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TECHNICAT, MEMORANDUM 1279

TWO-DIMENSIONAL SYMMETRICAL INLETS
WITH EXTERNAL COMPRESSION*

By P. Ruden
FOREWORD BY REVIEWER

The accompanying report 1s considered significant in that it glves
the only analytical development of maximim—critical—speed air inlets.

Wind—tunnel tests of two—dimensiona.ll and rotationally symmetrica.lz
inlets built to the ordinates derived hereln were also made by Ruden.
In all cases the predicted flat pressure distributlons were obtained at
the predlcted minimum inlet—veloclity ratios.

It is interesting that at nearly the same time the development of
nearly identical high—critical—speed inlets was proceeding experimentally
in the Unlted States. Thls development was summarized and set up for

design application by Baals, Smith, and Wrigh'b3.

To those reading the accompanying report, the other three reporis
listed in the footnotes here are recommended as valuasble additional
material. With thelr aild, an exceptlonelly good plcture of the theory,
development, and application of air inlets may be obtained.

J. Ford Johnston
Langley Aeronsutical Laboratory

*"Ebne symmetrische Fangdiffusoren.” Zentrale fur wissenschaftliches
Berichtswesen iuber Luftfehrtforschung (ZWB) Berlin—Adlershof, Forschunge—
bericht Nr. 1209, April 15, 1940.

1Rud.en, P.: Windkanalmessungen an ebnen, symmetrischen Fangdiffusoren
(Wind—Tunnel Tests of Two—Dimensional Symmetrical External Compression
Inlets). Forschungsbericht Nr. 1325, Dec. 1940.

2Ruderi_, P.: Windkenalmessungen an einem rotationssymmetrischen
Fangdiffusor (Wind-Tunnel Tests of a Rotatlonally Symmetrical External—
Compression Inlet). Forschungsbericht Nr. 1427/1, March 194l.

3Ba.a.ls, D. D., Smith, N. F., and Wright, J. B.: The Development and
Application of High—-Critical-Speed Nose Inlets. NACA Rep. 920, 1948.
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Abstract:

Outline:

NACA TM 1279

The purpose of inlets like, for Instance, tThose of air—-

cooled radiators and scoops 1s to take a certain alr quantlty

out of the free stream and to partly convert the free—streanm
velocity into pressure. In the extreme case thls pressurs
converslon may occur either entirely In the Interior of the .
inlet (inlet with internal compression) or entirely in the

free stream shead of the inlet (inlet with external compression).
In this report a theory for two—dimenslonel inlets wilth extermal..
compression is developed and i1llustrated by numerical examples.
Intermedliary forms between inlets with internal and external
compression which can be derived from the latter are briefly
discussed.

The report is meant chiefly for the theoretical asrodynamiclst;
however, sections I and VII apply directly to the designer.
I. DEFINITION OF CONCEPTS OF INLETS WITHE EEIERNAL AND
INTERNAL COMFRESSION, STATEMENT OF THE PROBLEM.

II. THE HODOGRAPH METHOD FOR PRODUCTION OF TWO-DIMENSIONAL~—
FLOW PATTERNS.

ITI. CONSTRUCTION OF THE SIMPLEST SYMMETRICAI, HODOGRAPH.

IV. CALCULATION OF THE SIMPLEST SYMMETRICAL INLET WITH
EXTERNAL COMFRESSION WITH CONSTANT VELOCITY ALONG THE
NOSE CONTOUR.

V. ON A MINIMAL CHARACTERISTIC OF THE SIMPLEST SYMMETRICAL
INLET WITH EXTERNAL COMPRESSION.

VI. VELOCITY AND PRESSURE DISTRIBUTIONS, THRUST.
VII. NUMERICAL EXAMPLES AND DERIVED INLETS.
VIII. APPENDIX.
a. Auxiliary Theorems Concerning Points Reflected on

the Clrcle. _ _
b. Reflectlion of Source snd Doublet on the Circle.

SYMBOLS

free—stream velocity (real)

final veloclty in the interior of the inlet (real)

velocity component, parallel to the free—stream velocity



NACA TM 1279 3

v velocity component, perpendicular to the free-stream
veloclty

Ww=u-1iv complex velocity

P local preséure |

Py final pressure in the interior of the Inlet

q= (%)wooa free-stream dynamic pressure

S nose thrust

d wall thickness of the inlet

h half helight of the inlet opening

Z =X + 1y coordinate of the flow plans

I. DEFINITION OF CONCEPTS OF INLETS WITH EXTERNAL, AND INTERNAL

COMPRESSION. STATEMENT OF THE PROBLEM.

In many aerodynemic questions of ailrplane construction one has to
deal with the followlng problem: A certain air quantity is to be taken
from the free stream and, mostly with conversion of velocity into pres-
sure, to be conveyed to propulsion units or alrplane accessories. A
typical exemple, largely dlscussed lately, is the radlator with cowling.
It shows that the serodynamlcelly faultless design of the inlet ls ren-
dered difficult, above all, by the requirement that the pressure conver-
sion expressed. in the ratio meen velocity in the interior of the inlet
(wi) to the flight velocity (w) be made adjustable to a high extent.

I% is trus that this can be accomplished fundamentally only by suiltable
measures at the outlet of the device which 1s here of no further interest;
however, for the following discussion the empirical fact is important
that the excess velocity either - for small wi/w - at the outer, or

- if wy/w, almost reaches the smount 1 - at the inner nose contour
easlily becomes 80 large that flow separation and vortex formatlon occur.
In the first case the drag of the inlet undergoes & sudden increase, in
the second the diffuser efficlency undergoes a considerable deterioration.
Evidently, excess veloclitles of such an order of megnitude must be avolded.
For fast airplanes, however, even this limit frequently lies much too high:
always, 1f the local Mach number should exceed, for instence, a value of
about 0.95.
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If the rangs of regulation for wi/w is not large, the aerodynemic

problem may be solved by making the entrance opening of the inlet (approxi-
mately in accordence with the inverse ratio of the velocity retardation)

smaller than the immer cross sectlion. Inlets of this kind shall be called _

"inlets with interpel compression.” (See fig. 1.) In their 1deal form
the walls of these inlets are simply 'frozen" streamlines which are
obtalned when, in a flow field with constant veloclty everywhere, a stag-
nation is made to occur by means of a screen or the like. In these
devices, the pressure converalon takes place more or less completely in
the interior of the Inlet, with an efficilency which is unavoidably smaller
than 1. If wi/wa becomes noticeably larger than the veloclity ratio to
which the opening ratio was adjusted, the flow in the inlet tends (even
for rounded noses) toward separatlion; hence the diffuser efficiency gensr-
ally deteriorates considerebly. This disadvantage can be p¥evented by
meking the opening ratio of the inlet adjustable by means of a suitable
mechanism. On the other hand, 1t is probably always possible to adhers,
for inlets with internal compression of this kind, to the permissibls
maximm veloclity on the sxternal contour.

