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TWO+NMENSICWKL SYMMETRICAL INLETS

WITH EWERNAL CC5WRESSION*

By P. Ruden

The accompanying report is considered significant in that it gives
the only anal@ical development of maxi~ritical-speed air inlets.

Wind-tunnel tests of twcMiimensionall and rotationally symmetrical
inlets built to the ordinates derived herein were also made by Ruden.
h all cases the predicted flat pressure Ustributions were obtained at
the predicted minimum inlet=velocity ratios.

It is interesting that at nearly the same time the development of
nearly identical high-critic~-speed inlets was proceeding experimentally
in the United States. This development was summarized and set up for r

design application by Baals, Smith, and Wright3.

To those reading the accompanying report, the other thee reports
listed in the footnotes here tie recommended as valwible additional.
materkl. With their aid, au exceptionally good picture of the theory,
development, ~d appucatfon of air wets w be obta~ed.

J. Ford Johnston
Langley Aeronautical lkloratq

*~ne sqmetrische Fan.gdiffusoren.”Zentrale f& wissenschaftliches
Berichtswesen uber Luftfahrtforschung (ZWB) Berlin-Adlershof, Forschungs-
bericht Nr. 1209, April 15, 1940.

%den, P.: Windkanalmessungen an ebnen, symmetrischen Fangdiffusoren
(Wind-TunnelTsmts of Twc+Dimensionall.Symmetrical External Compression
Inlets). Forsckmngsbericht l’7r.1325, Dec. 1940.

2Ruden, P.: Windkanalmessungen a einem rotationss-trischen
Fangdiffusor (Wind+!unnelTests of a Rotationally Symmetrical External-
Compression IXLet). Forschungsbericht Nr. 142’7/1,March 1941.

%AS, D. D., Smith, N. F., =dWri@t, J. B.: TheDe~e@=nt~d
Application of Eigh4!ritical+5peedHose Wets. NACARep. 920, 19~.
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The purpose of inlets like, for instance, those of alr-
.-

cooled .radiatorsend scoops is to take a certain air quantity ‘“-
3 “’

out of the free stream end to partly convert the free-stream
velocity into pressure. In the extreme case this pressure
conversicm may occur either entirely in the interior-of the _..
inlet (inlet with internal.compjessfon) or entirely”in the
free stream ahead of the inlet (inlet with external compression).
In this report a theory for tw-mensiorial inlets with extermi--
compression is developed and illustrated by numerical ex~ples.
lhtermedfary form between inlets with internel and external
co~ression which can be derived from the latter ere briefly
discussed.

The report is meant chiefly for the theoretical aero@amlcist;
however, sections I and KU apply dfrectly to the designer.

1.

n.

III.

m.

v.

VI.

VII.

V3ZI.

DEE’1271TIONOF CONCEPTS OF IKU!?lEWITHEX?lERNALAND
INTERNAL COMPRESSION. STATEMENT OF THEEROBLEM.

THE EODO(3RAPHMETH~ FOR PRODUCTION OF TW04XMENSION&
FLOW PATTERNS.

CONSTRUCTION OF TEE SIMPLEST SYMM?IRICAL EOIXXRAPH.

CALCULATION OF THE SIMPIE3P SYMMETRICAL INLET WITH
EXTERNAL COMPRESSION Wl17HCONSTANT TELOC3?PYALONG THE
NOSE CONTOUR.

.

ON AMINIMALCMRACTER ISTIC OF TEE SIMPLEST SYMMEIRIC&
INLET WITH EXIXBNAL COMPRESSION. d

VELocrrY AND PRlE3URE DXSTRDUTIONS, THRUST.

NUMERICAL ExAMmEs AND DERIVED R?mrs.

AEPEImx ●

a. Auxiliary Theorems Concerning Points Reflected m
the Circle.

b. Reflection of Source end Ibublet on the Circle.

SYMBOLS

free-stream velocity (real.)

final velocity in the interior of the met (real)

u velocity component, parallel to the free-stream velocity

.
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v velocity component,
velocity

w=u - iv complex velocity

P local presinzre

perpendicular

Pi final pressure in the interior of

()
P*

~=ijwm free-stream dynsmic pressure

3

to the free-stree3n

the inlet

s

d

h

z =x+

I.

In

nose thrust

wall thiclmsss of the inlet

half height of the inlet opening

Q coordinate of the flow plane

DEFINITION OF CONCEPTS OF INIEI’SWITH EXTERNAL AND INTERNAL

COMPRESSION. STATEMENT OF THE PROBLEM.

~ aero@@c questions of airplane ccmstruction one has to
deal with the following problem: A certain air qusntity is to be taken
from the free stream and, mostly with conv&sion of velocity into pres-
sure, to be conveyed to propulsion units or airplane accessories. A
t~ical exem@e, largely discussed lately, is the radiator with cowling.
It shows that the aerodynamically faultless design of the inlet is ren-
dered difficult, above all, by the requirement that”the pressure conver-
sion expressed in the ratio meen velocity in the @terior of the inlet

()
WI “to ihe f“light”velocity(wm) be mde ad@table to a high extent.

It is true that this csn be accomplished fundamentally only 3Y suita%le
measures at the outlet of the device which is here of no further interest;
however, for the following discussion the empirical fact i’simportant
that the excess velocity either - for small w W. - at the outer, or

d
%f wi~wm almost reaches the amount 1 - at the inner nose contour

easily becomes so large that flow separation and vortex fom!ation occur.
In the first case the drag of the inlet undergoes a sudden increase, in
the second the diffuser efficiency undergoes a considerable deterioration.
Evidently, excess velocities of such an order of magnitude must be avoided.
For fast airplanes, however, even this limit frequently lies much too high:
elways, if the local Mach nunher should exceed, for instance, a value of
about 0.95.
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If the range of regulation for wi/wm is not large, we aero@mmlc -.—.
problem may be solved by making tie ent&nce...openlhgof the filet (approxi-
mately In accordance with the inverse ratio of the velocity retardation)
smaller than the inner cross section. Inlets of this kind=hall be called_ _
“inlets with internal compression.” (See fig. 1.) In their Ideal form
the walls of these inlets are simply “frozen” streamlines which are
obtained when, in a flow field with constant velocity ever@here~ a stW-
nation is made to occur by means of a screen or the”like. In these
devices, the pressure converk!lontakes place more or less completely in ‘-”

.

the interior of the inlet, with an efficiency which is unavoidably smaller
than, 1. If WJW. tecomm3 noticeably larger than the velocity ratio to
which the opening ratio was ad~usted, the flow in the inlet tends (even
for rounded noses) toward separation; hence the diffuser efficiency gener- ..
ally deteriorate considerably. This disadvantage can be pf%vent%d by
making the opening ratio of the Inlet ad@sta31e by ineansOT a suitable _...
mschanism. On the other hsnd, it is prohahly always possible to adhere,
for inlets with internal compression of thi.~ki”ndjto the pqmd.ssibls
maxinmm velocity on the external contour.

