
3 

NATIONAL ADVISORY COMMITTEE 

FOR AERONAUTICS 

TECHNICAL MEMORANDUM 1295 

GAS FLOW WITH STRAIGHT TRANSITION LINE


By L. V. Ovsiannikov 

Translation 

"Ob Odnorri Gazovom Techenii s Priamoi Liniei Perekhoda." 

Prikladnaya Matematika i Mekhanika. Vol. XIII, 1949. 

N ACA 
Washington
	 .' 

May 1951

,. 

-	 •

https://ntrs.nasa.gov/search.jsp?R=19930093935 2020-06-16T22:29:35+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42792514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL MEMORANDUM 1295 

GAS FLOW WITH STRAIGHT TRANSITION LINE* 


By L. V. Ovsiannikov 

On the basis of the solutions obtained by S. A. Chaplygin 
(reference 1), an investigation was made of the limiting case of 
a gas flow when the constant pressure in the surrounding medium 
is exactly equal to the critical pressure for the given initial 
state of the gas; the results are presented herein. Fora jet 
flowing out of the opening in a vessel with plane walls, it is 
shown that equalization of the flow in the jet is attained at a 
finite distance from the start of the free jet, the line of transi-
tion being a straight line. 

1. According to Chaplygin (reference i), every problem on the 
determination of the subsonic flow that is satisfied by some condi-
tions reduces to the solution of the system 

_	 27 

	

- (i-i)	 '• 

= - 2a.7(1-T)1 TT 

or the equivalent system

	

T_ 27	 e 

	

(i-i)	 cp

(1.1) 

(1.2) 

= - 2cLT(1_T)	 ! 
cp	 a-r 

for the corresponding boundary conditions. 

In these equations, **= '41 (0, 7 ) and	 = (o,i) are the stream 
function and the velocity potentia, respectively; i =	 where 

*' tOb Odñom Gazovom Techenli a Priaiuoi Liniei Perekhoda." 

Prikladnaya Matematika iMekhanika. Vol. XIII, 1949, pp. 537-542.
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V is the magnitude of the velocity vector and Vmax is the 

value of V that satisfies the given initial state of the gas; and 
8 is the angle between the velocity vector and the x-axis. Further-
more, 13 = l/(K-l) is the adiabatic power of the function of the 
density on the temperature, where for brevity, 

1 

213+1	 ic+l 

so that the value T = a corresponds to the critical velocity 

Ver	 K+1 max 

Chaplygin (reference 1) gives the solution of the problem of 
the flow of a gas jet out of a vessel with plane walls forming an 
angle of 1800 into a medium with pressure Po = constant in the form 

OD

zn =	 - sin 28	 (1.3) 

= + d7 +	 F- 1 +
	

I	 x cos 
2n81 (1.4) 

Q	
2J 

T(i-1) 13	 (i-r)13L	
n=1 '' 

where this solution satisfies the following boundary conditions 
(fig. 1):	 - 

on ABC 

on A'B'C' 

• In equations (1.3) and (14), Q is the relative quantity of 
flow in the gas jet and C is an arbitrary constant depending on 
the choice of the origin from which.the values, of. 	 are computed.

The magnitudes z, z 01 and x are defined by the equations
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3. 

z = z(T) = Tn y(T)	 - 

Z 0 = ZT0)	 - 

= X(T) 
1 + ____ =  

(n = 1,2 ) . .

(1.5) 

where y(1) is that solution of the hypergeometric equation 

(1-r) y" -n + 1 (-2n-i)T ]y' + On (2n+1) y = 0 

which is obtained for T = 0; ¶ç denotes the value of 1 cor-
responding to P0. 

In Chp1ygi'!s investigation, it was assumed that 	 ox. In 
this case, equations (1.3) and (1.4) cpnverge everywhere in the region 
of flow and give the proposed solution of the problem. The case 
where T O = a is co.nsi4ered in the fqllowing development: 

It is recalled that the functions z(T) and X(T) for 
0 r a satisfy the following inequality of Chaplygin; 

r ,	 21fl 
I_	 fl, zn0	 (1.6) 
Q(1?70) vj 7 n 

	

+q1	
A 

V a(i-T)	 n1/3 (1-r)	 :1 ct(i-T) 

3_________	 (1.7) 

= V'2 1 (1+20 = cqnstant 

2. It shall be shown that the potential of the velocity r given 
by equation (1.4) :for 

(a) increases withqut limit if T0a 

(b) remains finite if T.  = a
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It shall be assumed that the limit T --To is effected by


moving along some streamline. The following notation is introduced: 

- __________ 

z 

	

p(e,T;'r0) 
=,	

—xcos 2n0 

n=1 

It is readily seen that for 0 7then ..O Z1. 