The "inlets wilth external compression" are characterized by the
entrance cross section being equal to the maximum cross section of the
inlet. Here the pressure conversion 1s shifted entirely to-the free
gtream (fig. 2) and 1s, therefore, for all velocity ratios between O
and - 1 completely free of loss. However, the flow along the external
contour of the inlet 1s endangered: the maximum velocity existing there
can be kept within permissible limits only by careful shaping of the outer
nose contours and by selection of & sufficlent wall thickness. However,
once this 1s attained for the smallest veloclty ratio wi/wa, the inlet

with external compression operates faultlessly as well for any larger

veloclty ratio up to wi/w = 1 and even slightly beyond this value, thus ) ,-

an adJjustment mechanism of the inlet may be omitted.

Between inlets with purely external and purely intermal compression
there exists an abundance of intermediary forms; these origlnate from the
inlet with internal compression by adding thickness to the hollow inner
wall, from the inlet with external compression by reducing the wall thick-
ness from the inside. The latter forms will be .discussed in. somewhat more
detall in section VII. The intermediary forms may be of great practical
Importance; they are, however, hardly sultable for theorsticel treatment,
and their investigafion is mostly limited to wind-tunnel tests.

In order to reexamine whether the reguired wall thicknesses of the
inlets with externmal compression lie within boundaries attailnable in
practice, and to create, at the same time, a basils for the calculetion of
such inlets, a theory of two-dimensional inlets wlth external compression
is developed below. A few idealizations are necessary: first limitation
to Incompressible flow, second, neglect of all boundary-leyer effects

I":
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(frictionless fluid); third, elongation of the inlet in flow direction to
infinity. (See fig. 3.) The first two simplifications need no explana-
tlon as necessary requirements. About the third, it ls to be noted that
all essential phenomena take place around the entrance of the inlet with
external compression and that an outlet of different shape does not exert
a strong influence on the entrance flow, 1f the device is suffilcilently
long. However, possible deviatlions of the theory from actual condltions
can and must be determined by additlonal investigatlons, chiefly, probably,
of experimental character.

The present report deals with symmstrical Inlets with external com-
Pression only, where the two walls are of identical form. Unsymmstrical
inlets with external compression are considered only inasmuch as they can
be derived from the symmetrical onss. ) '

The problem of the three-dimenslional design of Inlets with external
compression remains at first unsolved; however, the two-dimensional
theory - exact under the glven conditions - permits already so much
insight into the essentlal properties of the inlet with external compres-
sion that one may.hope, with the ald of the knowledge attained there, to
be able to cope particularly with the three-dimensional inlet with external
compression, since the excess velocity at the outer nose contour must be
smaller in the three-dimensional than in the two-dimensionel case due to
the greater possibility for flow divergence around the body.

II. THE HODOGRAPH METHOD FOR PRODUCTION OF TWO-DIMENSIONAL-FIOW

PATTERNS.

The hodograph method allows a relatively simple introduction Ilnto
the theory of inlets wlth extermal compression. A detailed dsscription
of this method 1s to be found in the textbook by Prandtl-Tietjens.
However, a brief compllation of its most important characteristlcs will
be useful, particularly for the reason that thus a few view points of
significance for the followlng can be speclally emphasized.

If z '1s agsumsd to be the complex variable of the flow plane, F(z)
the complex flow potentlal,

w=7Ff(z) =— =— — _ . (1)

is the so-called complex velocity which is related to the components u
and v of the actual veloclty by the equation
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The enalytical function w = £(z) may be used for maPping the
z-plane onto a complax w-plane. Thereby the flow pattern in the z-plane
is mapped into the so-called hodograph flow: an arxbitrary point of the
z-plane ig mapped precisely intoc the point which corresponds to its
complex veloclty w.

Thig fact makes it possible to glve a qualltative pressntation of
the hodograph flow when there exists a qualitatlve presentation of the
flow in the z-plane, or if one can procurs in any other way a sufficlent
amount of data on magnitude and directlon of the local flow velocities
of the z-plane. At first, not much seems to be gained hereby. However,
it i1s an empirical fact that the complex potentlal of the hodograph flow.
is sometimes simpler then the flow potential of the z-plane. In such
cases it 1s mostly sufflcient to bulld up the hodograph flow from a few
of the simplest singularities which may be teken from the qualitative
Presentation of the hodograph flow. Where. these slngularitles are no
longer sufficlent, one can proceed by analogy. -

Ir F(w) the complex potential of the hodograph flow, can be given,
first, an exact presentation of the hodograph flow may be drawn and, by
converse mapping of the w-plane on to the z-plane, also the flow pattern

of the z-plane. This mapping is achleved, according to equation (1), by

dr 4ar aw

+ const - (2)
dw w

If the veloclty of the z-plane flow 1s required to be sverywhere
finite, the hodograph flow must necessarily be limited by a clozsed curve
which may assume rather erbltrary shape. In the followlng discussion,
however, only clrcles are admitted as boundaries so that the selection
of the actually possible forms of inlets with external compression is
definitely limited. By mapping the hodograph circle onto other simply
connected regions, the theory developed here may be generalized to a
groat extent. - —

Due to the properties of the conformal mapping, the circular bound-
ary of the hodograph must be mapped into boundary sections of the z-plene
flow. Further boundary curves are (as will be shown later) represented
by slits protruding into the interior of the hodograph circle. If the
flow ocutslde of the walls of the inlet wilth extermal compression is to
be free from slangularities, the interior of the hodograph circle (with
exception of the slits) also must be free from singulerities; otherwlse
the mapping performed by equation (2) would transplant these singular-
1ties into the z-plans.

Stagnatlion pointe of the z-plane flow situated in the finite domain
require special attentlon. They are dsflned by w = 0 and the corre-
sponding 2z 1s, according to equation (2), finite only when simulta-
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neously dF/dw disappears. In such cases one must, thersfore, make
sure that the hodograph flow, the complex veloclity of which is repre-
sented by dF/dw, has a stagnation point at the zero point of the w-plane.

For the extermal-compression Inlet without spescial instellations,
the hodograph flow must not have any further stagnation points in the
interior of the hodograph, spart from the aforementioned stagnation point.
This follows directly from equation (1): w = f(z) is in this case out-
side of the walls of the 1nlet with external compresslicn an enalytical
function free from singularities. The derivative dw/dz exists and is
everywhere finite in this domaln. Since, however, according to pre-
supposition w #£ O therein, it must also follow from equation (1) that
aF/aw # O.