The “inlets with external compression” are characterizedby the
entrance cross.sectionbeing equal to the maxiruumcross section of the
inlet. Here the pressure c~nversion is shifted entirely-to;:thefree
stresm (fig. 2) and is, therefore, for all velocity ratios betwen O
and “1 c~mpl.etelyfree of loss. However, the flow along the”external
contour of the inlet is endangered: the maximum velocity efisting there
can be kept tithin permissible limits only by careful shaping of the outer

nose contours md by selection of a.sufficient wafi”thiclmess. However,
once this is attained for the smallest velocity ratio dw Wm, the inlet

with external compression operates faultlessly as-&”l.lfor &y larger
velocity ratio UXI to wl~ww = 1 and even slightly beyond this value; thus

.
an ad@tment mechanism of the inlet may be omitted.

Between inlets with purely external and puz%ly intern~~com>ression
there exists an abundemce of .intermediaryfores; these originate from the
inlet with Internal compressionby adding thickness to the hollow inner
wall, from..theinlet.with external ccmpression,byreducing the wall thick-
ness from the tnside. The latter forms will bb,discussed in somewhat more
detail in section VII. The inlxMx@M.ary forms may be of greqt practical
tiportancej they are, however, hardly suitable for..theoreticaltreatmnt,
and their investlgakion is mostly limited to wdmd-tunnel tests.

In order to reexamine whether the.required m“fi thicknesses of the
inlets with external compression lie within boundaries.attai~ble in
practice, and to create, at the”same time, a“basis for the calculation of
such inlets, a theory of two--@ension?alinlets tith extern~ conqn%ss$on”
is developed below. “A few idealizations are necessary: first, limitation
to incompressibleflow; second, n6g.lectof all bound=y-layer effects
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8 (frictionlessfluid); third, elongation of the inlet inflow direction to
infinity. (See fig. 3.) The first .’GWOsimplifications need no explana.-

. tion as necesssq requirements. About the third, it is to le noted that
all essential phenomena take ylace around the entrance of the inlet with
externsl ccaupressionand that an outlet of different shape does not exert
a strong influence on the entrance flow, if the device is sufficiently
long. However, possible deviations of the theory from actual conditions
can and must %e determined %y additional investigations, chiefly, probably,
of experimental character.

The present report deals with symmetrical inlets with external com-
pression only, where tha two walls are of identical form. Unsymmetrical
inlets with extarnal compression are considered only inasmuch as they can
be derived from the symmetrical ones.

The prollem of the three-dimensional design OP inlets with externsl
compression remains at first unsolved; however, the two-dimensional
theory - exact under the given conditions - permits already so much
insight into the essential properties of the inlet with external compres-
sion that one may.hope, with the aid of the lmowledge attained there, to
%e able to cope particularly with the three-dimensional inlet with external
compression, since the excess velocity at the outer nose contour must be
smsller in the three-di~nsio~ than in the two-dimensionellcase due to

.

the greater possibility for flow divergence

II. TEE HODCKXWPH METHOD FOR PRODUCTION

PATTERNS.

eround the body.

OF TWO-DIMENSIONAL-FLOW

“
The hodograph method allows a relatively simple introduction into

the theory of inlets with external compression. A detailed description
of this ~thod is to be found in the textbook ~y Prandtl-Tiet~ens.
However,’a brief compilation of its nmst important characteristics will
be useful, particularly for the ~ason that thus a few view points of
significance for the following can be specially emphasized.

If z “is aqsumed to be the complex variable of the flow plane, F(z)
the complex flow potential,

w= f(z)

is the so-called complex velocity
and v of the actual velocity by

a’ dF dw=—= ——
dz

(1)
dw dz

which is related to the components u
the equatia
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The emalytdcal function w = f(z)” may be used for map~lng the
z-plane onto a complax w-ylane. Thereby the flow patteti in the z-plane

r::

is mapped into the so-called hodograph flow: azlarbitrary point of the
z-plane is napped precisely into the point which corresponds to its

.

complex velocity w.
—

This fact makes it possible to give a qualitative presentation of _.
the hodograph flow when there exists a qualitative presentation of the

——

flow in the z-plane, or If one cm procure in sny other way a sufficient
amount of data on magnitude and direction of the local flow velocities
of the z-plsme. At first, not much seems to %e $jainedhere%y. However,

—

it is an e~irical. fact that the complex potential of the hodograph flow
is sometimes simpler than the flow potential of the z-plane.

-—
h such

cases it is mostly sufficient to build up the hodograph flow from a few
—

of the simplest singularitieswhich may be taken from the qualitative
presentation of the hodograph flow.

;
Whera these singularities are no

longer sufficient, one can proceed by analogy.
;

If F(w), the complex yotential of the hodograph flow, can be given,
first, an exact presentation of the hodograph flow may he &awn -, bY
converse mapping of the w-plane on to the z-@.ane, also the flow pattern
of the z-@ane. This rcapyingis achieved, according to eqution (1)$ by

!al? sdF dw+ c&t -.
.-

2 + const = (2)
T dw W

.

If the velocity of the z-plane flow is required to be evermhere
finite, the hodograph flow must necessarily be-limited by a closed curve ‘- ~
which may aesum rather arbitrary shape. ti the following :dlscussion,
however, only circles are admitted as boundaries so that the selection
of the actually pcmsi~le forms of inlets with external comp”&essionis
definitely limited. By mapping the hodograph circle onto other simply
connected regions, the theory developed here may be generalized to a
great extent. —.—

Due to the properties of the conformal mapping, the circular bound-
ary of the hodograph must be mapped into boundary sections Gf the z-plane
flow. Further boundary curves are (as will be shown later) represented
by slits protruding into the interior of the hodograph circle. If the
flow outside of the walls of the inlet with external compression is ta
be free from singularities, the interior of the hodograph circle (with

.,

exception of the slits) also must be free from singularities; otherwise
the mapping pe?zformd by equation (2) would transplant these singular-

it~es into the z-@ane. *

Sta&ation points of the z-plane flow situated in the finite domain— —
require special attention. They-are defined ?Iy w = O
spondlng z is, according to eqution (2), finite only

and the corre- Q

when simulta-
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neously dX/dw disappears. In such cases one must, therefore, make
sure that the hodograph flow, the congi!-exvelocity of which is repre-
sented by dF/dw, has a stagnation yoint at the zero point of the w-plane.

For the”external-compressioninlet without s~ecial instalhtions,
the hodograph flow must not have emy further stagnation poimts in the
interior of the hodograph, apart from the aforementioned stagnation point.
This follows directly from eq.mtion (l): w = f(z) is in this case out-
side of the walls of the inlet with external compression an analytical
function free from singularities. The derivative dw/dz exists and is
everywhere f.in.itein this domain. Since, howemr, according to pre-
supposition W+o therein, it must also follow from eqpation (1) that
dF/dw # O.

