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-l

IN TURBULENT BOUNDARY LAYERS¥ D —

By H. Ludwieg and W. Tillmann

SUMMARY

Because of the unsatisfactory state of knowledge concerning the
surface shearing stress of boundary lasyers with pressure gradients, the
problem is re-examined. It is found that for general turbulent boundary

layers in wall proximity, that is, in the laminar sublayer, in the transi-

tion zone and in the part of the completely turbulent zone near the wall,
the same universal law applies as for the plate flow. From the general
validity of this law a formuls was deduced for the local drag coeffi-
cient cg', in which cp' depends only on the Reynolds number Re formed

with the momentum thickness and on & profile parameter 7. This relation
was confirmed satisfactorily by direct measurements wlth a new instrument.
The related friction coefficient cg' can then be determined simply from
the known veloclty profile. :

From the formuls for cg' 1t follows, in agreement with the tests,’

that the cf' values for boundsary layers with accelerating and decele—

rating pressure are higher and lower, respectively, than for the plate
flow at equal Reynolds number. Thus for greater Reynolds numbers small
local drag coefficients are attainable not only by keeping the boundary
layer laminar but also by appropriate pressure variation in turbulent
boundary layers. The rise of the friction coefficient to a multiple of
that for plate flow in boundary layers with pressure rise, as tlaimed
by various workers, is herewith disproved.

I. INTRODUCTION

The wall-shearing stresses in laminar boundary layers can be com—
puted on & strictly theoretical basis, since the relationship between
velocity profile and shearing stress is known. But, this procedure can
not be applied to the turbulent boundary lasyers since the relationship

*"Untersuchungen iiber die Wandschubspannung in turbulenten
Reibungsschichten. " :
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for the shearing stresses due to the turbulent exchange is still unknown.
For this reason, the laws for turbulent wall frictlon must be determined
by experimental investigations. Such investigations fall into two classes,
termed for brevity, "plate flows™ and "pipe and chennel flows." The
approximate formulas for the friction drag, deduced by the various investi—
gators from the test data, are 1n agreement to some extent.

Some investigations have been made alsc on boundary layers with
pressure gradients, both accelerating and decelerating, but the data on
wall friction are either absent altogether or partly umsatlsfactory.
These investigations were msde in a channel of circular section (refer—
ence 1) or, in mos% cases, of rectangular section (references 2, 3, 4,
and 5). For the latter, one channel wall was designed as flat test
plate, on which the boundary layer to be explored was measured. The
opposite wall was adjustable to the desiréd pressure distribution. It
was spaced far enough from the experimental surface to maintain a core
with potential flow between the two boundary layers (free boundary layer).
The wall-shearing stregp was determined from the measured velocity pro—
file by means of von Kérmén's momentum equation. The advantage of this -
method rests in the fact that thick boundary layers (high Reynolds
numbers) can be produced with a comparatively small layout. One sub—
stantisl drawback is the narrow width of the.experimental flow compared
to the boundery-layer thickness. This is likely to produce secondary
flows wh%ph_pancel the two—-dimensionality of the flow assumed according
to von Kérmén's momentum equation for the interpretation, and are pre—
sumably responsible for the improbable results of the aforementioned
authors. Some of these authors had observed that, in greatly retarded
flows, the local drag coefficlent cg' (= TW/Q, T, = vwall-shearing

gtress, Q the dynamic pressure cutside the boundary layer) rose abruptly
to a multiple of its original value after traveling a certain distance

in flow direction, rather than decreased, as actually anticipated
analogous to the behavior of the laminar flow. Since no valid reason
could be found for it, Tillmann (reference 6) made an investigation in

an attempt to find out whether this effect was simulated by secondary
flows. The velocity in a section across the tunnel was measured in
megnitude and direction. An appraisal of the effect of the observed
gsecondary flows gave a cy' value lower by 40 percent. This fact made

the test method employed up to then questionable.

