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TECHNICAL MEMORANDUM 1302

STABILITY OF THE CYLINDRICAL SHELL
OF VARIABLE CURVATURE

By K. Marguerre

Abstract: The report is a first attempt to devise a calculation method
for representing the buckling behavior of cylindrical shells
of variable curvature. The problem occurs, for instance, in
dimensioning wing noses, the stability behavior of which is
decisively influenced by the variability of curvature. The
calculation is made possible by simplifying the stability
equations (permissible for the shell of small curvature) and
by assuming that the curvature l/R as a function of the arc
length s can be represented by a very few Fourier terms.

We evaluated the formulas for the special case of an ellipse-
like half oval with an axis ratio 1/3 S ¢ $1 under compres -
sion in longitudinal direction, shear, and a combination of
shear and compression. However, the results can also be
applied approximately to an unsymmetrical oval-shell segment
under compression, shear, and bending so that the numerical
values contained in the diagrams 10 to 12 represent directly
dimensioning data for the wing nose.

Outline: 1. INTRODUCTION
2. THE STABILITY EQUATIONS OF THE CYLINDRICAL SHELL. THEIR
SOLUTION IN THE SPECTIAL CASE OF THE COMPRESSED SHELL
OF CONSTANT CURVATURE
3. THE BUCKLING DETERMINANT OF THE COMPRESSED SHELL OF
VARIABLE CURVATURE
4. DETERMINATION OF THE CYLINDRICAL FORM FROM THE VARIATION
OF CURVATURE
5. COMPUTATIONAL EVALUATION OF THE BUCKLING DETERMINANT IN
THE CASE OF COMPRESSION
. THE CLOSED CYLINDER UNDER PURE SHEAR
. THE BUCKLING CONDITIONS FOR THE CYLINDRICAL SEGMENT UNDER
SHEAR LOAD; ITS SOLUTION IN FIRST APPROXIMATION

~ O\

) *"Stabilitét der Zylinderschale veranderlicher Krummung." Zentrale
fur wissenschaftliches Berichtswesen der Luftfahrtforschung des General-
luftzeugmeisters (ZWB), Berlin-Adlershof, Forschungsbericht Nr. 1671,
Sept. 16, 19k2.
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8. CRITICAL SHEAR LOAD FOR THE HALF CYLINDER OF ARBITRARY
CURVATURE

9. THE WING NOSE UNDER COMBINED SHEAR AND COMPRESSIVE LOAD

10. VALIDITY LIMITS - UNSYMMETRICAL OVALS UNDER BENDING -
SUMMARY

1. INTRODUCTION

So far, only the shell stability theory for sphere and circular
cylinder has been developed to include formulas for practical application.
Recently, the designs in airplane construction drew attention also to
other shell types; however, due to the great mathematical difficulties
oprosing a stability theory of complicated shell forms, it was attempted
here to approximate actual shells by circular cvlinders. Thus it is
possible, for instance, to calculate (with good approximation) a monocoque
fuselage stiffened by stringers as if it were joined together from a
large number of circular-cylindrical strips (shell segments). For the
calculation of wing skins, one may use an approximation of the buckling
formulas for the short circular-cylinder shell; the respective theory may
be regarded as completed by Kromm'sl investigations. Cases exist,
however, where the theory of the circular cylinder does not suffice. A
wing nose, for instance, is usually developed as a sort of half oval
which is supported by a strong spar on the open side (fig. 1). The sta-
bility behavior of such a shell is decisively affected by the variability
of the curvature. It is not permissible to determine the critical com-
pressive load as in the case of the circular-cylindrical shell from a
"mean value" of the curvature, since the weakening effect on the shell
of regions of small curvature very considerably exceeds the stiffening
effect of regions of larger curvature. (For rough calculation, it is
even advisable to regard, in case of wide shells under compression, the
minimum curvature alone as decisive for the buckling limit.)

The mathematical difficulties opposing the theoretical investigation
of cylindrical shells of variable curvature exceed those arisiug in the
case of the shell of constant curvature; however, on the other hand, they
are not of fundamental character for the infinitely long shell, the
curvature variation of which over the arc length 8 may be represented
by a sine series. The present investigation gives the general theory of
such shells and evaluates the calculation results in particular for the

lKromm, A.: Knickfestigkeit gekrimmter Plattenstreifen unter
Schub- und Druckkraften (Resistance to Buckling of a Curved Plate Strip
Under Shear and Compression). Jahrbuch 1940 der deutschen Luftfahrt-
forschung, p. 832.
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wing nose in the form of a symmetrical half oval. The following loads

are considered: compressgion in axial direction of the cylindrical shell,
shear (torsion), and the combination of both.

2. THE STABILITY EQUATIONS OF THE CYLINDRICAL SHELL. THEIR
SOLUTION IN THE SPECIAL CASE OF THE COMPRESSED

SHELL OF CONSTANT CURVATURE

The shell segment we are going to investigate is an intermediate
between the flat plate and the true shell; it owes part of its load
capacity to the reinforcement by the longitudinal-edge stiffenings (like
the flat plate), part, however, also to the stiffening produced by the
curvature (the curvature prevents a bending without stretching of the
median surface). Thus the stability equations of the cylinder theory
are buckling differential equations of the shell segment; however, their

solutions have to be adapted to the boundary conditions at the edges
s = constant.

The two stability equations of the thin cylindrical shell are?

i

A A¢ - % Wyx = O

> (2.1)
2

Et 1
— A AW+ = = -0OW. + 27w
12(1 _ VE) R ¢XX XX Xy

~/

where ¢ 1is the stress function from which one obtains three "membrane"
stresses additionally originating in buckling, according to

Nx_52¢=¢
t ds? 587

Nxs

N
Vs _ g, Mo

o .is the critical compressive stress (hence the minus sign in equa-
tion (2.1)), T the critical shearing stress; the remaining designations
may be found in figure 2 which represents a shell segment. The indices

2Compza.re for instance K. Marguerre: Zur Theorie der gekrimmten
Platte. . ., Jahrbuch 1939 der deutschen Luftfahrtforschung, p. I413.
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appearing with ¢ and w 1indicate the respective derivatives with
respect to x or s. The equations each differ from the respective

1
disk or plate equation by the ﬁ--term. By precisely this term they are

coupled with one another, and this is the reason for the mathematical
difficulty of the shell problem. The equations (2.1) result from the
very complicated "exact" shell equations3 by radical simplification.
These simplifications are physically Jjustified under the presupposition
that the shell either has only very slight curvatured (R >>U) or at
least is, in buckling, subdivided into so many waves that the wave length
in the circumferential direction is small compared to the radius of
curvature. If this presupposition is not satisfied, the result is to a
certain extent problematical; however, the numerous careful investigations
concerning the buckling of a plate of constant curvature6 have shown that
the errors arising from the simplification of the equations are not of

a type to endanger the technical usefulness of the results.

In this report we consider only shells that are so long that the
effect of end constraint on the buckling load can be neglected. Then
the stresses and displacements are purely periodical in x, and for

T = 0, in particular, directly proportional to sin %5, with the wave

length 1, which is small compared to the shell length L, remaining
open at first. If we put

¢=¢sinnTx, w=?sin1tzﬁ,
the partial equations (2.1) are transformed into total equations (bars
now signify derivatives with respect to s)

e 7 * EnC -
ne o "oy 4+ —w =0 (2.1')
? 12 / 1 g R1°

3Fligge: Statik und Dynamik der Schalen (Statics and dynamics of
shells), Berlin 1934, p. 191.

l’LA few notes on this can be found in K. Marguerre's "Der Einfluss
der Lagerungsbedingungen . . ." (The influence of the arrangement condi-
tions . . .). Jahrbuch 1940 der deutschen Luftfahrtforschung, p. 867.

A. Kromm: Die Stabilitatsgrenze eines gekrimmten Plattenstreifens,

(The stability limit of a curved plate strip), Luftf.-Forschg. 1938,
p. 517 ff.

e name in particular:

Flugge (footnote 3)

Timoshenko: Theory of Elastic Stability, Chapter IX

Kromm (footnote 1, p. 2)

Donnell: Thin Shell Theory. Proc. of the 5th Inter. Congr. of

Appl. Mech., Cambridge 1938, p. 66.
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E't2 <V—I""-2f§"+nh?r>-aﬁw-l£a=0 (2.1')
12(1 - v9) 12 o 12 R 1°

The equations (2.1') are linear and homogeneous in the unknowns W

and @ and contain the variable quantity 1/R; they can be converted
into a system of an infinite number of equations for the coefficients of
a Fourier expression if l/R (or R) can be represented by a Fourier
polynomial, and if the support at the longitudinal edges s =0, s =T
is such that by a Fourier expression the boundary conditions can, term by
term, be satisfied.

We consider first the cylinder of constant curvature because in this
simple special case the train of thought leading to the solution is out-
lined more clearly than in the general case; simultaneously, we have the
opportunity of introducing the abbreviations which are expedient for the
later calculation in an easily surveyable form.

If we put

0
w = 2:: an sin n T
n=1

; (2.2)

00
a = E:: Apsinn %?
n=1

~

two equation systems linear and homogeneous in a, and A, are formed
from (2.1') which with the abbreviation

U/l =8 (2.3)
may be written

2
35(62 + nE)QAn +

2
Bca, = O
U n

o} b

7 (2.4)

2 ©
Bt 5 ——(32 + n2)2an - oB%a, - L B2A, = O
12(1 Y 5 U2 R

-~

For l/R = constant = l/Ro, only one n occurs in any equation, 50
that the system is broken down into pairs of equations only; calculating
A, from the first equation and introducing it into the second, we obtain




6 NACA TM 1302

(g2 + n2)2 12(1 - v2)R 12(1 - v2) uh 2
BQ ‘erEte Itjr Rogtg (Be N n2)2 an =

The vanishing of the factor of a characterizes the critical state.