For the boundary curves this conclusion 1s no longer valid, since
on them dw/dz may becoms infinitely large. Omne can easily see, how-
ever, that here further stagnation polnts of the hodograph flow are
admissible only at reentrant corners; that is, only such stagnation points
may be added In the neighborhood of which the flow direction does not
change, 1f one travels along the corresponding streamline in a certain
direction. Otherwlse convergence or mutual penetration of the boundary
lines In the z-plane could occur; both possibllitles shall be excluded
below. : -

III. CONSTRUCTION OF THE SIMPLEST SYMMETRICAT HODOGRAPH.

According to the directions for the construction of a hodograph, ons
first designs a qualitative stream line pattern of the symmetrical inlet
with external compression. (See fig. 4(a).) In order to obtain the mapping
of a streamline in the w-plane, one draws - starting from the zero point
of the w-plane - the complex velocity vectors of the streamline for a
sufficlent numbsr of points; one then connects the heads of these vectors
and determines simultansously a direction of travel corresponding to the
sequence of vectors in the z-plane. The streamlines A,w,AO,Al/AO,A2

for -instance are represented 1n the w-plane in the train of

lines 1,0,Wpgy,1/0,w;y (See fig. 4(b).) It is assumed that the magni-
tude of the veloclity is constant along the entire nose contour (semil-
circle in the w-plane) and that the velocity at infinity equals 1. If
the w-plane 1s supplemented by the mapping of further streamline patterns,
the mapping of the hodograph (fig. 5) is obtained. The streamlines of

the hodograph flow all start from w = 1 and end partly at w = Wy,

mostly, however, at thelr starting point w = 1. Hence one concludes that
a8 source and a doublet must be present at w =1, a sink at w = Wy

For reasons of continuity, the sink is of the sams strength as the source.
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Since the clrcle H with the radius R 1s a strea.mline the expres-
sion (35) of the appendix 1s to be set up as complex pa.r'bial potential
for source and sink, the expression (36) as doublet potential. The total
potentlal 1s ) )

w-10-8) M| 1 *p2

w_wi)(_% Qﬁl:r-l v - (3)

Hence follows with M = fQ +the complex veloclty of the hodograph flow

F(v) = = In

- 2
ar . 1 1
d.w=§;twll-wlw'+ - lz-f 1 (+)
3 .W_—R _W-R_ ) (w_ )
L —Wi

According to section II, the point. w = O must be a sta.gnation point of
the hodograph flow, that is, equation (4) must dlsappear et this polnt;

thus
PG -3 (- )
B R2 - 1

(5)

If one introduces w = wy + 1w, into equation (3), F(w) =¢ + ¥ may be

readily divided into its real and its imaginary part. The imaginary part
is the stream function of the hodograph flow:

w2 . - W - AW
ﬂr:e%t arc tan -arcta.n-—-—-g——+arcta.n——2——
Wl -1 wl - wi wl - R2
_ (6)
. Wo RE
- arc a.n——é—fw2 12 2- 2)2 5
vy - ( 1T ) Qﬁ_' R7)™ + wao
m .
Reviewer's note: Thils value was erroneocusly glven as __'ER in
i w - R

the original German version of the report.
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The lines V¥ = const. &are the streamlines of the symmetricel hodograph.
(See for instence , fig. 5. } For their numerical calculation one starts
from a prescribed wo (or w]) and varles Wy (or wé) . One plots the

values ¥ thus obtained against wy (or wz) and tekes for ¥ = const.
the wq @r WZ) corresponding to the prescribed Vg (or wl) It is
practical to select as streamline comstant the value =/n (n integral),

because ¥ = 0 corresponds to the stagnation point streamlines and the
contours of the inlet with extermal compression, ¥ = to the symmetry
gtreamline.
IV. CALCULATION OF THE SIMPLEST SYMMETRICAL INLETS WITH EXTERNAL
COMPRESSTION WITH CONSTANT VELOCITY ALONG THE NOSE

CONTOUR.

With equation (4) one enters into equation (2) and obtains after
simple calculation:

.-_-3'; (i + £)in(v - 1) - '{,,;‘;' (v - wy) +£§é—{ wiv - B)

V. 2 '
__Em<_§_+ £ £, Imwig?/l _

- (1 - W) -f(R_E-l>} + const

Because of (5), the factor of In w disappears. If, moreover, the arbi-

trary constant 1s equated to X5 - 1h with

. ) _ _ L _
xO:EﬂREK‘I:—I - wi>ln Wy o+ E(f.-l-wi - l)?.n R+f_<122 - l)] (7)

z einEl+f)Z.n(w—l) -—'Ln(w-w) +l'2f Y,nGr- )

then

(8)
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is the analytical function which Performs the mapping of the hodograph

onto the z-plane. The constant is selected in such & manner that the real
axls coincides with the symmetry line of the inlet with external compres-
sion and the imaginary axis of the Z-plane goes through the two stagnation
polnts. : ) .

The following symbols are introduced (fig. 6):

w=1w + 1w
15 - W
- 1 _ 2 2 i 2
Vo-W =10 Zl-V(wl-wj) + Wy, G:I_._a.rc’c:e:.n-—-—Wl__Wi
1l=13 152 = l) 2 5, = arc tan 2
Vo=, lp =\ - YT rwy, 8y =are W - 1 > )
W - B2 1 6153 1 \/( Rae 8 = tan vo
- = 3 3 3 = Wl - + W2 s 3 = arc ‘wl__RE
2 2 ’ W
R _, 18y _ R?> 2 _ 2
W-w—i_?,)_‘_e ’ Z)_‘__VGl-w_i +W’2, Sh_arctan*_z
wl - —'W'i J

Now equation (8) may be divided into its real end its imaginary parts

1l-7

_Q 1
x_—(l+f)ln7,2--ﬁ2nzl+ Zn2,3

-wilnz +£—cos§ -Lcosﬁ + X
E A R TR
s (10)
V3

hER Y
e ¥

l 5!

Q 1 l-7F
= H)L + P)® - —— D B, -
v 231:( )2 wi RE 3

T f ' _
- -25 gin 82 + 73 sin 63] h
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With these two equations and with equation (7) all streamlines of the
symetrical inlet with external compression can be calculated point by
point from the streamlines of the hodograph. The quantities appearing in
equation (10) 1, and B, are either determined according to the

formulas (9) or teken from figure 6.

Due to the mmltiveluedness of the angles ., which for the time

being are determined only in multiples of 2x, the coordinate ¥ in
equation (10) is, at first, also multivalued. The reason 1s that in
equation (8) the natural logerithm appears, which is known to be an infi-
nitely multivalued function. This multivaluedness msy be eliminated by
slitting the w-plene along the real axis from -« through O to wy

and from w =1 to « (flg. T); the only thing left to be dome is to
fix for every logarithm of (8) the branch of function which is to be
valid in the Riemann sheet consldered: One stipulates t]ga.t all logarithms

on the upper boundsry of the slit to the right of w = -f—j:; agsume real

positive values and at all other points the values reached by analytical
continuastion.

