalt G6ttingen.

SYMBOIS
I~ODUCTION
TEST SETUP
TEST RESULTS
ON THE GRUSCHWITZ CALCULATION METHOD
ON AN ENERGY THEOREM FOR FRICTION LAYERS
SUMMARY
REFERENCES

1. SYMBOLS

position rearward from leading edge of the plate

distance from wall

velocity component in x-direction

velocity’ component in y-direction

velocity components outside of the friction layer

density

viscosity

/

of the air.

kinematic viscosity

static pressure

*“Zur turbulenten ’Reibungsschicht bei Druckanstieg.” Zentr%le ffi
wissenschaftliches Berichtswesen der Luftfahrtforschung des Generalluft-
zeugmeisters(-ZWB), Berlin-Adlershof, Untersuchungen undMitteiJungen
Nr. 6617, Kaiser Wilhelm-Institut fiirStr?5mungsforschung, G6ttingen,
November 20, 1944.
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g=p+q

Q.+2

ux/v

u52/v
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dynsmic pressure

total pressure

dynamic pressure outside of the friction layer

Reynolds

Reynolds

friction

)-;dy

number

number of the friction layer

layer thickness

displacement thickness

momentum loss thickness

energy loss thickness

! -— -~

H12 = 51/52 1
H32 = b3/b2

}

form parameters of the velocity profile

‘=1-[!9-J
T turbulent shearing stress

To wall shearing stress

/
P 2 local frictionCf’ = To ~u

1 mixing length

drag coefficient

2. INTRODUCTION

For the calculation of laminar boundary layers in two-dimensional
incompressible flow, numerous calculation methods have been developed
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on the basis of ~andtl’s boundary-layer equation; in contrast, only the
semiempirical method of E. Gruschwitz (reference 1) and its improvements
by A. Kehl (reference 2) and A. Walz (references 3,”4, and 5) are avail-
able for turbulent friction layers. The reason, as is well known, lies
in the lack of a mathematical law for the apparent shearing stress T
which originates by the turbulent mixing of momentum. Prandtl’s expres-
sion for the mixing length so far has led to success only in cases where
a sufficient number of correct (and also sufficiently simple) data on the
variation of the mixing length can be obtained directly from the geometry
of the flow as for instance in the case of.the free jet. As a basis for
the Gruschwitz method there serve, therefore, besides the momentum equa-
tion for friction layers, three statements which are partly empirical
and lack a theoretical basis. They are as follows:

A. The velocity profiles in the turbulent friction layer for vari-
able outside pressure form, after having been made adequately dimension-
less, a single-parameter family of curves, if one disregards the laminar
sublayer; thus, every profile may be characterized by a single
quantity (q).

B. A differential equation, likewise derived solely from experi-
ments, concerning the variation of this parameter in flow direction as
a function of the pressure variation and of the momentum thickness.

C. An assumption concerning the wall shearing stress. Gruschwitz
inserts a constant as first approximation.

A. Kehl (reference 2) then improved the Gruschwitz method. According
to his measurements which extended over a larger Re-number range than
those of Gruschwitz, it ~s necessary to insert in statement B, for a
higher Re-number of the friction layer, a function of the Re-number
u52/v instead of a certain constant b. Furthermore, Kehl obtained

better agreement between the calculation and his test results by sub-
stituting in statement C for the wall shearing stress the value which
results for the respective Re(52) number at a flat plate with constant

outside pressure. Finally, A. Walz (references 3, 4, and 5) greatly
simplified the integration method mathematically so that for prescribed
variation of the velocity outside of the friction layer U(x) the mom-
entum thickness, the form parameter ?l,and hence the point of separ-
ation can be calculated very quickly. No statement is obtained regarding
the wall shearing stress, since it had, on the contrary, been necessary
to make the assumption C concerning To in order to set up the cal-

culation method at all.

