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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1303

.~ RESISTANCE OF CASCADE OF ATRFOILS IN GAS
STREAM AT SUBSONIC VELOCITY*

By L. G. Loitsianskii

A method of computing the resistance of a cascade of ajirfoils
in a viscous compressible gas flow is described.

The case of an incompressible gas is considered in reference 1
and appears herein only as a simple particular case of the general
theory of resistance of a cascade in a compressible gas.

The investigation was restricted to subsonic velocities (that
is, when the local velocity of sound is nowhere reached on the air-
foil surface) because the required. assumption of isentropic flow,
that is, the absence of shock waves in any region of the motion,
is valid only under these conditions.

The second reason for the restriction to relatively small
values of Mach number is the possibility under this assumption of

applying a 1lift formula analogous to the well-known Joukowsky

formula (reference 2) and of thus assigning a definite meaning to
the term "cascade resistance" or, more accurately, the "resistance
of an airfoil in cascade."”

The resistance formula can be derived for an isolated airfoil,
as is known, by applying the momentum theorem between two parallel
cross sections of the flow at an infinite distance upstream and down-
stream of the airfoil. In the problem of cascade resistance, dif-
ficulty is encountered, namely, the absence of an external potential
flow downstream of the cascade where the boundary layers (wakes)
from the individual airfoils merge. This essential difficulty,
which is expressed quantitatively in the impossibility of employing
the boundary-layer (wake) equation up to a plane at an infinite
distance, can be circumvented by introducing the plane of merging
of the boundary layers (wakes) and by establishing relations
between the gas dynamic elements in this plane and in the plane
at infinity downstream of the cascade.

*Soprotivlenie resnhetkl profilei v gazovom potoke s dokriti-
cheskimi skorostiami, Prikladnaia Matematika i Mekhanika, vol., XIII,

no. 2, 1949
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An essentiel assumption of the present investigation is that
a small degree of nonhomogeneity of the flow exists in the seection
of the aerodynamic wake of the cascade where the boundary layers
from the individuel airfoils, considered as layers of finite thick-
ness, merge; the larger powers of the small velocity differences
may then be neglected. The same assumption was made in the investi-
gation of cascade resistance in an incompressible gas (reference 1)
and was subsequently confirmed experimentally. The plane of merging
of the boundary layers is then assumed to be the control surface
required for the application of the momentum theorem and in the case
of the isolated airfoil is taken to be the plane at an infinite
distance downstream of the airfoil. It is evident that when the
relative piteh of the cascade is increased, this plane will be farther
and farther away from the axial plane of the cascade and in the limit,
for a relative pitch equal to infinity, that is, in the case of an
isolated airfoil, will go to infinity. This assumption may evi-
dently be made for cascades with moderate solidities, a case that
corresponds in practice to turbine and compressor cascades.

Any method of caleculating the boundary layer in a compressible
gas may be used to compute the characteristic thicknesses of the
layer and to estimate the effect of the compressibility of the gas
on the external flow. The solution of the proposed problem reduces
to a straightforward and direct form that is independent of the
method of computation.

1. Resistance of airfoil in cascade. Joukowsky force as com-
ponent of total forece exerted by incompressible fluld on airfoil, =

For two-dimensional flow of a real fluid, the resistance (or drag)

of an isolated cylindrical wing of infinite span referred to unit
length of the wing is the component of the total force exerted by

the fluid on the wing in the direction of the velocity of the approach-
ing flow at infinity, or, in other words, of the velocity component

of motion of the wing in an incompressible medium.

This definition is invalid in the case of an airfoil in a
two~dimensional cascade, because in this more general case there is
no unique velocity direction at infinity upstream and downstream of
the cascade and there are no considerations by which preference is
to be given to any particular direction for determining in this
direction the resistance component of the total force acting on the
winzg. In this case, the problem is to determine what may be termed
resistance.

‘An isoclated wing of finite span is now considered. In this case,
ag also in the case of an airfoil in cascade, for each section of the
winz, in view of the presence of vortex systems (films) shed from the
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wing and passing downstream to infinity, two velocities different in
magnitude and direction exist at infinity upstream and downstream. _
of the wing. TFor idezl flow ebout a wing of Tinite span in accordance
with the scheme of l1ifting lines, the total rressure force of the

flow at a given section of the wing is known to be perpendicular to
the velocity of the flow at, the corresponding point of the section
under consideration on the 1lifting line. This velocity, which repre-
sents half the vector sum of the velocities at infinity upstream and
downstreamn of the wing, is assumed at the section considered as the
effective velocity oi flow; the angle between the chord of the wing
section and the direction of the elffective velocity is considered

as the effective angle of attack, and so forth.