For the potential cp at the points of the x-axis(e=O) ) the 
following expression is obtained from equation (1.4): 

=c +	 +	 1 + P.(O,; 0	 (2.1) 
U T(1-T) 1 	 (1-r)L 

On the basis of the inequalities of equations (1.6). and (1.7), 
for the magnitude of 

+'z /

0)TO 4) 

T 
n	 1-T

(2.2) 

Assertion (a) now follows in an obvious manner from the second 
of inequalities (2.2) because. 	 for T--4T0 and the sum 

of the series with the general term z/nz 'therefore increases 
without limit; whereas the coefficient preceding the term, because 
To M,, approaches a positive limit.  

From assertion (b), it is seen , that 
CD

. fl = - log(1-) = - log Ii - .
j.213

 

n=l	 ,	 '	
'. ' L 	 ,0 (1_,T 0 ) 2 0 '
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by virtue of which, for To = o as T-.-,a in equation (2.2) on the 
left, the first component approaches zero and the second. component 
approaches a finite magnitude equal to 

CCL 

l-a ;_; 

The saine.reasoning, together with the first of inequalities 
(2.2) is repeated for P(e,T;a) for 0 0, so that the assertion 
is completely proven.	 . 

3. From the previously proven bounciness of the velocity potential 
it follows that at a finite distance from the opening BB', the jet 
is intersected by a certain line •L . along which 	 .= a, so that the 
velocity is equal to the velocity of sound. It will now be shown that 
at all points of L, 0 = 0. 

First, it will be observed that along any fixed streamline, 
0 varies monotonically, as is true of the boundary streamline, and 
the transformation (e,r)—*(p,it) is a single sheet transformation 
at every interior point of the flow region. Next, by fixing some 

value	 =	 for which	 Q, the limit.is approached as 

and 6 = liin.e is set for T—a and r = 'fr; this limit 
exists because of the finiteness of 0 ana the monoticity of its 
variation.	 - 

Approaching this limit in equation (1.3) for r = i yields 

'p	 20\ 

I- 00 -— - -)= - —. if 00>0 

= -eo sin 2n00 =

	 (	 20'\	 - 
eo•o 

that is, in all cases for eo L 0,	 = Q, which contradicts the 

assumption that 17k i (a.. Hence, the equality 0 = 0 must hold. 

It will now be shown that the line L is straight: Along L. 
p = constant; this result is readily obtained if the previously con 
sidered transition to the limit is carried out in equation (1.4).
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It is sufficient to note that every displacement in the plane xy 
is connected with the corresponding displacement in the plane cc by 
the relation

dx Cos 6dP	
sine d* 

V(1-T)
(3.1) 

from which it follows that in a displacement along L in the 
xy-plane, dx = 0, because in a displacement along L in the 
Cpiji-plane, according to what was previously proven, 0 = 0 and 

= 0. The line L in the xy-plane is thus a straight line 
perpendicular to the x-axis. 

The equalization of the jet occurs along the line L. Behind 
this line the jet becomes uniform, flowing with constant velocity 
everywhere equal to the velocity of sound. 

The distance of the line L from the edge of the opening will 
be computed. Along the boundary of the jet,	 = constant and 
T = a. = constant, so that at the points of this boundary, equa-
tion (3.1) assumes the form 

dx 
= Cos e 2 dO 

Vcr O 

Substituting the expression for cp (equation (1.4)) taken 
for ¶ = a yields 

dx=--
cr

2x(a) sin 2n9 cos 0 dO (3.2) 

Inasmuch as 

2 sin 2pe cos 0, = sin (2n±1)e ± sin (2n-l)e 

integrating equation (3.2) from x = xB, 0 =	 t, to x = XL, 6 = 0 

yields

-	
= Vcr(la.)	 42
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If h denotes the width of the jet where it is uniform, then 
Q = V.(1t)f3 h, so that the required distance is finally obtained 

in the form

XLXB - L 

OD

 
4n 

	

-	 '	
x(a.)	 (3.3) 

h	 t	 4n2_1  

4. If any two streamlines of the obtained flow are taken as the 
walls of a certain nozzle, the subsonic flow within this nozzle will 
be determined by equations . (1.3) and (1.4). This flow becomes uniform 
at a certain distance and has a straight transition line. This fact 
corresponds entirely to the result obtained by S. A. Christia.novich 
in his investigation (reference 2), where a general device is given 
for the construction of a Laval nozzle with straight transition line. 

The first derivatives of e,i with respect to 'C,'tr are 
estimated near the line L inasmuch as the behavior determines the 
possibility, of continuing the obtained flow across L as a super-
sonic flow. The investigation of this complicated problem has been 
started and, it is hoped, will be presented in a forthcoming repärt. 
Remarks herein will be restricted to the following: 

In the first place, from the previously noted properties of the 
line L, it follows that the derivatives 6/Jj, 	 T/ijr, and O/cp 
are equal to zero on L. 