Thus the angles 81,82,53, and By are also made single-valued: On the

2
upper boundary to the right of w = %— they all have the value 03 In

i
the upper semicircle they vary, as shown in figure 8, between O and =
in the lower semicircle O, assumes & value between O &and - %, N

to 81& values betwsen = and 2.

In order to be able to determine reliebly the angles 81 to Sh_, it
is best to meke use of an lllustrative experiment: A pointer is connected

2
with the points w = Wy, 1, R°, and 2- by elastic strings. If the
W,

i
pointer rgsts on a point of the upper boundary of the slit to the right
of w= B_, all angles between the strings and the positive-real axis are,
Wy -

a.ccordingi'bo stipulation, equal to zero. If one travels, starting from
this position, without passing across the slit, into the upper semlplans,
the angles "open” end assume the values given above. The pointer can be
brought from the upper to the lower semiplans only through the passage
between w = wy and 1; engles as shown in figure 8(b) are then obtalned.

According to figure 4, the hodograph circle and the slit parts of
the real axls correspond to the contours of the extermail-compression lnlet:
the upper rectllinear lnmer wall to the right of the stagnation corresponds
to the lower boundery of the slit between O and Wy the upper recti-

linear immer wall to the left of the stagnation point to the lower .
boundary of the slit between -R and 0V, the upper nose contour to the



12 n " NACA TM 1279

lower semicircle, and, lastly, the upper rectilinear outer wall to the
lower boundsry of the slit between w = 1 and_ R. Correspondingly, ane

obtains the lower contours of the inlst with external compression from
the boundary line of the upper hodograph semiclrcle and from the upper
boundary of the slit; however, one may obtain them in a simpler manner by
the mirroring of the upper contours with respect to the symmetry line.

For the boundary lines enumerated a&bove, the general formulas (10)
mey be simplified qulte conslderably: Along the upper inmner wall
(-R Lwvs wi), slnce By = ~nj Oy = ‘5 = 84 =q, 1 =Wy = Vs

7,2=l-w1, 23=R ;-Wl, lu=-—--wl,

Lom(@ - )

x=-éQ—- (l+f)?,n(l - Vl) --—-—Zn(wi - wl) +

(12)
2
__'Ln(f:_.-w:])- £ +2f +x0
B2 \"1 1-wm B
and, bearing equation (5) in mind,
Q
Ve - h (12)

Along the lower immer wall 14 to 1) eand 82,63,8h assume the same
values as along the upper inner wall; only 81 changes its velue to «.

Thus the equation remains the same as before for x, ;hereas one
obtains for y, .agaln teking equation (5) into consideration,

y=-h ‘ ' (13)

If the inlet openling of the external-compresslion inlet I1s put equal to 2h,
there follows from eguation (12) and equation (13)

Q = 2h Wy ) - (14)
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With thils value one obtalns as f£inal equations for the upper and lower
inner wall from equatlons (311), (12), end (13)

x Wi 1 1- % <2
h_ﬂ[(l+f)1n@.-w]>-ﬁ1n6ri-wl>+ e (R -w:l)

(15)
- Ej_' 7,n<.RE - 1> - £ + £ + 22
R Wi L-w RB-w]| °
% =1, or % =-1, respectively (l5a.)

Along the upper outer wall 1£w<R and 3 =0, By = 2%,

e ————

By =8 =N, 1= i, = 1, 15 = B =B
g =%, =% 11=¥1" " p=vy - Ly l3 =R ~Wu kT 7 12

and, teking equations (5) and (1k) into consideration, the equations

H s
E=E(l+f)7,n@r .‘:D-_l_'l,n@ _ +_J;_'_f.1n@2_w> '
i 1 el T B ]

(16)
. 2 b'd
¥ (B D+__f___+ £ + 2
R2 Wy wy - 1 RQ_wl h

% =wy(1+ £) (162)

are valid., The difference petween the constent y~values of the

equations (152) end (16a) is the wall thickness of the external-
compression inlet:

- w)°
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The hodograph clrcle i1tself corresponds to the noss contour. In this cass,
also, a few simplifications result for the equations (lO), due to the fact

o ) .

that w =w, end W = 3_, w=1 esnd w=R° are reflection points of
1

the circle H:

If one applies to 11, 1) -on cne hand end to 1y, I3 om the other

hand the equation (32) of the appendix, putting in the first case hy = 14,
hy =1y, end W, =w; and in the second case hl L, = 2,3, and W,

one obtains - - = -7 - -

Zl LA 12

If one substltutes, furthermore, in formula (33) of the appendix one
time 74 = 81, 7o =9, end the other time 77 =0y, 75 = 53, one obtalns

(18)

Wi

81+61,_=q>+1t
(19)

© With equations (18), (19), (14), (5), and (7) one obtains, from eguation (10),
for the nose contours of the external-compression inlet the following

equations:
W coglp - B .
X = il +w Zn +--cos§ + ( 2)>
h 2 R
f+w, - l1-w l-w
Wy i
+——i——ZnR+—J;ani+ - 5
R Wy Lf1 R
(20)
y MR 1.2 rd) 5 2 B -
n X R2 2" R wy/ -

gin {p - & 1-w, -Ff -
IANEY RS R N

= l,

kil
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The relation between x &and w along the symmetry line, valid
for 1>w 2w, 1in equations (10) also 1s useful:

x Wi 1 1-f 2
E:—;(l+f)7,n(l-w]) 'w—im("l'wi)* = Zn@ - D

(e1)

W. 2 x
--%‘ZnR—-wl- £ + £ o
R Wy 1-wp 32""1 h

V. ON A MINTMAT, CEARACTERISTIC OF THE SIMPLEST SYMMETRICAL

INLET WITH EXTERNAL COMPRESSION.

The symmetrical hodograph of section ITI can easily be somewhat
generalized, 1f one no longer requires colncidence of the center of the
hodograph circle with the origin of the w-plane, but admits - wlthin
certain arbitrery limits - a position of the center of the circle on the
real axls. According to whether the center of the circle lies to the left
or right of the origin of the w-plane, the corresponding external-
compression Inlet assumes nose shapes for which the local veloclty down-
stream increases o decreases.