With the abbreviations

n

% E 7 t2
1 - V2 3 U2

. 12(1 - v2) oyt
EE Ro?t? |

[ (2.5)

the equation for buckling (by which the eigen-value ¢ is determined)
reads

N S N :
52 (@ + @) o ° (2.6)

I

2
1.2 (62 + 2) S (32 + 2n2 nu)
w

ky Vo B2 B2
(2.5")
A= %._L=\/ 1_V2 E.E
N/ Et
it is written in the still more compressed form
ik, -a=0 6!
K + ky - A= (2.6")

In equation (2.6) the wave length 1s still open in the x-direction
<Fhat is, B = %). It adjusts itself so that o (or A) assumes the
minimum value. Thus, there is, in addition to equation (2.6) or (2.6')

the condition %% =0 or

"
ddBXE - d(i>kn) d(iézn) ) (l - kng)(l ) -BT*>_ ° e
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From equations (2.6) and (2.7) it follows that

W
B=n o = o*(n2 + 16n2) for Vw = kn?
2. 2)2
(_B_+§n_)_ - VE o= %_ Ny (2.8)7
B
for \/Z)_Z. 4n2

13
I
>
I
rno

or respectively K,

The simple expression (2.2) is usuable only if at the longitudinal
edges s =0, s = U the equations

w=0, wgg=0, Ng= t¢xx =0, Eu= /Z¢SB - V¢xx) dx = 0 (2.9)

J
are prescribed as boundary conditions, that is, if the edge supports
are developed in such a manner that they offer a very large resistance
to a displacement of the sheet in radial and axial direction, a very
small resistance to a displacement in hoop direction and to a torsion.
For the further calculation, we shall assume the boundary condi-

tions (2.9) to be satisfied. For the circular cylinder, a modification
of the boundary condition for the stresses and displacements in longi-
tudinal and hoop direction (thus relative to ¢) can be shown to have
almost no effect on the magnitude of critical load.8 The same applies,
with high probability, to the cylinder of variable curvature. For 1if
the edge terms are arranged in the more strongly curved region, they
are practically without any influence because in this region the shell
buckles into many small waves so that it does not matter at what point
exactly the node lines are enforced; and if the stiffenings (as in the
case of the wing nose) support the region of small curvature, it does
become important whether the shell is simply supported or clamped
(w-conditions), but 1t is quite unimportant what happens in the two

TIf one sets in the gecond o-formula the notations abbreviated in
equation (2.5), one obtains with Vv = 0.3 the well-known cylinder
formula for buckling o = O'gEt.
8K. Marguerre; compare figure 6 of footnote 4, page k4.
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other directions, because for a flat shell (similar to a plate) large
radial displacements w produce only very small hoop and axial displace-
ments v and u. Moreover, the more importantd of the two assumptions, -
Ny = O (bending soft supports in hoop direction), lies on the safe side.

3. THE BUCKLING DETERMINANT OF THE COMPRESSED

SHELL OF VARIABLE CURVATURE

If the curvature 1/R can be represented by a Fourier polynomial of
r* termslO

1_ i(l + 2 cos ans + 2§1+ cos iﬂ£+ 2§2r* cos m—)
R R, U U U
1 2rns
R_< 2(;2 cos > (3.1)
(because f cos 21{:}“8 ds = 0, 1/Ry is therein the arithmetic mean -
0

of the curvature), we may, in order to solve equation (2.1'), again

start from the Fourier expression (2.2) which term by term satisfies ~
the boundary conditions (2.9). We obtain
_’EZ(BE n2)2A sinn 28+ E BEZ sinn £ =0 ?
e n U R “n U
Et2 72 ( 5 2 1S 7S $
= B2 + n2) sin n — - op2 sin n — - D (3.2)
12(1 - \»25UEZ o U 2_°n U
2
BR_ZAn sin n %5; =0
9Only v (not u) is directly coupled with w over the hoop
strain ¢, = &v + 2
Yy " 8% R
loThe equations of buckling for a similar case: L sin 12
R Ry ¢f
can be found in the yearbook report of the author quoted before. o

(Compare footnote 4, p. k.)
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whereby 1/R has to be substituted according to equation (3.1). On the
basis of the trigonometric identity

2rng ., nus _ (n + 2r)ns (n - 2r)ns
2 cos G sin - = sin 5 + sin 5 (3.3)

each of the two equations may be written in the form of a simple sine
series:

2 [o.2]

z (62 + nE)EA sin 228 E g2 z ap sin =2 4

U2 n U U
n=1 0 n=1

E::§2r<§f:an gip L0+ 2r)s (n + 2r)ns 2r)ns E::an cin (n - 2r)ns> _ o,
=1

i(%i‘ E&#ﬁj(ﬁe + n2)2 - B2 )an sin — - BE ZA nns

n=1 n=1

tcEr ZAn sin M ZAn sin -—n———slﬁ =0 (3.4)

r=1 n=1 n=1

By renaming the indices in the two last sums each equation can be made

to contain only sin E%—. It is true that then the first sum begins

at 1 + 2r ' and the last at 1 - 2r which involves a certain inconven-
ience if one wants to read off in formally surveyable form the equations
for the coefficients aj, A, which result from the requirement that

the factors of sin E%E individually have to be zero. The difficulty

can be easily avoided; one has

=™ (nserms N>, . (n- er)
EZ::éngZ::an pin 121 gr 18 +.%fién'Sin - er ﬂs)

r=1 =1 U
¥ 00 o0
nns nns
= Z o Z a,_ o, Sin 5 Z 8y .op 8in -5
r=1 n=1+2r n=1-2r
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or, splitting up the second sum with consideration of

ns . ng
-sin (n - Qr)TT = sin (2r - n)ir,

*
S ST e, ein BB g aip (EZclms
- or n-2r U 1 i} -

=1+2r

(or - 2)ns ns = nis
an sin-————TT———— - «.. - 80,7 8in T + E lan+2r sin i
n=

One can include the fully written terms 1n the first sum (which then
starts with 1 instead of 1 + 2r), if one stipulates that by a,_o,.

(with negative index) the coefficient -aps._) (with positive index)
must be understood, and puts a, = 0. If one makes such a stipulation,
all sums begin with 1, and (3.4) then reads simply

5™ (5_2_ Et2 (52 + n2)2 - oBE)an - L Bel}ﬂ + (3.5)

r*

nns
E:;CQr(An-Er + An+2r5] sin T 0
r=

-/

Since the left gides of equations (3.5) for all values of the variables
are to disappear, the curved braces each must be zero; thus one has

the two equation systems for determination of the coefficients aj, A}
of the expression (2.2) which, because of

A = Ay 8y = -8y (Ao =8 < O) (3.6)
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The first system does not contain the eigen-value o, moreover
only one A, appears in each equation; if we solve for A, we obtain

g2 =
Ap = R P m(an * ;C'Er (3n-2r * an+2r>> (3.7)

Because of (3.6), this equation is valid also for n < 0; one can there-
fore (without restriction for n) immediately substitute in the second
system, and thus obtain one infinite equation system for determination

of the unknown ap which, with the abbreviations (2.5 ), can be
written in the form

*
(1/kn - )”)an * kn(a‘n + rz=l§2r(an-2r M 8‘n+2r)) M §2 kn-2<'9‘n-2 M

r=]1 r=1

r* r¥*

Zézr(an-E—Qr + an-2+2r)> + kn+2<‘3'n+2 + ZCQr(an+2-2r +
r*

an+2+2r)) + cl# kn-ll-(an-h + Zl Cor (an-)-&-Er * ap oy )) +
r=

r*
kn+1+(an+h * ;CQr(anHl-—Er * an+ll-+2r)> * §6E ) ] te.. =0
(3.8)

The determinant A of the homogeneous system (3.8) is the buckling
determinant; A = O 1is the qualifying equation for the eigen-

4
c*\/g

value A = o.
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 Equation (3.8) is somewhat modified by writing out the sums over
r and rearranging them

(/g + gy - Moy + CQBkn + Ky p)enp * (Ky ‘%1-2)an+e:l *
6,2 l}n-z‘an-h * kot (¥pep * kn+'2)an:| * 8 [(kn R et
(k% * kn+l+)an+’+:| * ge-"uE‘n-e(an-6 tene) * Kn (%06 T fn2)?
pro(ac * %) * Enet (Pnee ¥ ®ne6 )_] s E‘n-uan_s * K
(Ron * kn+l+)an] * 6Ekn tE 6 T (Mt kn+6)an+6] *
€286 E‘n_e(an-e t o) K 6(%08 * Bnok) * Enep(Bny *oap,g) ¢
Kni6 (Bnsd * an+8ﬂ + bbs E‘n-h(an-lo *anip) * K 6(%n-10 * Pnp) *
Kneh(Pn2 * 8n410) * Kne6(Bnen * an+10):] + b E’m-6an-12 ¥

Kn+68ns1o + (kn-6 + kn+6)aq] *eee =0 (3.9)

The system (3.9) contains only even or odd indices - that is, the
buckling forms symmetrical and antimetrical with respect to the center
do not effect one another (of the two buckling forms, the one to which
the smaller buckling load A pertains will occur).

If the series (3.1) breaks off, as we assumed, after r* terms,
we are dealing with a finite-term system. If (3.1) contains, for
instance, only the two first terms, a,_ ), a, », &, &40, 8p4ls
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appear in every equation - the system has five terms. For Ch % 0

it becomes a 9-term system, for §6 # O a 1l3-term system, etc.

One determines A by first completely setting up (as was done
here for r¥* = 3) the system for the given number r* of (-terms,
then arranging it according to the unknowns aj (for instance

an-E[FE(kn + kn—e) + C,\L§6(kn+)1L + kn-6i] etc.) and calculating the
coefficients of the a_ which thus originate. For prescribed (-values

n
these coefficients are, furthermore, functions of k,, that is of w,

B, and (in the main diagonal) of A. The curvature value o 1is to be
regarded as prescribed, B 1s chosen, and A 1is then determined from
the condition that the coefficient determinant must disappear. The
suitable B would have to be determined - as in the special case

1/R = const. - from the condition %% = 0 which expresses that the
wave length 1 = U/B appears pertaining to the smallest buckling
value \; however, due to the high degree of the A-equation, this
condition can be satisfied only by plotting A(B) for a number of

neighboring pB-values and reading off an approximate xmin.

