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CO~ECTION FACTORS FOR WIND TUNNELS OF ELLIPTIC.SECTION

WITH PARTLY OPEN AND PARTLY CLOSED TEST SEY2TION*

By

A wind tunnel of elliptic
closed test section contains a

F. Riegels

SUMMARY

section with partly open and partly
wing with rectangular lift distribu-

tion. we additional flow caused by the wall interference is detemined
by conformal representation.

The correction factor for an”elliptic jet of l:@ axial ratio is
plotted for several span-channelwidth ratios and several included
angles, that is, the angles which the lines connecting the end points
of the solid part of the tunnel boundary form with the center of the
ellipse. (Compare figs. 1 and 5.) As on the circular jet (refer-
ences 5 and 6), it is found that the correction for angle of attack
and drag becomes zero at a certain included angle. This angle varies
with the wing span.

The theory is so applied that it can be utilized also for elliptic
tunnels with different axial ratio. An extension to include wings
suspended over the median plane of the tunnel is likewise easily
possible.

I. INTRODUCTION

The finite boundary of jets causes additional velocities in the
flow, especially at the wing. As a consequence, the angle of attack
and the drag coefficient measured in the jet at a given lift must be
corrected. Calculations dealing with the effect of the jet boundaries
are numerous. Open and closed jets have been explored and also jets

*“Korrekturf&toren flr Windkan&le elliptfschen Querschnitts mit
,> teilwe~se offener und teilweise geschlossener Mess-st~cke.”

LuftfahrtforschungBd. 16, Lfg. 1, 1939, pp~ 26-30. ,
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whose boundaries consist partly of solid.walls and partly of free jet
boundaries (references 1 to 6).

The last arrangements have the advantage that they make it easy
to conduct a greater number of tests and also permit choosing a
boundary in such a way that the mean additional velocity at the wing,
and hence the correction factor, becomes exactly zero for the measure-
ments. If the wing model is suspended with the suction side downward,
jets with fixed boundaries produce additional downward velocities,
those with free jet boundaries, upward velocities. Therefore, it can
be expected that, with suitable distribution of fixed and-free boundaries
over the section, no additional velocity is produced at all.

The present article deals with the effect of a partly open and
partly closed

2.

With the

jet of elliptic section.

ELLrPTIC JETWW om SOLID WAIL (FIG. I)

assumption of small additional velocities whose squares
are negligible, and a nondeformed jet boundary, the determination of
the additional flow can be reduced to the consideration of the flow
condition in a section infinitely far downstream, where an additional
velocity exists which is twice as great as that at the wing (reference1).

Suppose that the jet has the elliptic section with the axes 2a~
and 2b’ shown in figure 1; the wing of span b = 2s and rectangular
lift distribution is mounted in the center of the jet section. The
chosen system of coordinates (x,y) has its origin in the center of
the ellipse, so that the shed vortices of the wing push through the
section at the points x = *S.

Now, the problem is to define an additional flow in such a way
that the boundary conditions are satisfied. They are: for the solid
part, disappearance of the normal velocity component; for the free
jet boundary, constant pressure, which for the assumed smallness of
the.velocity is identical with the requirement that the tangential
velocity component shall disappear (reference 1). But, as such an
additional flow is difficult to define in the z-plane,it is attempted
to find a plane by conformal representation in which the potential
of the required additional flow is easily obtainable. Now, reference 5
cites a report by K. Kondo which ‘treatsthe corresponding problem for
circular jet. The mapping function

z“ = c tan <

is used which maps the inside of a circle in the z“-plane on the inside
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of a strip in the ~-plane in such a way that a part of the circumference
is changed in the one, the remaining part in the other of the straight
lines bounding the strip (fig. 3). But in the plane of the strip, an
additional-poteritialthat satisfies the boundsry.conditions-is easily
indicated and, If it succeeds in mapping the inside of the ellipse on
the inside of a circle, the aforementioned representation is fundamentally
accomplished.

The procedure is,developed step by step. With the aid of the
function

.

( )z’. fisn~arcsin~ (1)

the inside of the ellipse in the z-plane is mapped on the unit circle
in the zl-plane (fig. 2), where 2K is the half real period, K the
modulus of the Jakobian elliptic function sn Z and

e. f 2at - ~t2

half the distance of the foci of the ellipse.

As to the theory of this mapping function, the reader is referred
to the report by de Hailer (reference 7) and the “Schwarzschen
Abhandlungen” (reference 8).