For a two-dimensional infinite cascade of airfoils, a similar
assumption is made with the difference only that in the theory of
the wing of finite span the effective velocity differs slightly from
the velocity of the approaching flow; whereas in the case of the
cascade the Jump is of the same order as the geometrical angle
of attack.

In the aerodynamics of a wing of finite span, the profile drag
is the difference between the head resistance, which is represented
by the component of the total force exerted by the real (viscous)
ces flow in the direction of the velocity at infinity upstream of
the wing, and the induced drag, which is the component in the same
direction oi the effective 1ift force.

For a small difference between the directions of the effective
velocity and the velocity of the approaching flow, this definition
or the profile drag of a wing section dirffers by small terms of
higher order from the true profile drag, strictly defined as the
vector difference between the total force exerted by the real flow
on the wing section and the effective 1lift force for a real fluid.

In the case of the two-dimensional cascade, it is natural to
assume for the profile drag R' the difference between the vector
of the total force R (fig. 1) and the Joukowsky force R (in

the terminoliogy of reference 1) which for an incompressible gas
is given by

Rj = pva (_1.1)'
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scting in the direction perpendicular to the fictitious veloeity
at infinity Vm determined as

(1.2)

where Vla>(uLm’ VL») and V, (uam, VZm) are the vector velocities

at infinity upstream and downstream of the cascade, p is the den-
sity of the fluid, and [' is the circulation determined by the
equation

I o= (vp = vy )t (1.3)

where +t 1is the pitch of the cascade.

Introducing the concept of the vector pitech t, which is equal
in length to the magnitude of the pitch t and directed at right
angles to the axis of the cascade downstream of the flow, gives
the Joukowsky force by the following vector equation (reference 2):

R, = oV, X (tx Vv (1.4)

J d)

vhere the following vector

V.=V, =~V (1.5)

gives the vector change of velocity produced by the cascade. The
preceding formulas are valid not only for the flow of an idesal incon-
pressible fluid but also for a viscous fluid.

The profile drag R' is as follows (reference 1):

R' = p't (1-55

where p' 1is the pressure loss in the cascade determined by the
equation
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p' = (Pren+ % V1e2) - (2w * 3 OVzm)

. (1.7)
- 1 1 2
= (le” 2 "Vlmg) - (P2m+ P "Vzm)
The total force R is equal to the sum
= Ry + R' = pVp X (t x vg) + p't (1.8)

2. Resistance of two-dimensional cascade in real gas flow at
subsonic velocities. - The expression for the total force R of
the interaction of the flow with a two-dimensional cascade at sub-
sonic velocities may be represented in the following form (reference 2):

R = (Dyg =~ Po )t + pyo (Vo = IV~ oy (Vo - £)V, (2.1)

o

where and Py are the pressures and densities

Pl Pis P2
upstream and downstream of the cascade, respectively. The ejuivalent
expressions

Pl V1w * ¥ = Poe Vo o T (2.2)

evidently exvress the rate of mass flow per second through the
section of the flow parallel to the axis of the cascade and ecual
in length to the pitch.

As was shown (reference 2) also in the case of a compressible
gas for Mach nunbers not too near unity, the 1lift force of an airfoil
in cascade in an ideal gas flow may be represented in the form of
equation (1.4), provided that for the density p is taken the arith-
metical mean density Py equal to

1 -
P =35 (P1e + Pog) (2.3)

The following approximate expression of the Bernoulli theorem
is employed.:

NH4
D

p.V «V

- - z_ 2 .
Pl P2 Pu'm ~ V@ © (V Vi) (2.4)
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This equation is valid with an accuracy to tenth parts of the square
of the difference of squares of the Mach numbers at infinity upstream
and downstream of the cascade.

In the case of the real (compressible and viscous) gas,

1 2y 2 . -
plo: - pzm“ —2- pm (Vzm _ V]_CD) + D (L"b)

where 1p' characterizes the losses in the cascade due fto the internal

friction in the gas; an eguation may be obtained (reference 2) analo-
gous to equation (1.8)

= 1 = X L
R Rj + R oV (t xvd) + p't (2.6)

here p' 1is determined by the expression

v - - 1 2 _ 2
P' = P = Doy 5 P (Vo - Vi) (2.7)

The problem of determining the profile drag force R' ejgual to

R' = p't (2.8)

thus reduces to finding the losses p' which devend on the shape
of the sirfoil in the cascade and the charascter of the flow about
the airfoil.