Thus it seemed desirable to investigate the friction drag of a
smooth plate for variable outside pressure. On one hand, direct interest
in this exists in view of the wing drag; on the other hand, one could
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expect an improvement in the above calculation method if an accurate
statement regarding To could be substituted for the assumption C. In

order to arrive at the stiplest possible laws, friction layers along a
flat smooth plate were investigated where a systematically increasing
pressure was produced by an opposing plate. By analogy with the behavior
of laminar boundary layers the wall shearing stress was expected to
decrease in the flow direction up until separation, more strongly than
in case of constant outside pressure. Instead, To increased, after a

certain starting distance, more or less suddenly to a multiple of the
initial value. A brief report on this striking behavior of the friction
drag has already been published (reference 6). In the present report,
these tests are further evaluated and compared with those of Gruschwitz
and Kehl. Considerable deviations result in places; however, it was not
possible to develop a better calculation method with this new test mate-
rial either.

Since the application of an energy theorem had proved expedient for
the calculation of laminar boundary layers (reference 7), a theoretical
attempt in this respect was made for turbulent friction layers, too;
however, it did not meet with the ssme success. Merely an interpretation
for the statement B can be obtained in this manner, which is. however,
not cogent.

3. ‘TESTSETUP

The test setup and program have been described in the preliminary
report. A new measuring method was developed where with the aid of a
pressure rake and of a multiple manometer (reference 8) turbulent friction
layers could be measured quickly and accurately md the computational
evaluation greatly simplified.

Friction layers were measured at p = O for two different veloc-
ities U = const., four cases, I to IV, with rising, and one, V, with
diminishing pressure (figs. 1 to 6). In cases I and II, p increases
almost in the entire measuring range linearly with rearward position
with respect to the leading edge of the plate x, whereas in cases III
and IV the outer velocity U (U * x-a) decreases with a power of x
(figs. lto 6).

The velocities were about 20 to 60 meters per second; the test
section length was 5 meters so that Re-numbers up to 107 were attained.
The Re-number of the friction layer (formed with the momentum thickness)
increased to from 2 to 7 X 105.
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4. TEST RESULTS

Mainly the variation of the wall shearing
in the brief preliminary report (reference 6);

5

stress had been described
later the measurements

were evaluated more thoroughly. First, we plotted figures 1 to6 for
the different pressure variations: the outer velocity U, the local
friction drag coefficient tf’, the displacement zhickness 51, the

momentum thickness 52, and the energy loss thickness 53 treated in

section 6; in analog to the momentum loss thickness 82, 83 is a

measure of how much kinetic energy of the flow is lost mechanically due
to the friction layer, that is, is converted to heat by the effect of
the friction forces.

In case of constant outside pressure cf’ depends, for a smooth

plate, only on the Re-number. The test points from figure 1 lie between
the formuias for cf’ according to L. Prandtl (reference 9), F. Schultz-

Grunow (reference 10), and J. Nikuradse (reference 11) which in the test

range Ux/v = 3 X 105 to 107 differ only slightly. For rising pressure,
a slight decrease of cf’ with rearward position results at first,

according to figures 2 to 5; however, after a certain distance cf’

increases more or less suddenly to a multiple of its original amount and
decreases again only at the end of the test section where for test tech-
nical reasons the pressure increase could no longer be maintained.
W. Mangler (reference 12) found the same unexpected behavior in further
evaluating the measurements of A. Kehl (reference 2). In contrast, cf’

varies only slightly in case of decreasing pressure. Thus, on one hand,

~ >0 must be responsible for the strong increase in wall shearing
dx
stress; furthermore, the Re-number of the friction layer is of importance
since first a certain starting distance is required. Therefore, we

62 *
plotted in figure 7 cf’ against the dimensionless

~ dx”
Our measure-

ments resulted in a comparatively narrow bundle of curves; however, the
results according to Kehl-Mangler, drawn in in dashed lines, cannot be
brought under a common denominator in this manner. The test arrangement
of Kehl was more general insofar as he had at first a piece of lsminar
boundary layer and, moreover, in some cases first a pressure drop, and
then an adjoining pressure rise; in our tests, in contrast, the friction
layer, starting from the leading edge of the plate, had been made tur-
bulent by a trip wire and the pressure increased monotonically.