For the boundery curves this conclusion is no longer valid, since
on them dw/dz may beco~ infinitely large. One can easiJy see, how-
ever, that here further stagnation points of the hodograph flow are
admissible only at reentrsmt corners; that is, od.y such sta~ation points
may le added in the neighborhood of which the flow direction does not
chsnge, if one travels along the corresponding streamline in a certain
direction. Otherwise convergence or mutual penetration of the loundary
lines in the
below.

111.

z-plane could o;cur; both possibilities shall %e excluded-

CONSTRUCTION OF THE SMLIST SYMMET~CAL HODOGRAPH.

According to the dlz%ctions for the construction of a hodograph, one
first desi~ a qualitative stream line pattern of the symmetrical inlet
with external compression. (See fig. 4(a).) In order to obtain the mapping
of a streamline in the w-plane, one draws - starting from the zero point
of the w-plane - the complex velocity vectors of the streamline for a
sufficient numlsr of points; one then connects the heads of these vectors
and determines simultaneously a direction of travel corresponding to the
sequence of vectors in the z-plane. The streamlines &,Ao,A1/Ao,A2

lor instance are represented in the w-plane in the train of
lines l,O,WH, l/O,wi (See fig. 4(3).] It is assumed that the magni-

tude of the velocity is constant along the entire nose contour (semi-
circle in the w-plane) and that the velocity at infinity equals 1. If
the w-plane is supplemented by the mapping of further streamline patterns,
the mapping of the hodograph (fig. ~) is obtained. The streamlines of
the hodograph flow all start from w . 1 snd end partly at w . Wi,

mostly, however, at their starting point w = 1. Hence one concludes that
a source and a dol~bletmust be present at w = 1, a sink at w . Wi.

For reasons of continuity, the sink is of the sam strength as the source.

.>



8 NACATM X279 .

Since the circle H with the radius R is a stzwamlfne, the expres- -f -
sion (35) of the appendix is to be set up as complex partial potential
for source and sink, the eqression (36) as doublet pobnti~. me tg@l ...
potential is

.:

(3)

Hence follows with M = fQ the complex velooity of the hodograph flow

dl?

[...

Qli 1

{

lfl ~2
—=— — —- —-
dw 21rw J-r+v-R2 w~ R2

.W --- (w - 1)2 - }1(jApl ‘4)
Wi

According”to section II, the,point w = O must be a sta~tion point of
the hodograph flow, that is, 6quation (4) must disappesr at this Pointj

thus

f=
R2&-9-(’-wi)

R2_~ (5)
,

If one introduces w . W1 + iw2 into equation (3), F(w) =(p + iv may be F
readily divided into its real and its Imaginary part. The imaginary part
is the stream function of the hodograph flow:

.
—

*Q 1 W2 W2 .. ‘“W2
=—
217

arc tan — - arc&n— + arc tan ‘“”
w~-1 W1 - w~ w~ - ~2

(6)

W2

‘[

R2arc tan

W1-: 11

-fwp ~,-g:+w;-~,-B,)2+w:..,

*
Reviewer’s note:

●

This V8.lUewas erroneously given as
+~~....

the original German version of the report. u
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The lines V = const. are the streamlines of the symmetrical hodograph.
(See for instance, fig. 5.) For their numerical calculation one starts
from a prescribed W2 @r w~ and veries ‘wl (or w2~. One plots the

values * thus oltained agatist wl (or w2~ and takes for ~ = const.

the WI for w~ corresponding to the prescribed W2 @r Wl). It is

~ractical to select as streamline constant the value fi/n (n integral),
b9cause w = O corresponds to the stagnation point streamlines and the
contours of the inlet with external compression, * = X to the symmetry
streamline.

IV. CALCULATION Cl?

COMPRESSION

With equation (k)
simple calculation:

r

TKE S124ELESTSYMMETRICAL INIECS WITH EKTERNAL

WITH CONSTANT VELOCITY ALONG TEE NOSE

Comom.

one enters into equation (2) and obtains titer

z 1.-& (1 + f)zn(w . 1) - ~ 2n(w - WJ ++ Zn(w - IF)

w~ ( )’-— Zn w-< +A f

1( )

2nw 211
~2 Wi w- 1-~+ # ‘-Wi

- (1- @ - f62- $+conat

Because of (5), the factor of Zn w disappears. If, moreover, the arbi-
trary constant is eq,,ted to X. - ih with

Q

[ )“R2
xo=— (

—-wi Znwi+2f+wi -
(j

~2n R+ fR2-1
2fcR2 ‘i

then

z

[

.s (1 + f)?ll(w- 1) Wi
2YC -A’n(”-@+& ’n&@

()

R2
-~22n w-— +L- 1’~~+xo-ihWi w-

(7)

.

(8)
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is the analytical functim which petiorms the mayping of the hodogrqh —
onto the z-plane. I~ c~atant is selected irLsuch a ~r that the ~~- . -
axis coincides with the symmet~ line of the inlet with external compre=
Sion and the ti@~ aXiS Of the Z-Pbm.e gOeS tbl%Xl@ the tWO
points. E3tagrlati(m ~.

The following s,ymholsare introduced (fig. 6):

w- R2 = 130163, 23 =

w R2
= Z4e

i64
-~ , Z4=

Now equation (8) may be divltid inijcjits red and j.ts~y

.

x
[

=&(l+f)2n 22-A Wi Zn 21 +,= Zn z
$3

.

parts

(9)

.

9

.

(lo)

.

*
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With these two equations and with equation (7) au stieafies of tie
symmetrical inlet with external compression can be calculated yoint by
yoint frmn the streamlines of the hodogralh. The quantities appear-
equaticm (10) Zv and 5V are either determined accortig to the

fo~as (9) or taken from figure 6.

Due to the mltivaluedness of the sngles 5V, which for the t-

%eing are determined only in multiples of %, the coordinate y in
equation (10) is, at first, also nmltivalued. The reason IS that h

IL

in

e@ation (8)-the-natural l~garithm appears, which is known to be an infi-
nitely multivalued function. This multivaluedness may be eliminated by
slitting the w-@ane along the real axis from -W through Otowl

snd from w = 1 to ~ (fig. 7); the only thing left to be done is ta
fix for every logarithm of (8) the %ranch of function wh~ch is to be
valid in the Riemann sheet coasldered: One stipulates that sU logarithms

~2
on the upper boundary of the slit to the right of w = ~ assume real-

positive velues end at sJJ.other points the values reached by ~ic~
continuation.

Thus the sngl.es ~I>~2Sb3#

upyer boundary to the right of

the upper semicircle they vary,

and 64 are also made single-valued: On the
R2

w=— they all have the value O; in
Wi

as shown in figure 8, between O and YC;
in the lower semicircle al assumes a value between O ma - Yc,82

to 54 values between x ad ~.
.