3. Introduction of intermediate plane; relation between gas
dynamlc elements in this plane and corresponding values at infinite

distance from cascade. - In addition to the planes 1« and 2

that were employed in the analysis of the incompressible fluid,
(reference 1) an intermediate plane 2 is introduced for the compress-
ible gas (fig. 2); plane 2 is located where the boundary layers
(wakes) from the individual airfoils merzge. The hydrodynamic and
thermal boundary layers in the wake downstream of the cascade are
hereinafter assumed to have the same patiern.

The following assumptions with regard to the motion of the gas
near plane 2 are necessary: By definition of the position of plane 2,
no individual boundary layers exist in the flow downstream of this
plane; the aerodynamic and thermal wakes of the airfoils are, howvever,
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maintained and depressions in
and also depressions or peaks

.A fundamental property of the

transverse to the wake is the
section of the wake; that is,

" curve ocecurs in this section.

edge 1s increased.

the velocity or total-pressure curves
in the temperature curves result.
boundary layer is that the pressure

same at all points of

a Ziven normal

no pressure drop in the distribution
The pressure along the wake changes
sharply in the immediate neighborhood of the trailinz edge of the
airfoil and is gradually egualized as the distance from the traziling

Two sections of the wake are passed through the point of inter-
section of vlane 2 with the axis of the wake; one section lies in
plane 2 and includes the y-axis (Ffiz. 3), and the second section
lies in plane 2' normsal to the axis of the wake and includes the

y'-axis.

The following magnitudes

= x
Aﬁ ry
A= L

0 t
=1
AV t
N
D t

&
ot =

e
-

are introduced:

yo+t

Se)

y0+t

J

Y0

yo+t

us» = U
.a—__ sh'a

> (5

.1)
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which characterize the mean relative deviations of the hydrodynamic
elements of the flow at the points of section 2 of the wake from
the values of these elements at the boundaries of the wake at the
points of intersection of the boundary layers.

Section 2 will be assumed at such distance from the cascade
that the differences up - U, . « ., and also their mean relative
values Ays - o o D2y be considered small magnitudes, the higher

powers and the products of which may be neglected. Moreover, the
velocities at different points of section 2 are assumed parallel
and in a general direction coinciding with that of the velocity at
infinity behind the cascade. It follows at once that

u v v (3.2)

Comparison with analogous mean relative deviations in section 2!
gives the magnitudes

yol+.L.l
1 u,' - u!t
Ay't=F -%———u —— A7y . . . (t' = t cos B,) (3.3)
Yo [

In the subsequent discussion, it will be assumed that, for a
sufficient distance of planes 2 and 2' from the axial plane of the
cascade, all the magnitudes (3.3) and so forth are correspondingly
equal to the magnitudes (3.1); that is,

Ay =0y Ap' =Agp - o - (3.4)

This additional assumption may be Jjustified as a consequence
of the assumption of a small degree of variation of the gas dynamic
elenents near plane 2 and behind it downstream of the flow.

In accordance with the fundamental property of the wake AP‘ = O,

the following equation may be obtained:

Ay =0 (3.5)
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Because of the smallness of the magnitudes A, Ab’ . o « 5 the

gas dynamic magnitudes in the intermediate plane 2 are easily shown to
be connected with the corresponding values of these magnitudes in the
plane 20 by relations that are analogous to the.case of the incom-
pressible gas.

For this purpose, a segment of a flow tube is assumed between sec-
tions 2 and 2%, where a length equal to the pitch t is taken for the
transverse dimension of the tube in the direction parallel to the axis
of the cascade.