In order to derive this more general hodograph, one visualizes the
clrcle as lying In a {-plane in such a manner that the center of the
circle and the origin of the plene colncide (fig. 9). The sink -Q shall
e at §4, the scurce Q and the doublet M at §_. According to

equartions (35) and (36) of the appendix, the complex potential of this
flow is

t-t) -
”_%%5)

35 N S SO S
2ﬂ§-§w Qoo RE
. .C'g:
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and with M = £Q

ef_1 1 .1 __1
el g -t, t-ti1 ¢-B ¢ B

€oo €1

-1
a

(22)
R 1

T ey

The point ¢ = Qo is assumed to be a stegnation pointj then, according
to equation (22), necessarily

1 _ 1 + 1 - 1
2 Rr2
o= tw to-t1 to-E b -
€ €1
(23)
2
=t - 2 (3 < B
(t-e)? (&) £-E
€oo
Since, according to the expositions of sectlon II the stagnation
point [_;o must coincide with the zero point of the w-plame,
£y with w;, eand o With W, = 1, there exist the relations
w=t- b,
W = -
=8 -% - = =
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and from equation (23) follows
1 1+ go Wy + Co
7 -y - Sl -
P = ° ° 2 2 (25)
R?.
1 -

According to equation (2), .

zZ = gﬂ+const= &
aw w a,

and one obtains with equations (22) and (24), teking equation (25) into
consideration, after some calculating

& + const
)

E-ACE
Q o '
. T -fé'm ) RSF)g §_132+ (1 + £)n(t _gw)
B¢, t-X%

o« co

17

f<—R->2 Zn< -3—3
o1 e o/ Lo (26)

= = " "o

"~ Lo

n (g - R>
-————E- + const
R2

— -

& °

E;'o

In order to make here again the logarithms single-valued, the -plane
mist be slit from -o to ¢y =wy + ¢, and from {, =1+ ¢, to o-
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The two slit boundaries represent the rectllinear well parts of the
external-compression inlet, in particular, the upper boundery of the left
81it, the lower inmer wall, the upper boundary of the right slit, the
lower outer wall. The distance between the walls equals the dilfference
of the corresponding imaginary parts of equation (26)

_9 1
d._—El:-?i.-P (l+f;/|_

The inlet opening of the extermal-compression inlet results as the
difference between the imaginary parts of equation (26) i‘or the two
boundaries of the left slit

and with this relation one finally obtains the old formmla (17) for the
wall. thickness of the external-compression inlet.

1%‘:wri(l+i’)-l : - - -
The maximum velocity 1s, according to equation (24) and fig. 9,

wmax=R+§o for §020

(27)
Vmax = R - £, for £ <o

go mst not be sslected quite erbitrarily but alweys so that
tos 3, and £, 1le still inside of the circle H. Hence follows
according to figure 10 the admlssible domain for ¢ o

-R<f,<R-1
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If not R but the meximum velocities are fixed, the domain of go mey
be expressed, by means of equation (27), by

Ymax <t < Vnax = L
TT2 T 7T 2
I to is veried within this domain while w,., 1s held constant,
the wall thickness of the external;‘_compression %_nlet changes. As

= 1.2, ;3': = 0.1, 0.k, 0.7, the

. o0
wall thickness hes at Co = 0 & definite minimum. The proof that this

mist always be so requires a very complicated argument, since the minimm
lies precisely at the section point of the curves more closely determined
by the eguations (27). However, the proof may be omltted, particularly
since one may readily conclude from the relatively simple calculation of
further examples that the above statement 1s generally valid.

figure 11 shows for the examples - max

In the case §o = O +the center of the hodograph circle colncides

with the origin of the w-plene, and one obtains the important statement:

Of all symmetricel external-compression inlets considered here, the one
treated first, namely, the external-compression inlet with constant veloclty
along 1ts entire nose contour, has for equal excess veloclty and equal
Pressure conversion the smallest wall thickness.

VI. VELOCITY AND PRESSURE DISTRIBUTIONS, THRUST.

In determining the contours and stream lines of the external-
compression lnlet one obtains the corresponding veloclty and pressure
distributions almost without further calculatlon:

The complex velocity w 1s the coordinate of:the hodograph. The
square of its magnitude 1s, according to equation (9),
2 2 2
If one puts the pressure of the undisturbed velocity equal to zero,

]2

W, 2

Qg
[
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and becanse W, = 1

P 2 3
2-.:1- 61 +w23 (28)

£
2%

Along the entire nose contour of the simplest extermal-compression inlet
of sectlion IV,

‘w|2 = const = R

and
-
Pnose = 5 ¥ 1-R

is the constant negative pressure which acts perpendicularly on a
' surface element of the nose (fig. 12). The force component opposite the
fres-streem directlon is :

47 4s

45 = Pnoge as

and the thrust exerted on a nose contour

ol
(i}
Lo}

The noss thrust of the entire external-compression inlet is with

equation (17)*
2
W.
S=.-pw°°2h(--£> (29)

*Por a clearer presentation of formula. (29) 1t 1s expedient to
designate the velocity ratio (velocity in the interior of the device %o
free-stream velocity) no longer by wy/l, but by wy/v,-

-
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This simple equation for the nose thrust is derived, at first, omnly for
the "simplest"” symmetrical extermal-compression inlets of section IV}
however, the very noteble fact alone, that apart from the open height 2h
no further form parameter enters into the equation, permits the conclusion
that 1t must have a more general significance.

For better understending one visuallzes & control area lying about an
arbitrary two-dimensional external-compression inlet (fig. 13); the inlet
mst satisfy one condition only: +that i1ts walls in the downstream direc-
tion tend toward infinity with constant thickness. ' The points 1, 2, 3, b
are to be so far removed from the entrance of the inlet that the horizontal
component of the veloclty practically equals w, or Wy , respectively.*

But even in this case the horizontsl control areas 1, 2, and 3, 4 camnot
be flow surfaces but, for reasons of continuity, the quantity of fluld

Q p* 9 = (en + a, + dg)¥, - 2wy (30)

mst flow through them. For the total nose thrust the momentum equation
glves the wvalue

2 2
S =8, + 8 = pw, (2h+ db+du) - @i+pwi>2h- (Q.l,2+Q3,)_>pww (31)
With equation (30) and
one obtains from equation (31) after a short calculation again the

equation (29); the latter's validity for arbltrary external-compression
inlet forms is therewlth proved. For the rest, one can easlly find out

*The disturbance velocities which were neglected here and further on
become - as can be easily proved - with lncreasing distence from the
entrance of the external-compression inlet "small of the first order.”
Since the control area also increases linearly with the distance of the
points 1, 2, 3, 4 from the entrance of the external-compression inlet,
all integrals of quadratic products of the disturbance velocities must
disappear in the limlting process, whersas the integrals of linear terms
of the disturbance velocltles remain finite. With these facts taken into
conslderation, it is easy to glve exact proof for equations (30) and (31).
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that, under analogous presuppositions, this equation is valid also for
the nose thrust of the internal-compression inlets.