The method requires much detailed calculation - still, it is
superior to other methods (for instance to the method of reducing the
number of equations by a to-be-guessed relation among the coefficients
in the expression (3.1) - which can be interpreted as a sort of Ritz
method), because it can be highly systematized and, above all, because
its accuracy may - starting from rough approximation values - be
increased arbitrarily and at any time.

Nevertheless, the calculation is rather troublesome, due to the
large number of parameter values w, { for which it must be performed.
In order to make a useful choice among the many possible parameter
combinations we must therefore, before numerical evaluation, answer the
question as to the appearance of the shell forms corresponding to a
certain variation of curvature l/R(s).

.. DETERMINATION OF THE CYLINDRICAL FORM

FROM THE VARIATION OF CURVATURE

By the equation (3.1)

= g;(l + 2, cos 2%5 + QCh cos E%E + 2@6 cos brs + .. .) (4.1)

1
R U
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the curvature is given as a function of the arc length. Because of

- 99 )

1
R ds
it follows therewith that for the angle ¢ = ¢(s)

P = Jféi =2+ ¢ YU gin 288 4 £y, U_ gip 478 te U  sin ons |

R Ry TR, U ’ 2nRO U 37R, U

(k.2)
From (4.2) one obtains by numerical integration because of the relation

g%: sin o, -g—)s-(-= cos @ (14’3)

the ordinate ¥ and abscissa X of the profile curve:

¥y = J[‘sin @ ds, X = J[‘cos ¢ ds (4.3%) -

The ratio U/RO in equation (4.1) is at first still open. It is
determined from an assumption regarding the opening angle ¢, = ®(U) - ¢(0)
of the shell; according to equation (4.2) it is

We shall study here, above all, the half oval. (Compare fig. 1.)
For it

¢, = 7, that is, U = R« (k.4)
and equation (L4.2) is transformed into

o == 4 ¢, sin ers L ¢), sin brs , 1 §6 sin L . (L.4r)

U U 2 U 3 8)

In order to reduce calculation expenditure in application of the
equation system (3.9), it is desirable to manage with as few terms in
the series (4.1) as possible. In figures 3a and 3b curvature and course
of curves according to equation (4.1) from (4.4') are plotted for the
parameter values §, = f, = ... =0 and €, = -0.6 or -1, respectively. -
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Figure 4 contains the curves required for conversion from the parameter
t = -C2 to the axis ratio ¢ = % and to the quantity ¢' = b = EL.

RO U

It is seen that one can just reach the axis ratio b % with the two-

term expression: for values |§2|> 1 one would have a change of sign

in the curvature course, that 1s, one would obtain an oval buckled
inward at the ends of the small axis - a form that does not occur in
the applications.

In order to obtain "reasonable" ovals with an axis ratio € <1/2,
one must therefore start from a multiterm expression of the type (%.1).
Figures 5a and 5b show (as the most obvious oval type) an ellipse of

the axis ratio ¢ = %, together with its curvature variation. The

figure explains why the simple expression

i j;(l - ¢ cos §£§> (k.5)
R Rg U
in the region of € = %, that 1s, 8 = 1 may no longer produce ellipse-

like curves. Simultaneously, it indicates what type of curvature
expression must be chosen: For the limiting curve (the oval with
vanishing curvature at the end of the small axis) a higher power of

sin %? comes into consideration for

1

g =Cfg=...=0, thus, for instance, =~ sint I8

that is
% = ﬁ%(l - % [ofe]:! g%i + % cos &%E) (h-6)
For §8 = glO = ... =0
g sin6 %?
that is
%_ i%-(1 - % o8 235 + i6'o_ cos E{}—S - 110 os 6{1;5) (4.7)
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Thus one will use for the pertaining oval-families for instance the
expression

| =

=15 - 2ns Lng
= ﬁ;E g<1.33 cos =% 0.33 cos T) s (4.8)

thus
6, = -1.338, &), = +0.33E,

or, respectively,

% = %; 1 - §(1.5 cos 2%5 - 0.6 cos E%E + 0.1 cos é%EEL (4.9)

thus
6, = -1.5¢8, ¢ =+0.68, & = -0.1%

Figure 6 represents the oval €, = -1 from figure 3b together with the
2

oval determined by equation (4.8) with { = 0.8 and the ellipse of the
same axis ratio. It can be seen that the oval corresponding to the
multiterm expression 1s more ellipse-like, in particular, that it shows

no position of zero curvature. In figure 7, ¢ = E? €' = %?3

3/R(U/2) .
and P = =00 are plotted for the expression (4.9). For an ellipse
p would be equal to ¢ - one recognizes from the representation that

p(t) and €(f) between € =1 and € = 0.35 lie close together so that
the four-term expression (4.9) is sufficient to describe reasonable

~
~

o
[OSTI]

ovals down to an axis ratio

In the expressions (4.8) and (4.9) the signs alternate. If one
chooses the same expressions all with the same signs, it signifies that

7
the positions ¢ = O and @ =7 exchange their roles: One obtains

(with exchanged axes) the same oval; only now the two halves are
connected to the flanges at the ends of the large axis, if we still
visualize the flanges at ¢ = 0 and =n. Since this case is of less
practical interest, we shall not discuss it more closely - but it should
be pointed out at least that it is in this simple manner related to the
"main case" equations (4.8) and (4.9), respectively.
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For reasons of calculation expenditure we refrained in the present
investigation from extending the expression for l/R still further;
going still further into an individual case does not present any funda-
mental difficulties; however, the expenditure will hardly ever be worth
while for the applications since the calculations performed with the
expressions (4.5) to (4.9) led to the result that the axis ratio ¢
is a suitable parameter for characterization of the stability behavior
of an oval, that is, that the form variation in detail is of minor effect
on the magnitude of the buckling load.

5. COMPUTATIONAL EVALUATION OF THE BUCKLING

DETERMINANT IN THE CASE OF COMPRESSION

Calculation of the eigen-values X\ from the condition that the
determinant of the homogeneous equation system (3.9') must vanish is
possible only "step by gtep:" Step by step in the sense that one starts
with small ¢ and ® values and with the two-term expression (L.5)
for the curvature variation.

For ¢ = §6 = §8 = ... 0, each of the equations (3.9) contains

only the two first lines, and the system reads, arranged according
to the unknowns (with §, = -t),

for odd n .
E{LlJf kl(1+§)2+C2k3—)i]al-§[(1+§)kl+k3]a3+§2k3a5 =0
tl(1+ Ok +k] ) R Y t[ks +k + 2k 0
€|+ i xglay + ek Py - dag - Uk + ks as ¢ Ehsay
- . > (5.1)
o el L - - C . =
¢ k3al ¢ k3+k5]a3+ k5+k5 A as Q[k5+k{la7 + 0
(. 1
2 _ 1 _ _
Cl«:5a3 §k5+k£'a5+ E‘7+k7 by 8y + OJ
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and for even n

E%5‘+ k, + §22kh - %]ae - ¢t k, + ké]au + QQkua6 =0
1 2 _
_§k2+k1+]a2+l;—l+-+kh-)\]ah—§|}{h+k6]a6+gk6a8 =0
>(5.2)
t°k,a,. - tlk, + k 1 orx -ala, -tk ... =0
ky8g C[u*s]%*E%*s 2 - ] + Kg|ag +
§2k6ah - g[%6 + ké]a6 + [%g + kg - Mag + . =0

-~

The second system shows the usual initial irregularities in the first
equation, the first system, those in the two first equations. For the
first system these irregularities are such that the sign of ¢§
considerably affects the behavior of the first terms.

In contrast, the eigen-value resulting from the second system does
not depend on the sign of ¢ (only ay, ag, &jp Cchange their signs);

since the even terms in the expression (2.2) have nodes at s = 0
and U/2 (¢ =0, =n/2), it must indeed be a matter of indifference at
which of the axis ends the flanges are connected.

The secondary terms are small if { 1is small and - since they
contain only the quantities k  ~ Jo - if o is small. For

sufficiently small values of ¢ and Yo (for instance, 2{ = 0.5,

V® = 50), therefore, a portion of two equations from one of the two
systems (5.1 or 5.2) suffices for the determination of the eigen-value.
The quadratic equation for A 1s easily solvable, the minimum value

as a function of B can be determined immediately. If one retains

for instance € and increases vﬁﬁ; one can at first still manage with
two or three equations, can determine B and X, and plot both
quantitles as a function of Vﬁﬂl By extrapolation one obtalns approxi-
"mation values of B and A for the next yw value; one improves these
approximation values by trial substitutions in the determinant, and
continues in this manner up to the upper limit for yw, at about

y© = L4000, which is of practical interest.

A twofold difficulty opposes performance of this calculation:
First one must decide on the order of the determinant portion A, to

be selected which fixes with sufficient approximation the eigen-value
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(which actually should be determined from an infinite determinant A).
Since the order of A, increases with /o (the secondary terms become

more and more important), the buckling determinant finally becomes of
too high an order to be still solvable with respect to A. Neglecting
the convergence problem (regarding the mechanically reasonable result
as a sufficient confirmation of convergence), we can surmount both
difficulties by the following method. Besides the one for B, we
insert an approximation value XAy - (estimated by extrapolation) for

A also, and reduce the determinant to its main diagonal with the

aid of Gauss' algorism - without first fixing m. If we plot the new
diagonal values (the product of which represents the value of the
determinant Am) against the pertaining number of equations n, we
obtain a point sequence we can connect by a curve. If we continue
sufficiently far with m, this curve will either intersect the axis
(generally not precisely at an integral n) or bend up. If the curve
intersects the axis, the main diagonal terms were too unimportant,
thus A = Ay too large. The calculation is repeated with a slightly

smaller X\ = ke; if the curve this time bends up, the number m was
chosen correctly, and the desired A-value must be between X; and XE

because the new diagonal terms would, with increasing n, have to
decrease asymptotically toward zero (Aw—>0) for this A-value.
Figure 8 shows a number of such curves for 2¢( = 0.5 and several sets
of values for VZL B, and A. From the two curves corresponding to
y® = 500, B = 16, one recognizes, for instance, that the root of A
must be between A = 1.18 and Xe = 1.16. The difference between

the values Xl and Xz 1s a measure of the accuracy of the calculation.