Application of the theorem of the conservation of mass then yields

yb+t yb+t
\r pu dy =f F_)Z - (pp - D)] Ez - (uy - u)]dy = Pogls bt
Y0 Yo

Expanding the brackets and neglecting the product (p2 - p)(us - u)
as a small quantity of higher order gives the following equation:

yb+t
f [e2uz - ualog - 0) - pp(up - wi]ay = ppup,t
Yo

From this expression, the following relation is obtained in the
notation of equation (3.1):

pup(l = &) - &) = pplip,,

or, with the same degree of accuracy,

Py = Pp g (1 + A  + Ay) (3.86)
The momentum theorem in the projection on the x-axis applied to
the same segment of the flow tube gives
yo+t yb+t

J1 pdy-+Jq pu?dy - pzcy - pz&P%GP = 0
Yo Jo
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This equation may be written in the form

y0+t yO'*‘t
[ Be- e-olar sl [e- (op - o) [ - (o - ulley
Y0 Yo

2
PZ mt t p2mu20o

t

If the smallness of the differences Py = Py Py = P and u, - u

is taken into account, the following expression may be obtained:

py(1 - Ap) + pous2(l - A, - 27,) = Py + Po Uo P (3.7)

With the aid of equations (3.5) and (3.6) and the same approxima-
tion, the following equation may be written:

Pz + Poologiz(l - Ay) = Doy, + Pogling” (3.8)

The mementum theorem is now applied in the projection to the
y-axis, which gives

y0+t
Jﬂ puv dy = pZaPBuyZGP
Y0

or
yo+t

%—\f [:pz - (pg - 0)] [“2 - (v - u)] E’z - (vg - V)] dy = Poglo, Vou

Yo

Rejection of small terms of higher order leads to the equation

paugva(l - A, - By = By) = PoalizeVee
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or, according to equation (3.6),

va(l - 4y) = Vg,

2 = vam(l +.Av) ‘}

The assumption of parallel directions of the velocity vectors in
sections 2 and 2o, with the aid of equation (3.2), yields

(3.9)

|

!

!v
&
po
¥
L

¥

!

4
fe
o
i

:

V.

u, = uy (1 +A))

2
(3.10)
v, = Va»(l + AV) = v2m(1 + Au)
Equation (3.8) then gives

On the basis of equation (3.10), there also follows from equa-
tion (3.86)

= 1+A 3.12
DZ QZQ( p) ( )
Finally, from the Clapeyron equation,

Py -(pp-p) i i
v o p)_RT—REI‘Z (1, - 1)

pol L}

or, when the smallness of the différences is accounted for,

b2 ( Pp - P pp - D> Ty - T)
oo 1 - Py + P2 = RT2 - TZ

From this equation, Ap - Ap = AT is obtained by integration, or,

A= - B (3.13)
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Conversely, the same Clapeyron equation in planes 2 and 2w
yields, by equation (3.11)

P Py -
R(T, -T) = 2 _ P2 _ Pag, P2 p2c:-=P20oA
2o 27 Ppm P2 P2e P2 PRe P

or, by equation (3.13),

Tow = Tp = Tpuly = = Tpolhy
that is,
T, = TZw(l + AT) (3.14)

4, Relation of fictitious wake thicknesses to magnitudes A and
A'. Expression of profile drag in terms of fictitious wake thick-
nesses. - The momentum equation in the wake behind the airfoil of
the cascade will now be employed; the equation contains the following
fictitious wake thicknesses defined (reference 3) as integrals over

section 2': displacement thickness 82* and loss-of-momentum thick-

*
’

ness 82*

Yo'+t N
0 ov
B* =\r - ———)dy'
E , P2V
Yo
> (2.1)
y0'+t
v \s
e - A R A
Yo! J

When these thicknesses are connected with the magnitudes A,
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'+t
e O e )
e Yot - .

PaV2

y0'+'t o _ yol+.tl _
2 p V2 Vv
- ' —— &' 4.2
f T W +\r v, Y b (4.2)
Yo' Yo'
£ t'(Ap' + A.u') = (Ap + %)t cOSs Bzm )
y I+tl
5 **x =\[)0 [bz - (Dg - OZL [Vz - (V2 - YZl Vo - V '\
2 o DZVZ v, dy
0
& (4.3)
= t:Av: = tA, cos Boy )

The profile drag will now be determined; the magnitude p' must
first be found. 1In equation (2.7), p' is expressed as a small dif-
ference between two large magnitudes and is therefore unsuitable
either for experimental or for approximate theoretical determination
of p'. In order to eliminate this defeet, equation (2.7) is rewrit-
ten in the form

1

and the flow is considered between section l« and the limits of the
boundary layers that merge in plane 2. 1In this entire region, the
flow 1s nonvortical so that the Bernoulli theorem may be applied
without the additional term that accounts for such losses. The fol-
lowing expression similar to equation (2.4) may then be written:

1
le - Pz = i (plcb+ Dz) (sz - Vlwz) (4"5)
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Because by equation (3.11) P2 = Pogy the following expression
is obtained when equation (4.5) is compared with equation (4.4):

y _ 1 2 _ 2y _ 1 2 _ 2
b = Z (phb.+ pz) (Vz VLD ) Z (plm + pab) (Va» Vl“ )

When V, and pp are replaced by their expressions in terms of

Voo, and poy, then according to equations (3.10) and (3.12),

el

p' = (plm-+ P + paﬁap) [}ZGF(l + ZAV) - Vlu?] -

1
7 (P * Poa) (V5 2 - Vil

o -

2 1 2 2
= 5 (P1 + P2 Voo By *+ 7 P2(Vaa' = Vi) 4
or, by equations (4.2) and (4.3),

D k*

> 1 B2
B i Tt * § ralTal - T0)

* - Byx*
P 200 t cos B&» t cos Boo

(4.6)

The following magnitude is now introduced-

*
2" _fu* B 1+ éﬁ

Bt By By

Hz = (4'7)

which is for the case of the motion of an incompressible gas; the
following simple equation is then obtained:

be) * %k
. 2 .1 2 2 2
p' = [émVZm +7 (Hy ~ 1) ppo(Va,” - Vla>i] T cos Pag, (4.8)

The formula for profile drag is immediately obtained from
equation (4.8),

L 3
5,

e (4.9)

2.1 2 2
R' = p't = [pmvzm +7 (B - 1) ppe(Vae - Vi ):l
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From this expression, the profile-drag formulas for a cascade in
an incompressible viscous fluid are obtained as particular cases and

“'for the isolated airfoil in the general case.

For the case of a cascade in an incompressible fluid
(p = constant), :

Dm =P

A =0
p

H2 =1

and equations (4.8) or (4.9) are converted into
PV2eP oo **

p' =
t cos [_%2:,°

%* %

R' = DVZO::ZSZQD
cos Bog,

which are identical to equations (2.12) of reference 1.

For an isolated airfoil in a viscous compressible fluid,

Pl = P2 ™ P = Foo

Moreover, plane 2 extends to infinity, so that

R' = p V25, **

(4.10)

(4¢.11)
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Equation (4 ll) is the well-known formula of the resistance: theory for
an isolated airfoil.

The losses and the profile drag of the cascade are expressed by
equations (4.8) and (4.9) in terms of known elements at infinity

ahead of and behind the cascade and in terms of the elements H2 and

62** referred to plane 2, the position of which remains unknown,

because up to the present no reliable theory of the turbulent wake
exists.

A formula will now be obtained for the profile resistance of the
cascade; by the theory of the boundary layer at the airfoil, this
expression makes possible the computation of the resistance of the
cascade, and the dependence of the magnitudes Hp and 8>** Just

mentioned on the elements of the boundary layer at the rear edge of
the airfoil of the cascade can therefore be determined.

5. Establishment of relations between wake elements in sec-
tion 2 and baundary-layer elements in sections at trailing edge. -
A generalization is given herein of the known device of setting up
relations between the elements of the boundary layer at the trailing
edge of the airfoil and in the wake behind it at infinity, as proposed
for the case of the isolated airfoil in the incompressible fluid by
reference 4.

In this generalization, for the case of the cascade the section
at the trailing edge is connected not with the plane at an infinite
distance downstream of the flow but with plane 2 of the merging of
the boundary layers or, more accurately, with plane 2' ineclined to
it by the angle PBog Moreover, the generalization requires passing
to the compressible case.

The momentum equation for the wake behind a body may easily be
derived from the general equations of the plane boundary layer in a

compressible gas
oV, ov dp OT
\Y S+ oV =2 = - — + —
Ms3 P "7 :

Aove) AoV, (5
Jds dn
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where for the longitudinal (coordiante s) and transverse (coordinate n)
projections of the velocities, the symbols V, and V, are used in

contrast to the velocity projections wu and v connected with the

axes Ox and Oy; p 1s the local density, v the friction stress, and
P the pressure on the outer boundary of the layer.