VII. NUMERICAL EXAMPLES AND DERIVED INLETS.

Before the theory of the two-dimensional external-compression inlet
developed above 18 illustrated by & few numerlcal examples, the aims and . -
range of this theory .shell once more be brilefly represented: TUnder the )
assumption of Incompressible frictionless fluld the contours and the —
Pressure dlstribution of the external-compression inlet are calculable . _
for a prescribed velocity ratio w&/w& and a prescribed maximm -

veloclty w /g”

The meximum velocity is assumed on the curved nose contour. In the
preossure dlstribution along the nose contour one can distingulsh three
different types of extermal-compression inlets which may be comprised by
the theory: +types where the veloclity downstreem along the nose contour
has a continuous lncrease, or a continuous decrsase, or remains constant.
The property nemed last is the special characteristic of the go-called
"gimplest symmetrical externsal-compression inlet.”

Apart from the shape of the nose contour, the maximm wall thlckness
of the extermal-compression inlst also ls decislve for the magnituds of
the maximum veloelty, inasmich as the maximum excess veloclty may be kept
smaller with lncreessing wall thickness. The simplest symmetrical _ . s -
external-compression inlet is distinguished among all other inlets of the -
kind consldered hers by possessing, for a wall thickness kept constant,
the smallest excess velocity or, inversely, for an excess velocity kept
constant, the smallest wall thickness. This property makes the simplest
symetrical externsl-compression inlet particularly suitable for prac-
tical applicationsj hence the following numerical exsmples are limited to
that 1nlet.

The following should bs noted about the general form of the symme-
trical inlet with external compression: Inner and outer well are recti-
linear and both run parellsl to the free-stream direction. The only
curved contour is the nose contour which connects the outer and inner wall
without a break but with a sudden change in curvature at the transibviom
polnts.

It is a minor inconvenience that one obtains, on principle, for two
different palrs of values wi/wh, Wﬂax/WE forms of externsal-compression

inlets which also are different and that, according to the theory existing
so far, 1t is not possible, for instance, to retain the form calculated
for a palr of values wi/w&, Wﬁax/W& and to determine pressurs and -

velocity distribution for another wi/w;. This disadventage could be ) S
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eliminated by a sultable mapping of the hodogreph clrcle onto another simply
connected surfa.ce, however, simplicity and clearmess of the theory would
suffer so greatly that it seemed better to omit this step for the time
being. Effects and partial circumvention of the limitation Just mentioned
will be discussed later.

We now turn to individual discussion of numerical results. In
figure 1l the wall thickness (d) referred to the inlet half-height (h) is
represented as function of LA TAS The corresponding equation is

equation (17) in which ome has to substitute R =w___. One recognizes

that d/h retains a finite value even for wyfw, = 0, 1if W . >,

is edmitted but that, however, on the other hend, d/h assumes infinite magni-

tude for 'any wi'/wm, if Woox = Voo 18 required. Ap mentioned before,

the wall thilckness shows a contlnuous increase wlth decressing maximum

veloclty. Down to Wrex = 2.5 w, this increase 1s practically insignif-

icant. In order to give a clearsr picture qf the interesting
domain Wpay < 2.5 W,, 1t has been represented once more to an enlarged

velocity scale in figure 14. It is shown that the inlet with purely

external compression requlires, for smsll Wy s quite conslderable wall

thicknesses, if the value w /wm mist not become very much larger
than 1. TFor wi/w = 0, for instance, the excess velocity can, for d/h =
(-]

be lowered not further than wmax/woo = 1.42. However, d/h = 1 signifies

that the total wall thickness equals the total helight of lnlet opening.
Wy /wm = 0 18 an operating condition which in no way answers the purpose

of the lnlet and has, therefore, no decisive significance for 1ts design.
That operating condltion 1s of interest only as a boundary case for the
estimation of most unfavorsble conditions. However, figure 1k shows that,
due to the steep ascent of the curves In the left part of the dlagram, the
wall-thickness ratio does not become mich more favorable even for, for
instance, wi/wm = 0.1.

Figures 15 to 18 represent a few calculated examples of symmetrical
inlets with external compression, corresponding to the paramesters
Wy[We = 0.1 end 0.k, wpofw =1.b5 wyfw =0.1 and 0.k, Voax[% = 1-2:
The fixed walls are cross-hatched. At the same times the stagna.tion-point
stream lines are-drawn in to give an excellent lmpression of the veloclty
retardation shead of the inlet entrance. The figures confirm the fact
discussed before: -that the wall thickness of the external-compression inlet
is bound to increase for descreasing w /w as well as for decreasing

wilwm. A comparison of figures 15 and 16 on one hand with figures 17,

and 18 on the other shows, moreover, that the curvature of the nose contour



ol NACA TM 1279

mist be the flatter and, comnsequently, its length the greater, the smaller
the excess velocity 1s to be kept. The relatively "sharp-pointed noss,"
especlally, is surprising, particularly for the external-compression inlets
for wy /ww = 0.1 with their stagnation points situated relatively far to

the rear.

In order to estimate the bshavior of the sxtermal-compression inlets
for other conditions of retardation, one could follow the procedure shown
in the example of figure 15. That external-compression Inlet has the
wall thickness d/h = 0.845. If the wall thickness alone were responsible

for the magnitude of the excess velocity wm/ww the wm/wm for

other veloclty ratios L5 /w'm could be easily determined from figure 14 by

having there a parallel to the abscissa go through d/h = 0.845. -
For wy[We = 0.4 one would thus obtein w .. [w, = 1.195. However,

figure 17 shows for wilwm = 0.k and Vo[V = 1:2 that the nose, for

such a low excess velocity, must have a conslderably flatter curvaturs;
one may draw the conclusion thet, for wy /w.=° = 0.L4, Woax /Ww ectually

will slightly exceed the value determined above from figure 1i4. The

reason lies, above all, in the fact that the veloclty along the nose contour
of the external-compression inlet of figure 15 i{E no longer constant

for wy /w“ = 0.4. Anyway, this deliberation shows that the excess velocity

will probably never exceed Voax /wc° = 1.4, 1f the external-compression

inlet of figure 15 for wy fwe, = 0.4 1s being used. Further clarification
of this state of affairs is up to wind tunnel tests for the time being.

Apart from the external-compression inlet contours, the symmetry T
stream lines, and the stagnation point stream lines, the most important
pressurs distributions also are plotted in figures 15 to 18: =above the -
external-compression inlet the pressure dlstrlbutlon slong the symmeitry
stream line, below 1t the pressure distribution along the wall contour.
The firet pressure dilstribution shows that the pressure conversion tekes °
place to the greatest part before the emtrance into the extermal-compression
inlet and that it is, at any rate, practically completed at x/h = 1. This
statement about the rearward shift of the "completed pressure conversion"
also follows from the pressure distribution along the innsr wall. It is of
importance if one wants to change the Inlet with purely extermal compression
to an intermedlate form, as defined in section I, by reducing the wall
thickness from the inside (fig. 19). Consequently, the enlargement of the
inner cross section probably must not occur hefore x/h = 1l. Of course, - —
1t mst be even then introduced with a very flat curvature in order to
avold disturbances of the pressure conversion at the entrance that could
be caused by the influence of the negative pressures U (fig. 19). The
clarification of this problem also must be left to the wind tunnel test.