The entire procedure must now be repeated for neighboring @-values in
order to make reading off the minimum from a A(B) curve possible.
Since, however, A as an extreme value in the neighborhood of the
correct value is affected very little by the choice of B, two - at the
most three - $ proofs will generally be sufficient, provided the
investigator has had some "experience" with this calculation method.

One thus obtains a family of curves X(VCB)'with { as parameter.
Since the curves run smoothly, one can conveniently interpolate on’ the
basis of four such curves (2§ =0, 0.5, 0.8, 1.0) and with the aid of
the curves of figure 4 convert to the directly prescribed quantities,
the axes a, b of the oval, and to the wall thickness t contained
in o* and Jw. According to (2.5)
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according to (4.4) one obtains for the half oval

bLe

V/ 5
\/—m=23(1'v)9, thus 2 = 2 = » L o (5.3)
t E Vo o 2/3(1-v2) v

With the dimensionless €'

%?- represented in figure 4 one may write

instead

I W1 (5.4)

g
E 3(1 - v2) 2b

and since A is itself a function of yw (that is, U/t) and ¢
(that is, U/b), everything can be converted to the two parameters,

the ratio %? (spar height/skin thickness), and the axis ratio % = ¢
of the oval.

In the region 200 £ Vw < 4000 which is interesting in practice
(that is, for the wing nose), for &-values >0, the two A-values are .
not distinguished according to equations (5.1) and (5.2). This becomes
physically understandable if one considers figure 9 where for a "mean"
pair of parameters vﬁﬁ; { +the buckling profile, as it results from -
equation (5.2), is plotted against the developed width. One can see
that a large wave originates in the flat region while many tiny waves
develop in the region of large curvature; and it is immediately plausible
that it cannot affect the magnitude of buckling load whether these

small waves happen to have a bulge or a node at the point ¢ = X. (For
2

{-values < 0, of course, the buckling values differ considerably; for,

whether or not a node is enforced at the flat place ¢ = 0 1is decisive
for the buckling form.)

The calculation with the multiparameter curvature expressions (4.8)
and (4.9) takes fundamentally exactly the same course, except for the
fact that here the computation of the coefficients of the equation
system (3.8) as functions of ¢ and of the quantities k, is much more

troublesome, and that the complexity of the system is of disadvantage
also for application of Gauss' algorism. With a four-term
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expression (4.1) as a basis, the first coefficients of the system read
(we denote them here simply by their indices put in parentheses):

(ll) = E-ll- + kl(l - CE)E + k3(§2 - Cu)g + k5<Ch - §6)2 + k7C62
(22) = %5 +E (1 - 802 + X (6, - E)? + Kkl 2+ kgl 2
(33) = =+ 5L - ) 4 (8 - )2 st v g2 ¢ gt?

]

1 _ 2 2 2 2
(4h) EZ + kh + k2(§2 §6) + k6§2 + k8§h + klo§6

(13) = 5 (1, = 6, )1 6) + 35 (8- 6)(2- ) * ba(Gy - b) + B byt (5-5)
(24) =k, (L, - &)1 - &) + K (4 - &) + Kebat, * Kbt

(39) =¥y (& - 6 )(8 - G6) * Kaba(t - G6) * Eslp + Kqloly + Kglyte

(19) =3y (8 - L)1 - &) * 238a(8 = by) * M5t - G6) * Xqlabe

Fortunately, the calculation with the new coefficients need not be
performed for all former \/w and { values; the B-values and
the much less sensitive A-values for the ovals of equal axis ratio

and equal ratio %? are found to lie very close together. Thereby the

calculation with the expressions (4.8) and (4.9) assumes the character
of a check calculation for the region 1 2 € 2'1/2 and of an extra-
polation calculation for the values of 1/2 2 € 21/3.

That the buckling load depends only on 2b/t and b/a (that is,
on the form "on the whole"), but not on the curvature variation in
detail, can be physically explained by the effects of curvature varia-
bility which oppose one another: The parts of stronger curvature support
those of small curvature, and - as the calculation shows - 1t does not
make much difference for the load capacity whether a small region with
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strong curvature is present, which for the rest has the character of an
almost rigid edge support, or whether, as for the oval (k4.5), a larger
region of medium curvature expands which relieves the rest of some of
its load. However, it is noteworthy that not the mean curvature (one
parameter ) is decisive for the critical compressive stress, but that
two parameters, axis ratio and spar height, appear as the critical
quantities.

The total result is shown in figure 10 in logarithmic representation.
Use of the curve table requires a brief experimental method since for
reasons of clarity in the extensive U/t range the expression propor-
tional to the compressive force

g t
£ 55 (5.6)

could not be represented, but only the gquantity proportional to the

a
stress §. Thus one must, for prescribed compression force, first

estimate the quantities o or t and may then determine on the basis
of the curve in what direction the estimsted value must be changed.

6. THE CLOSED CYLINDER UNDER PURE SHEAR

The shear problem differs considerably from the compression problem
in mathematical respect. The main equations (2.1) no longer contain in
all terms an even number of derivatives with respect to each of the two
variables. Consequently, sin %? can no longer be factored so that
the equations (2.1'), which served as starting point for the compression
calculation, lose their validity; one must refer back directly to the
partial differential equations

AAQS-%wxx:o

(6.1)

Et2 1
Z—j—CE-A AW + E ¢xx - 2TV, o = 0

In order to understand what is typical in the new way of putting
the problem, we shall begin with the simplest case: the closed cylinder
of infinite length which shows neither edges ¢ = const., nor edges
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s = const. ©OGince for such a cylinder oblique waves can go around with-
out interference, the appropriate expression for solution is easily
guessed: With

E
u

Zan sin %(ns + Bx)
(6.2)

S
]

Z A sin %(ns + Bx)

where 2U 1is the circumference of the complete cylinder, the pair of
equations (6.1) is transformed - with consideration of the expres-
sion (3.1) and of the trigonometric identity

2 cos 21;(8 sin %(ns+ﬁx) = sin %((n+ 2r)s+Bx) + sin I—I}((n- 2r)s +Bx)
into
= -T-rf-(B2 + n2)2 + 2 B2 _) sin I(ns + Px) +
nemeo\U An R, n U
0 ¥
> Eopan 8in %((n + 2r)s + Bx) +
n=- r=}1
00 r*
Z Z £y, sin %((n - 2r)s + Bx) =0
n=-0 pr=
5 5 > (6.3)
2 E LA 22 1 .0 P
nz:;m(-l—————\é > (B + ) a, - —OB Ap - 2nBTan) gin G(ns + Bx) +
0 ¥
> S £, A, sin %((n + 2r)s + Bx) +
n=-o0 r=1

el

r*
> Y Eophy, sin %((n - T)s + Bx) =0

==00 T=1
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The equation system (6.3) is constructed exactly like the system (3.L4)

except for the fact that sin E%E is now replaced by sin %(ns + Bx),

and 820 by 2Bnt. Nevertheless the further treatment is very
different in the two cases. The summand $xX 1in the argument of the
sine function causes the terms with positive and negative n no longer
to be distinguished simply by the sign; the expression (6.2) must there-
fore contain all n wvalues from -» +to o (whereas in the compression
case the positive n values had been sufficient for obtaining a solu-
tion that satisfied all conditions), and the equation system for deter-

mining the a;, and a__ (# -a,) extends, therefore, to infinity "in

both directions." That, moreover, the factor of the eigen-value

is ©2nB 1instead of B2 has the result that the minimum value for ¥

as a function of B lies in an entirely different B range than in the
compression case. In order to perceive this last fact which is of
utmost importance for the computational evaluation of the equation
system (6.3) we shall here, exactly as in the compression case, briefly
treat the cylinder of constant curvature at the outset.

For §2r = 0 the equations (6.3) are each reduced to the first

line. The requirement that the factor of sin %(ns + Bx) must disappear

results in a system of equations which contain in every case only
unknowns Ap, a, with the same index. The buckling condition results

precisely as it did in the compression case (compare equations (2.4),
etc.) and reads with the abbreviations (2.5), (2.5'), and

_ T 1 2 R
w=8 _u\/3(1-V)%-t-

3

according to (2.6)

1 n
T, -Zu=o (6.4)
. dp
The condition ® " 0 yilelds
! 2y 4(1/k;) gp2
O——kn+kn+B(l-kn) dBQ —E

2
= ﬁi + k, + %%E(Il - kn2><l - §E> (6.5)
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Vieli - v3 12 _ Jie@a - v2)

b1 ﬂRot i

Since for the complete cylinder Jw = %

ig a very great number, B must be either very large or very small in
order to cause

1 (n2 + 32)2 + B3VCE (6.4")

n B\/E (n2 + [32)2

to asgsume reasonable amounts. With the assumptions

u:

2
B2 << n?, kn=B Vo

n

2 2 _ Vo
B= >> n-=, kn = BE

there follow from (6.5) for B and k, the simple formulas

n _ 2 _ (B
e 2 =[5
. (6.5')

knzﬁ kn=ﬁ

and therewith for u

__n_ A\ _ _Mn _ Vo3 A\ _ b o ¢
“(kz) h\/&—bﬁ+\/§ h\/ﬁ; LL(gr) n ‘/§+,/§ n\/2-7(.)

The critical shear load therefore attains its minimum for small B
values. According to equation (6.2), B/n 1is the tangent of the angle
formed by the node lines and the x-axis; thus B << n signifies that
long wave crests almost parallel to the axis develop. In case of longi-
tudinal compression, on the other hand, wave fields with an aspect ratio
of the order of magnitude unity are formed; that 1s, the reciprocal
action of stretching and bending, which 1s characteristic for the shell,
takes full effect in case of compression, but not in shear; hence the
critical shearing stress according to equation (6.6) is incomparably
lower than the critical longitudinal-compressive stress according to
equation (2.8).11