Quite recently, Ludwieg (reference 7) developed a simple instrument
by means of which the wall-shearing stress can be determined at any test
station by a heat—transfer measurement. This dlrect method is not
affected by any secondary flows. The investigation of the frictional
drag of turbulent boundary layers with pressure gradlents, both accele—
rating and decelerating, repeated with this new instrument, forms the

subject of the present report.
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IT. THEORETICAL CONSIDERATIONS ON FRICTIONAL DRAG
The results of previous investigations of plate and pipe flows

were as follows:

(&) The velocity profile of the boundary layer can be represented

in the form
u_ (T . 1
T - 8(52: Re) (l)

(u = velocity in boundary lasyer, U = velocity outside boundary layer,

[~}
¥y = wall distance); &5 = L %( - %)dy = momentum thickness of boundary
82
v
momentum thickness 8,; Vv = kinematic viscosity.

layer, Re = U = Reynolé.s number of boundary layer formed with

Quentity g in equation (1) is & fixed function which, however,
is, naturally, different for plate, pipe, and channel flow. The
dependence of % on Re 1s very small, that ls, the velocity profilles
differ very little for different Reynolds numbers.

(b) The local friction coefficient cg' can alwasys be represented
in the form

cp' = F(Re) (2)

(ep' = Tw/'% 02; Ty = wall—shearing stress; p = density).

Quantity F 1is agein a fixed function for plate, pipe, and channel

flow; ¥ can be computed for plate flow by the momentum equation when g
is known, because the total friction drag appears as loss of momentum In
the boundery layer. '

(c) For the part of the velocity profiles near the wall, the
relation : .
*.
u u*y
= = f(v) (3)
u

was obtained. (u* = VTW/ o = shearing stress velocity)

1in this formula, the Reynolds number formed with the momentum
thickness &, was chosen as characteristlc quantity because it is more
appropriate for boundary layers with variasble outside pressure.
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This relation holds true with the same function £+ for the part

of plate, pipe, or channel flow next to the wall, Provided that the
.

*, u
9;1 values are not too small (%ully turbulent zone ﬁvz >50 ), equa—

tion (3) can be replaced very accurately by the approximate formula

-_15;-_-9, log —~ + D (35-)
u

a and b belng universal constants. This logarithmic law can be
approximated by a power law

L c(‘ Y) " (3)

where C and n are constants which are still somewhat dependent on
the u*y/v zone for which the approximation is to be especially good.

As already stated in Ludwieg's report (reference T), it is to be
expected that the universal law, equation (3) or (3a), is, aside from
the plate, pipe, and channel flow, applicable also to more generallzed
boundary-layer flows in wall proximity. It éven should hold for velocity
profiles diverging considerably from the profiles in plate flow and for
flows with marked pressure gradients.

A definite experimental proof of the general valldity of the law,
equations (3) and (3a), is afforded from the fact originally established
by Wieghardt (reference 8); nemely, that when the boundary-layer profiles
are plotted in the mammer of log u/U ageinst log y/d» (fig. 1),
parallel straight lines_are obtained for small Y/52' Conseguently, u
is in all cases proportional to the same power of y. .From the slope

of the straight lines, this power follows as 0.1l3 = 7—7, which is in

good agreement with equation (3b) for the u*y/V range in question.
However, this still is no compelling proof-of the validity of equation (3b)
for the reason that the power of ¥y can be checked by profile measure—
ment, but not the constant C, because u* 1s unknown.

With the validity of equation (3) for the portion of the boundary
layer next to the wall, u~ and, hence, Ty and cg' depend only on the

velocity profile and the material constants of the flowing medium; so,
when the velocity profile is known, cg' can be computed. A corre—
sponding relation between cy', Re, and & profile parameter yet to be
defined is derived in the following.
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u
The term 7y = f%g 1s introduced as profile parameter; Uso is

defined as follows: If the law, equations (3), (3a), and (3b), is valid
for y wvalues greater than ©&p, then Uso is simply the value of u

at the point y = 8. But, if the law, equations (3), (3a), and (3b),
applies only to y values smaller than 82, then Us, is the value

which u would assume if the law, Squations (3), (32), and (3b), were
applicable up to the point y = &o. Thus, the double logarithmic
plotting of u/U against y/82 (fig. 1) gives the profile parameter 7,
when the rectilinear part of the profile is extended as far as gi =1
u
. 5 2
and the corresponding value of -ﬁg is read from figure 1.