In order to be able to determine reliably the angles 51 to 54, it

~ Is best to make use of am illustrative experiment: A pointer is connected
~2

with the points w = WI, 1, R2, and — by
‘i

pointer rests on a point of the upper boundary

of w=
R2
— ~ all angles beinmen the strings and
W*

elastic strings. If the

of the slit to the right

the positive-real axis are,

accordin~to stlpulation, equal to zero, If one travels, starting from
thts position, without passing across the slit, into the upper semiplane,,
the angles “open” and assum the values given above. The potiter can be
brought from the upper to the lower semiplem on~ through the pas~ge
between w = WI and. lj engles as shown in figure 8(b) are then obtained.

According to figure 4, the hodogra~h circle and the slit parts of
the real axis correspond to the contours of the external-compression inlet:
the upper rectilinear inner wall to the right of the stagnation correspends
to the lower boundary of the slit between 0 ‘d ‘i) the upper recti-

llnear inner.wkll to the left of the stagnation yoint to the lower
Poundary of the slit between -R and I), the upper nose contour to tie

.
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lower semicircle,
lotir boundary of

obtains the lower
the boundary line
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~
---

and.,lastly, the upper rectil-fiearouter wall to the s
the slit letween w = 1 and.”R. Correspondinglyj me

contours of the inlet with”ex”ie~ compression from . .:.
of the upper hodograph semicircle smd from the upper —

boundary of the slit; however, one may obttin tiem ~ a simler ~er ~Y
the tirroring of the upper contours with respect to the sylmnetryline. ‘

For the boundary lines enumerated above, the general tormulas (10)
nELybe sim@ified quite considerably: Along the up2er inner wdd.

—

(-R<.w<wi), since bl=.~YC; 82-= b3=84=7Cj” Zl=wi>wl,

=R2-wl, ~~=;-W~,” - ‘“”

—

22=1-WI, lj

and, bearing equatlon (5) in mind,
.

Y
Qh=—-
Wi

s

--

Along the lower inner wall 21 to 24 and ~2,83,84 assume the sam

values as along the upper inner wall; only 51 changes lts value to II.

Thus the equation remains the ssme as before”‘for x, whereas one
obtains for y, ,againtaking equation (~) into consideration,

.—

Y=-h (13)

If the inlet opening of the external-compressioninlet is yut eqml to 2h,
there foliows from equation (12) and equation (13) .

r

Q= a’1Wf (14) ““
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with this value
inner walJ-from

one obtains as ftn~ eql.mtio= for the upper and lower
equations (u), (12), ~d (13)

x

[
~ (1 + f)zr+ - Q - * V+i - i) +y+”$.=—

h (15)

Wi

()

~n R2 f

1

Xo
—-WI

+—

- ;2 Wi -nl+*l h1-

7 1 or Z . - 1, r-mctive~-=
h’ h

(15a)

Alon8 the upper outir wall. 1 S w ~ R ~d 51 =
o, 62 = *,

R2
1, 23 = R2-w~, z4=~-wl’

83
=54=X, 21=wl-wi, %=wl -

and, taktig eqwtions (5) and (14) into consideration, the equatias

L

()‘izn&_W~ ‘—

1

f .+2 +

- ~2 Wi WI-1 R2 - wl

; = Wi(l + f)

+1 ;2f ‘n@-‘3
(16) ~

X.

-ii

(16a)

‘Ruedifference between the const=t y-tiues of
the

are valid.
eqpa.tions(15a) and (16a) is the wall thic~ess of the externO-
compression inlet:

a
(1 - W,)2

-= Wi(l+f) -l=
h

R2-1
(17)

.

●
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corresponds to the nose cantour. In this case,
equations (10), due to the fact

-.
i“The hodograph circle itself

also, a few simplifications result for

w= 1 smd

24 Onone

the

that w = Wi and w=~
WI‘

the circle H:

..—

W=R2 ere reflection points”of

hand ~“d ~– 22, 23 on the otherIf one applies to 11>
hand the equation (32) of the appendix, putting in the first case h. = 2.,

J.

‘2
.24, and Wo=wi and in the second case %=Z2, hz=zq, and;o=l, -“:

—. . .
one obtains

.

—

(18) .

One ..—
one obtains

If one substitutes, furthermore, in formula (33) of the appendix
time Y1 = 51, Y2 = 54 and the other time 71 = 52, 72 = 53)

—(19)
/52+ 53 =cp+Yt

.

With equations (1-8)$(19), (14)$ (5)$ and (7) one
for the nose cmtours of the external-compression
equations:

:=2~g+w9zn.:+;(og62+

(10) ,oltains, from equation
Wet, ~he following

. .
.—.

( 2)).?Osq) -b.

“R

(

.-—.

ii 1- Wi
1

+ ZnR+~ znwi+ —-—
~2 WI w~ ~2

—
J.

(20)
.-—

.- ~.,--

1YC)+l
.

“

.
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The relation between x and
for 1> w > wi in equatiohs

r

15

w along the symmetry line, valid
(10) also is useful:

--l

V. ON A MINIMAL CHARACTERISTIC C@’TEX SIMKLIST

INLET WITE EXTERNAL COMPRESSION.
.

(21)

sYz4mmIcAIl

The symmetrical hodograph of section III can easily be somewhat
generalizeal,if one no longer requires coincidence of the center of the
hodograyh circle with the origin of the w-plsne, but admits - within
certain arbitrary limits - a position of the center of the circle on the
real axis. According to whether the center of the circle lies to the left
or right of the origin of the w-plane, the correspending external-
compression inlet assms nose shapes for which the l’ocalvelocity down-
stream increases of decreases.

In order to derive this more general hodograph, one visualizes the
circle as lying in a ~-plane in such a manner that the center of the
circle and the origin of the plsne coincide (fig. 9). The sink -Q shall
lie at ~i, the source Q and the doublet M at ~=. According to

equations (35) snd (36) of the a~endix, the complex potentisl of this
flow is

r

0
R2
—

w

-1



.-. —

2.6

andwith M= fQ

NACATM X279

(22)

The point g . go is assumed to

to equation (22), necessarily

be a stagnation pointj then, according

.

1 1+1 1
—. —— -—

$0-b k- !-l $o-~ co-:
w

Since, according to the expositions of
point go must coincide with the zero

~i with Wi, and gm with Wm = 1,

w=!a -

section II the stagnation
point of the w-plsne,

there exist the relations

‘i = $- <0

.

.—.

—

(23)

.— (24)

.

.-.

.
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✎

☛

.

.

and from equation (23) follows

1 l+go q + [0
—-1+
Wi ~02 + ~. - R2 - (02 + wi~o - R2

f=

1 -(&-

(25)

Acoording to equation (2),

!