The pressure distributlon along the outer wall shows very clearly
the constancy of the veloclty along the nose contour. The short line .
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protruding at the left is actually to he regarded as & double line, the
upper boundary of which represents a part of the pressure distribution of
the inner nose contour. The cause of the large pressure drop at the end
of the outer nose contour is the aforementioned sudden change 1ln curva-
ture at the transition from the nose contour to the rectilinear outer
wall. Comparatively slowly, the pressure along this wall is gradually
reduced to the undisturbed pressure, the more slowly, the smaller the
excess veloclty Wﬁax/W; has been kept.

If one makes the symmetry stream line the solid wall, one obtailns
external-compression inlets as they could be applied, for instance, for
underslung radiators or divergent-nozzle radistors, which are located on
the pressure side of a wing (fig. 20). If such an inlet is not constructed
as a retractgble device, it must be designed according to the same points
of view as the symmetrical external-compression inlet, that is, wall
thickness and nose contour are to be proportionesd for the minimum wi/we

end the meximm admissible W, [w . For larger Wy [V, 5 Wﬁhx/ﬁ» then

stays automatically below the admisslble limit.

It can be seen that the wall thickness may be kept thinner when the
device is retractable. For proof, one starts from half the external-
compression inlet for wi/W; = 0.4, Wﬁaxfﬁp = 1.2. The inlet height 1is

assumed to be h, ), the wall thickmess dy. - According to figure 1k,
(a/n) equals 0.82. For the same excess velocity, but with
0.4 ’

wylw_ = 0.1, (d/h)y.1 = 1.83. In figure 21(a) the contours of the two

external~compression inlets are drawn on top of each other in such a
menner that the scele of the first inlet is the same as in figure 18; the
scale of the second, however, is no longer the same as in figure 17, but
was reduced by the factor 0.82/1.83 = 0.45. The contours almost coincide

and permlt the conglusion that the excess veloclty Vnax/ Voo is not

consgidergbly exceeded if the inlet height of the external-compression
inlet of figure 18 is reduced from by, to 0.45 hy j while simulta-

neously the retardation is reduced to W, [w, = 0.1 (fig. 21(b)). However,
the air quantity teken out of the free stream is thereby reduced by the

factor (0.45)(0.1/0.4) = 0.11. Eimilar conditions exlst if one starts
from the external-compression inlet for wi/w& = 0.4, w /qw = 1.k

max
(fig. 22).

Instead of the symmetry streamline, any other streamline can be made
the solid wall and thus obtain forms corresponding to divergent-nozzle
radiators where the radiator block is partly retracted into the pressure
side of the wing (figs. 23 and 25). The maximum of this one-sided
displacement 1s indicated by the stagnation-point streamline and innsr
well. In figure 23 it 1s represented for the extermal-compression
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inlet w, fw, = 0.1, Wy o

to the fact that even the thin pressure-side boundary layer is not able -

to overcome the pressure lncreoase at the stagnation point S. . -

Conditions are morse favorabls 1f a streamline 18 selected as solld
wall aloag which the pressure increases continuously and monotonically
up to 1ts final pressure.* This is certainly the case for instance for
the symmetry streamline. However, there are other streamllnes as well
which satisfy this condlitlion. In the hodograph they appear as stream-
lines which lie outside of & circle about the zero point, the radius of
which 1s wi/w&. In the hodograph of figure 24 a streamline 1s repre-

gsented which barely satisfles thls requiremsnt _Gy = 3ﬁ/105.  For this
streamline the corresponding one of the external-compression inlet wasg
calculated and made the solid wall (figure 25). One recognizes that

it is permissible to retract the radiator block To & muich smaller degree
than is customary Iln present designs. For the rest 1t should be noted
that the possibility of a flow separation at the upper wall must be
considered also for the design according to figure 25 for :vi/w& s> 0.1
all streamlines, therefore, show, for larger wi/ww, a considerably

flatter course, and one can éasily overstep again.the'bareiy admisgsible
one-gided displacement which 1s characterized by the stagnation-point
streemline.

VIII. APPENDIX.

a. Auxiliary Theorems Concerning Points Reflected on the Circle.

Without limitation of generalliy one may assume that the two o
reflection points lie on the real axis. If w ='Wb is a real point in

the interior of the circle, then R-/W, 1s its reflection Point with

respect to the circle H of radius R which was drawn about the origin
of the w-plane. If, furthermore, h; and h, are the rays from these

points to the point w = Rol? (see fig. 26) and 71, 7p the angles

formed by thege reys with the real axis, then according to the cosine
law,

*In this case it 1s at least ensured that the pressure will nowhere
be larger, the velocity nowhere smaller than the end pressufe and end
velocity, respectively.

[V, = 1.k. Difficulties will probebly arise due _

NACA TM 1279
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2 _p2 2
hl = R -ERwocoscp+wo

2
k122 =Qf_o> @2 - ERWO cos @ + w02>
and _
%21. =.l’]§9. (32)

That means, the ratlo of the two rays from two reflectlon points to a
point of the periphery of the clrcle is independent of @ and thus
constant on the entire clrcle.

Any clrcle drawn through the two reflection points is known to
intersect perpendicularly the circle H. This applies also to the
circle . X 1in figure 26. According to a well-known theorem concerning
the angle between chord and tangent 73 =7 -7 5 and according to the

oxternal-angle theorem 71 =9 + 73- Hence follows

YLt Vg =P+ (33)

b. Reflection of Source and Doublet on the Circle.

R>1 1Is again assumed as radius of the circle H, the center of

which coincides with the origin of the coordinates. Wo 1s assumed to be

a point of the real axis in the interior of the circle. At that point the
complex potentlal function is to possess the same singularity which would
Pertain to a single source, namely the singularity _Q,_ Zn(w _ w) Tf

) ' 2% o/’

the circle is to becoms streamline, first, for reasons of continuity, a
sink of the same strength as the source must be placed in the interior
of the circle, for instance at the zero point. If thls source-sink pair

. 2
1s reflected on the clrcle, an additional source st the point w = R

Yo

end a sink at w =® are added. The complex total potential of the
entire system (fig. 27) reads

. .2
FQ=-2%-LZn<w-wo) +1n<-%>- Zn{] (3ka)
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It 1s easlly proved that thils potential contains the clrcle as streamline:
With the symbols of appendix a the equation (33) may be written for an
arbltrary point of the circle contour in the following form:

. .
FQ=§ lnhl+lnh2-1nR+1{7l+72-q>}]

The imaginery part of Fy 18, according to equation (33), constant along
Q > : P)

the entire contour of the circle. Therewlth the assertion is already
proved.