Next, the plane z? is rotated about fi/2 and followed by a
translation

tl _z– i 1

as a result of which the axis of
exactly separates the fixed part
part. (Compare figs. 2 and 3.)
The subsequent

projects these

transformation

2-c - iz’ (2)

the ordinates of the new z“-plane
of the circumference from the free
lbth parts meet in the points z“ = ●it.

z“ = c tan g

two points to infinity, where the arcs of the circle

(3)

change into straight lines of distance fi/2 (fig. 3). Combining these
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transformations produces finally the mapping function of the z-plane
on the ~-plane

[ 1
~ G - f~ sn($ a.. sin ~~ = arc tan– (4)

Siricethe derivative of this function is used later on, it is
given here

(5)

‘Kwhere, for abbreviation, — arc sin ~ = Z is introduced.
11 e

The boundary conditions, disappearance of the normal component
on the fixed part and disappearance of the tangential velocity on the
free ‘partof the circumference of the ellipse, can be satisfied now
in the ~-plane by repeated reflection of the original vortex doublet
at the boundaries. The result is the vortex system represented in
figure 4. The potential of this flow is readily defined, since the
vortex rows can be added up in horizontal direction (reference 5):

with ~’ + f~’ ad ~~ - iqi representing the points corresponding
to the vortex points z = 7s in the {-plane. The potential of the

additional flow is obtained by subtracting the potential of the
original flow in the z-plane from the potential F.
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Posting F = @ + i~, the mean additionaldownwardvelocityover the span in the z-plane is

; = *(-S) - $(s)
b

(8)

Hence the additionaldownwash at the wing is

~_~r

[

--—log E? ~ 2

1

tan (!o + E’ + iv’) tan (EO + ~~ - i~~)
(9)

2 kl’rs dz (~ = s) tan2 (EO + ~’) tanh2 q’

The mean downwash w servesto determinethe angle-of-attackcorrection

Putting, as usual

caF6
“8 F.

(lo)

where 5 is the correctionfactor, ca the lift coefficient,F the wing area, F. the cross-

sectionalarea of the jet, and

~ = Cavt
— (t = wing chord)
2

the circulation,the correctionfactor is

atbl
?5=—

{ I

d! 2log .52— +
402 dz (Z = S)

2 (50 + E’) tanhh~t+t&4 (E. + g’) tanh2~’tan2 (E. + ~’) + tanh27’+ tan
log

[ I 1.
(11)

tan2 (E. + E.’)tanh2~’ 1 + tan2 (E..+ E’) tmh2~’ 2

I

I

J WI
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For the calculation, the following relations are added.

For points of the major axis,the mapping function (equation”(l))
changes to

~? =

for O<x<e, and

x!=

.

for e<x <at

( )@sn ~ arc sin z. k
fi e’

*

(12)

(13)

with k’ Jdenoting the modulus k? = 1 - k2 complementary to k.
The points z = *s in which the vortices in the z-plane lie change
equations (12) and (13) to z’ = *sl; in the {-plane, the vortices lie
then at the points

1- + S12(2 - 4C2 + S12)
~’ = arc tan (14)

2ciP

1+s12+ 1 + S12(2 - 4C2 + Sf’)

~’ . arc tanh (15)

For the extreme case of
becomes

alb?
6=

4(&2 - bt2)

2CS1

a wing with zero span, formula (11)

~[-lm+a~+c]

where

c==#(1+k2)-]+@

(16)

is a constant solely dependent on the axial ratio of the elliptic
tunnel section.

—..———. .. . .. ... .
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30 ELLIPTIC JET WITH TWO SOLID WALLS (FIG. 5)

“In-thiscase,‘it i-sappropriate to map the inside ofthe elliptic
section on the inside of a rectangle (fig. 5). The fixed walls
correspond then to two opposite sides of the rectangle and the free
jet boundaries to the other two sides. The first step is the ssme as
before, namely, the inside of the ellipse is mapped on the inside of
the unit circle with the aid of the mapping function

‘(z!= ksn~ arc sin
)

~; k

given by equation (l). The inside of the unit circle becomes the
inside of a rectangle by mesms of the function

() G 2Z I

sn (; cos — =
2 1 + Z’2

(17)

(18)

if { represents the coordinate of the plane of the rectangle and

Cos El
F

is the modulus of the elliptic function sn L (compare

reference 6, p. 170), where @ is an angle specifying the tunnel
section opening ratio in the plane of the circle. (Corpare fig. 5.)
The connection between the ~-plane and the original z-plane is
therefore given by the mapping function

() 2~ sn (Z; k)
sn ~; cos ~ =

1 + ksn2(Z; k)
(19)

2Kwhere, for abbreviation, ~ arc sin ~ = Z, as before. The modulus k

is again dependent on the axial ratio of the elliptic section. The
square of the derivative.of this function is given by

16K?kcn2z dn2 z

()

d(2=
~2

z (20)
(e2 - 22)(1 - 2k cos G sn2Z + k2sn4Z)
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The conditions at the jet boundaries are satisfied by repeated
reflection of the vortex doublet on the sides of the rectangle, while
the sense of rotation of the vortices is
sides that correspond to the fixed walls
reflection on the sides of the rectangle
jet boundaries. The potential of such a
by (compare reference 6)

inverse for reflec~ion at the
and remains the same for
that correspond to the free
system of vortices is given

(21)

2 I
J

where ~~t is the location of the original vortex in the {-plane (in
the z-plane, the wing is in the center of the jet, hence z = 7s).
Subtracting from this expression,thepotential of the original vortex
in the z-plane

ri
F1 ‘.2fl— log =

z-s

leaves the potential of the looked-for additional flow

F=FO-F1

(22)

