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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1308

ON MOTION OF FLUID IN BOUNDARY LAYER NEAR LINE

OF INTERSECTTON OF TWO PLANES*

S s S S

By L. G. Loitsianskii and V. P. Bolshakov

SUMMARY

In the paper "The Mutual Interference of Boundary Layers," the
authors investigated the problem of the interference of two planes
intersecting at - right angles on the boundary layers formed by the motion
of fluid along the line of intersection of these planes.

In the present paper, the results of the preceding one are general-
ized to the case of planes intersecting at any angle. The motion of a
fluid in an angle less than 180° is discussed and the enlargement of the
boundary layers near the line of intersection of the planes, the limits
of the interference effects of the boundary layers, and the corrections
on the drag are determined. All computations are conducted by the
Karman-Pohlhausen method for laminar and turbulent boundary layers. The
results are reduced to tabulated form.

INTRODUCTION

The problem of the interaction of the boundary layers formed in the
dihedral angle between two thin plates parallel to the intersection of
the plates was apparently first proposed in reference 1 (for the case
of a right angle). In the discussion of reference 1, the need for a
generallzatlon of results obtained for the case of the right angle to
the case of any angle less than two right angles . (1800) was pointed -out..
The present paper is concerned with this problem and its solution.
Although the limits of application for. the approximate method of the
finite~thickness layer previously used are retained, the problem of the
interaction of the boundary layers near the intersection of a dihedral
angle of any magnitude from 0° to 180° is solved herein. For a laminar
layer, a first and a second approximation are given. and.also, for a
check, a sixth approx1mation (in the terminology of Pohlhausen) It is

*"0 Dvizhenii Zhidkosti v Pogranichnom Slbe Vblizi Linii Peresechenia
Dvukh Ploskostei." Rep. No. 279, CAHI, 1936, pp. 3-18.




2 NACA TM 1308

shown that the sixth approximation differs comparatlvely little from the
second. In conclusion, the case of a turbulent boundary layer is considered
with the assumption of the validity of the '1/7' power law for the velocity
profiles. As in reference 1, all computations can be carried through to
the end, although the procedure is somewhat more cumbersome. The limits

of interference of the layers and the correction on the drag due to the
interference effect are determined.

1. DERIVATION OF FUNDAMENTAL INTEGRAL CONDITION

Congider the flow of a fluid, approaching from infinity with
velocity 7V, In the dihedral oblique angle 6 between two plates of the
game finite length x along the flow and infinite in the transverse
direction (fig. 1). The Y- and Z-axes are taken along the leading edges
of the plates and the X-axis along the flow parallel to the line of
intersection of the plates. In the oblique system of coordinates thus
obtained, the distribution of the velocities in the boundary layer may
be given in the same manner as for the case of the rectangular system
of coordinates for the flow in a right angle.

If each plate worked independently of the other, there would be
formed on it a layer of thickness 8j, which is a function only of x

and the profile of the longitudinal velocities

u

o = uo(x, z, sin 6)
or

uy = ug(x, y, sin 6)

depend.ing on whether the boundary layer is considered to lie in the
plane XOY or XO0Z.

Because of the retarding effect of one of the plates on the other
near the line of intersection, the layers must not be considered as in
the plane problem. The layers become three dimenslonal and the thick-
ness will now be a function of two variables:

® = 8(x,y) on the plate containing the Y-axis
® = 8(x,z) on the plate containing the Z-axis

The component of velocify parallel to the X-axis, which will be denoted
by u without the subscript O, will be a function of the three
variables; that 1is,

u = u(x,y,z)
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By the conditions of the-problem, under the basic assumption of the

. concept of a finite region of influence of the viscosity, this function
. must become zero on the surface of the plates, a constant at the outer

1imit of the boundary layer, and, particularly, at a finite distance from
the line of intersection of the plates, must become the velocity distri-
bution ug(x,z, sin 6) "or ug(x,y, sin 6), which corresponds to the
isolated plate with boundary layer undisturbed by the ad jacent plate.

