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- NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL MEMORANDUM 1295

GAS FLOW WITH STRAIGHT TRANSITION LINE*
By L. V. Ovsiannikov

On the basis of the solutions obtained by S. A. Chaplygin
(reference 1), an investigation was made of the limiting case of
a gas flow when the constant pressure in the surrounding medium
is exactly equal to the .critical pressure for the given initial
state of the gas; the results are presented herein. For a jet
flowing out of the opening in a vessel with plane walls, it is
showvn that equalization of the flow in the jet is attained at a
Tfinite distance from the start of the free jet, the line of transi-
tion being a straight llne

. 1. According to Cheplygin (reference.l), every problem on the
determination of the subsonic flow that is satisfied by some condi-
tions reduces to the solution of the system

")
9P 27 9y
% (1_1)3 oT
> . (1.1)
09 _ a-T dy
37 2a7(1- T)B+l 3 )
or the équivalent system
o2t % )
OF 7 (1-m)B 9
B (1.2)
T _ _ 2av1-m)P %
0P a-T or )

for the corresponding boundary conditions.

In these equationé; V= V(6,T) and @ = P(o, T) arg the stream
function and the velocity potentia., respectively; =V /V maxs where

*"0b Odnom Gazovom Techenii s Priamoi Liniei Perekhoda."
‘Prlkladnaya Matematika i Mekhanika. Vol. XIII, 1949, pp. 537 -542.
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V is the magnitude of the velocity vector amd Vp .. is the maximum

value of V +that satisfies the given initial state of the gas; and
& 1is the angle between the velocity vector and the x-axis. Further-
more, B = 1/(k-1) is the adiabatic power of the function of the
density on the temperature, where for brevity,

1 K-1

2B+l K+l

Q=

so that the value T = a corresponds to the critical velocity .

‘/n -1
Voy = Vinny

Chapl&gin (reference l)'givés the solution of the problem of
the flow of a gas jet out of a vessel with plane walls forming an
angle of 180° into a medium with pressure- pp = constant in the form

§ z . ‘ o ,
Ty=-06- 1 .70 5in 2n6 (1.3)
Q‘ . n Zno o

. n=1 S '

. @©

7t 1] ar 1 v E 1 Zn
T o=C + = : + [—l+ = —2 x, cos ZnG] (1.4)
Q 2lr(a-mP (-mBL - &1 2y

vhere this solution satisfies the following boundary condltlons
(fig. 1):

¥ o= - % Q - on AEC "
1 e
V=59 on A'B'C

1

" In equations (1.3) and (1.4), Q is the relative quantity of
flow in the gas jet and C 1s an arbitrary constant depending on
the choice of the origin from which.the values of. @ are computed.
. The magnitudes 2zp, 2,5, and x, are defined by ‘the equations
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zn = 2p(T) = T8 yp(7) \
Zno = 2n(T0)
W@ i (G
S N G RER G}
(n=121,2, . ..) J

vhere yﬁ(‘r)_ is that solution of the hypergeometric equation
T(1-7) ¥," &[Bn +1 (B-2n-1)7 —]yn' + fn (2n+l1) y, = O

which is obtained for T = 0; Tp denotes the value of T cor-
responding to pg. '

In Chaplygin's investigation, it was assumed that T <To<cL. In

this case, equations (1. 3) and (1. 4.) converge everywhere in the region
of flow and give the proposed solutlon of the problem. The case
where TO = a 1is considered in the following development

It is recalled that the ﬁmctlons 2n(T) and xn(T) for
o T g'_a satisfy the following inequality of Chaplygin:

2B |B ’
T(_l.-’!’)"‘?"Q >4Z'n;’ 2 =0 (1.6)
To(1-T0)%] = no

Va-1)  n1/3 (1-1) Va(1-m)

(‘1.7)

/ 252 (1+26) = constant

2. It shall be shown that the potential of the veloc:Lty P given
'by equation (l .4) for T—»Tg

(a) increases without limit if To<a
(b) remeins finite if Tg =
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It shall be assumed that the limit T —Tp 1is effected by
‘moving along some streamline. The following notation is introduced:

_ r(a-n?
To(1-15) %P
. . <o
' z
P(0,T;Tg) = 2 A Xp ‘cOS 2nb

nz
= nO

Tt is readily seen that for O0<T<<s Yog®» then O< E<<l.

For the potential @ at the p01nts of the x-axis’ (9 0), the
following expression is obtained from equatlon (1.4): .

o 1 ar -1 (2.
R o (-T)B[l+P(O)T’TOﬂ e

On the basis of the inequalities of equations (1.6) and (1.7),
for the magnitude of P(O,T;TO),

B e 85 g mmonnon [ 122

(2.2)

Assertion (&) now follows in an obvious manner from the second
of inequalities (2.2) because . z n/z O'_’l for T——)To and the sum
of the series with the general term z /nz no “therefore increases

without limit; whereas the coefficient preceding the term, because
To # @ approaches a positive limit. - .