=dFdwz .—
dw w !&F&+ const = — — + Const

q w(c)

.

end one obtains with equations (22) ad (24), taking equation (25) into
consideration, after some calculating

z Q=—
2YC

(26)

R2

<-

In order to make here
must be slit from -m

again the logarithms single-val.ued,the ~-plane

to Ci =wi+~o and from ~m=l+~o to ~.
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The two slit Imundaries represent the rectilinear wall parts of tie
external-compressioninlet, in particular, the u~er lountiy of the left
slit, the lower inner wall.;the upper bo~dary of the right slit, the
lower outer wall. The distance between the walls equals the difference
Of the corresponding Imaginary parts of ewti~ (26)

~=~
2

.[ 1.
1+(1+ f’)-<

The inlet opening of the external-compressioninlet results as the
difference between the
bounde.riesof the left

end with this relation

hlaginary -partsof
slit

al Q=—
Wi .

ale finally O-btains
wd-1 thiclmess of the external-c~ression

d-=wi(l+f)-l
h

=quation (26) for the two

the old formul.a(17) for the
inlat.

—

The msxtmum velocity is, accordhg to equation (24) snd fig. 9,

%lax =R+~o for K. 20

.-

.— .-. ..-

.

(27)

.

.- ““

.

-.

. .

.

(OJ ciJ and cm lie sti~ inside of the circle H. Hence follows—
according to figure 10 the admissible domati for go:

—

.
.— .- — -..-—. —_



.

.

.
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.Ifnot R lut the msxim velocities are fixed, the do~~ of go ~

be expressed, by means of equation (27), bY

If {0 is Varied tithin this domain while w- is held constant,

the will thickness of the external-compression inlet changes. As
‘msx ~ a ‘i

figure 11 shows for the exsmples -— = ‘>—= 0.1, 0.4-,0.7, the
% Wm

wall thiclmess has at C. = O a deffiite ~mum” me lroof mat this

must always be so requirls.a very Complicated ~wntj since the ~ni~
lies precisely at the section point of the curves more closely determined
by the equations (27). However, the proof MY bO o~tted~ Patic~~
since one may readiiy conclude from the relatively sinple cslculatim of
further exsmples that the a%ove statement is generaJJ.yvalid.

In the case co = O the center of the hodograph circle coincides

with the origin of the w-plane, and one obtatis the important statement:
of.all smtrical external-compression inlets considered here, the one
treated first, nsmely, the exte”imal-compressioninlet with cons-t velocity
along its entire nose contour, has for equal excess velocitY ~d equ~
Pressure conversion the smallest wkll thiclmess.

In determintig the contours and.stream lines of the external-
compression inlet one obtains the corresponding velocity and pressure
distributions elmost without”further calculation:

The complex velocity w is the coordinate of.the hodograph. The
sqwe of-its magnitude is, accortig to equation (9),

W2=W12+WJII

If one puts the pressure of the undisturbed velocity equal to zero,
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and because ~ .1

Along the entire

of section IV,

and

nose contour of the simplest

W2II
2

= ckst = R

P e w=’2(’- ‘9nose ‘.2

NACA TM 1279 .

.

(4 _
.-

ext.ernal-campressicminlet

—.

—

is the constant negative pressure which acts perpendicularly on a
L-

‘ surface element of the nose (fig. 12). The force coqpment opposite the
free-stream direction is —.

.—

and the thrust exerted on a nose contour

&

The nose thrust of the entire externel-compresaicminlet is with
equation (17)*

—--

2

(J

Wf
s =-pwm2h l-- (29)

*For a clearer presentation of formula.(29) it is expedient to
,.

designate the velocity ratio (velocity in the titerior of the detice to
free-stream velocity) no longer by wi/1, hlt l?Y wi/wm. s-

. .
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This simple equation for the nose thrust is derived, at first, only for
the “simplest” sptrical external-compression inlets of section IV;
however, the very nota%le fact alone, that apart from the open height 2h
no further form paremeter enters into the eqyatim, permits the conclusion
that it must have a more general significemce.

For letter understanding one visualizes a control area lying about an
ar%itrary two-timmsional external-compression inlet (fig. 13); the inlet
mast satisfy one condition only: that its walls in the downstream direc-
tion tend toward infinity with constent thickness. “The points 1, 2, 3, 4
are to be so far removed from the entrance of the inlet that the horizontal
component of the velocity practically equals Wm or Wi, respectively.*

But even in this case the horizontal
be flow surfaces but, for rea30ns of

control areas 1, 2, ma 3, 4 c~ot
continuity, the qzantity of fluid

Q1,2 +Q3,4=@h +do+~)w=-2h Wi (30)

must flow through them. For the total nose thrust the momentum eqution
gives the value

With eqzation (30) and

one obtains from equation (31) after a short calculation agati the
equation (29); the latter’s validity for arbitrary external-compression
Net form is therewith proved. For the rest, one can easily find out

*The di.sturl)ancevelocities which were neglected here and further on
_become- as can 39 easily proved - with increasing distance from the
entrance of the external-comp~ssion inlet “small of the first order.”
Since the control area also increases Ilnealy with the distance of the
points 1, 2, 3, 4 from the entremce of the external-compression inlet,
&U. integrals of quadratic products of the disturbance velocities must
disappear in the,limitfng process, whereas the integrals of linear terms
of the disturlmnce velocities remain finite. With these facts taken into
consideration, it is easy to give exact proof for equaticms (30) and (31).
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that, under sm.alogouspresupposithns, this equaticm is valid also for
the nose thrust of the internal-compassion inlets.

.

VTI. NUMERICAL EXAMPLES AND DERJSLEDINIX1’S.

Before the theory of the two-dimensional external-compressim inlet
developed above Is illustrated by a few numerical examples, the aims md
_ of Ws theory .shaJJ-once mom be briefly represented: Under the

.

assumpticm of incompressiblefricticqless fluld the contourg and the .
pressure distribution of the external-compressioninlet are calculable ..
for a prescribed velocity ratio wi~W. and a prescribed &-

The msximumvelocity is assumed on the curved nose contour. In the ‘-
pressure distribution along the nose contour one can distinguish three
different trees of external-compressioninlets which may be comprised by
the theory: types where the velocity downstmmm along the nose contour
has a continuous inczwase, or a continuous decrease, or remins constant.
The property nemed last is the special characteristic of the so-called
“simplest symmetrical external.-ccnqpressioninlet.”

.

Apart from the shape of the nose contour, the maximum wall thic-ess
of the external-compressioninlet also is decisive for the magnitude of
the maximum velocity, inasmuch as the mhximum excess velocity may be keyt
smaller with increasing wall thlclsness. The smlest symmetrical
external-compression inlet is distinguished among alJ other inlets of “me -

- ““

kind considered here by possesshg, for a wall thiolmess kept constant,
the smallest excess velocity or, inversely, for an excess velocity kept
constant, the smallest wall thickness. This property makes “thesimplest

.

sy?mnetricalexternal-compressioninlet particularly suitable for prac-
tical applications; hence the fouowing nizmericalexamples ~ Mmlted to
that Inlet.