By rewriting the system (5.1) in the following form, according
to the second of equations (5.1) and the general Bernoulli equation,

o}
P (pVgvg) + % (pVyVy) = PV, .d-s_ + %
(5.2)
3(pVy) a(oVn)
Os on

where p and Vs denote the density and the longitudinal velocity

at the outer limit of the boundary layer. Both sides of the second
equation are then multiplied by Vg to yield

3 d
FY (pV V) + — T (oVoV,) - oVg d_s§. =0

The first of equations (5.2) is then subtracted term by term
from the equation Jjust obtained; the resulting equation is then inte-
grated, which gives

o v 9 v =7 v _or
g[st(Vs - VS)] + gE)Vn(vS - VS)] + (v, - oV) d_SS_ -- <

along the normal to the section of the wake, which is considered either
infinite in the usual sense of the theory of asymptotic boundary layer
or finite, as is assumed in the. theory of the finite thickness layer.
In either case, the following relation holds:

+,8
a
= pV(V-V)dn+——-§ (pv-pv)dn 0

0,0 =00y O

The following expression is then obtained:

d | — V v
== { PV 2 gé;- 1l - —§> dn] + pV —£ ‘ (} - ) dn = O
“ 5 pVg Vg PVs

~cos
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By expanding the parentheses and introducing the notation of
reference 4,

5*=S’ ( E’ﬁ)m

= & (5.3)

+eo,0
5 * = s (1 - Z.E) dn
PVg Vg
'00:8 )

the required momentum equation is finally obtained.

3% =0 (5.4)

<N
oY
ml%l

* % 2dv 1dp
B ()
S p ds

In such form, the momentum equation for the compressible gas
differs from the corresponding equation for the incompressible gas
only in the term 3 7dp5/ds (and, of course, in the definitions of
the magnitudes &t and ©®**). If the momentum equation for the
incompressible gas is considered for the case of axial symmetriecal
motion, the term E'ldﬁ/ds, which expresses the effect of the variable
density of the gas, may be taken equivalent to the term that takes
into account the transverse curvature.

In addition to the momentum equation, the heat equation is con-
sidered; it can be easily set up by a method analogous to the preceding
method from the known heat equation of the boundary layer.

v
(st Fas + pV, %) <i + -zﬁ)= g% (5.5)

where 0 = ucp/x is the Prandtl number.
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The value of g 1is given in the case of the laminar boundary
layer; equation (5.5) holds also for the turbulent layer, but in this

- cagse q would be expressed in a different form.

The so-called temperature of adiabatic stagnation T* is now
considered; it is given by

2
T* = T 4 o8 (5.6)

By means of the continuity equation, the following system of
equations may be set up:

) * ) W _1.9
Ss (stT ) + Ty (anT ) Jcp 3%

(5.7)
J (oV.T* o) (oV.T*) = 0
35 (PVsT ) + 3n PV ) =
_ Tn the second equation of the system, the stagnation temperature
T* * at the outer limit of the boundary layer, which is constant

(because the external flow is isentropic), is taken under the sign of
the derivatives in the continuity equation.

Subtracting one equation of the system (5.7) from the other and
successively integrating over the cross section of the wake gives

o0, B )
a% PV (T* - T™dn = 0
0,0
> (5.8)
40,8 )
J\ pV (T* - T*)dn = constant
rens® y

The fictitious thickness of the wake is now introduced
+m,8 V *
6 = S (1 - £ )an (5.9)
PVg T :

-0y
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which may be termed the thickness of the energy loss; equation (5.8)
may then be rewritten as

PVI*0 = constant (5.10)

Equation (5.4) is again considered. After each side is divided
by ©&**, the expression is integrated along the wake from section k
at the trailing edge of the airfoil to plane 2', previously defined.
The result is

2 2) *
Bo¥* PxVx o d 1n Vg
ln.( ) = 1n ( =) - %% as ds (5.11)

5, ¥% poVo
K (%)

The notation of equation (4.7) is used for the ratio of the ficti-
tious wake thicknesses,

_ d*
H= ¥ (5.12)

and it is noted that equation (5.11) is integrated to completion
if the magnitude H 1s replaced by some average value; for example,
the following relation may be set up:

1
H=Hyp,=3% (Hy + Hy) (5.13)

By this simplification, the following expression is immediately
obtained:

B, ** 03V 2 v
1n(2 =1n<ik_2)-;<H2+Hk>ln_2
By ¥, paVo 2 Vi

or finally,

Bx = P2 \Vs (5-14)

This equation connects 62** and 6k*t but does not explicitly
contain 82*; the exponent on the right contains the magnitude Ho,
which is equal to the ratio 8,*/8,**. From equations (4.8) and (4.9)

previously derived, equation (5.14) serves as one of the equations
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for expressing the two unknowns 82** and Hp entering in the
equations for the losses in the cascade and the resistance in terms of

the elementsrof“theLboundary layer at the trailing edge of the airfoil.