’

The derivation of the above-mentioned relation between cp', Re,
and 7 proceeds from equation (3) The profile parameter is introduced
by putting y =8, and u = Ug,- Then,

P2 _ ”2) u522 u’ ' (4)
w* u52

The equation states that a direct connectlion exists between u*/us2

and  ug, 8,/v; therefore
* u5‘62 -
: =h<3 )
u
52

must be appliceble, the function h hbeing defined by function £.

Introduction of

T u _
/;w . £ Sa _ Udy
= —p—- = UE > —-U—- =7, and T = Re

2Gruschwitz (reference 2) defined the quantity 1

[}
2
|
I
(¢4
q\l"’ﬂ
®
[¢2]

profile parameter; but by u82 the value of u at ¥ 8o is always

meant.
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glves, after simple rearrangemenf
cg' = 27%h2(Re 7) = 72H(Re 7) (5)

For abbreviation, the function is written 2h2 = H.
So, for all turbulent boundary—layer profiles whose part next to . .
the wall is represented by the general lew, equation (3), the frictionm -
coefficient is glven in the form of equation (5). To define the func— -

tions h and H in this equation, equation (&) could be replaced, for
the argument in question in accordance with equation (3a), by

us u*s 502 ¥
—2 = a log 2,b=alog 22u ),
* v - v Ug

u

*
and numericelly solved for E—— = h. But since the constants a and D
52
in equation (3a) are not accurately enough known, the following method of
defining H seems to be more appropriate.

By equetion (1), the profile parameter for the profiles of the plate
flow, designated 70s is only dependent on Re, hence Y0 = 70(Re). On

inserting this value in equation (5), this equation must supply the drag
coefficient cg' for the plate flow. Thus, bearing in mind equation (2),
the functional equation for H follows as

7o B(Re 70) = F(Re) (6)

where F(Re) is the friction coefficient of the plate-flow. This
equation, which must be fulfilled for all Re, definitely defines the
function H for known functions F(Re) and 74(Re).
Abbreviating
Re 70(Re) = E

iteration gives for Re the chain function

3 E
Re =
Ree
70(““
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which, inserted in equation (6) gives for H

H(E) = F

T o

and, when the function H in equation (5) is then replaced by the
preceding expression,

2
= 4 F[Re A
702 Re Z 7o(Re 7
75 Re L 70f---
70(-——

Since 7y varies very little with Re (fig. 2), the convergence

of the chain function is so good that in the first fector only the term
of the first degree and in the second factor, the term of zero degree
have to be included. Therefore

(7)

cf'

=7°2( O(Re> ( (Re)> "

This formula gives the frictlion coefficient cy' for general

boundary layers (for exemple, with pressure rise or fall) in relation
to the Reynolds number Re &and the profile parameter 7. It was
derived on the assumption that the universal law, equation (3), is
applicable in wall proximity. The functions F and 79 can be taken
from the experimental data on plate flow. _

As an approximation, it is sufficient to insert in equation (8)
the functioms F and 7 which follow from the assumption of the con—
ventional 1/7 power law 90r the velocity profile. Owing to the affinity
of the profiles, 7, 1s unaffected by Re and can be computed by a
simple integration which gives the value 7,5 = 0.717. The corresponding

function F with Gruschwitz's numerical constant (reference 2) reads

cp' = F(Re) = 0.0251 Re /¥
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From these values for 7y and F, inserted in eQuafion (8), follows
ce! = 0.041#977/)4Re_'l/h N

Since the 1/7 power. law Ffor the velocity distribution and the sub— K
sequent l/h power law for the friction coefficient are valid only in
rough approximation, the derived cg' formula 1s comparatively inaccurate.
A better adaptation to the actually appearing drag coefficlents 1is
obtained by a slight change in the numerical constants, which results
in the formula

cpt = 0.058071'705Re—0f268 . | (9)

This formula approximates eqpation_(B)-quite clesely, when the
function F is replaced by the Schultz-Grunow plate friction law
(explained in the next section) snd the function 7o by the curve

represented in figure 2. In the range of 1x 103;S_Re h x th, the
discrepancies are less than 3 percent.