Concerning the complex potential function (34a) it is, at first,
slightly disturbing that, aside from the desired singularity at the
point w = Wy, &nother cne at the polnt w = 0 must be accepted. How-

ever, 1f one has within the circle at a real point w_* a sink of the
same strength, the function '

2
Fg = - .2%[1:1@ - wo*) + znG - _R.;> - n w] (341)

Wo

1s to be added to equation (34(a)), end the auxiliary sink at w = 0 is
cancelled against an suxiliary source of the same strength.

For the flow of the hodograph congldered above the source 1s situated
at w=1 or {s, the sinkat w=w, or {;, and the corresponding

complex partisl potential reads

e, (W- - R?) Qﬂ -

= — 3 or
o (W-Wi)<—%1-> 2

As is well known, one may obtain the complex doublet potential by placing
a gink -@ ©Dbeslde the source @ at the distance h &and then permitting
the sink to move 1Into the source, while Q simltanecusly must become
indefinitely large so that Qh converges toward & finite value M. If
this method 1s applled to the system of figure 27, first the scheme of
singularities of figure 28 is obtained, the complex potential of which is
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=§;{lnw-wo) - lnGr- (ﬁo+h)>:%
+ Zné-R—a -_Zn<w- Ra>
Vg Wo + 1

If one develops the bra.ces in powers of h and then approaches the
limit h = O,

- 1
aw'Wo wo w-_

is the complex pdtential of a doublet in the circle. TFor the hodographs
considered above, the doublet is located at the point w, =1 or (.,

respectively. The doublet potential then reads

Ml 1 RS |
T En:w-l_w_Rz] (36)

M| 1 /RV 1
2l - e <§) _ B

[>-]

or

Translated by Maxry L. Mahler
National Advisory Committee
for Aeronautics.

29
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Figure 1.~ Internal-compression inlet.
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Figure 2.- - External-compression inlet,
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Figure 3.- The theory considers. instead of the external-comprassion inlet
of finlte length an external-compression inlet,the walls of which extend
downstream to infinity.
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Figure 4(a).- Qualitative stream-line pattern of the external-compression
inlet.

1\0 H:,\:l 4

Wmax

Figure 4(b).- In the hodograph mapping the line 1,0, Wonax? 1 corresponds

to the stream line A, , A, A4, the line 1, 0, w; to the stream line A ,
Ag, Ag .
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A

Figure 5.- Hodograph of the simplest symmetrical inlet with external
compression for wWi/We, = 0.4, Wyax/We = 1.4, ' '
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Figure 6.- Definition of the rays i,, and the angles 8y in the w-plane,

Wi 4

Figure 7.- Slits of the w-plane,

Figure 8.- Definition of the domain of angles in the upper (2) and lower (b)
w-semiplane,
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A3

Figure 9.- The generalized symmetrical hodbgraph in the slit § - plane.

Figure 10.- Extreme positions of the generalized hodpgraEh in the w-plane

for fixed W ard R .
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Figure 11.- The ratio of the wall thickness to the half opening height for the
generalized symmetrical inlet with external compression as a function of o

for a constant Wmax/w = 1.2 for w; /wm = 0.1, 0.4, 0.7. For the

hodograph of the simplest symmetrical inlet with external compressmn of
sections T and IV, € equals zero, and d/h is a minimum.
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Y

Figure 12.- Concerning the determination of the nose thrwst by integration
of the pressure distribution,
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Figure 13.- Concerning the determination of the nose thrust by means of _

the momentum theorem,
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The ratio d/h for the sirﬁplest symmetrical inlet with external

compression as a function of w_ x/ww and wi/wm .

Figure 14.-
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Figure 15.- Wall contours, stream lines, and pressure distributions of
the simplest symmetrical inlet with external compression for
Wma.x/ww = 1,4 and wi/wm =0,1.
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Figure 16.~ Wall contours, stream lines, and pressure distributions of
the simplest symmetrical inlet with external compression for

Woax/ Ve = L4 and wi/w =04,
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Figure 17,- Wall contours, stream lines, and pressure distributions of
the simplest symmetrical inlet with external compression for
Wmax/We = 1.2 and w;/We = 0.1,
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Figure 18.~ Wall contours, stream lines, and pressure distributions of
the simplest symmetrical inlet with external compression for

Womax /w°° = 1.2 and wy /w& = 0,4 (Reviewer’s note; This value

was erroneously given as 0.1 in the original German version of this
report.).
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Figure 19.- - External-compression inlet with wall thickness reduced
from the inside, Starting from the external-compression inlet for
W/W,, = 0.4 ,Wp . /W, =1.4 , one may thus obtain an external-

compression inlet for wy/We = 0.3 s Wma.x/‘” = 1,4 w;thout having
to increase the maximum wall thickness.
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Flgu.re 20.- ' Inlet with external compression for w, /w
/W = 1,4, derived from figure 15, The symmetry strea.m _

line of figure 15 was made the solid wall,
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Figure 21.- Retractable inlet with external compression. In(a) the
contour of the external-compression inlet for w;/w, = 0.4 and
Wmax/ww = 1.2 and the contour of the external-compression inlet
for Wi/ww = 0.1 and W, ,,/W, = 1.2, scaled to the same wall

thickness, are plotted on top of each other. In (b) the positions of
the retractable lower wall are represented for Wi/w,,, = 0.4 (solid

line) and for w;/w, = 0.1 (dashed line).
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Figure 22.- Retractable inlet with external compression. In (a) the
contour of the external-compression inlet for wi/w,, = 0.4,
Wynax/We, = 1.4 and the contour of the external-compression inlet

for wi/We = 0.1 and Wmax/Ww = 1.4 scaled to the same wall

thickness are plotted on top of each other. A difference can no
longer be represented. In (b) the positions.of the retractable
lower wall are represented for wi/ww = 0,4 (solid line} and for

W;/We = 0.1 (dashed line).
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Figure 23.- With the stagnation-point stream line assumed as solid
boundary, one obtains the most unsymmetrical external-compression
inlet to be derived from the symmetrical one. (W;/We = 0.1,

Wnax/We = 1.4).
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Figure 24.-

stream line ¥
outside of a circ

In the hodograph for Wi/ We = 0.1 _,__me/ww = 1.4 ,the
- 37/10 barely satisfies the condition that it must lie
le.of the radius w;/We, sround the zers ‘point. '
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Figure 25.~ If the stream line ¥ = 37/10 (see fig, 24) is made the solid
wall, the pressure increases along this wall continuously and monotomcally
up o its end value pi. (Wi/We=0,1 Wmax/Ww = 1.4).
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Figure 26.- As proof of the auxiliary theorems cgncerning poj:nts reflected
on the circle,
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Figure 27.- Scheme of singularities for the derivation of the source
potential within the circle.

Figure 28.- Scheme of singularities for the derivation of the doublet
potential within the circle,
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