The boundary separating the reglon disturbed by the adjacent plate from
the undisturbed region, which corresponds to the isolated plate, shall,
for briefness, be denoted as the "interference boundary'" of the layers.
The equation of this boundary in the planes X0Y and X0Z will be

hg = ho(x)

A gection of the boundary layer cut by the plane x = & 1s shown
in figure 2. Inasmuch as the coordinates of the system YO0Z are
oblique, the equation of the boundary layer in thls gection for the
undisturbed region for y>yo(&), where

v, (&) = ho(g) - zl(g) cos 6 = ho(g) - 80(5) cot 6, will have the form

5o(&)

gin ©

z = 29(E) = (1)

Tt
Equation (1) holds true both for 6<s and for 9>%. The non-

coincidence for 6 #£ g— of the interference boundary ho(g) and the

coordinate ¥y, (8) should be noted, from which starting point the

ordinate =z of the outer 1limit of the boundary layer becomes and remains
constant, independent of y. All thet has been stated about the YOX
planes also remains true, of course, for the Z0X plane (because of

the symmetry yi(E) = zl(g) and yz(g) zo(E), which should be remembered

in the following development).

For the present, the question as to the equation of the boundary
layer in the section x = &. will be ignored. The fundamental integral -
condition of the problem will now be set up. For this purpose, as In
the work previously cited, the momentum theorem is applied for a tube
of flow formed by the coordinate planes, by the surface of the lines of
flow passing through the edge of the boundary layer at section x = x,
and, rinally, by the surfaces of the lines of flow passing through the
perpendiculars to the plates located at the points = hy(x) and

= ho(x), where the part of the flow tube considered is between the

gections x = x and the section located upstream of the flow at a
gsufficient distance from the section x = O, that 1s, from the entry of
the fluld on the plates. Then, as is known,
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p(V-u) ndo =W S (2)
Jo) ,
‘where W is the drag of the pldtes applied to the segment of the flow

tube considered and O 1s the section of the boundary layer cut by a
plane perpendicular to the X-axis at distance x from the origin O.

The double integral on the left may be expressed in the following
manner (fig. 2):

J1 I2
(V-u) u do = sin 6 dy p(V-u) u dz +
(o) 0 0
. T2 z
j‘ dy p(V-u) u dz +
A

yo+z, cos 6-y
N
Yyo+zy cos O o5 O

2 dy o(V-u) u dz (3)
Yo 0

where 2, the ordinate of the outer edge of the boundary layer, is, as
yet, an unknown function of y and x if the angle 6 1is considered
as a parameter maintaining a constant value for the given problem. The
first two integrals have a very obvious origin; the presence of the last
integral is due to the obliqueness of the coordinates and the differences
in the direction between the ordinate zj(x) and the thickness of the

layer SO(X), which makes it necessary to take the integration over the
two areas of the triangles shown hatched in figure 2.

The drag W, as is easily seen from figure 3, is determined by the
integral :
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S _“x . FO(;) h(x) X o (E)+2(E) cos 6
W=2z S wdy + 16 aylae =2 | ||
0 h (%) 0 0
¥o(x)+z1(x) cos 6
To dy|4dg - (4)
72(&)+2,(E) cos 6

where 1 denotes the friction stress in the region S8 disturbed by the
ad jacent plate and 'to denotes the corresponding stress in the undis-

turbed region SO. The boundary between the regions S and Sq 1s,
of course, the boundary of interference of the boundary layers.

Combining equations (3) and (4) yields, in general form, the
integral condition of the problem:

sin 6 X X p(V-u) u dz +\Y f o(V-u) udz +

yo+zq cos e—y

Yo+zy cos 6

cos 6
2 dy o(V-u) u dz
Yo _ 0
x[ Ay, (E)+21(E) cos 6 Yo (x)+2z,(x) cos 6
=2 Tdy + To dyjdak
0 0 " Jyp(E)+z(E) cos 6

(5)
Equation (5) is a generalization of the integral condition derived in
the previously cited paper for the case of a right-angled dihedral
(6 = E). The limits of 1ntegration are as yet unknown functions of the

arguments. In order to determlne the form of these functions, 1t is
first neEessary that the shape of the houndary layer be glven

T dy +
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2. SHAPE OF CROSS SECTION OF BOUNDARY LAYER; VELOCITY DIAGRAMS;
SOLUTION OF PROBLEM BY FIRST APPROXTIMATION
The section of the boundary layer on the plane x = ¢ (fig. 2) is

considered and it is assumed that the equation of the curve defining the
edge of the boundary layer is

£(y,z) = a(k,e) 7
7= yp(8) ) (6)

z = 22(5)

WA

71 (8)

nA

z_ (&)
1 J
The form of the function f(y,z) cannot be determined unless the
additional assumption is made as to the similarity of the approximate
velocity diagrams in the different planes x = E. The curve is sought
in the form

u_ |f(y,z)
V" Q[azg,ej] (7)
where the function @(t) 18 subJected to the conditions

®(0) = 0

(8)

(1) = 1

and the function f(y,z) 1is subjected to the conditions

£(0,z) = £(3,0) = 0 (9)
Then the diagram of velocities of equation (7) will evidently satisfy
the end conditions of the problem at the walls and at the edge of the
boundary layer of equation (6). Setting
1(&,0) ¥

1(k,0) z°

y

Z

n

where 11(£,8) is a certain length characteristic for the section x =&
and y' and z' are nondimensional magnitudes, yields equation (7) in

the form
u f(1-y',1-2")
v=¢ a(E,0)
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From the condition of similarity of the velocity dilagrams, the right side
of this equation must not contain &, which can be the case if f(y,z)

.is .a. homogeneous function of the nth degree, .so.that .