—. —— —
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In want of
strong increase

a better criterion, we can see from figure 7 that the
in friction drag is not to be expected as long as

The displacement
stress represent only

Qdx”

and momentum
a summary of

Therefore, we shall consider below

stress profiles. The variation of

from the leading edge for constant

2 x 10-3

thickness as well as the wall shearing
the development of a friction layer.
the velocity profiles and shearing

:
against the rearwsrd position

wall distance is particularly illus-

trative (figs. 8 and 9). In case II (fig. 8),
:

suddenly drops steeply

in the layers near the wall whereas it decreases continuously in case IV.
Accordingly, the characteristic lengths 81, 52, and 53 increase at

these points more strongly than before. Since the drag coefficient cf’

depends essentially on the variation of *&~ one recognizes at once in

case II the point of maximum wall shearing stress at x * 3.3 meters.

The shearing stresses are obtained from Prandtl’s boundsry-layer
equation which may be transformed with the aid of the continuity equation

1 dp
and of the Bernoulli equation = -Uux valid outside

P dx

layer.
au au

With Ux = $$ ux=.&--uy=~ and Q = g U2,

b T ‘X+UUX ~ ‘>*——= -—— —-

Jby2Q U UU U O U

ot’the friction

one obtains

(1)

The integration which is still to be performed yields additionally a
control value for the wall shearing stress

(2)

However, the value for To obtained in

as the one calculated from the momentum
differentiation is applied more often.

this manner is not as reliable

theorem because here graphical
According to a suggestionby

——. —- ——... .- ,--—
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Professor Betz, the momentum theorem may be transformed for the calciiL-
ation of To in the following manner (compare reference 6):

(3)

where a suitable mean value of H12 = 51/52 is substituted for H12.

Then the second term is small compared to the first and plays only the
role of a correction term so that essentially only one graphical differ-
entiation has to be performed.

First, the shearing stress profiles are plotted for constant outside
pressure in figure 10. The shearing stress T with the appertaining
wall shearing stress To and the wall distance y with the momentum

thickness 82 are made dimensionless. These dimensionless profiles are

almost completely identical although a systematic variation with the
Re-number is recognizable. The profiles T against y for the two
cases II and IV with pressure rise follow in figures 11 and 13;
figures 12 and 14 show the corresponding dimensionless shearing stress
profiles T/T. against y/62. In the case II where the pressure p

increases approximately linearly, the ~-profiles differ considerably
for various rearward positions, especially the wall distance at which
T reaches its maximum value is subject to great changes. In contrast,

the dimensionless profiles in case IV where “* 53(x/lm)-o”27 meters
per second is valid are very similar. Only the one profile at
x = 1.99 meters stands out sharply without any perceptible reason.
According to D. R. Hartree (reference 13), similar velocity and hence
also shearing stress profiles result for laminar bolmdary layer in the

case U * xta ausince for lsminar flow 7 is simply -r= p —.
ay In the

turbulent friction layer, the velocity and hence also the shearingatress
profiles thus vary in this case; however, the latter at least can be
described - although somewhat forcibly - by a single-parameter family of
curves, according to figure 14.

A. Buri (reference 14) attempted to interpret the shearing stress
profiles in general as single-parameter family of curves. Buri selected
for the parameter ra the computed wall tangent of the dimensionless

shearing stress profile

relation may be read off

()%?hT
ra=— — because for this quantity a

‘O dy y.o

immediately from the boundary-layer equation.