The second equation is obtained by use of equation (5.10), which
may be rewritten as follows:

* *
paValo "0 = piViTy O

or, beecause of the isentroplc character of the motion outside the
boundary layer, TZ* = Tk*; the expression then becomes

In this equation a new unknown quantity 6, appears to enter;

because of the small degree of nonhomogeneity of the fields of hydro-
dynamic elements in planes 2 or 2', however, this term can actually
be expressed in terms of the previous unknowns. When the small degree
of nonhomogeneity and the formulas relating the elements in planes 2
and 2o (derived in section 3) are accounted for, equation (5.14) and
then equation (5.15) are transformed. By equation (5.14),

B** 24—%(H2+Hk) N

B pzm(l + A ) [:VZOD(l + Au)J

=@<v_2:> (1 -—Ap) - [2+§ (H2+Hk§] Au}

) 02‘;( )2"%(H2+Hk) {L ) ép 3 [2 +Z (B, + Hkﬂ Au}J

Because in this section everything will be expressed in terms of
the unknowns 85,%* and Hs, equations (4.2) and (4. 3) are applied;

-~

(5.16)

the following expression is then obtained:
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= 2 Lo 2
8'** +!

1
82 _Px (Vi ) 2+%Hk+§ﬂ2 [} - (m, - 1) %2
K+ P2 \Va 2

(5.17)

Hy Hg) B* ¥
(2’“7*? T
or

1 .
2+2-H +H, * %
* *x Px [ Vx kzre 1 3 52
82* = Bk .__(...._) - {1 + 5 Hk + HZ £

P20 \ V2 2 t!

For a first approximation, the subtrahend in the brackets on the
right may be neglected in comparison to unity to obtain

1
B4H, o
82**= Sk** Px (Vk ) 2Tk 22 | (5.18)

P2e \ V2w,

The second fundamental equation (5.15) is similarly transformed.
With the chosen degree of accuracy,

4oy 40y O .
Vg T " Vg (T * - T*)
6, = {1-= dn==J1 2 dn
5 PaVa Ty PRVoTo
~® 0, O
0,8
Jﬂ ppVp(Tp* - T°) . _ Tp* - T o
x *
PoVoTs To

-3 -m’a
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Therefore,
+q;,8 +w8
2
6, =f (T, - T)dn +Jv % [2de_ - Vg /2Jcp

Ty + Vot /2Jc; T+v22Jc
e,8 T2 2%/ B 2 + Voo

+eoy B
= : %—/ f TZT' Ian+
1+ V,2/2Je T 2
2 p 2 o, 0
to,8 o
\r Vp2/2dcy - [ Va2 - 2vy(vy - V)] f2de, o 1 At +
N Ty + v22/2Jcp 1+ V22/2JcPT2
o)
V,2/23c T Vol )
2/2 Aut"'-(zm*AT'l" = *)Aut'
+ V, /2Jc Tow —  Jc5T0
| ]
Vool _ Ty '
= A, = A\t
T meF
(JCPTZOC Tog _‘>
or, by equations (4.2) and (4.3),
0, = | Yae (B, - 1) —2= |5 *x (5.19
2 | Tegmor 2T ) | 19)
Cp'2e 2

The term Gz/t', which by equation (5.19) is proportional to
62 /t' is a small quantity of the first order; with the assumed order
-of approximation, equation (5.15) may be transformed into

2
Voo Tom * %
pﬁ:nVZGo[]'_Tc % - (Hy - 1) =25 8577 = 0y VB
) pT 2 2o

or,

0 _ _
\i xk _
PoV om0 [_E;i. - (8, - 1)T2°J 8,%* = 0, V, Togy ek (5.20)
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The system of equations (5.18) and (5.20) gives the required

system of equations for determining the two unknown magnitudes 82**

and H2 as functions of the parameters of the boundary layer, of
the exteérnal flow near the trailing edge of the airfoil, and of the
density, velocity, and temperature at infinity behind the cascade.