1(E,0)

% ¢[}EIE‘57 f(y',z'ﬂ

where

.lfiéiél = constant (10)

a(g,0)

the constant depending, of course, on 6. It 1s easy to see that the
degree of homogeneity should be equal to 2 (n = 2) and the function
f(y,z) must simply be equal to the product of the variables yz because
otherwise, with conditions (9) satisfiled, the derivatives of the velocity
with respect to the coordinates would become zero at the walls and would
not give any friction. From equation (6), the following equation of the
edge of the boundary layer at the section x =¥ 1s obtained: '

yz = a(g,0) (11)

where, from equation (10), for example, choosing the coordinate
y1(€) = 21(E) of the undisturbed layer for the characteristic length

1(£,0) yields
a(k,0) = k(0) zl _Eiﬁl_ e (12)
81n 0

where Xx(6) 1is a certain nondimensional constant parametrically
dependent on the angle 6.

Tt is now easy to obtain the magnitudes yo(E), hg(), and the
function Z(y,E,0) for given angle 6. From equations (11) and (12),

72(8) = afze) = x(6) z1(8) = KO 5, (x) . (13)

where B (E) is a known function of ¥ independent of the angle 6

and, determined by solving the problem of the boundary layer of the
1solated plate.

From the definition of the interference boundary ho(E) given 1in

equation (1),
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hO(E;G) = 7o(E) + z1(¥) cos 9“=[;(9) +'co§'9 z1(8) = k(egi; gos 9'50(5)

(14)

Finally, from equation (11), there directly follows that

(15)

2
7(3,5,6) = a(*i;@) _ x(e) . 80°(®)

sin2 o y

Tt is easily verified that, for y = y,(E), Z becomes zl(g). The
velocity diagram in the disturbed region of the boundary layer will
therefore be smoothly Jjoined with the velocity diagram in the undisturbed
region, that is, with the diagram of the isoclated plate.

When the equation of the boundary layer is found, the required
velocity profile is obtained from equation (7):

v <;(€:9)) ' e
or from equation (15): |

u z

v “’(zzy,z,@) D)

If Y denotes the variable ordinate of the edge of the boundary layer,
that is, the magnitude that, from equation (ll), satisfies the equation

Y-7 = a(k,06)

then
n ) y . '
\7,=¢(Y(z,g,95) (171)

It is important to note that equations (16), (17), and (17') are true
not only for those values of y and =z that satisfy inequalities (8):

y,(E,6)% 52 5,(E,6)
zl(g,e)f zizz(g,e)

but in the entire range of interest:
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037 £32(%,0)
05z §2,(Z,0)
When tﬁe veiocifies of the pointé loc;ted'ih the rhomb
03y S2,(8,0)
0< 252, (£,0)

are considered, the boundary layer for these points 1s as though infinite,
but the velocities are determined from computation on the hyperbolic edge
of the boundary layer. '

The velocity profile has thus been determined arid the edge of the
boundary layer is known. Substituting the values of u and Z in the

integral condition (5) yields an ordinary differential equation with one
unknown a(&,8) inasmuch as all the magnitudes involved, including the

friction at the wall
H._l_(_z)
gin O 2/7-0

1 U0
To = H ST e\S
z z=0

are expressed in terms of this function.

_q
]

As is eagily seen, however, the differential equation reduces to
a gsimple equation in finite form for determining the coefficient k(8)
appearing in equation (12). In order to obtain this single unknown
coefficient, certain boundary conditions are assigned for the function
®(t) and its derivatives, as in the classical Kérmin-Pohlhausen method.