(23)

Since F = 0+ i$, the stresm function can be deduced, and so yields
the mean downwash over the span of a wing suspended in the center of
the section
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the

; = ~ $-(-s) - *(S)
.* -72s

r;= — log
41ts

s
= s

Cavt
r=—

2

and from the relation for the additional angle of attack

correction

v ‘a F
&=–=——b

v 8 F.

factor b follows as

I %cnZ dn Z(l - k2sn4Z)

(24)

(25)

albl

5=—

2s2‘ogF+@-2kCos Qsn2z+k2sn4z)“““’26)
where k is the modulus of
extreme case of a wing with
to

5=

I
the present elliptic function. For the
disappearing span, this equation simplifies

[

*

atbl

1 “-& -6kcos G + k2)
6(a!2 - b?2)

L

I

(27)

. .....
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4. RESULT

For an elliptic tunnel of I:@ axial ratio, the comection
factors 5 were computedby equations (11) or (16) and (26) or (27)
for wings with rectangular lift distribution for the span-major ellipse

b – O, 0..2,0.4, 0.6,axis ratios pat and’ 0.8 and plotted in

figures 6 and 7 against an angle q or ~ which is decisive for the
ratio of fixed wall and free jet boundary. It is noted that the
correction factors for p = O or O=nandq=2fior O= O,that
is, for completely open and completely closed jets, assume the values
given by Sanuki and Tani (reference 9).

The diagram indicate the distance which the solid part of the
jet boundary must reach to produce zero correction. The smount of
this favorable coverage varies with the span of the wing, as seen
from figure 8 where the angles for which b = O are plotted against
the span-tunnel width ratio.

Clearer than the plotting of the angles is the representation of
the ratio d/b’, where d is the distance between the major axis and
the point at which solid and free boundary meet (fig. 9).

In general, the span of a model wing for a tunnel of l:@ axial .
ratio snounts to about b = 0.7 x 2at. So in this case with the use
of one solid wall the covering would have to extend to ~ = 0.385 tobl

produce zero correction. By choosing a partial covering of the jet
boundaries with two solid walls, the correction would disappear for
~ . 0.64, SCIthat the last arrangement seems more promising in manY
bf
respects as far as experimental technique is concerned, but naturally
calls for more elaborate test preparations.

Translated by J. Vanier
National Advisory Committee
for Aeronautics

.



NACA TM 1310 11

REFERENCES

1.’Prandtl, L., and Betz, A.: Vier Ahhandlungen zur FIydrodynsmikund
Aerodynamic. Kaiser Wilhelm - .InstitutsfflrStrdmungsforschung,
G6ttingen, 1927.

2. Theodorsen,
NACA Rep.

3. Theodorsen,
cation of
NACA Rep.

Theodore: The Theory of Wind-Tunnel Wall Interference.
410, 1931.

Theodore, and’silverstein,Abe: Experimental Verifi-
the Theory of Wind-Tunnel Boundary Interference.
478, 1934.

4. Tani I., and Taima, M.: Two Notes on the Boundary Influence of Wind
Tunnels of Circular Cross Section. Rep. Aeronaut. Res. Inst.
Tokyo, Nr. 121, 1935.

5. Kondo, K.: The Wall Interference of Wind Tunnels with Boundaries
of Circular Arcs. Rep. No. 126 (vo1. x, 8),
Tokyo l%perial Univ., Aug. 1935.

6. Kondo, K.: Boundary Interference of Partially
Rep. No. 137 (vol. XI, 5), Aero. Res. Inst.,
Mar. 1936.

Aero. Res. Inst.

Closed Wind Tunnels.
Tokyo Imperial Univ.,

7. de Hailer, P.: L’Influence des Limites de la Veine fluide sur les
characteristiques aerodynsmiques d’ une surface portante. Comm.
de l! institute dl Aerodynamique de 1’ Ecole Polytechnique
Federale, ZUrich 1934.

8. Schwarz, H. A.: Gessmmelte Math Abhandlungen, Bd.11, p. 102.

9. Sanuki, M. and Tani, J.: The Wall Interference of Wind Tunnel of
Elliptic Cross-Section. Proc. Phys. Math. Sot: Jap. 111.s., Bd 14,
1932, P. 592.

I



II I II 1111 II Illmmlllllll I I I Ill Ill I Ill 1111111111 II 1111 II 1111111111I I lllmlm~ml 111111

I

12 NACA TM 1310

I

Iy

Q x

\
\

1

Figure 1.- The ellipticjetwithone solidwall.
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Figure 2.- Mapping ofz-planeon the z‘-plane.
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Figure 3.- Mapping ofthe z“-planeon the {-plane.
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Figure 4.- The reflectionsystem forcompliancewiththeboundary
conditions.
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Figure 5.- Mapping theellipticsectionboundedby two wailson a
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Figure 8.- The valuesof q and 0 forzero correctionfactorplotted
againstthespan-tunnelwidthratio.
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