11For longitudinal compression there 1s O ~ (t/R)l, for shear

T ™ (t/R)3/2, for normal pressure (the wave crests run exactly axis-

parallel) the critical hoop stress becomes «:(t/R)g.
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It is clear (and is confirmed by computational spot checks), that
this behavior of the infinitely long shell under shear cannot change
fundamentally, due to the variable curvature. In discussion of the
system (6.3) we may, therefore, make use of the assumption

B2 << n°
As a consequence, the quantities
vV
X B2 -
*n n

decrease very rapidly with increasing n, thus the secondary terms in
the determinant of buckling for large n become negligibly small so
that the discussion of the equation system resulting from equation (6.3)
may be limited to a few terms around n = 0. Eguation (6.6) is main-
tained as an approximation result; it permits the conclusion that the
terms n = %2, as the terms with the smallest n, will play the decisive
role; for, according to equation (6.4), n = 0 has no meaning, and

n =1 leads to an entirely different type of buckling (Greenhill
buckling) with which we do not want to deal here and for the treatment
of which the simplified equations (6.1) would not be sufficient.l2

Thus we consider the system (6.3) for even n and limit ourselves,

for reasons of clarity, to a three-term curvature expression (3.1) and
to five equations. One then obtains by eliminating the A, arranging

and putting equal to zero the factors of

sin %(ns +px) for n=-4, -2, 0, 2, L

a system of five equations, the determinant of the coefficients of which
(-b4,-4) (-4,-2) (-4,0) (-4,2) (-L,b)
(-2,-4) (-2,-2) (-2,0) (-2,2) (-2,4)
a=|[(0,-4) (0,-2) (0,0) (0,2) (0,k)
( 2,-4) ( 2,-2) ( 2,0) ( 2,2) ( 2,k4)
( 4y-4) ( 4,-2) ( 4,0) ( 4,2) ( 4,4)

12Compare Fiﬁgge: Statik und Dynamik der Schalen (Statics and
dynamics of shells), p. 199 ff., Berlin 1935; furthermore, Kappus:
Elastizitatstheorie grosser Verschiebungen, (Elasticity theory of large
displacements), ZAMM 19, 1939, p. 351 ff.
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must vanish. The coefficients (i,k) of the determinant are

1 2 2
0,0) = +k +2 k + 2 k

(62:55{} = ﬁ; vk §22<ko + kh) + Chz(ke + k6) t

2
('h"hj} =1 4 Ky + 222<k2 + k6> + §h2<ko + k8) t %F

u4§

2k2§u)

—~~
!
no
.
no
Naer”
i
—~
N
.
1
no
S’
!
1
——
'al
no
o
b
(o]
+

(-b,4) = (k,-) = -£),%k]

‘('2;0) = —(O,—2) (2)0)

(0,2) = Cg(ko + k) cgch(kg + ku)

—(—4,0) = -(O,-h) (h,O)

I
I

(0,4) =8,%k, + ty (k. + X,)
'gegh(ko + k2)

ge(k2 + kh) + Cech(ko + k6)

Thus the determinant is built in a manner permitting an easy survey;
by appropriate addition of the lines or columns it may readily be simpli-
fied so that the very large term

k= Vo

o E;?

n

(<b,2) = (2,-4) = (4,-2) = (-2,4)

(-h’-E) = (-2,-&) = (4:2) = (2,&)

appears only at the point (0,0). Since kg, kh’ k6 are, compared to

k

o» Small in the ratio EK’ a four-series determinant remains which can

n
be further reduced if one also neglects everywhere k), kg compared to

k2 and makes sure that the large term

1 _ 256

N, B82Vo

occurs only in the elements (-k,-L4)(L,4). The condition A =0 1is
then reduced to the statement that the inner two-series determinant
must vanish. In thls manner a quadratic equation for u originates in
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which the linear term also vanishes (the sign of p remains undeter-
mined, as it must be), so that one has as buckling condition:

5 /I‘lz + k(L - g4)2\/1‘1_2 * k(14 8y - 2t (6.7

This formula does not vary if a multiterm expression for l/R is
used, because the §6’ §8, in the decisive two-series determinant occur

only in combination with Xk, kg . . ., and thus must be eliminated
corresponding to the other neglections leading to (6.7).

The sign of §2 is insignificant (as it must be for the closed

cylinder); the deviation from circular form causes a reduction in crit-
ical load which can easily be calculated for the ovals of the type (4.8)
or (4.9) that are of interest. First we must determine from

cEff e R G

! 6 6
~§—2,/ZB %+(1- 6,)? %+(1+§h-e§22)2

(6.7")

the critical p-values by differentiat&on with respect to 8 or l/B.
The simple calculation yields for l/B the quadratic equation:

f—;% - [(l - l_;u)e + (1 + gh - 2§22)2] -

L

3 ;’—;;[(1 - u)B(1 g, - 2%2)2] -0 (6.8)
The two expressions

(2 - ¢, )° and (1 vy - 2§22)2

for the ovals of type (4.8), (4.9) in the ({-range which is, according
to figure 7, of interest, differ numerically only slightly so that it
is permissible to replace, for the determination of the extreme, the
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square of the geometric mean occurring in the last term of the equa-
tion (6.8) by the square of the arithmetic mean; (6.8) then reads

256 5 (l - Cu)g + (1 + &), - 2§22>2

wBu 2
2 2\2l 2
Jot|(1-8)7 (v b - 2T
256 2
and has the positive root
2\2 _ 2\
2% _ 1 _, (1-62)° + (1 +8, -287)
gt ko 2

= 3(1 + Cug - 2§22(1 + gu) + 2@2”)

If we substitute this in equation (6.7), the two radicands may be
written in the form

b1+ 02 - 202(1 ¢ €) + 2t 3 28, - 52(1+ 8) + G5Y)

We have therefore
8 2 2 t ¢ h|l/u‘
o= !\/—é— %[1 + Ch - 2C2 (l + L},) + 2 5 ~

6, - 62(1 + &) + & 2[M/2

(6.9)
1+ §h2 - 2§22<1 + Ch) + 2§2u

The last factor in (6.9) may be replaced by 1 for an oval of the type
(4.9). Then it can be written in the form

Y (1 -t,)2 2]/2
16 1+6)° - 2§22(1 + Ch) -

which makes it clear that even in the extreme case ECu = 0.6 X 0.9

(compare fig. 7) the reduction caused by the second summand stays below
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1 percent. Thus there results, with consideration of U = Ryn, for
the critical shearing stress

o /2 4
B e M L S

(6.9")

Aside from the factor [i + .. :]l/h the formula (6.9') is built
exactly like the formula for the circular cylinder derived by Flugge,
except that the numerical factors deviate slightly. According to

V2

Fligge's theory the factor —= = O. 236 replaces Y= = 0.272, thus
ug 3‘[— 33 12,
a numerical value smaller by 15 percent. This error in the

formula (6.9') stems from the simplifications in the initial equa-
tions (6.1) which were permitted only under the assumption that "many"
waves developed in the hoop direction; however, the deviation is still
within technically tolerable limits, in spite of the buckling form of
extremely low wave number (n = 2).

13

Thus the mean curvature 1/R, 1is, according to (6.9'), essentially

decisive for the load capacity of the cylinder with oval directrix under
shear load. One determines t/RO from the spar height 2b and the

axis ratio ¢ = E, with the aid of the ¢'-curve of figure Y or 7
a
(according to the form of the directrix) on the basils of the
relation X = 2¢' g%; €' 1s read off as a function of ¢ Dy inter-
o

polation of the variable §. Accordingly, (6.9') can be written in

the form
2
T (1)3/ W(e)
E 2b

In figure 11 the factors V¥(e), which - with consideration of Flugge's
correction - are given by

1/4
V(e) = a 0109 3/h 1 ’ge 3/2[; + gug - 2§22(1 + Cu) + ECQ%] /

135¢chalenbuch (Book on shells), p. 206.
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are drawn (dot-dashed) for the ovals (4.5) and (4.9). The two curves
practically coincide. The expression V¥(¢) = 1.3ke - 0.37€2 - 0.25

may serve as approximation formula for both ovals (and of course also
for (4.8)); thus

u
E

- (;—b>3/2(1.3ue - 0.37¢2 - 0.25) (6.9")

7. THE BUCKLING CONDITIONS FOR THE CYLINDRICAL SEGMENT UNDER

SHEAR LOAD; ITS SOLUTION IN FIRST APPROXIMATION

More important for the application than the closed cylinder under
shear load is the cylindrical segment of variable curvature supported
along two edges s = constant under shear load (and shear-compression).
We think for instance of a half oval with the longitudinal edges
supported according to the requirements of the conditions (2.9). The
expressions (3.2) and (6.2), which for the previous problems had led to
finite-term equation systems, are not usable: One does not satisfy the
differential equation, and the other cannot be adapted to the boundary
conditions. In contrast, the problem leads to an infinite equation
system in which every equation has an infinite number of terms, with the
aid of the expressionslu

()

w=2(an s',:lnﬂ—}5+bn cos I[—)5>sin£l-ﬂ—s
1 l 2 U
(7.1)
00
¢=E(An s:LnE}—(+Bn cos E>sinE
1 1 1 U

which satisfy term by term the boundary conditions (2.9). The cal-
culation expenditure is nevertheless smaller than in the case of com-
pression because the critical range is again the region of small
B-values where the system converges extremely rapidly. For obtaining

ll*These expreseions are also used by Kromm in the report mentioned
in footnote 5, Luftf.-Forschg. 1938, p. 517. Kromm gives a description
of the physical importance of the expression (compare the formulation
of (7.8) below in the summary) in the yearbook 1940, p. 83k4.
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the equation system itself, one must employ considerations similar to
those in section 3; it is particularly useful to introduce again the
stipulation (3.6). If we limit ourselves, for reasons of clarity, .
preliminarily to the simplest curvature expression

i = EL 1 - QC cos gﬂi
R Ro U

there result from the first equation (2.1) (compare (3.7))

by equating to zero the factor of sin B %% 8in n %?