A consideration of the first.approximation ig the first step. The
function e(t) is subjected only to the conditions

®(0) = 0

1

¢ (1)

that is, the velocity u(x,y,z) becomes zero &t the walls and 1 at the
outer limit of the boundary layer, which leads to the profile
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u_ _Jz .
v aZx,Gi (19)

For substitution in the integral condition, the integrals that enter
this condition are first computed:

J1 22 J1 z
v i v 5’127‘22 1
dy —— vy dy 2 dz = Loaxe) v
o 26,07 ) oEy o = £ 200)
I2 2z 2 y
Vr dyf f dyf
J1 0 Y1 0

\Y —z—a 2(x.6) 45 . %Va(x,@) log, 2(—’5359-)
T1

|

it

yo+zq cos O-y

y2+zl cos O o5 O
2 dy u dz
Yo 0
(x) ho(x)-y
O “cos 6
=2 ( ) z dz
v 2 2
= h x)-2hA(x + d
T, [ )20 7 + 7w e

]

v 1 1 2 2
alx,0 [3 a(x,0) v.l cos 8 + = yl cos 9]
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In a similar manner, the integrals of the square of the velocity are
computed. The development will be limited to compubting the integrals

“Just-given end the remaining ones are written out In ready form:

J1 Zo
dy w? dz = % V2 a(x,6)
0 0
a(xl)e ,
Y2\ v
dy u? dz = %Vz a(x,0) log, ij%e—)
y1 0 o
ho(x) -y
0
ho(x) cos 6
5 al1 1 y14 cos” 9
e dy u® dz = Vlg y; cos 6 + T35 a(x.0)  *
Yo 0 ’

Thus, the left side of the integral condition reduces to the form

)p(V—u) u do = sz sin Q[E— (x,0) + L a(x,0) log, a(x,0) +

(o 36 & 6 2
I1
4 a2 6 3
.l_zcose.,_.iyl cos G_Lylcose
g1 60  a(x,0) 30 2(x.0)
2

The computation of the right side of integral condition (5) reduces to
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Tay + Ty Ay|dE = = bV Ly Ay +
0 0 h(E) ° sin 0 Jo 0 a(g,o) )

ho(x

)
ylz(g)
bV 355—51116 af£95d£+
n, (%)

X

a(x,0) aE a(%g
2 yl(x) XO yl(E) + Zyl(x) cos 6&‘ 7 E S\ ¥ 5 az

According to the first approximation for the isolated plate (according
to Pohlhausen),

12v
8y(&) = *V‘g
8(%) 1 TovE
718 = sm s =sma V¥
X X
dE oo X a&E 17 .
= gin 6\[ — —= = = = 5.(x) sin 6

yligi 12v\[: .vfg 6 v -0

0

go that

X
2
W____I‘f'_v_cosze Z‘:(L (E; ax -\[\ g(—%ﬁ)‘d&;"_
£ y1°(E)

_J_._a_(zc_,_?_)v sin2 © +3]:602(x) Y cos 6
3 v v
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All these expressions are immediately simplified as soon as equation (12)

is considered; then

k(e)

1n

a(k,6) = 602(5)

After all the simplifications are made, the following equation for
determining k(@) is obtained:

cos 8 2 cos2 6 1 oos3 e

k(0) " 5 i2(g) " 15 13(e)

It is readily seen that, for 6 = 2, equation (20) becomes

19% k(éj' -£. (20)

2
k=2
loge 3

k= 1.95

ag given in the previously cited work on the interference of the boundary
layers on mutually perpendicular plates.

The explicit dependence of k¥ on 6 is not given in equation (20).
This relation may be obtained by.the following simple device: When

cos 6

K8y - % - (@)

equation (20) becomes

2 2 1
+ ¢ + = = o+ 5

o 0o

(22)

When the values of ¥ are given in the interval where the absolute value
of the right side of equation (22) will not exceed 1, the corresponding
value of 6 1s obtained, ¢ is determined, and then k(e) is found

from equation (21). It would also be possible, of course, to proceed in
another manner: TEquation (22) may be rewritten

cos 6 = ¥e

Srx+sf ey
k(%) = e (221)

From a given value of ¥, k(¥) is obtained and then cos @, and so forth.
The simplest method is to draw the function
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1 = ¥(¥) = ¥e ~ (23)
and obtain itg Intersection with straight lines parallel to the Y-axis
. M1 = cos 6
and then to obtain k from Z..
The values of 69, k(6), and %(8) are tabulated in table 1,

The dimensions of the region of interference of the layers are first
determined. According to equation (14),

ho(x,G) = m(8) 5o(x) (141)

where

k + cos 8 1+ %
sin O = g cot 6 (24’)

m =

The values of m for different 6 can be determined from table 1
The value 6 = 180° is somewhat isolated; for this value of 6 the
value of m becomes indeterminate. The value of m can easily be
obtained, however, by the usual device of analysis:

(;Etz§> =<§§ coa? é) _ £ By sin 6 ' 6
ten 6/g_, \36 Omert ¥W(y) + 2 v' () |y

6=1

so that, for 6 = 180°, ¥ = -1 and m= 0. The values of m(6) are
given in the last column of table 1.