From the simple approximate formula (9}, it is seen that at con-— .
stant Re the drag coefficient cp' 1s proportional to 71'705. . B

Since 7 decreases along the test length for boundary layers with
pressure rise and Re 1Increases, ce' decreases sharply, which is

entirely contrary to the findings of Mangler (reference 4) and Wieghardt
(reference 5), who identified a substantiel increase of the cg' velue;
therefore, it was decided to check the relation (8) derived for the

friction coefficient cgy' by experiments which will be described in the

following.

III. BEHAVIOR OF DRAG COEFFICIENT IN BOUNDARY LAYERS

The boundary layers were lnvestigated in the same test length of
rectangular cross sectiom, as already described by Schultz~Grunow '
(reference 9) and which had been designed according to_the conventional
principle for boundary—ldyer measurements explained in the introduction
of the present report. But, while their adjustable wall had been set
for constant pressure over the test length, the wall,’in the present T,
gtudy, was adjusted so that the desired pressure variation resulted. _ -
The velocity profiles of the boundary layers were determined at ten to
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twelve stations aslong the center line of the smooth, flat plate (1.4 x ém).
The waell shearing stress was measgsured at the same points by means of
Ludwieg's instrument (reference 7).

Altogether, four different test serles were carried through:
(2) At constant pressure in flow direction (plate flow)
(b) At moderate pressure rise
(c) At strong pressure rise
(d) At pressure drop
The instrument was calibrated prior to the messurements and in the
following manner: The chennel was set for plate flow and the instrument
mounted at two different stations on the plate. Each test run covered
the entire speed range, the corresponding calibration shearing stress
being determined by the friction law for plate flow. From the avallable

approximation formulas for the drag coefficient of plate flow, the
Schultz—Grunow formula (reference 9)

3.4 . 0.0334
(log Re)l'838

was used, since it was obtained on messurements in the same experimental
setup. As a check, the wall-shearing stress was measured with the
calibrated instrument along the entire test length at constant speed.
The function 74 = 7o(Re} used for checking equation (8) was determined

from the simulteneocusly measured velocity profiles. It is plotted
against log Re in Tigure 2, along with the 7, from the Schultz—

Grunow measurements, for comparison. The writer's test points lie
somewhat sbove the Schultz—Grunow curve at small Re numbers. The
heavy solid curve is used as basis in the subsequent interpretations.

In figure (3a), the drag coefficient cgp' is plotted double

logarithmically against the Re number for the four test series, along
with the Schultz~Grunow friction law for comparison. The test points of
the series made as a check at constant pressure (plate flow) coincide
with the Schultz-Grunow curve and, thus, prove the correctness of the

3In the Schultz—Grunow report, cp' 1s indicated as function of the

Reynolds number formed with length x; in the present articie, it is
reduced to the Reynolds number Re formed with the momentum thickness Bo.
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calibration measurement. The two test series with moderate and strong
pressure rise exhibit cp' values at the end of the test length, which
are considerably below the Schultz—Grunow curve for plate flow. This
therefore means that the assumptlion of a cy' value depending on Re

only, as used by Buri (reference 1), Gruschwitz (reference 2), Squire
and Young (reference 10), Kehl (reference 3), and von Doenhoff and
Tetervin (reference 11) as basis for computing turbulent boundary layers
with pressure gradients, ls not correct. It refutes, in particular, the
test data of Mangler (reference 4) and Wieghardt (reference 5), who
claimed a marked increase in ce' on boundary layers in retarded flow
after a certain entrance length in flow direction. The test points of
the series, with pressure drop, are located a little above the Schultz—
Grunow curve.

Following these preparations, we proceed to the checking of equa—
tion (8). To simplify the mode of writing of this equation, the following
abbrevigtion is introduced:

7 ~
Re ——)=
70( 70(Re)> 7o

After putting equation (8) in the following form

. f~\2 ‘
' Lo) - 7
cp (7 = Fée 7O(Re)) _ (8e.)

the same functional relationship ex%st}ng between Re _and cg' 1n plate

7
flow prevails also between cg' 39 and Re ——f%—y. Thus figure (3b)
7oe

~

2 — . .