The follo~ should be noted about the general form of ,the symme-
tricel inlet with externsl compression: Inner and”outer wall are recti-
linear ~d both run parallel to the free-stream direction. The only
curved contour is the nose cmtour which connects the outer and tier wall
without a break but with a sudden ch~ in curvature at the transition
points.

.

It Is a minor inconvenience that one obtains, on principle, for two
clifferent yairs of values wi/wm, w-/win forms of extgrnal-compression

inlets which also are different ad that, according to the theory existing
so far, i“tis not possible, for instance, to retain the form calculated

.

for a pair of values wi/ Ww,
/w‘Clsx m

and to determine pressuzw ~a

velocity distributionfor another w w..i] m This disadvanta~ could be - = ““ -
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eliminated by”a suitable mapping of the hodograph circle onto enother simply
connected surface;,however,simplicity and clearness of the theory would
suffer so greatly that it seemed letter to omit this step for the the
being. tifects md partial circumvention of the limitation just mentioned
will be discussed later.

We now turn to individual discussion of numerical. results. In
figure 14 the wall thickness (d) referred to the Inlet half-height (h) is

/
represented as function of w- w~. The corresponding equation is

eq.tim (17) in which qne has to substitute R = w-. One recognizes

Mat d/h retains a finite value even for wi/wm = o> if w- > Wm

is admitted but that, however, on the other hemd, d/h assumes infinite x.
tude for”any Wilww, if w- = w. is required. As mentioned before,

the wall thicl.messshows a continuous increase with decreasing naximum
velocity. DOWn tO W- = 2.5 Wm this increase is practically insignif-

icant. In order to give a clearer picture of the interesting
dO~ti W-C 2.5 W=, It has been represeritedonce more to an enlarged

velocity scale in figure 14. It is shown that the inlet with purely
external compression reqtires, for small Wi, quite considerable wall

thicknesses, if the value w- wm
/

must not %ecome very mch larger

than 1. ‘or ‘i/wm = ‘~ ‘or ‘iskce~ the excess velocity can, for d/h = 1,

le lowered not further * w- W. = 1.42. However, d/h = 1 signifies
/

that the total wall thiclmess equals the totel height of inlet opening.

/
Wi Vm = O is an operating contition which in no way answers the ~urpose

of the inlet and has, therefore, no decisive si~ificance for its desi~.
That oyerating condition is of interest only as a boundary case for the
estimation of most unfavorable conditions. However, figure 14 shows that,
due to the steep ascent of the curves in the left part of the diagram, the
wall-thi.clmessratio does not become much more favorable even for, for
instence, wi/w== 0.1.

Figures 15 to 18 reyresent a few calculated ex~les of symmetrical
inlets with external compression, co~esponding to the parameters

/
Wi Wm =

/
0.1 ma 0.4, w- wm. 1.4”

;t ~?s~”laey~e ~~~al~\~;t1”2”The fixed walls are cross-hatched.
stream lines are.drawn in te give em excellent impmssion of the %elocity
retar~tion ahead of the inlet ent~ce. The figures cozrfirmthe fact
discussed before: that the wall thiclmess of the externel-compression inlet
is bound to increase for decreasing w-

/
Wm as well as for decreasing

I
Wi wm. A comparison of figures 15 emd 16 on one hand with figures 17,

and 18 on the other shows, moreover, that the curvature of the nose contour
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must be the flatter ~d, consequently, its length the greater, the smaU@?
the excess velocity is to be keyt. The relatively “sharp-lofnted:ose,”

.

especially, is surprising, particularly for the efieml-compression inlets

/
for WI w= = 0.1 with their sta~tion points situated.relatively far to

the resr.

In order to estimate the behatior of the extemal-compression inlets
for other conditions of retardation, one could follow the procedure shown
in the example of figure 15. That external-compression iqlet has the
wdd. thiC)MeSS d/h = 0.845. E’ the wall thickness alone were responsible
for the mgnitude of the excess velocity w_\”w ~ w- w for/
other velocim ratios WI~wm could be easily determined fra fimp 14 by

having there a parallel to the abscissa go throu@ d/h = 0.845.
For WiIw= = 0.4 one would thus obtain w-~wm = 1.195. However,

fi~e 17 ‘how ‘or w@ = 0.4 ‘d %@m = 1“2 ‘at * ‘ose$ ‘or
such a law excess velocity, must have a considerably flatter curvature;
one may draw the conclusion that, for w w = 0.4,1/ co /

w- Wm actually

will slightly exceed the value determined above from figure 14. The
reason lies, above &lIl.,in the fact that the velocity along the nose ccmtiur
of the external-compmssim inlet of figure 15 f~ no longer constant
for wi/wm= 0.4. ~, WS deliberati~ sh~ ~at tie ex~ss velocitY

wi~ probably never exceed’ Wma Wm =
/

1.4, if the extemal-ccmpressia .
inlet of figure 15 for wi/wm = 0.4 is being used. Furth;r clarLficati~”
of this state of sffairs is up to wind tunnel tests for the time being.

Apart from the external-ccmqy’esshn inlet contours, the symmetry
streernlines, and the stagnation point stresm lines, the nmf3tiMpOrtmt
pressure M.stributions also ere plotted in figures 15 to 18: above the

.

external-compressioninlet the pressure distribution sJ_ongthe symmetry
stream line, below it the yressure distribution along the wall contour.
The first pressure distribution shows that the pressure conversim takes ‘
place to the greatest part before the entremce into the extennal-compression
inlet and that it is, at my rate, practically com@eted at x/h = 1. ThLs
statement about the rearward shift of the “completedpressure conversion”
also follows from the pressu~ distribution along the inner wall. It is of
importance if one wants to chsage the inlet with purely exterwl. compresdon
to an intermediate form, as defined in section I, by reductng the wall
thiclmess from the inside (fig. 19). Consequently, the enlargement of the
inner cross section probably must not occur before x/h = 1. Of course, -

-—

it must be even then introduced with a very flat curvatuz% in order to
avoid cll.sturlancesof the pressure conversion at the entrance that could “”
be caused by the influence of the negative pz%ssures U (fig. 19). The
clarification of this problem also must be left to the wind tunnel test.

The pressure distributicm along the outer’wall shows yery clearly
the constancy of the velocity along the nose cmtour. The short line
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protruding at the left is actuslly to be regerded as a double line, the
up~er boundary of which represents a pert of the pressure distrilutim of
the inner nose contour. The “&use of the large pressure drop at the end
of the outer nose contour is the aforementioned sudden chenge in curva-
ture at the transiticm from tie nose contour to the rectilinear outer
wall. Comparatively slowly, tie pressure slong this wall is gradually
reduced to the undisturbed pressure, the more slowly, the smd-ler the

/
excess velocity w= Wm has been kept.