The correction in the drag of one side of the plate due to inter-
ference of the layers may be computed by the equation

1 hO(E)

AV = | (1) dy |a (25)
0 0

inasmuch as the difference in the drag may show up only in the region S
(fig. 3). The quantity 1 is the length of the plate in the direction

of the flow.
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The integral equation (25) 1s readily computed and yields

1  2(§)le(g)'cos e

3
n

.(To ":) dy dg
0 0

opl 5 (8)+2 (E) cos 6 .,
sin 6 J, {Jo z1(8)  a(&,06)

2
pv _ cos® 6
= 5 5in 'G_E:(e) k"(‘e'j']' t

Finally,

AW p(8) u V1
(26)
k2(9) - cos® @

p(®) 2k(6) sin 6

If I, denotes the width of the plate in the direction transverse
to the flow and the effect of its free end is not considered, the
relative correction due to the interference of the boundary layers may
be computed :

AW p(8) p VI D(6) lafv

W oo.578 Lw,up Vs 0978 LIV

or, when the Reynolds number R; of the plate, which is equal to Vi/v,
is introduced,

AW 1 1
MW g(e) Lo (27)
W L
VR,
where qf6) denotes the relation
_p(8)

Generally, the correction obtained is extremely insignificant for plates
that are long in the transverse direction. If, however, the transverse
length 1, is comparable with the width of the region of the disturbed

layer at the end of the plate x =.1, the correction is not insignificant.
Thus, if
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L =‘n-ho(Z) = n-m(g) '80(7’). = n.?(e)q ,lé\’z

the relative correction willl now be equal to

aw o _a(e) 1
W

) A/12 m(e) ™

or
AW |s(8) PerC_en;“
# L ()
where
0
s = 100 a(8) (29)

/12 m(0)

All the magnitudes introduced in the preceding equations may be expressed
in terms of the previously given parameter £ :

mm=§f
%

Q(Z) = I}‘m cot @

cot 6

(30)

—_—

s(y) = 1-Z 100

1.1564/12 )

In table 1, it is possible to find the values of these magnitudes for
different angles 6 or the corresponding values of the parameter Y.

The magnitude s(0) increases with an increase of the angle 6. Some-
what paradoxical is the value of 50 percent for s(8) at 6° = 180

and m = 0. It is found that the region of interference is equal to
zero, and that a relative effect occurs on the drag, which is due to the
fact that the width of the region and the abgolute correction on the
drag simultdneously approach zero. On the other hand, when ¢ decreases
to O and m-aw, s decreagses to 16 percent. Both these cases are

limiting cases.

In figure 4, the curves of the relation between Z and 6 are
drawn for the first and other approximations and also for the case of
turbulent layers.
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3. SECOND AND SIXTH APPBOXIMATIONS '

" The followlng approximatlions differ from the first only 1n the
boundary conditions that are imposed on the function o(t).

The second approximation qorresponds to the assumptlons
@(0) = O
®(1) =
'(1) =0

The veloclty profile for these conditions will have the form

- \2
_ yz _ yz
=V 2(&1:{,95) (a.ix,GS)
No new difficulties in prilnclple, as compared with the flrst approximation,
are obtained. Inasmuch ags the basic computations have been explained in

the first approximstion, the results are presented with the same
notations.

The magnitudes are all given I1n table 2.

The final form of the equation for the determination of k(8) 1is

41 + 3 cog O + 15 cosz 6 + 2 cos3 6 _ _S cos4 ?)
120 4k(06) 28 2(9) 21 3(9) 168 4(9)

log k(6) =
e

5
_l cos¥ 6
—— (31)
The solution 1s effected by the same device as in the case of the flirst
approximation.

All computationa were also carried out for the sixth approximation,
by which 1g meant the resulte of the assumption of the following
boundary conditions:
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il
iy

®(0) =0 - - @(1)
9'(0) =0 . @' (1) =0
¢""(0_) -0 q,"(l)  = 0
@"(1) = O

This approximation gives, for the undisturbed layer, the velocity

oo @) S @]

and the followling values of the frictional force and layer thickmess,
which are extremely clogse to the accurate solution of Blasius-s

0.3314 /EEZE
0 : X
lex
50 = 6.048 v

It is therefore reasonable to suppose that, for investigating the prob-
lem of the interference of the layers, the sixth approximation is
considerably more satisfactory than the second.