BE EU2
e (Bg + n2)2 ngRo <an i C(an+2 * an'2>) | (7.2)

and by equating to zero the factor of cos B %% gsin n %?

2 2 -
_ B EU
13n—-(2 222<bn E(bpsp + b 2))
B+n) 1“Rg -
The second equation (2.1) where one can at first not factor sin RIS
9)

yields correspondingly

i E

11-V2U2

t2n2

(Be + n2>2 - 082> an sin 2%5 -

00
-Ll - 2t cos 2n E)BEZAH sin 22 4
o 6] 1 U

oS o, cos 22 Zl— B @20, )2
1

Ll - ve 2
082i] by sin ane —-——(l - 28 cos 2n —)BEZZ:-B sin 225 -
1) Ro U
mZ na, cos =& = 0 (7.2") h

§f
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In order to make of these two equations - in which we visualize Ap,
By, inserted according to (7.2) - an equation system for determination

of the ap, b,, we must replace the factors cos M8 py gin D8

U U
means of an additional Fourler expression. We first rename the summa-
tion index in the last term

y DY

QTB:E:mbm cos ore
U

The Fourier coefficients of the function cos '8 are obtained in
8]

the known manner from the relation

cos m

fUcos mts . onns
ng _ 0 U U nng _ nns
=> g =

5 5 gin —= = I 5 sin
0 U

2 |F

[m or n odd]

The last term of the first equation (7.2') becomes therefore

nns

8
- T8 ZZ by ngm_l — sin
mn

By exchanging the sequence of the two summations, introducing (7.2),
nns

putting the factors of sin - individually equal to zero and
enlarging them by —EJL—_’ there results from the first equation (7.2')
BEo¥/w

(T(]; - X)an + an(kn + gg(kn+2 + kn_e)) - Can-E(kn + kn-E) -

2 2 321 _ T mby
Can+2(kn + kn+2) + 8%k pany + Egpaniy + P c*/ﬂ§§;: Y- ©

(7.3)

From the second equation (7.2') follows an identically constructed
equation in which a; and bi appear exchanged compared to (7.3),
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and the sign of the last term is reversed. One now readily recognizes
that one does not need both equation systems for determination of the

critical value of 1'.15 For the second system is transformed into the

first if one mwltiplies the first, third, fifth .

and puts

b

both systems have, therefore, the same eigen-value

n

= ("l)nan: by = ('l)m

8m;

2
T

. equation by (-1)

In order to clarify the further considerations, we introduce

besides the abbreviations (2.5') and u = 8t additionally certain
o¥/w
quantities 8,v by the equations
X —_— (l 2k 2 T
11°% B Ky + + ¢) 1+ ¢ k3 - A
_x i}_ 2
22_E8k2+k2+€k’+_xil
_ I i}_ 2 }
833_Eﬁk3+k3+§(k1+k5) )Zl
i ’ (7.4)
b
sl3='§EB[(l+§)kl+k3]
- t2 X
315 =€ T Bk3
T
835= —C'E B[k3+k5], etc. |

15The respective consilderation also is that of A. Kromm, Luftf.-

Forschg. 1938, p. S521.
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Then the coefficient scheme of the equation system (7.3) is

a by a3 b ag Y% &
1.2 1.4 1.6
n 3 H %3 TEY s 3HH 0
2.1 2.3 _2.5 _2.9
3Y P TBM %y TEM %6 "M _ &
o*¥YD
3.2 3.4 3.6
513 R« e U B (7.5)
4.1 4.3 4.5 L.

B - S S T R W X

We investigate first the case of pure shear load (A = 0). Pre-
cisely as 1n the case of the complete cylinder, here also the lowest
buckling load pertains to the buckling form with the "steep" waves,
that is, to small pB-values; as there, we need use, therefore, only a
small initial portion (from the system (7.5)) and can make appreciable
simplifications within the coefficients themselves.

We obtain a first approximation for the critical values of pu
from the determinant of buckling of the two first equations

2 _9
o S L (7.6)

The pertaining wave length results from

a(u1?) _9 d
a(p?)  u ap?

(|11 %22) = © (7.7

Because of
B <1

the evaluation of equation (7.7) is very simple. From

1 1
kl = Bef(l_), k2 = Be\/m) k3 = a Bgﬁ_n-’ k)-l- =T Bem

L
16 256
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it follows first that the terms §2k3, (k) cannot be of importance
compared to their neighboring terms; if we, moreover, regard k, instead

of Bz, as the unknown to be determined, equation (7.7) is reduced to
the simple problem of determining the minimum of the function

1. /1 o \/16 . ®1\ _ /1 5 E)
16 l<k +(1 + %) kl><k1 16) = (kl + (1 +¢) kl><l + g

1

as a function of kl' One finds that the second summand of the second

parentheses can be omitted, since the differentiation of the first

parentheses yields -lg - (1 + §)2, which becomes zero for

kg

k= BEY/® = 1 i._ t (7.7")

so that kl%/é56 in the neighborhood of the extreme is indeed vanish-

ingly small. With (7.7'), and omission of the small terms, equa-
tion (7.6) reads

p 97 ,f1 5 \16 1 9n2
= e —_ 1 K-\ — — = Z— (1 .8
- l;l6rs<l+(+c)lﬁgﬁ =0e0 0
For the critical shearing stress T = ZV¥®, = E txp

8 Viz(1 - v2) U 2

there results therefore

r . 3m E tn\3/2 T - 0.55 & t">3/2,/1+c (7.9)
2\/— (l_v2)3/,+( ) \/ (U

wherein, we can, of course, again write l/Ro for =/U.
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8. CRITICAL SHEAR LOAD FOR THE HALF CYLINDER

OF ARBITRARY CURVATURE

The formula (7.9) has exactly the same construction as the
formula (6.9') for the complete cylinder. However, it is not worth
while to refine it or even to discuss it more closely because it
represents, after all, among the formulas obtainable from the equation
system (7.5) only the first approximation. Calculation of the second
approximation does not offer any difficulties since one may now utilize
the experiences made in determining the first.

From the requirement that the determinant

2

511 Ela %13

2 5

3H S22 “gY
5

"13  "g* P33

has to vanish, the second approximation for the critical value of
p.2 becomes

8,2
, L. P13t
L2 (511333 - 813 )sop 29 11533 -u 2
I1 E s + é g + Q s u, 11722 81 sll 18 313
33 o5 11 13 too—
9 5 5 25 B33 5 833
(8.1)
We can put for the 85t
7 1 n
817 = E¢3<EI + (1 + §)k1>, 813 = —QH-B(l + 6)kq,
(8.1")
s = .TL _@—. = m 8 = l £— = 8—lI£ E—
2 b, ok 33 kg bk
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The correction terms in (8.1) thus become

3
= — —(1+ (1 + Ok >
311835 81 1+ (1 + §)2k12’ 25 855 25 1)’

18 513 __2¢

25 (14 U)K

We can estimate their magnitude with equation (7.7")

813 2 1 8ls;y 1883 2 28 (8.2)

——Ng'———— — + ~
811833 162(1 + £)2° 25 833 5 533 25  L5(1 + ¢)

~

One can see that for determining the locus 82 of the extreme value
the numerator correction term may be eliminated; the denominator terms

also may be cancelled, since the term 2/25 1is a constant, and the

remainder is so small that it is again of no importance. Thus ac 0

2
ap
and for determining k,; and Be, respectively, we retain the simple

formula (7.7'):

Thus equal signs appear in equation (8.2); by substituting equation (8.2)
in equation (8.1), one obtains for the correction C to be made in the
first approximation “12 the expression

2 §2
1 - -———EL—————E l - —=
c o= 162(1 + ¢) _25 162(1 + £)2 _ 25 o (8.3)
1.2 . 2t o7 L. L0 ¢ o7 L
25 " I5(1 + €) 231 + ¢
2
The quantities 20 __g__ and s 1 affect b ™ JE- in the

2Lk3 1 + ¢ 162 (1 + t)2
extreme case € = 0.5 by less than 1 percent. The only essential
difference between the two approximations M and Wy consists,

therefore, in the numerical factor /%% which causes reduction by about
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2 percent; thus a further approximation can not bring any further

. : 16 o¥yw

essential improvement. If we now introduce T = t L in
_ [
Hip = 57 CQ“I with
¢ ¢2 1
Ch = /fC M1+ = (8.4)
2 VT 21+31+§ " 3041 + £)2 501 + ¢

and W, = 3“ , we obtain

I u\/—
T Z\I}g (12(2 -Ev2)>3/2<%n>3/2 Co\fl + T

for Vv = 0.3, thus

% - 0.533(%’-‘)3/2 cpfl + & (8.4")

For the special case € = 0 +this formula is transformed, as it must be,
into Kromm's formula (valid for arbitrary U/Ry):

T = 1-67E%J;£ (8.4")
o) .

If we introduce instead of U the spar height 2b, (8.4') reads

T = 150500 () with ¥(e) = a(t) = ((eN¥2cy1+ )2 (s.5)

vherein V¥ is a function of the axis ratio which in the special case
of the oval (4.5) is obtained from the curves of figure 4. It is drawn
in a dashed line in figure 11.