From assertion (b), it is seen that
. [ oy . . B oo o

| }:Een log(1-€) - -1‘?-_5E To(km0) 28]

n=1

cod
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by virtue of which, for ‘To = o as T—sa in equation (2.2) on the
left, the first component approaches zero and the second component
approaches a finite magnitude equal to '

- (=]

9% % p- 4/3

l-a =

The same. reasonlng, together w1th the first of 1nequallties
(2.2) is repeated for P(6,T;a) for ) % 0, so that the assertion
is completely proven. , :

_ 3. From the previously proven boundness of the velocity potential
it follows that at a finite distance from the opening BB', the jet
is intersected by a certain line 'L along which T= a, so that the
velocity is equal to the velocity of sound. It will now be shown that
at all points of L, 6 = 0.

First, it will be observed that along any fixed streamline,
@ A varies monotonically, as is true of the boundary streamline, and
the transformation (6,T)—»(®,¥) is a single sheet transformation
. at every interior point of the flow region. Next, by fixing some

value ¥ = § for which .IW|<:% Q,. the limit_is approached as

T—wa and 6y = lim'@ .is set for T-wa and ¥ = ¥; this limit

-exists because of the finiteness of € ana the monoticity of its
variation.

Approaching this limit in equation (1.3) for V¥

= ¥ yields
. . . g . "29 .
s 0 .,
- - 85 -(5-—2—:—)--5 if 65>0
| o 1 . ‘
Q ¥ = E 5 sin 2nfp = 4
- n=l n 290) T, )
-60—--5--—2—=+§1f 90>0

that is, in 21l cases for & £ 0, |V| 2 Q, which contradicts the "
assumption that IV|<: Q. Hence, the equality 6 = 0 must hold.

It will nov be shown that‘thé line - L' is straight: Along L,
@ = constant; this result is readily obtained,if'thé previously con=-
sidered transition to the limit is carried out in equation (1.4).
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It is sufficient to note that every displacement in the plane xy
is connected with the corresponding displacement in the plane @V by
the relation

ax = cos 6 do - sin 6 a (3.3
4 v -y & (3.1)

from which it follows that in a displacement along L in the
xy-plane, dx = O, because in a displacement along L in the
@Vy-plane, according to what was previously proven, 6 = 0 and
& = O. The line L 1in the xy-plane is thus a straight line
perpendicular to the x-axis.

The equalization of the jet occurs along the line L. Behind
this line the jet becomes uniform, flowing with constant velocity
everywhere equal to the velocity of sound.

The distance of the line L from the edge of the opening will
be computed. Along the boundary of the jet, V¥ = constant and
T = a = constant, so that at the points of this boundary, eque-
tion (3.1) assumes the form

cos 6 99

Vep )

dx =

de

Substituting the expression for ¢ (equation (1.4)) taken
for T = o yields ' '

- ]

Q . | | ~
“Vcr(l'@)ﬁ jg:: 2xp(a) sin ZnQ cos 6 d8 (3.2)

n=1

Inasmuch as

2 sin 2nf cos 6 = sin (2n+1)é + sin (2n-1)8

H

integrating equation (3.2) from x = xg, 6 = sn, to x=x,6=0
yields '




NACA ™ 1298

If h denotes the width of the-jet»whére it is uniform, then
Q = Vor(1-a)P h, so that the required distance is finally obtained

in the form
. X

XL"X3 1
= = § 3.3
N v} 4n2 1 *n() ( )

4. If any two streamlines of the obtained flow are taken as the .
walls of a certain nozzle, the subsonic flow within this nozzle will
be determined by equations (1.3) and (3.4). This flow becomes uniform
at a certain distance and has a straight transition line. This fact
corresponds entirely to the result obtained by S. A. Christianovich
in his investigation (reference 2), where a general device is given
for the construction of a Laval nozzle with straight transition line.

The first derivatives of 6,T with respect to @,¢ are
estimated near the line L inasmuch as the behavior determines the
possibility. of continuing the obtained flow across L as a super-
sonlc flow. The investigation of this complicated problem has been
started and, it is hoped, will be presented in a forthcoming report.
Remarks herein will be restricted to the following:

In the first place, from the previously noted properties of the
line L, it follows that the derivatives 06/dy, O7/0dy, and 36/d¢
are equal to zero on L.

In the second place, the derivative JT/3¢ is evaluated at the
points of the x-axis. It is sufficient to consider the derivative
SGYBT, inasmuch as, on the x-axis, because 8 = 0 and V¥ = constant

oT 1

39  dpfor

2

(4.1)

Substituting equation (1.3) for ¥ in the second of equa-
tions (1.1) for T =a and setting z,y = z,(a) yield

(=]
- . . Z
éip = _9:.(_(.]’._1)___ 1+ 2 ._..B cos 2nf

oT 2na1(l-7)ﬁ+l = Zna
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or, on the x-axis where 6 =0

= Q(u'-.—.T) ]_' + _ifl | (¢.2)

T T T(l_-f ) B+l 2 Zno
n=1

1Y

o/

For estimating the w}alue of the expression in brackets, which
is denoted by S, the last of relations (1.5) and the inequality of
Cheplygin (equation (1.7)) yield

n fa-T ; a n2f3 v [(a-7 :
pod +.9 n 1og z (T)7 st N (4.3)
a(1-T)  1-7 ar a T Ala(1-T) -