7
shows log cfﬂ(7$> plotted against 1og<ée §£> along with the Schultz—
0 - -

Grunow law for plate flow. If equation (8) 1s correct, the points of

gll test series must fell on the plotted curve. The polnts of the test
series with constant pressure were simply transferred from figure (3a),
since a recalculation is superfluous. The points of the remaining test
geries lie satisfactorily on the Schultz-—Grunow curve. The test points
of the series with pressure rise,, which result in considerably smaller
cp' values than the corresponding plate flow, are in especially good

agreement with the Schultz-Grunow curve; and so prove equation (8) in
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the best conceilvable manner. Only the recomputed points of the series
with pressure drop lie a little below the plotted curve, but this does
not imply a failure of equation (8) because the Schultz—Grunow lew is
rather uncertain at small Re numbers, as seen from & comparison with
the approximste formulas of other authors (references 10, 12, 13, 1k,
and 15), which depart from the Schultz—Grunow curve by the same ordér
of magnitude as the present test points.

From equation (8) (or even more readily apperent according to the
approximate equation (9)), it follows that with approach to the point
of separation of & turbulent boundaery layer (y-—>0), the drag coeffi—
cient cp' +tends toward zero. 8o, close to the zone of separation,
very small cg' values must appear, which we have attempted to prove

in the test series with strong pressure rise. It resulted in a

cf' value of 0.0010 instead of a cp' of 0.0020 for plate flow at

the same Re number. No acceptable lower draeg coefficients could be
obtalned with the experimental setup hecause the flow separated first
in the corners of the tunnel section.

For the derivation of equation (8), it was assumed that the
universal law, equation (3) for the wall-adjacent part of the velocity
profiles in the boundery layer is applicable also to general boundary
layers. Therefore, all profiles in the representation of u/u against

* .
log E—I must coincide in wall proximity. This behavior is satisfactorily

confirmed on several profiles chosen at random represented in figure L.
The shearing stress velocities u* were determined from the thermally
measured cp' values. In this semilogarithmic representation the

coincident well-asdjacent profile portion is a straight line, by reason
of equation (3a). Only the test points nearest to the wall lie a little
. below this straight line, since they are no longer in the completely
turbulent range of the velocity profile, but In the transitional zone

to the laminar sublayer (Reichardt's measurements, reference 16). 1In
this representation, the profile shape with pressure rise or drop is
affected only in the part awey from the wall.

IV. SINGLE PARAMETRIC CHARACTERISTIC OF TURBULENT
BOUNDARY—LAYER PROFILES
The single parametric characteristic of turbulent velocity profiles
at any pressure variastion, found by Gruschwitz (reference 2) and repro—

duced in figure 1, has been consistently verified by varicus authors
(references 3, 8, and 11), but has not been explained. - The reason for
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the approximately single parametric characteristic is aﬁparent from
the data of the foregoing.

As seen in figure 4, a&ll boundary—layer profiles near the wall
coincide in the representation of u/u* against u*y/v <or log —= y

From it, the representation u/U against y/82 in which, according to

Gruschw®tz, all profiles are to form & one—parameter family of curves,
are obtained by affine distortion of the ordinate with u /U and the
abscissa with v/u 8, Since both quantities u /U and v/u 6, are

‘independent of one another, it might be expected thatﬂeven the wall—_
adjacent part of the velocity profile would become two—parsmetric in
the representation u/U against y/82. But the general velocity law,

equation (3), which applies to the coincident wall—adiacent part of the
profile in figure Y4, can be approximated by a simple power law, (3b),

outgide of the laminar sublesyer. A power law with any mutuslly unaffected

affine distortions in ordinate and absclssa direction always changes
agaln into power laws with the same exponent, which give a single-
perametric family of profiles in wall proximity.

The adjoining part of the velocity profile, in which the velocity
varies very slowly, is amply defined for given wall-adjacent part. Since
the joilning must teke place continuously and with continuous derivatives,

the profile must approach the value % = 1 asymptotically, and the

o -
integral must be [ %(l - E)d Y \= 1 (definition of momentum

Yo U 5o .
thickness).

However, this single—parametric characteristic for the velocity
profile refers only to the turbulent part of the profile and does not
include the laminar sublayer.