—— .—. —-—*—- ——..
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For y = f),
52 *

u = v = O and therewith ra = — which yields.
To dx

()

aT ~. The ‘aWen

~y=O = dx
t -cothe shesring stress profile thus calcu-

lated is known in general to fit very badly the shearing stress variation
in the proximity of the wall determined from measurements. In the tur-
bulent friction layer, the velocity u decreases only in immediate wall
proximity - in the so-called laminar sublayer - to zero so that the tan-
gent direction deviates from the above calculated value even for very
small wall distances. This is shown also in figure 15, which represents
the shearing stress profiles in wall proximity and the pertaining wall
tangents found by calculation; for constant outside pressure, too, the
curves against y apparently begin to drop from the point y = O out-
ward with a definite angle rather than continue with a horizontal
tangent (fig. 10). Nevertheless, I’a could be used at first as a com-

puted quantity for the characterization of a definite shearing stress
profile. However, in case II, for instance, the same shearing stress
profile would have to be present for x = 3.19 meters and for
x = 3.79 meters according to figure 15, which is obviously not true
according to figure 12. In general, the shearing stress profiles could
not be characterized by one other parameter alone either. At least two
quantities would be required for this, for instance, the magnitude and
the dimensionless wall distance of the maximum Tmu To.

I

Finally, we calculated from the shearing stress the mixing lengths

according to Pranatl’s expression
2 au bu

T=~Z— —
by ay

and plotted them in

figures I-6 to 19 against the wall distance y’ or in dimensionless form
2/82 against y/62. Like the thickness of the friction lsyer, z

increases more and more with further rearward movement; in case IV, z
even increases on approaching the end of the test section to 30 milli-
meters. The diminishing of the mixing length for large wall distances
cannot be specified, as is well known, since Z there is computed as

()

au 2
the quotient of two small qNtitieS, namely, T and — .

ay
Here

again 2 increases linearly in wall proximity. In the tube, the result
had been z = 0.4y and at the plate for constant pressure, according
to Schultfi-Grunow (reference 10) z = 0.43y (dashed in figs. 17 and 19).
Here, at rising pressure, z increases at first again linearly but far
more rapidly. In case II, z attains the maximum value z = l.ly and
in case IV even z = 2.Oy. Although no fixed relation exists between
z/y in wall proximity and the wall shearing stress, it is striki~ in
figures 17 and 19 that z/y is largest just for those rearward positions
where the wall shearing stress To also (compare figs. 3 and 5) attains

its maximum value.
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5. ON THE GRUSCHWITZ CAD2ULATION METHOD

Our test material enables us to exanine the basis of the Gruschwitz
method enumerated under section 1. The assumption A according to which
all turbulent velocity profiles concerned form a single-parameter family
of curves is again confirmed in figure 20. Here a few velocity profiles
of the different cases I to V are plotted for which the evaluation
accidentally had resulted in exactly the same ratio H12 = 81/52; the

profiles u/U against y/b2 with equal H12 and hence equal q

(compare fig. 27) are in agreement even for different velocities, rear-
ward positions, and pressure variations, thus also after different
“previous history.” This single-parsmeter quality covers, however, only
the “visible” turbulent part of the profile; the velocities in the
laminar sublayer may have a different distribution even for equal ?l;
otherwise, a unique connection would necessarily exist between the wall
tangent ra and ?l or H12 which is certainly not the case according

to what was said above.

The change of the velocity profiles characterized by the param-
eters ~ or H~2 with change in the rearward position is represented

in figures 21 and 22 for all meas~ing series. The weak but throughout
systematic dependence of the profile on the Re-number for constant out-
side pressure is remarkable; Niku_adse (reference 11), on the other
hand, obtained here always the same profile with ~ = 0.515 and
H12 = 1.302.

In order to apply the momentum theorem for the Gruschwitz method,
the relation between H12 and q, necessarily unique for a single-

parameter profile class, must be known. The results for all profiles
of our measuring series are plotted in figure 23. All of them lie below
the curve indicated by Gruschwitz but the majority of Kehl’s points also
lie below the original Gruschwitz curve. Since, however, all the results
do not greatly deviate from one another, the assumption A may be regarded
as correct in good approximation. The long dashed curve was calculated
by Retsch (reference 15) for power profiles; the power pertaining to
a certain H12 is given in the figure at the right. Concerning the

short dashed curve, compare section 6.