If one makes the symmetry stream Mm the solid WSXL, one obtains
external-compression inlets as they could 38 applied, for instsnce, for
underslung radiators or tivergent-nozzle radiators, whi’chsre located on
the pressure side of a wing (fig. 20). If such an inlet is not constructed
as a retractable device, it must be desi~ed according to the sam points
of view as the symmetrical extemlal-compression inlet, that is, wall
thickness end nose contour are to be proportioned for the minimum Wi /w=

- Wm ● For ~ger Wi/Wm, W~/W. thensnd the maximum admissible y
/

stays automaticaU.y %elow the admissible Mmit.

It can le seen that the wall thickness may be kept thinner when the
device is retractable. For proof one starts from heM the externsl-
compression U-t for w w =1/ m O.i, w-p= = 1.2. The inlet height is

assured b be ho.lj the”wall thickness ~ok. According to figure 14,

(d/h)o.k equals 0.82. For the same excess velocity, but with

wdwm = 0.1, (d/h)ool = 1.83. In figure 21(a) the contours of the two

external-compression inlets are drawn on top of each other in such a
manner that the scale of the first inlet is the same as in figme 18; the
scale of the second, however, is no longer the ssme as in figure 17, but
was reduced by the factor 0.82/1.83 = 0.45. The contours almost coincide
and permit the con~lusion that the excess veloci~ w- Wm is not

/
considerQKLy exceeded.if the inlet height of the external-compression
inlet of figure 18 is reduced from ~04 to 0.45 hock while simiLta-

neousl.ythe retardation is reduced to Wi /wm = 0.1 (fig- ~(b)) ● Howe~erS

the air qusntity taken out of the free stresm is thereby reduced by the
factor (O .45)(0 .1/0 .4) = O .ll. SimLlar conditions exist if one starts
from the external-compression inlet for wi/wm = 0.4, W-/wm = 1.4

(fig. 22).

Instead of the symmetq streamline, & other streamline can be made
the solid wall and.thus obtain forms corresponding to &Lvergent-nozzle
radiators where the radiator block is partly retracted into the pressure
side of the wing (figs. 23 and 25). The maximum of this one-si~d
diSplacemnt is incUcated by the stagnation-point streamline and inmr
wall. In figure 23 it is represented for the extamal-compression
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lnlet ‘i/wco = ‘“1) ‘m ‘m = 1“4” Difficulties will probably arise duo ~—.
to the fact tlnateven the thin pressure-side bofidary Iaye- is riotable
to orercmne the pressure increase at the stagnation point.S. _-

Conditions are moi% favorable if a streamline Is selected as solid ‘
wall aloag which the pres~ure increases continuously and monotonically
up to its final pressure. ‘I’hisis.certainly the case for.:instsncefor
the symmetry streamline. However, there are other streamlines as well
which satisfy this condition. In the hodogra~h.they appear as stream-
lines which lie outside”of a circle about the zero 10int, the radius of .

‘~ich ‘s wi/%” In the hod.ographof figure 24 a stm-e is repre-

sented which barely satisfies this requirement .($= 3YC/10)..For this
streamline the corresponding one of the external-c~ression inlet was
calculated end made the solid wsJJ.(fi~e 25). One recogrilzesthat
it is permissible to retract the radiator block To a mhch @aller de~ee
then is customary in present desigm. For the r%st it should be noted
that the possi~ility of a flow separation at the upper. wall must be

considered also for the design according to fi~re 25 for TW w >> O.lj
1/ m

e.11 streamlines, therefore, show, for larger WI “wmj a considerably
/

flatter comae, and one can easily overstep again the bareti admissible
one-eided displacement which is characterized by the stagnation-point _“
Streamline .

-

... ... . .i.

.-

.,

.—-

. - .- -.

-.

—
-

...
VIII. APPENDIX.

—
a. Auxiliary Theorems Concerning Points Reflected on W% Circ~e.

-
● .

Without limitation of generality one nay as~ that the two
-.

reflection pointe lie on the real ax,is. If..w =-WO is a *al point-in” ‘“. ._ ‘- :

/the intarior of the circle, then R2 W. is its reflection point with —
respect to the circle H of’radius R which was”drawn abayt the origin
of the w-pla?ne. If, furthermore,

—

‘1 and h2 me the rays from these =

points to the point w =
—

ReiP (see fig. 26) snd Yl, 72 the angles

formed by these rays with the real sxis, then according to the cosine .J—-

lay,

.
.

*
In”this case it is at least en?ured that-”the~ress~e.~lJ nowherw

be larger, the velocity nowhere smaller”than the end pressu@ snd end .-” ““ -=;
veloclty, respectively. .
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.

%2=

h22=

end

~2 - 2RW0 Cos (p +W
2

0

Cos q3 -1-W.
)

2

(32)

That mesns, the ratio of the two rays from two reflection points to a
point of the periphery of the circle is independent of q and.thus
constant on the entire circle.

Any circle &awn through the two refl.ectionpoints is known to
intersect perpendicularly the circle H. This applies also to the
circle K in figure 26. According to a well-tiown theorem concerning
the angle between chord snd tangent 73 . m - 72 and accortig to the

external-an@e theorem 71 = q + 73. Hence fo~ows

71+72=cp+7( (33)

b. Reflection of Source snd Dou?il.eton the Circle.

R Z 1 i% again assumed as radius of the circle H, the center of
which coincides tith the origin of the coor~tes. W. is assumed to be

a point of the real axis in the interior of the circle. At that point the
complex potential function is to possess the sane singularity which would
pertain to a single source, nsmely the singularity Q

Z’nk-we)” ‘f
the circle is to lecome streamline, first, for reasons of continuity, a
sink of the same strength as the source must,be placed in the interior
of the circle, for instance at the zero point. If this source-sink pair

is reflected on the circle, an additional.source at-the ~oint w =—
R2

‘o
andasinkatw.ti are addet. The complex total potential of the
entire systeIu(fig. 27) reads
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It is easily proved that this
With the symbols of appendix
arlitrary ~oint of the circle

. . ...-

... .
-—..-. ‘“
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potential contains the circle as streamline:
a the equation (33) may be written for an
contour in the following form:

——---.-..

[
- $]Q Znhl+Zn~FQ==

{
-zn R+iyl+y2

The imaginary part of FQ is, according to equation (33), constant along
—
—

the entire contour of the circle. Therewith the asserti~- is already
proved.

—

Concerning the complex p0tenti4 fupction (34a).it is, at firwt,
—

slightly disturbing that, aside from the desired singularity at the .
point w = Wo, another one at the point w = O must le accepted. 130w-

ever, if one has within the circle at a real yoint WO* a“sink of the

same strength, the function

Fs=-&~f-w:)+2n(-+)-2nw]’ ““””:’::(34b)

.=
. .— —-----

is to be added to equation (34(a)), and the auxili~ sink at w = O is
cancelled against an auxiliary source of the same strength. .