For an arbitrary oval represented by the general expression (h.l),
the calculation is hardly different from that for the oval represented

16For the special case §{ = 0 A. Kromm, Luftf.-Forschg. 1938,

p. 525, has proved by a check calculation that pIII = uII'
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by (4.5). The quantities 8;x 1n the more general case s Cg £0

are now, except for the factor %[3, the quantities denoted by (ik)

(5.5). The considerations made so far show that one may cancel a great
deal; one obtains

./ 1 2 T
11 = EB<£I + (1 - t) kl>
%20 = Zpit
| (8.6)
81
337,
Lok
7T
513 =380 - G2 - &)x ]
and hence
N 1 /8 - by
2 9 25 '162(1-§2> 25 16 -t
Mrr T} P11fee L0 -G * 75 Puee\l T 5 T C (8.7)
243 1 - &,
that 1is,
T tn\3/2 /2 1 b2 -ty '
5= 0s33(F) (1 - g <1-5O T (8.7')

One can see that precisely as for the closed cylinder the sixth harmonic
has no significance whatsoever, and that the difference compared to the
special oval &, = -€, Cu = CE = 0 consists only in a modification of

the unimportant last correction term. For the ellipse-like ovals we

considered especially, the change means a very slight increase of the
critical values, since according to equation (4.9) the factor of the

correction term assumes in the limiting case 2 =1 the
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value §‘$5 = 1.2 instead of ilg = 0.67 according to equation (4.5).

More important for the comparison between equations (8.7') and (8.4') 1is
the fact that the factor 1 - {5, for equal {-value is larger this time,

For, according to equation (k.9), €2 = -1.5{, and if one would simulate

the oval still more to an ellipse (compare p. 16), one would obtain
coefficients still somewhat larger (1.6 for a curvature expression

starting from sin® %?, etc.).

The physical significance of this is that among the ovals of equal
length U (and therewith of equal mean curvature l/RO) the buckling

stiffness increases with the nonuniformity of the curvature variation.
Of course this applies only if the spar supports the point of minimum
curvature. If one places the support at the ends of the large axis

(62 > 0), it becomes more and more ineffective with increasing "ellip-

ticity." We compare for instance the equations (6.9) and (8.7') with
one another by substituting, according to equation (4.9), §2 and Qh;

in the extreme case 2{ = 1 the numerical factors

0.281 X 0.72 = 0.21 for the unsupported cylinder

and 0.533 y0.25 X 0.99 = 0.26 for the supported cylinder

result which now differ only slightly. If one intensifies the ellipticity
by a curvature expression of still more terms (thus with still larger
§2 values), the numerical values approach one another still more.

If we again turn from the parameters appearing in equation (8.7')

U and ¢ to 22 and €, we may write
t

T - 1.5E(%)3/2$( ) (8.8)

vith W) = (e'(£)¥/2(1 - C2)1/2< S22 ) s bime actermined
20 1 -6,

from figure 7. The result of the calculation is also plotted in

figure 11 (dashed). Like the curves V¥ pertaining to the closed

cylinder, the two curves V(f) for the ovals (L4.5) and (4.9) also lie

very close together; that means that, as before in the compression case,

the buckling load of the half oval supported at the "long sides" is

almost not at all dependent on the exact form of the oval, but only on
2b

the two parameter values T and 2 = ¢. Since the relations (8.k4),
a
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(8.7'), etc., as the comparison of the exact Flugge formula with

formula (6.9'), contain (due to the simplifications made in the initial
equations) possibilities of error of an order of magnitude of 15 percent,
it is sufficient to replace the two ¥ curves found here (as well as
all others possible) by the curve drawn solidly in figure 11. This
approximation curve has the simple equation

¥ (€) = 3.1€ - 1.3¢° - 0.3 (8.9)

o}

To repeat this formula, as the result of the calculations of the
two last sections, once more: +the simple relation

% = é% 3/2(3.16 - 1.3¢° - 0.3) (8.9")

is valid for the critical shear load of the infinitely long statically
supported half oval. It is so simple that it is not worth while to
represent it by a diagram. According to 1ts derivation its wvalidity
range is limited to the region 1 > € > 1/3; however, most probably not

too large errors will arise if it is applied for the region ¢ = %

to ewn i.
5

9. THE WING NOSE UNDER COMBINED SHEAR

AND COMPRESSIVE LOAD

The extraordinary diversity of the buckling form makes it impossible
for compression and shear buckling to "mix"; in case of an appropriate
variation in load the one buckling form changes suddenly into the other,
that 1s, the curves for the critical values in a o-, T-coordinate
system show a break. (Compare fig. 12a.) The calculation which must
be performed according to the methods indicated in section 5 shows that
the critical compressive load within very wide limits is changed not at
all by shear, whereas, as we shall now demonstrate, presence of com-
pression or tension influences the critical shear load.

We start from the equation system (7.5), thus consider first again
the special oval Cu = §6 = . . . =0. The first approximation has

again the form (7.6); however, this time the quantities 55 must be
understood to signify the complete expressions (7.4) (that is, with

)N # 0). Since the presence of a small compressive force is not able to
basically change the critical behavior of the cylinder, we may in the
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Vo region which is of interest for the wing nose again substitute
2

k, = Eﬂ\ﬁ5 and obtain (compare also (7.8))
n

w? = 25521 4 (14 2 - a)(26 -
4 16 k) k)

%(k— + (1 + £)%Kk - x><1 - >»_1k81_> (9-1)
1

For determining the critical p values from

2 M 2
1

Ak
the small term 37% may be omitted. Therewith there results for the

critical value of k; the value (7.7') independent of A:

(9.2)

uIE thus becomes:

2 2
p2 =201 . L A (9.3)

I o 16 32(1+ ¢)

For the plotting of u against A\ the tangential direction at the
point A = 0 1s of foremost importance; there results from the simplifi-
cation of (9.3) which is valid for small X\ values:

3“ L
o < 3a1+9> (9.3)

Exactly as in the case of pure shear load a corresponding formula
results, without considerably larger calculation expenditure, also for
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again from the formula (8.1):
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One starts

e
2_94 811833
Prr =% fnfeo 81 51 18 o1 (9.4)
1+ 25 Ban ?; Bon
33 33
where one has to substitute for sik
Sll = Eﬁ<kl_l -+ (l + Q)zkl - X), 813 = - CEB(I + g)kl)
> (9.5)
A 81x /1 A
8 = ).]. ——— o —— 8 = e B —— . —
22 = VP (kl 16) 33 B(k-l 81) i

2
The term 813 /811833 in the numerator may be omitted, as we have

seen above (p. 38).

Then one obtains equation (9.4) in a readily

surveyable form if qgi multiplies throughout in the numerator and the

denominator by - E;l
1
1 2 1 A Aky
2 _ 9,250 (E+(l+§)kl_x)(ﬁ_f6)<l_—8—f
M =&n
ol M +—l-(l+(l+§)2k2-Xk>-§£(l+§)k2
81 25 1 VAR 1

(9.41)

The position of the minimum of this expression lies again close to

K. = 1
1°T+¢
If one substitutes this value, one obtains
(- o)l - mrd)l - st
w2 2218250 ey 21+ ¢ T6(1_+ T+ ¢
II "2 Vo 27 ;. 106 10 ¢
2187 1 + ¢t ~ 2k3 1 + ¢

(9.6)
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For the tangents at the point A = 0O one obtains by series development
(compare also equation (8.4))

_5n 1 1 4 A .
pI_V—g%\/1+§(1+— )‘:1—0.263 ] (9.6")

50 1 + ¢ 1+ ¢

or written in T and o, with T(A = O) denoted as T

o]
) = 7|1 - 0,263 —2—] - ¢ |1 - 222 0-263501 - v2) (9.6")
° 1+ ° Et e (1 + §)

The formulas (9.6) to (9.6") are valid for the special oval (4.5). The
corresponding formulas for the general oval (4.1) differ from them by
the fact that instead of 1 + £ one has to write 1 - §2 and that the

very small correction term 3£L<——£—- or L y respectively,
243 1 + ¢ 50 1 + ¢ b, - b,

contains, instead of the second fraction, the quantity X _ . In
1-6

determining 16 it had been found that these formal differences are

almost completely compensated at transition to the two parameters 2b/t
and b/a, so that for T, the expression (8.9') which is independent

of the oval form resulted. With still better approximation one may
replace the factor representing the influence of the longitudinal force

0.263/3(1 - vo) __0.433 _0.433 (9.7)

e'(1 - ¢ty) (1 - &,)  ¥x(e)

by a "mean" function independent of the oval form. 1In figure 11 the
function V*(e¢) 1is drawn for instance for the two ovals (4.5) and (4.9).
The deviations are indeed so slight that - in view of the simplified
initial equations - it would be perfectly nonsensical to take them into
consideration.

In place of (9.6") we obtain therefore the formula, valid for

arbitrary ovals, for the critical shear in the presence of small
compressive or tensile forces (o 1is as compression counted positive):

r=T (1 - _—(0'1‘33 g &) (9.8)
V(e)\E t
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On the basis of the formulas (9.8) (for small A) or, respectively,
(9.6) (for larger A values) one may sketch a diagram from which result
the admissible critical pairs of values o, T. In figure 12 a repre-
sentation was chosen which saves use of separate dlagrams for deter-

mination of the critical loads Tor 9% (everytime in the absence of

the other). This is possible because of two peculiarities of the curves.
The dependence of the curve branches starting from the T-axis (shear
with some compression) on the parameter 2b/t is such that one may
factor this parameter, as equation (8.9') shows, by selection of the
easily calculated abscissa

T <1:_>3/ 2

E \2b

The remaining one-parameter curve family is then numbered according to
the parameter € = %‘ The curve branches starting from the o-axis

(compression with some shear) cannot be transformed, in a similarly
simple manner, into a one-parameter family dependent only on ¢, by
selection of a suitable ordinate. Instead of this, however, these
curvee are independent of T, that is, they are horlzontal straight
lines which need not be explicitly drawn into the dlagram; both param-
eters on which - i1f the ordinate % g% is selected - these "curve"
branches depend can now be indicated by a simple method: one need only
mark the pertaining 2b/t value at the intersection of the horizontal
straight line and the other branch of the o-, T-curves numbered
according to €. Connecting, in addition, the points of equal 2b/t
values, one has on the whole a diagram with two one-parameter curve
families from which one may read, without additional auxiliary diasgrams,
the relations between the four quantities o, 7, 2b/t, b/a which
characterize the critical state.