Mazters are different for assumption B. Gruschwitz had obtained
from his test evaluation

52 W(52)
=a~-

~ dx
b, with a = 8.94 x 10-3 and b = 4.61 x 10-3
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g(b2) is the total pressure at the wall distance 52:
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Because of q = 1

friction layer p

g(~2) = p + g~(52g2
- u(@/u2 and the Bernoulli equation outside of the

+ Q . constant, we may also write

dg(b2)

dx
=&[P+Q(l-n~ =-%

Kehl, who investigated a larger Re-number range, found b to be addi-
tionally dependent on U82/v; therefore, he plots

52 dg(b2) 52 d(Q~)
b = a? -~ .—

dx ‘aq+Q dx
(4)

against U52/V. This has been done for our measurements in figure 24.

In this diagram, Gruschwitz obtained a horizontal straight lihe

b = constant = 4.61 x 10-3 and Kehl the plotted curve which, stsrting

from Ub2/V . 2 x 103 slowly drops. These two lines have been drawn

solidly as rar as measurements existed. Our measurements show that at
least for the cases I and II - that is, for linear steep pressure rise -
b canbe assumed neither as constant nor as a unique function of U52/v

since we obtain in this diagram two essentially deviating cuves. The
same result is obtained also in the cases III and IV for higher Re-numbers.

Only for Ub2/v < 104, the devlatlolm of the measuring points may be

interpreted as scatter. It is not the Kehl relation but the simpler

Gruschwitz relation which is confirmed here. For U52/V < 2 x 103 Keh.1

took the drawn variation of b in order to obtain significant calculation
results directly behind the transition point from lsminar to turbulent

flow . The two points with Ub2/v < 103 in the case V are not an argu-

ment against this b-variation for the reason that the friction layer had
been made artificially turbulent to start with by means of the trip wire.
Below, we shall attempt a theoretical interpretation of the relation B
which so far has been set up and investigated in a purely empirical
manner.
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Since the variation of the wall shesring stress proved to be very
complicated, according to figures 2 to 6, we cannot tiprove upon assump-
tion C which refers to the wall shearing stress. In order to estimate
the effect of this assumption on the calculation, the cases II and IV
were calculated with the aid of Walz’s simplified integration method
under different assumptions regarding cf’ . Figure 25 shows the result

for the momentum thickness 52. In the momentum theorem, we msy put

H12 = constant since ~t,appears only in one term 2 + H12 so that

even great variations of H12 are of relatively small importance. In

case II, one obtains better agreement (at least up to x = 3m) between
calculation and tests by using the expression for cf’ obtained as a

functionof Ub2/V for the plate without pressure rise than by putting

Cf’ = constant. Conversely, the agreement for case IV is better with

the assumption cf’ = constant. In view of the actual variation of

c-f’ which varies from case to case, no generally valid rule can there-

fore be set up for it, even before the region of the steep rise of cf’.

The results of the q calculation
The three different calculation methods
on the following assumption:

Gruschwitz-Walz b . constant .

~nd

Cf’ = constant

Gruschwitz-Walz b = constant =

and

are represented in figure 26.
worked out by Walz are based

4.61 X 10-3

. 4 x 10-3
}

4.61 X 10-3

Cf’ = 0.0251(~2/v)-1/4

Gruschwitz-Kehl-Walz b =
0.0164 0.85

log (ub@ - Utj#v - 300

and

Cf’ = 0.0251(Ub2/V)-1/4
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As was to be expected according to figure 24, the last, most complicated
method is precisely the one that shows the greatest deviations compared
to the experiment. In our cases II and IV, the first and simplest cal-
culation method is the best. The agreement between that calculation and
the test is still good even in the region of steep rise cf’. From there

on, however, large differences result.