For the solution of this system of equations, it is noted that
the unknowns are readily separated if equations (5.18) and (5.20) are
divided one by the other. This procedure yields

Vi %HZ Vzmz/JcD - (Bp - 1)Ta _ 6y [Vow
V. Tog 81" * \ Vi

(=]

1
l+§&k

or, when the Mach number M2a> is introduced at infinity behind the
casecade,

o
o
g
‘21
H
o
8
{
=
0
'_)
oy
“0
3
H_
V)
8

(5.21)

in 143

v, )2 2 (k- 1Mp2 - (Hp - 1) _ 6 <v2m) 7
1 2 **

Voo o(k - 1My &+ 1 By \Vy )

This transcendental equation in H2 may be solved by one of the
approximate methods in any concrete case. According to equation (5.20),

1 2
w1 +E(k - )My

v
%k o, (5.22)

ts) =
2
l+(k-l)M22-H2p2V2

The terms 62** and Hp referring to section 2, the location

of which is unknown, are thus eliminated and expressed in terms of
the magnitudes BK**‘ and 6y either measurable or computable by

any method of boundary-layer theory and in terms of the velocity,

density, and temperature at the outer limit of the boundary layer

near the trailing edge of the air foil and at infinity behind the

cascade. The terms p' and R' may then be obtained with little
difficulty by equations (4.8) and (4.9).
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6. Approximate formulas for computing losses and resistances in
cascade. - At these relatively small subsonic Mach numbers considered
herein, the nonisothermal character of the flow in the wake behind
the airfoil of the cascade can occur mainly through the heating or.

. the cooling of -the surface of the airfoil and not through the internal
transformations of kinetic energy into heat.

In order to verify this fact, equations (5.21) is employed.
The following notation is introduced for briefness:

k-1 2 )

7 Mo ~ M

E%i:c \ (6.1)
3+Hk_

— - F y,

Equation (5.21), which is transcendental relative to €, then
assumes the form

m - €
l1+m

+
1 % (Vzm Hre (6.2)
2 5, ¥ \Vy,

The unknown magnitude € 1is now expanded into a series in powers
of the small paremeter m. (For air the value of m at My < 0.7
does not exceed 0.1)

€ =¢€g + €qm + ezmz F oeen (6.3)

Substituting this series in equation (6.2) gives

+ mt...
E—co+(l-€l)ma-...J(l—m-...):%aik< “O( €1

6.4)

or pt
_€O+(l+€0—€l)m—...= 5%1(22“) COE_+€lln %k&)m'F-.]

ol
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By equating coefficients, the following equation is obtained:

1 6 v Hteg

for determining € _.. Because of the assumption previously made on

the small heat transfer from the surface of the airfoil in the cascade,
the quantity €O is considered small for M2a>= 0. The following

equation, accurate to small quantities of the second order, is then
obtained:

€0
where
L(3+m, )
A =1 9”(Xae> K (6.7)

From equation (6.6),

€. = -
0 1+ A 1n (Vo /Vy)

(6.8)

The ratio Vam/vk generally differs little from unity; hence,
the natural logarithm of this ratio is small so that €O = = Ak

may be written without great error.

By equating the coefficients of m to the first power, in
equation (6.4), the expression g = 1+ €o =1 - A, 1is obtained

with the same degree of accuracy.

The approximate equation is then

¢ =-A + (L+A)n mm - Ay (6.9)
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Equation (5.22) is now employed and in the new notation has
the form -

S e o 1+m PRV Oy (6.10)
2(m ~¢) pZooVZ:p

According to equations (6.11) and (6.7),

%(5+Hk)
Sk* eV O L owx Px (Vi
2 V., zA - Ok v (6.11)
P2o 200 “Rk P2 \"2

If it is assumed that at the trailing edge Hk = 1.4, equations
(6.11) and (6.7) assume the form

3.2 )
ok _ 5**E£_(Vk )

2 k P2os VZ o

5}

> (6.12)

e = & 5k (322) o
20" \Vy _/

From equation (4.8), an approximate formula for the losses is readily
obtained:

*x %k
. 2 .1 2 _ 2] B
p= E)mVZm + 2z cpZm(VZQa Vloo) t cos B2oa

- (6.13)
. - 2 _ 2
=pmV2m29L Ve % 1+%(m-Ak)ﬁsphm_VJ&

P2 chn t cos BZm P v&f

and therefore a corresponding approximate formula for the resistance
differing from the right side of the previous equation only in the
factor +t.
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The further possible simplifications of equation (6.13) are
connected with the choice of devices for computing the characteristics
of the boundary layer at the surface of the airfoil in the cascade
and for taking into account the effect of the compressibility on the
external flow.

Translation by S. Reiss
National Advisory Committee
for Aeronautics
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