T

The results are agaln collected in table 3.

In figure 4, the curve of ¥ against 6 1is given for the second
and sixth approximations.

As before, the equation for the determination of k(6) is also
glven

: ' cog 6 cogs” 6 6053 6
Loge i = 0.1857 + 0.6570 252 + 0.6107 22 4 0.1045 252
4 5 6
0.0524 225 € . .0053 S%°5= 9 | 0.0025 S22 © _ o.0001 S°8_ €8
_ A | 5 5 7

(32)
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4. INTERFERENCE OF TURBULENT BOUNDARY LAYERS

For the solution of this concluding part of the problem, the well-
" known '1/7' power iaw is’ applied which, when the boundary layer is
not two dimensional, assumes the form .

e V[R%Z‘e'y]lh_ (33)

As is known, for an Infinite plate without interference of the -
layers, this law.gives excellent agreement with experiment; it may be-
expected that the application of the '1/7' power law to this case will
be Justified by experiment. _ .

The generalized integral condition (5) is substituted in the
velocity-profile equation (33). Unfortunately, the integrals will now
not be so easlly evaluated because the presence of fractional exponents,
particularly in the integrals taken over the hatched areas of the
triangles shown in figure 2, strongly complicates the computations and
leads to the necessity of taking integrals of binomial differentials.
All the computations can be made with a sufficlent degree of accuracy,
however, by using converging series and integrating them. The left
gide of the integral condition reduces to the following expression:

o(V-u) u do = pV° a(x,0) sin 6 €0.1607 + 0.0972 log, a(x,0) ,

2
v, (x)
ylz cos B ylz cos 8
0.1360 - 0. 0231 —_——
36 ——?——57—— a(x,e) +
le cos 6 3 ylz cos 6 4 :
0.0023 —;IE?EY—— - 0.0004 a(x, o) + . . . (34)

In computing the right side of the integral condition, the
Karmén formula is used for the expression of the friction at the wall
in the undisturbed region of the layer:

1/4 \1/4
= 2 = 2 v
T, = 0.0225 oV (V?’o) = o.ozz_s pv -(V-Vl T 9) . (39)
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In the disturbed part of the layer, the analogous.formula

| - 1/4 _ | o 1/4. -
hd = —_
<= 0.0225 sz(vs) = 0.0225 "Vz(vz. v )

. 1/4
= 0.0225 pV'z(v a(x‘,.'e% = e) (36)

ig assumed. These values are substituted, as in the previous sections,
in the formula for the resistance of the walls forming part of the

boundary of a tube of flow. Then,

x[[ o (%) ho(x)
We=2 Tdy + < dylaz = 0.1943 pv? ao(x)[a—(’(‘-:-gl +
0 0 Jh,(¥) 0 2 I X
X
11 r1
- T 1
y (x) cos o+ p v ‘i - 0.0090 a(k,0) dE |
- 5
1 4
sin 6 y
\Jo 1
[~ N 19
y, “(&) cos? 6 7, 4(&) cosd e
0.0056 dE - 0.0014 a
a(€,6) a2 (&,0) 5+
JO Jo
N 2 ~* 35
4 " " 4
v (E) cos™ 6 Y1 (E) cos® 6
0.0006 = dg - 0.0003 iy +
a°(E,6) at(k,0)
\Jo Jo
X
43
*(8) cosb o
y cog .
0.0002 L g+ . .. (37)

35(5)6)
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The Kermsn formula was then used:

o (i)l/s

So(x) = 0.379 Tx x |
When it is known (see equation (12)) in advance that the solution of the

problem will have the form

' 2, 502(")
a(x,6) = k(9) ¥y (x) = k(o) — . (38)
. sin @O

this value 1s substituted in equations (34) and (37) then, after some
simplifications, the following solution is obtalned:

VZSOZ(.'XZ) W
p(V-u) u 40 = p ~—~————\0.1607 k+0.0972 k log, k+0.1360 cos 6 -
Pe ] gin 6
cos2 2] ] cos® 6 cos? 6 cos® 6
0.0230 ——— 4+ 0.0023 ——— - 0.0004 ——— + 0.0001 —/™— 4+ . . .
k 2 3 4
'S X k
2
VzaO (x) cos2 6
W=p ———C0.1949 k + 0.1949 cos 6 - 0.0195 k + 0.0122 228~ _
gin 6 k
3 4 5
0.00305 %ﬁ + 0.00133 2°2° 8 . 0.00073 @Tﬁ b
k K3 Kk )