:

For the flow of the hodograyh considered shove the source is situated
at w=l or (=, the sink at w = Wi or ~i, and the corresponding

.
-. .-..

ccmgd.expartial potential reads

As is well known, one nm.yobtain the complex doublet potential ly placing
a sink -Q beside the source Q at the distance h and then permitting
the sink to move into the source, while Q simultaneouslymust becom
indefinitely large so that W converges ‘towarda finite value M. If
this method is applied to the system of figure 27, first the scheme of
singularities of figure 28 is obtained, the complex potentisl of which is

.

.
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If one develops the braces in powers of h and then approaches the
limit h = O,

L ‘o1
is the complex potential of a doullet in the circle. For the holographs
considered.a%ove, the doublet is located at the point W. = 1 or ~m,

respectively. The doublet potential then reads

[

Ml R2

-1,

—- .—
‘a=xW-l w R2

or
— —

L

(36)

Translated by Msxy L. Mshler .
National Advisory Committee
for Aeronautics.
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Figure1.- Internal-compressioninlet.

NAOA TM 1279
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Figure2.- ~ernal-compressioninlet.
.

Figwe 3.- The theory consfders.instead”oftheexterti-compl%ssloninlet
offinitelengthan external-compressioninle~thewallsofw hichextend
downstream to,infinity.

.
.— —

—..

.

.

.—
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Figure 4(a).- Qualitativestream-linepatternof the external-compression

o

Figure 4(b).- Inthehodograph mapping the line l, O,wmax, 1 corresponds

to the streamline. ,Ao, A1, the line l,O,wi to the stream HneA~,
Ao, AZ .

..
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Figure 5.- Hodograph Of“the simplest symmetrical itiet with Wternal
compression for w~/wm = O.4, wrn~/wm = 1.4’-

.

.
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nf 1
Figure 6.- Definition of the rayszv and’ the angles a~ in the w-plane,

Figure 7.- Slits of the w-plane.

Figwre 8.- Definition of the domain of angles in the upper (a) and lower (b)
w -semiplane.
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Figure 9.- The generalized symmetrical hodograph in the slit C- plane.

X’i~e 10.- Extreme positions of the

.

—

.,
—.

—
.

.

generalized hodograph in the W-plane.
for fixed w+ and R . -L

.

.
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Figure 11. - The ratioofthewallthicknesstothe halfopeningheightforthe
generalizedsymmetrical inletwithexternalcompression as a functionof go

/for a constant wmu w= = 1.2 for wijw~ = 0,1,0.4, 0.7. For the

hodographof the simplest symmetrical inlet with external compression of
sections ~ andIV, Lo equals zero, and d/h is a minimum.
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Figure 12. - Concerning the determination of the nose thrtq% by integration
of the pressure distribution.
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Figure 13. - Concerning the determination of the nose thrust by means
the momentum theorem.
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Figure 14. - The ratio d/h for the simplest symmetrical inlet with external

compression as a function of wma<W= and Wi/Wm .
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Figure 15. - %Vallcontours, streamlines, and prkssure distributions of
the simplest symmetrical inlet with external compression for
wnlaxtw= = 1.4 and Wi/W@ = 0.1.
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Figure 16. - Wall contours, stream lines, and pressure distributions of
the simplest symmetrical inlet with exkernal compression fm
W=jwm = 1.4 and wi/w ~ = 0.4.
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-17.- WW Cmtms, Str- lines, and pressure distributions of
thesimplestsymmetricalinletWithexternalcompressionfor ,
win/w. = 1.2d w~w” = 0.1,
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Figure 18.- Wall contours,stream lines,and pressure distributionsof
thesimplestsymmetrical inletwithexternalcompression for

/‘ma-x ‘w = 1.2 and w~jw~ = 0.4 (Reviewer’snote: This value

was erroneouslygiven as 0.1 in the original German version of this
report. ).
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Figure 19.-. External-compressioninletwithwallthicknessreduced .. --
froratheinside.Startingfrom theexternal-compresstininletfor

w~l~w = 0.4, w_/w. = ~1,4, one may th@ obtainan external-

compression inlet for wi/wco ‘ 0.3 , wm&Wm ‘ 1.4 w~~out hating
to increase the maximum wall thickness.”
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Figure 20.- Inlet with external compression for wi/w~” = 0.1,
w_/w= = 1.4, derived from figure 15. The symm:etry stre= , ----- .

line of figure 15 was made the solid wall. —. ---—.

.

.
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(a)

(b)
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Figure 21. - -Retractable inlet with external compression, In (a) the
contour of the external-compression inlet for wi/w= = O.4 and
w~=/wa = 1.2 and the contoux of the external-compression inlet

for wi/w= = 0.1 and w~=/w= = 1.2 , scaled to the same wall

thickness, are plotted on top of each other.
the retractable low er wall are represented

line) and for Wi/W= = 0.1 (dashed line).

In (b) the positions of
for Wi/W~ = 0.4 (solid

.

.
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Figure 22. - Retractable inlet with external compression. In (a) the
contour of the external-compression inlet for wi/w~ = 0.4 ,

w-fn~/w== 1.4 and the contour of the external-compression inlet

for wi/w= = 0.1 and wma/w@ = 1.4 scaled to the same wall

thickness are plotted on top of each other. A difference can no
longer be represented. In (b) the positions .of the retractable
lower wall are represented for wi/w= = 0.4 (solid line) and for

.-

U ..

.

w~jw ~ = 0.1 (dashed line).
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Pressure along the upper wd.1

1
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Figure 23. - With the stagnation-point stream he assumed as solid
boundary one obtains the most unsymmetrical external-compression
inlet to be derived from the symmetrical one. Q.u#ww= 0,1,

Wmax/Wca = 1.4).
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lnthehodograph forwi/W~ =
0-l , w-/w~ = 1.4, the = ,., -

Figure 24. -

stream line * = 3r/10 barely satisfies the c@ition t@t it must ~: .

outside of a circle. -of the radi~ wi/w=
around the zer~”point.

.

.
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Pressure along the upper wall

—~- -
:

h

Illdo–
/

I 1 I

“3,0~ “1.0

-480

“20 –
.

0 Figure 25. - If the stream line * = 3m/10 (see fig. 24) is made the solid
WW, the pressure increases along this wall continuously and monotonically

. up to its end value pi, (wi/w~= 0.1, Wm/W~ = 1.4).
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Figure 26. - As proof of the auxiliary theorems concerning po~ts reflected
on thecircle,

Figure 27.- Scheme of singularities for the derivation of the source
potential within the circle.

,-

Fi!$ure 28.- Scheme of shgularities for the derivation of the doublet
potential within the circle.
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