6. ONAN ENERGY THEOREM FOR FRICTION LAYERS

Like the approximation methods for laminar boundary layers, the
Gruschwitz method is based on K&m&’s momentum equation which is obtained
by integration of Prandtl’s boundary-layer equation with respect to the
wall distance y. One obtains thereby a statement on the total momentum
loss of the friction layer. In smalogy, a statement on zhe total ener~
loss in the friction layer caused by the friction can be obtained if the
boundary-layer equation

~U~+O~=-px+Ty=P~x +ry (5)

(after additionof ~U2(X + Vy) = O because of continuity) is first

multiplied by u and then integrated with respect to y

da
-z Pu~U2-~u2)dY+ [~~+P$~5uxdy=~’u.ydy

J(o

[1
5

Pu%
and because of —

2
0

-J
/5

o

This equation
transverse to
of doing work

signifies that the loss in kinetic energy per unit length
the flow direction in the friction layer equals the rate
of the turbulent shearing stresses.

. ...
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For ‘the
... ,,

n6

J .%(jy.

o .-

laminar boundary layer T = v,—

J

5 ““

~ is valid so that

P %2 dy here signifies the dissipation, that

o

13

iS, the

energy converted to heat per unit time.

In turbulent friction layers, in contrast, no simple relation between
the shearing stress and the velocity profile exists; if it did, the essen-
tially single-parameter family of turbulent velocity profiles would have
to include also a single-parameter profile class of the shearing stresses
which is not the
corresponding to

case according to the test evaluation. If we define,
the momentum loss thickness, an energy loss thickness

53 .J’ ;(l - (;)2) dy (7)

and the following dimensionless

f

5
work of the shearinge= stresses TbU— —— —

To by U ‘y
(8)

work against the wall shearing stress – o

we can write equation (6) also as

1
e=

()
—L U353 (9)CF,U3 dx

Since we have thus obtained one new equation with two new unknowns,
this energy theor”em at first does not help us any further either. How-
ever, we can calculate the energy loss thickness 63 from the velocity

distributions and obtain, due to The single-parameter quality of the
velocity profiles, a fixed relation between the quantities 51, 52, and

63. Plotting thus the ratio H32 = b3/b2 against H12 = 51/52 for all

profiles measured, we obtain figure 27. All points come to lie, with
only very small deviations, on one “street.” For power profiles

u/U = (y/b)n the long dashed curve

A’H12
’32 = H12 - B

(lo)
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would result with A = 4/3 and
actual profiles at pressure rise
and B = 0.379. On the basis of

be calculated from 51 and 52

NACA TM 1314

B = 1/3. A good fairing curve for the
and drop results if we put A = 1.269
this empirical relation, &3 may now

with sufficient accuracy.

If one more relation could be found for the ratio e as well, it
would be possible to calculate from the new equation (9) for instance
Cf’. The calculation of e from the measuring results is made difficult

by the fact that it results as the quotient of two quantities which can
both be found only by graphic differentiation. This explains the great
variation of the e-values plotted for the different cases in figure 28.
On the whole, e varies only comparatively little; even when cf’ for

instance in case IV increases from 3 to I-6 X 10-3, e remain~ between
0.8 and 1.2. At first glance, e seems to have, according to the
defining equation (8), the significance of an efficiency which could
not exceed 1. Actually, however, e may assume any arbitrary value,
according to the velocity and shearing stress profile concerned; in the
immediate proximity of turbulent separation, above all, where To

vanishes, e may assume arbitrary magnitude.

Because of the inaccuracy of the calculation from the test data, it
was not possible to determine for e a relation to the other boundary-
layer quantities. However, one can set up an interesting analogy between
the energy equation and Gruschwitz’s assumption B. If one substitutes
the above relation for H32 which was found experimentally in the energy

dE2
equation and eliminates — with the aid of the momentum theorem, one

dx
obtains

Ux B ~12
—+ —=
u H12(H12 - B)(H12 - 1) dx

H12(A - 2e) + 2eB
Cf’

~12(H12 - 1)
(11)

On the other hand, one may differentiate out the Gruschwitz-Kehl relation
(assumption B), equation (4), and Ipite

Ux
_ + 1 d~ dH12 _b-a~

(12)
u 27 dH12 dx 27

regarding ~ as a function of H12: v = v(H12)” We now assume that

the relation B follows from the energy theorem. If this is the case,
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the left sides of equations (11) and (i2) must, first of all, be iden-
tical. We therefore equate, as an experiment, the left sides of the
equations and obtain a differential equation for q(H12), the solution
of which reads

~ = number x H122
(H12 - 1)=/(1 - B)

9/(7 – n)
(13)

From the H32 - H12 relation, we had found for B: B = 0.379. If,

furthermore, we put, for adaptation to the test results, the number equal
to 0.986, the function H12(q) is, according to figure 23, quite well

satisfied by equation (13).