For use of the diagram (which of course is drawn only for the
region 50-1000 of the parameter 2b/t that is of practical interest)
the following method results: b/a is known, t is selected, b/t
determined. The point of intersection of the curve pertaining to the
respective b/a with the abscissa axis represents the pertaining

critical T, value in the absence of compression (formula (8.9')).

For smaller T compression 1s permissible; it 1s read off from the
curves indexed b/a vertically above T. If the point comes to lie
in the region covered by the dot-dashed curves, one must consider
whether or not compression alone produces instabllity. This 1is the
case when the intersection of the curve indexed b/a with the normal

comes to lie above the dot-dashed T - curve, since the plercing

points of the dot-dashed with the b/a curves indicate the critical
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compression values in the absence of shear. Only if these "critical
curves" are not reached, shear is permissible. The method is best made
clear by an example

2b

2. 0.60 22 - w00
a t
3/2
1. T (& / = 1.0: a compression = = 0.16 X is permissible
E\t E 2b
T [2b)3/2 o t
2. — | — = 0.94: a compression — = 0.29 — is permissible
B (t ) 9 P E 7 2b P

since the dot-dashed curve %? = 400 1lies higher up;

E\t

3. 1 <@>3/2 - 0.80. One would read off < = 0.57 <, but this
E 2b
value is not admissible, since at % = 0.34 g% lies the critical wvalue

for compression alone.

If the permissible compressive and shear loads prescribed by the
problem lie higher (lower) than the critical ones found from the diagram,
the reading must be repeated with a larger (smaller) +t value.

10. VALIDITY LIMITS - UNSYMMETRICAL OVALS

UNDER BENDING - SUMMARY

The report investigates the stability of the cylindrical shell of
infinite length and variable curvature simply supported at the longi-
tudinal edges in case of loading by longitudinal compression and shear.
Starting from the cylinder equations (2.1) which are reduced to the
"essential" terms, the formulas are developed first in such a general
form that the calculation may be performed for a shell of arbitrary
curvature (representable by a Fourier polynomial) and of arbitrary opening
angle and then be numerically evaluated for the special ovals (4.5),
(4.8), and (4.9) with the opening angle = (wing nose). It is found
that the shell under compression shows an entirely different behavior
from that of the circular-cylindrical shell (the oval shell of equal
mean curvature buckles very much earlier), that, however, in case of
shear loading - where almost axis-parallel wave crests originate - the
variability of the curvature has only little effect. Performance of
the calculation is merely more troublesome in case of compression than
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in case of shear, because the equation system to be solved in the param-
eter region of importance for the wing nose converges there very much
mere slowly. On the other hand, the result in case of compression

(fig. 10) has a very much wider range of application - since the waves
in longitudinal direction are short, the results are, with good approxi-
mation, valid also for the cylinder of finite length. For shear, in
contrast, presupposition of great cylinder length i1s essential - if,

due to the transverse reinforcements, the oblique waves can no longer

go around without interference, a constraint results which sometimes
increases the critical load to a multiple.17 It is difficult to tell

by how much one may, however, assume that 1t amounts to less than for
the circular cylinder because for shortened longitudinal-wave length

the variability of curvature (insignificant for the cylinder of infinite
length) must have a reducing effect, as in case of compression. Besides,
for the breaking load one may count on a considerable reserve also in
case of compression; noticeable buckling orlginates at first only in

the slightly curved part, without much affecting the strongly curved
part, so that a considerable amount of load may be shifted to the latter
before the entire shell collapses. (The shell of strongly variable
curvature behaves similarly to a plate stiffened by longitudinal supports
above the buckling limit.)

The diagrams and formulas have been calculated under the assump-
tion that the ovals are symmetrical to the large axis, that they show
the opening angle Py = T, and that they undergo compression or tor-

sional load. However, they may be used also when the ovals are unsym-
metrical, have an openlng angle different from =, and undergo bending
with or without transverse force. The investigations of section 5
(compare fig. 9) have demonstrated that the two halves of the oval show
almost no mutual influence across the strongly curved nose. One cal-
culates, therefore, an unsymmetrical oval under compression by mirroring
the flatter one of the two halves {as the more endangered one) at the
large axis and taking the dimensions of this substitute oval as a basis
for the calculation. If the opening angle is Qg # 1, one provides an

equivalent half oval by slightly modifying the more endangered half of
the "apexes" so that there the tangent is vertical to the end tangent

at the flattest place and mirrors the thus originating quarter oval;

this is, as an approximation, permissible, because the region of smallest
curvature is of foremost importance for the critical behavior so that

a slight change in the region of greatest curvature (which practically
remains unbuckled) cannot essentially affect that behavior. If,

finally, the wing nose does undergo, not pure compression (bending of
the wing about the vertical axis), but bending about the large axis,

17Compare the circular-cylinder results of Kromm, Jahrbuch 1940
der deutschen Luftfahrtforschung, p. I832.
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one mirrors the compressed half and calculates the thus originating oval
as if the maximum bending-compressive stress were uniformly distributed.
With this method, one is on the safe side without calculating very
unfavorably: for even for the circular cylinder the critical bendin§
stress is not very much higher than the critical compressive stress,

and for the oval the difference is a great deal slighter still, due to
the width of the pressure zone (which is moreover the least curved).

Transverse forces will, in general, not affect the stability of
the wing nose. Vertical forces will not do so because the part trans-
ferred by the wing nose is smaller and, moreover, reaches its maximum
value in the strongly curved portion, and horizontal ones will not,
because the stresses in the nose must change the sign and thus can
generally not be large. Therefore only the torsion remains as essential
shearing load. In case of combination of torsion and bending about the
horizontal axis, the diagram 12 serves for the half under compression.
For the half under tension (which sometimes, nevertheless, can be the
more endangered one because it usually is the flatter half) we obtain
from (8.9) and (9.5) the approximation formula

ToT 0.433 fo 20
- °<1 "o (E t))

in which o, as tension, has to be inserted as positive. The quan-
tity i*(e) is taken from figure 11 - for rough calculations one may
put ¥ = 1.

We add a compilation of the abbreviations and of the end formulas
important for practical use. (Compare also fig. 2.)

Abbreviations: U
B = 7 (2.3)
12(1 - v2) u2 E 2 t2
Ve = e Rt o 1-v2 3 p2 (2.5)
(o]

11 (p2+n?)2 %) o Rg T R

—_ = = = 2y3(1 - ve) = = 4f3(1 - v2) - 2

g 3( )Et, o= b3 ) =
(2.5")

Briugge, Ing.-Arch. 3, 1932, p. 501 ff.
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For the half cylinder U = R« and thus

WE:_(___MH=23(1_\12)R$= 3(1_V2).2_b_

b1¢ t

Formulations:

for the curvature:

*
1_1(; + 26! cos.eﬁ+2§LL cos MB . . 28, cos or ﬂs)
R R, U U U
(4.1)
for the unknowns w and §:
(a) for compression
-] o~
. . TX nns
W=Za'n51nTSinT
A
. > (2.2)
. TX nns
g = Z A, sin 3 sin ]
A .
(b) for shear (closed shell)
o0 ~y
T
W =—Zman sin 5(131( + ns)
> (6.2)
= T
) =Z Ay, sin =(Bx + ns)
U
o J
(c) for shear (shell segment)
0 © “
W= E an sin%sin%+ ) bn cosn—zx-sinpﬁ
n=1,3,5 n=2,4,6 u
® © > (7.1)
g = > A, 8in %}5 sin ngs + > By cos 1;_x sin %
n:l’3,5 n=2’)+’6

The critical loads are represented as functions of the two param-
eters 2b/t and b/a (compare fig. 1) in figures 10 (pure compression)
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and 12 {shear and compression). For pure shear approximation formulas
can be given:

(a) complete cylinder

T

z = <§%>3/2(1.3he - 0.37€2 - 0.25) (6.9")

(b) half cylinder

ca] ]

- <§%>3/2(3.1e - 1.3¢2 - 0.3) (8.9')

Translation by Mary L. Mahler
National Advisory Committee
for Aeronautics
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Figure 1.~ Shell of variable curvature (wing nose).
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Figure 2.-
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Shell segment with dimensions and coordinates.
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Figure 3(a).- Curvature variation over the developed width for two ovals
of the type (4.5).
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Figure 3(b).- Oval forms for the curvature expression (4.5).
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Figure 5.~ Curvature variation a%—) of the ellipse

arc length s.
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a3
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Figure 7.- Expression (4.9). For conversion of the parameter ¢
_b . . v . b _bm -
to ¢ = 7 (axis ratio)and €' = Ro = U (ratio between small

axis and mean curvature radius), Ry, Ry are the apex curvature
radii.
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[ =

a. Vo = 100, p = 7 1__; - %ﬁg
—x =1,

b. V@ =200, B = 10{.-; = 1.232
—_—A =

¢c. Vo = 500, B = 16{.-)\ = }ig

d. V@ = 1000, B = 20, » = 1,10

e. \® = 2000, B = 27, x = 1.07

= 4000, B = 36, )

[

1.05

Figure 8.- For determination of the zeros of the determinant (5.
aid of Gauss’ algorism. Curvature expression (4.5); 2¢ = 0.5

2
2
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Figure 10.- Critical compressive stress ¢ as a function of the
parameters 2b/t and b/a.
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t 3/2
Figure 11.- Shear buckling, -ET- =¥ (%>

(a) v for the closed cylinder (oval forms, equations (4.5) and (4.9)).
Approximation y = ¥, = 1.34¢ - 0.437¢2 - 0.25.

(b) V¥ = ¥ for the half cylinder (oval forms, equations (4.5) and (4.9)).
Approximation ¥ =TO = (3.1€ - 1.3¢2 - 0.3).

(c) The factor ¥*, decisive for the decrease by compression (oval forms,
equations (4.5) and (4.9)). For rough calculations, ¥* = 1.
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