Equating these two expressions ylelds the following equation for
determining k(6):

a2 . 3
log, k = 0.1518 + 0.6056 2222 4 0.3632 _1;2_2 - 0.0556 cois 0,
4 5 6
0.0175 2988 _ . 0082 %°5_ 0 | o.0051 %228 . . . .
k4 k5 ks

As in the preceding sectlions, the change of variables ls made:

Foay- = %(8) | (39)
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The transcendental equation then becomes

cos 6 = ¥ exp (O. 1518 + 0.6056 z;+ 0.3632 zz - 0.0556 ¥3 +

0.0175 ¥+ - 0.0082 ¥5 + . . .) (40)
This equation is easily solved by the tabular method, where
0°< o< 180° 0.5540 >&> - 1.0000

The corresponding values of 6, k(6), and ¥(6) are given in table 4.
The further investigation in no way differs from that for laminar layers.
The values of the coefficients characterizing the boundary of the region
. of interference and the corrections on the drag are given in table 4

for various values of 6, with all the computations ommitted, in the
notation previously used.

In connection with the formulas of bturbulent friction, the
coefficients q and p are determined by the formulas:

( )2/5 (41)
AW = V 1 41
pee D
and
1/5
AW 1V :
w8 f(ﬁ) (41)
The dependence of p on ¥ 1ig determined by the following series:
p = %:cot 6 (0.00133 - 0.00083 Zz + 0.00021 %3 -~ 0.00009 ;4 +
0.00005 %5 - 0.00003%6 + . . .) (42)
__D
4= 5,036 (43)

The dependence of ¥ on 6 18 given for the case of turbulent layers
in figure 4. The boundary of the region of interference (the
coefficient m(6)) in the case of the turbulent layers differs little
from the corresponding boundary of the laminar layers, according to
the sixth approximation; whereas the relative correction on the drag g
in percent is several times less in the turbulent case.
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CONCLUSION

The results obtained have a readily understandable form. In general,
the effect of the interference of tlie layers on the drag of the plates
is insignificant. The effect assumes an appreciable value only in the
cage wvhere the plates in the dimensions transverse to the flow become
comparable with the width of the region of dlsturbed boundary layer.
Moreover, interference plays a large part in the motion of flulds through
small dihedral angles. Thus, for example, in the motion near the inter-
géction of a dihedral angle of about 10°, the region of interference
exceeds by 16 times the thickness of the layer at the given section.
At smaller angles, the phenomenon is still more marked.

A1l the conclusions of the present and preceding papers require
experimental check.

By agreement with the Central Aero-Hydrodynamical Institute, the
asrodynamic laboratory of the Leningrad Industrial Institute is under-~
taking an experimental investigation of the ' phenomenon of the inter-
ference of boundary layers. It 1s proposed, through use of the method
of microtunnels, to observe directly the distortion in the velocity
profiles, and so forth, of the phenomenon.

The present work was carried out at the Aerodynamic Laboratory of

the Ieningrad Industrial Institute.