Thus, the left sides of the energy equation (11) and of the rela-
tion B (equation (12)) seem to be identical. Then the right sides also
must be equal which - solved with respect to b - results in

H~2(A - 2e) + 2eB
b=aq+ Cf’q with A = 1.269

AH12(H12 - 1)

and B = 0.379 (14)

Therewith, a relation between quantities of the velocity and of the
shearing stress profile, based on the energy theorem, has been found for
the assumption of the Gruschwitz method. In practice, of course, this
equation is of no help, either, since no data concerning the newly intro-
duced quantity e are available although one deals here, according to
the defining equation (8), with a comparatively illustrative quantity.
Thus one may conclude from equation (14) only that it is improbable that
invariably b = constant (as Grusch-witz assumes) or that b depends
solely on U52/v (as Kehl presupposes), for b appears here as a func-
tion of the respective velocity profile (q and H12) as well as of e

and cf’ which likewise is not determined merely by ‘Ub2/v. However,”

theoretically this conclusion is not cogent, either. It is, in itself,
conceivable that the course of the turbulence mechanism is such that,
in spite of different previous history, the complicated relations between
q, andCf’, e have precisely the properties which cause b to be,

for every rearward position, ror instance a function of Ub2/V only and

the test evaluation according to figure 24 actually shcws that b, at
least within a certain region, hardly varies.
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The report deals with measurements in the turbulent friction layer
along a flat plate where the static pressure from the leading edge of
the plate onward systematically rises or decreases. In case of pressure
rise, there results after a certain starting distance, a large increase
in wall shearing stress to a multiple of the initisl value; this has
already been briefly commented on in the report UM Nr. 6603. The further
evaluation of the test material (calculations of the shearing stresses
and mixing lengths) also gave qualitative information on this problem.
As rule of thumb, it-can merely be said that this strong increase In

52 ~< 2 x 103 is valid.friction drag does not occur as —
Q dx

Furthermore, the empirical relations on which the Gruschwitz method
is based are checked with the aid of the measurements. It is again
confirmed that the turbulent velocity profiles form with sufficient
accuracy a single-parameter family. Gruschwitz obtains from an empirical
relation a differential equation for the variation of that parameter in
flow direction; Kehl improved that equationby not fixing a quantity b
contained in it as constant, like Gruschwitz, but by considering it as
a function of the Re-number of the friction layer. The present measure-
ments confirm at first the stiple relation b = constant. However, for
higher Re-numbers of the friction layer - in the region of strongly
increasing wall shearing stresses - different values for b result,
according to the previous history of the friction layer; here a relation
of the form b = b(U82/v) is no longer sufficient, either. It is shown

that this Gruschwitz-Kehl relation can be interpreted as statement of
the ener~ theorem applied to friction layers. Howeverj this ener~
theorem which simply signifies that the work of the turbulent shearing
stresses equals the loss of kinetic energy in the friction layer does
not provide any practical help (for instance for setting up a calculation
method). As long as a sufficient statement for calculation of the
shearing stresses themselves is lacking, a link between the newly intro-
duced total work of the shearing stresses and the known friction layer

Q displacemquantities, ~x ent or momentum thickness, etc., also is

lacking. For the same reason, it is not even possible to calculate the
wall shearing stress; an approximation value for it must be inserted in
the Gruschwitz method. Thus the result of the present investigation is,
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on the whole, negative with respect to the problem of calculating in
advance turbulent friction layers; however, the test material represented
in the figures might prove useful for further theoretical considerations.

I
I

Translated by Maxy L. Mahler
National Advisory Committee
for Aeronautics
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