Integrating equation (4.3) from T=T1=>0 to T =oa yields

/ AT o+ qnz/ 3 >log na ar
a(l T) Zp a(l--r)

Raising the upper and lowerlng the lowe"' limits and carrying
out the integration give

2/3 ’ :
2n (a_T)S/E + an / (O.-IT) —log Zna - 2n _ (a-T)3/2
371 I\’c,(l—on) 1-o Zn 3N o
' . . (4.4)
If o-T = z(0<z a-T1), wvhere z—»C as T-—so and '
S T
' 3’1’1«’ CL(l-C(')
.
a = 3570
d = 2 >0

30}\‘ o

equation (4.4) assumes the form

Y nzs/2 + qln2/32>log Zﬂ>5n23/2
Zp )
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Then the inegualities

exp(~nz5/2-q,n8/32) < 8 cexp(-6nz3/2) (4.5)
Zna )
are obtained.

Because of equation (4.5), the following inegualities are
obtained for 3: v

o ’ @

5, = ,e@(-rnzs/z-qln2/3Z)<s<%- + _Z- exp(-5nz3/2) = sz
n=1 : A  n=1
(4.6)
The ‘sum S2 1is readily computed;
lea, -1 1 1 1 _
5<8p =zt T E t —— (4.7)

2 exp(523/2)1 523/

I;i order to estimate the sum Sy, -

vy exp_(—qlnz/sz) :

= exp(~ynz3/2)

<
]
|

O = Z upvy = ) exp [—q1n2/3z_-rn23/2]

n=0 n=0

Applying the transformation of Abel to o yields

m-1
Op ='ZO: (up-Up41) Sp' + wpSy' . 4.8)
, n= .
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For m‘z/3
for the sum 3Sp!

+*2/3(10g 2)2/3,

1

wszs(mﬂ)'z/s ®, wvhere o

-

Sy’ = E exp(-rkz3/3)>n—;l (¢.9)
k=0

The differences up-un+] are evaluated by the formular of finite
increments. ‘Therefore

"oUp - Upyy = exp [—qln2/3z] - exp [ 27 (n+1)2/3 z]

1l

2 @) e e ] (ost<n)

Replacing £ by 1 yields the inequality

: 2ay2 1, .
Uy - Ui q31 (n+]_)-l/3 exp l:_ql(n+l)2/..> z] (4.10)

Combining equations (4.9), (4.10), and (4.11) yields

m-1 : , m '
1 1
O > E % qlz(n+1)_2,/3 exp [—ql(n+l)2/3 z]: 5 % qln2/3 Z exp [-qln2/3 J
=0 : n=1 :

The function -
£(x,¥) = xy2/3 exp(-xy2/3) (4.11)

is considered for y=C, x>C. The derivative with respect to vy
varies as

: _ /o
>0 for Osy=<x 3/2

.2 xy 3 e (- (103 L0 tor g =‘X’3/2
i <0 for Y>> X-B/z

For fixed - x=>C, the function £(x,y) dincreases at first from
1

0 to e+, then decrzases and, for y—»®, approaches zero. Hence,
for any x>c¢, the inequality :
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™

1+ i nz/:{> X exp(-nz/sx)7 '

. xy?/3 exp(-xy2/3) ay = g
n= '

o .
(4.12)
is obtained. | |
The value of the.in‘cégral g | is 6btained bjappiyiné fﬁe , '
ubstituticn xyz/s_» - t. Then - | D

X : :
g=_2 £3/2 o=t at (X.=m,2/3x) , o (4.13)

~uubst1tut1ng equation (4 lo) in equation (4.12), setting
X = 03%Z, and notlng that mnm / Zz>w yield

Lo

% q-n2/3 2 exp(-q‘ n2/3z)=_3 |

n=1

Qo
t2/3 e-t at|z2-3/2 -1

herice
. o
: 4
Sp = =14 0p>- x4+ —r t2/3 “tat|2-3/2  (4.14)

3/2
qu/

0

On the basis of inequalities (4.68), (4.7), and (4.14), it may
be concluded that there are two p051t1ve constants &7 and Y1 such

that the inegualities
1 <S< 1
89 23/2 7123/2

(4.15)

hold over the entire interval 0<zsd - T1. Returning to the

variable T and comparing equation (4.2) with equation (4.15) gives
the following result: Two posn‘.:we constants &, -and Y2(02>) 2)

ekist_ such that for any T in the interval 71T <q,

1 o{)< 1
nga-‘f oT Toafa-T

4.16)

11
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From equations (4.1) and (4.18) there follows finally
- OT
8oafa-T>T s yopf(a-T) (4.17)
2 0 24/ ' ,

- which is proven for the points of the x-axis.

‘

In a similar manner, it may be shown that on the x-axis the
second derivative J%1/39%2 remsins finite as T—a.

. Translated by S. Reiss o
National ‘Advisory Committee
for Aeronautics
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