Translated by S. Reiss,
National Advisory Committee
for Aseronautics
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TABLE 1
-6 k(0) | ¥(8) | m(6) | .p(8)| a(o) 8(6)
(deg) (percent)
0 [.2.894] 0.3455 had o - 16.3
10 | 2.880 .3419122.257|7.324 |12.671 16.4
20 | 2.840 .3309(11.315|3.697| 6.396 16.7
30 12.773 3123} 7.278|2.503 | 4.330 17.2
40 | 2.682 .2856 | 5,36411.916 | 3.315 17.8
50 {2.567 .2504 | 4,19011.570| 2.716 18.7
60 | 2.434 .2054 | 3.388(1.346 | 2.329 19.8
70 12.283 .1498 | 2.79311.187 | 2.054 21.2
80 | 2.120 .0819) 2.329(1.069 | 1.849 22.9
90 11.948 1.948) .974 | 1.885 25.0
100 [1.773 1 -.0980| 1.624| .892| 1.543 27.4
110 {1.601| -.2136| 1.340 .813 | 1.407 30.3
120 {1.442 | -.3467 1.088| .732 | 1.266 33.6
130 [1.300 | -.4945 .858| .641 | 1.109 37.3
140 |1.185 | -.6464 .6 2| .536 .927 41.0
150 {1.099 | -.7880 466 417 .721 44.7
160 |1.042 | -.9018 .301| .285 493 47.3
170 |1.010 | -.9750 144 .142 .246 49.3
180 | 1,000 (-1.0000 ] O 0 0 50.0
TABLE 2
) k(e) | ¥e) m(e) | p(6) | a(e) s(6)
(deg) (percent)
0 |2.217| 0.4511 L] o o 13.7
10 |2.205 .4466 118.360 (10.162 |13,921 13.8
20 (2.168 4334 | 9,090 5,148 | 7.052 14..2
30 |2.108 .4108| 5.948 | 3.584 | 4.910 14.7
40 |(2.026 3781 | 4.343 | 2.702 | 3.701L 15.6
50 11.925 .3339 | 3.352 | 2.233 | 3.059 16.7
60 (1.808 .2765| 2.665( 1.928 | 2.641 18.1
70 11.678 .2038 | 2.150 | 1.712 | 2.345 19.9
80 |1.542| .1126| 1.742| 1.546 | 2.118| 22.2
90 11.407( O 1,407 ] 1.407 | 1.927 25.0
100 |1.284|-0.1353 | 1.127| 1.279| 1.752 28.4
110 {1.182|-0.2893 .894 | 1.153 | 1.579 32.2
120 11.108 |-0.4513 702 | 1.018 | 1.395 36.3
130 {1.060 (-0.6064 .544 8751 1.199 40.2
140 {1.032 {-0.7422 414 | L7201 .988 43.6
150 |1.016 {-0.8524 .300 .556 . 762 46.3
160 |1.007 |-0.9332 .196 379 .519 48.3
170 [1.002 |-0.9832 .097 .192 .263 49.6
180 |1.000({-1.0000]| O 0 0 50.0
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TABIE 3
6 | k(e)| ¥(e) - | m(6) | p(6)| a(6) 8(6)
“{(aeg)| A T - |(percent)
0 {1.969| 0.5079| = - - 12.3
10 |1.957| .5032|16.940|8.416(12.713| 12.4
20 |1.921| .4892| 8.365(4.272| 6.453| 12.8
30 |1.863| .4648| 5.458(2.921| 4,412 13.4
.40 [1.783| .4296| 3.965/2.262| 3.417| 14.3
- 50 |1.685| .3815| 3.039]1.879| 2.838| 15.5
60 [1.572| .3181| 2.393{1.631| 2.464| 17.0
70 {1.450| .2359| 1.907|1.457|.2.201| 19.1
80 [1.327| .1309| 1.524|1.324| 2.000| 21.7
90 |1.204| O . | 1.204/1.204| 1.819| 25.0
100 {1.1068(-0.1571f .946{1.094| 1.653{ 28.9
110 {1.038|-0.3295| .741| .985| 1.480| 33.2
120 |1.004 {-0.4982 | .582| .887| 1.340| 37.5
130 |1.000|~0.6428 | .466] .766| 1.157| 41.1
140 [1.000|~0.7660| .364| .643| .971| 44.2
150 [1.000|-0.8660| .268| .500| .755| 46.7
160 |{1.000 |~0.9397 | .l76| .342| .517| 48.5
170 [1.000{-0.9848 | .088| .174| .263| 49.6
180 {1.000 |-1.0000| O 0 0 50.0
TABLE 4
6 | x(8)] g(e) | m(e) | p(6) | a(6) | s(6)
(deg) (percent)
0 [1.805| 0.5540 - - - 5.35
10 [1.796| .5483|16.010 [0.0115[0.3189 5.38
20 |1.767| .5318| 7.915| .0058| .1614 5.51
30 |1.720} .5035| 5.172| .0039| .1094 5.73
40 |1.654| ,4631| 3.785| .0030| .0839 6.03
50 |1.577| .4076] 2.898 | .0025| .0689 6.43
60 |1.485| .3367| 2.292| .0021| .0594 7.00
70 {1.382| .2475| 1.835| .0019| .0525 7.73
80 |1.273| .1364| 1.489 ) .0017| .0472 8.68
90 |1.164| O 1.164 | .0015| .0431| 10.00
100 [1.065{-0.1631| .905| .0014| .0394| 11.76
110 |1.000 |-0.3420| .700| .0013| .0364 | 14.05
120 |1.000 |-0.5000| .577 | .0012{ .0325| 15.22
130 [1.000 (-0.6428 | .466| .0010| .0280| 16.24
140 |1.000 |-0.7660|.. .364 | .0008| .0230{ . 17.08
150 ]1.000 |-0.8660| - .268 | .0006| .0178| - 17.95
160 {1.000 |-0.9397.| .176| .0004{ .0122| 18.73
170 |1.000 (-0.9848 ! ,088 | .0002( .0064 | .19.65
180 |1.000 |-1.000 | O 0 0 19.97
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Figure 1.
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