In the second place, the derivative T/p is evaluated at the 
points of the x-axis. It is sufficient to consider the derivative 

inasmuch as, on the x-axis, because e = 0 and r constant', 

cp -

	 1	
(4.1) 

Substituting equation (1.3) for 1c in the second of equa-
tions (1.1) for 1 = a and setting zncG = z(a) yield 

--	 Q(a-1)	
+ 2V' - cos 2n 

+1	 L__, Zna 

	

2taT(1-T)	
n=1
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or, on the x-axis where e = 0 

2	 Q(cL-r)  

OD

Zh	
(4.2) 

+1 2 E ZflctI


	

itccT(1—T) 
	 J 

For estimating the value of the expression in brackets, which 
is denoted by S. the last of relations (1.5) and the inequality of 
Chaplygin (equation (1.7)) yield

a

fl ̂ m--_rfl	 cL-i	 i.n2/3,._ log Zn(T). - 	 (4.3) 
rr- Vc(i_i 	 i-r 

Integrating equation (4.3) from rT1.O to r= cL yields

znm n	 /_a-i	 + qn2/3 P	 I>1og	 n r 1 /_a- 

J	 ct(1-i)	 J	 1T	 Z	 J	 TVa(l_T) T	 ¶ 

Raising the upper and lowering the lower limits and carrying 
out the integration give 

2n	 (_T)3/2 + qn2/3(a_T) 1og
	 _2n 

31 h(l-c)	 n 3o4
(4.4) 

If a-i = z(o'czça-'r1), where z-0 as ¶ — ct and 

2 

Z)i1Ala(1-a) 

q1

2 
5=

3a4 

equation (4.4) assumes the form 

+ q1n2/3z>.iog Zna53/2 
Zn
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Then the inequalities

(45) 
znc, 

are obtained. 

Because of equation (4.5), the following inequalities are 
obtained for 5: 

S1 =
+	

e(.önz3/2) = S2

(4.6) 

The sum S2 is readily coniputed; 

	

=	 +	 1	 + 1	 (47) 
2	 2 exp(5z3/2)_1 26z 3/2 

In order to estimate the sum S1, 

un
 = exp(_g1n2/3z) 

v = exp(..nz3/2) 

Sn ?	 V 

CFM unvn =	 exp[-q,n2/3z-'rn--3/?,] 

Applying the transformation of Abel to o yields 

	

o, =.	 (un-un+i) S' + ','m Sm'	 (4.8) 
n=O

9
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For rcr 2/3	 z(m+1 )_ 2/3 , where 0) =	 2/3( og 2)2/3, 

for the sum St

	

= > exp(_ykz3/3) flj-	 (4.9) 
k=0 

The differences ufl-unE1 are evaluated by the formular of finite 
increments. Therefore 

I	 2''	 r	 9/7 1 -	 = exp L1n I	 - e	 L- 
q1 (ni) •-i '-' zj 

= 2q1z ()
-113 eXT) 	

q1(+.1)2/3 
z]	 (o.i) 

Replacing	 by 1 yields the inequality 

2qz
 (n+1) 1/3 exp_q1 (n+1) 2/3 zJ	 (4.10) 

Combining equations (4.9), (4.10), and (4.11) yields 

q1"-(n+1)2/3 exp[_qi (n±i)2/3 z] =	 q1n2/3 z e [-qln2/.3 

The function

f(x,y) =	 2/3 exp(_xy2/3)	 (4.11) 

is considered for y0, x0. The derivative with respect to y 
varies as

I	 _1/) 

I > 0 for 0 y x--4/2 

0	 1/)
	

0 
C..	 L	 - =	 xy ' exp(-xy	 )(i-xy .)	 = 0 for	 y = x 

dy _3/2


	

0 for	 yx 

For fixed x0, the function f(x,y) increases at first from 

0 to e 1, then decreases and, for y , approaches zero. Hence, 
for any xc, the inequa1itr
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-	
I + ^'. 2/3 x ep(n2I3x)T	

2/3 ,( j2/3 ) dy= g

(4.12) 

is obtained. 

The value of the integral g is obtained by applying the 

substitution	 2/3. = t. Then 

= ____	

e	 (X=m/x)	 (4.13) 
2,x 

so 

Substituting equation (4.13) in eouation (4.12), setting 
x o1 z, and noting that 15 2/3 z-=?W yield 

q p2/3 z 
e(ir2/3z)233/2 f 1

t?I et dtlz_3/2 - 1 

hence	 - 

qiw 

S1 - 1 +	
+ 
2q13/21CO
	

t2/3 e_t dtjz_3/2 (4.14) 

On the 'oasis of inequalities (4.6), (4.7), and (4.14), it may 
be concluded that there are two positive constants 5 1 and ri such 
that the ineaualities

1	 1	
(4.15) 

hold over the entire interval Oza - 11 . Returning to the 
variable ¶ and comparing equation (4.2) with equation (4.15) gives 
the following result: Two positive constants 52 and 

exist such that for any T in the interval 7 

1	 1
(4.16) iJ
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From equations (4.1) and (4.16) there follows finally

(4.17) 

which Is proven for the points of the x-axis. 

In a similar manner, it may be shown that on the x-axis the 

second derivative	 /cp2 remains finite as 1—a. 

Translated by S. Reiss 
National Advisory Committee 
for Aeronautics
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