. Since, by reason of the single-parametric characteristic, the
velocity profiles can be definitely identified by any parameter, the
connection between two profile parameters must be definite. This is
represented in figure 5 for 7y and quantity HlEi Hyo belng the ratio

of displacement thickness 81 to momentum thickpess 85. In this
plot, the test points which correspond to dissimilar profiles from all
test series lie very nicely on one curve (with exception of the test

series "constant pressure and strip"; see next section), which confirms
the single—perametric characteristic in the best conceiveble manner.

b

Displacement ‘thickness 8y = Jf (i - — dy
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Consequently, Hyjo 1s & sultable profile parameter, because this quantity
is used frequently in computations of the turbulent boundary layers, and
it is natural to use it in equation (9) instead of 7. The relationship
between 7 and le, represented in figure 5, cen be approximated by
the formula .

- 2.333 x 1070-398H12

vhich, introduced in equation (9), gives the approximate formuls

-0.268

cp' = 0.246 x 1070-678H12 % Re (92)

which reproduces the drag coefficients cgy' in relation to profile
parameter Hjo and Reynolds number Re satisfactorily.

V. SCOPE OF APPLICATION OF THE ESTABLISHED CORRELATIONS

Pl

After the results obtalned in the roregoing have proved true for
boundary layers with pressure gradients, the next problem 1s to check
the extent of vealldity of the derived relations at any disturbance of
the boundary layer. Two additional series of tests were made, namely,

(e) At constant pressure and with turbulence grid
(f) At constent pressure and with square strip

For the measurements of the first test series, a setup described
by Wieghardt (reference 17) was used. A coarse screen of metal strips
was placed before the tunnel nozzle which increased the turbulence of
the air flow considerably (diminution of the critical sphere character—
istic coefficient UD/v from 3.75 x 107 to 1.3 x 109). The rest of
the procedure was the same as for the test series at constant pressure (a).
In figure 6a, the measured cpe' 1is plotted against the Reynolds number Re
in double logarithmic representation. The increased turbulence of the
outer flow has lhcreased the friction coefficient on an average of

10 percent compared to the plate flow. In figure 6b, ce' 29 is

plotted agein agasinst <?e 7Z> in double logarithmic representation, T
o -
corresponding to figure 3b. The test points of this series coincide .

with the test points for the plate flow, thus proving the applicability
of equation (8) to such intensely turbulent flows.
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In contrast to this test series (e), where the dlsturbance of the
boundary layer started at the outer edge, the disturbance in series (f)
originated at the wall. To this end, a continuous square strip (13 by °
13 mm) was fitted at a distance of x = 3m from the leading edge of
the test plate, crosswise to the direction of flow. The thickness of
the boundary layer at this point was @bout 60 mm. Velocity profiles
and wall-shearing stresses were measured at dlfferent distances behind
the strip. The values for cp' are reproduced in figure 6a. The test

points at shorter distance behind the strip are, of course, lower than
for plate flow. With increasing distance, the cp' values rlse steeply
to higher values than for plate flow and drop toward the end of the test
length, but not as low as for plate flow. The higher cjp' values
relative to plate flow are attributable to the increagsed turbulence
caused by the separation at the strip. In figure 6b, the cg' values,
recomputed according to equation (8a), are reproduced The first point
right behind the strip does not fall on the curve of the plate law,
while the test points of the order of magnitude of ten boundary-~layer
thickness already fulfill equation (8) again unequivocally. The reason
for the failure of equation (8) for the first test points lies in the
fact that the stipulated validity of equation (3) in wall proximity is
disturbed by the strip. This fact is borne out by the profiles repre—
sented in figure 7 in the manner of figure 1. Profile No. 4 is a pro—
file measured closely behind the strip. A comparison with figure 1
indicates that here in wall proximity, the law, equation (3), is no
longer valid. Moreover, the profile is outside of the single—parameter
family. Profile No. 1 was measured in the range where equation (8) is
applicable again. Note the straight line variation with the same slope
ag in figure 1 for the validity of equation;(3). The plate profile of
figure 1 is reproduced for comparison. Figure 7 further shows & profile
of the test series with turbulence screen, which again indicates the
validity of equation (3) as anticipated from the foregoing.

Figure 8 represents several profiles from the last test series for
which equation (8) 1s applicable again, plotted in the manner of figure kL,
along with a plate flow profile for comparison. Here, also, every
plotted profile complies with equation (3) in wall proximity.

Trenslated by J. Vanier -
National Advisory Committee
for Aeronautics

i -
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