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NATIONAL ADVISORY COMMITTEE FOR AERONA~ICS .

. ‘rw3mclu! MEMORANDUM327’!5

THESOLUTION OF THE LAMITJAR-BOUNDARY-LAYEREQUATION FOR

THE FLAT PLATE FOR VELOCITY AND ~

FOR VARIABEE PHYSICAL PROPERTIES AND FOR

DI!IFUSIONFlJ3131AT HIGH CONCENTWION*

By H. Schti,

SOMMKRY

In connection with Pohlhausen’s solution for the

ms

THE

temperature fIeld
on the flat plate, a series of fo?mmlas were indicated hy mesns of
which the velocity snd temperature field for varia%le physical cherac-
teristics can be computed by an integral equation and m iteraticm
method based on it. With it, the following cases were solved: On the
assmnptfon that the viscosity simply varies with the temperature while
the other fluid properties remain constsnt, the velocity and tempera-
ture field on the heated snd cooled plate, respectively, was computed
at the Prandtl numbers 12.5 and 100 (viscous fluids). A closer study
of these two cases resulted in general relations: The calculations
for a gas of Pr numter 0.7 (air) were ccmducted on the assumption that
all fluid properties vary w$th the temperature, and the velocities sre
low enough for the heat of friction to,be discomted. The result was
a thickening of the boundary l~ers, but no appreciable modification
in shearing stress or heat-transfer coefficient. The effects of
density snd viscosity or density snd heat conductivity have opposite
effect for velocity end temperature field and almost csncel one
another. Formulas snowing for the heat produced by the frictim were
indicated, but no calculations were carried through in view of the
already existing report by Crocco. The”methods of solution developed
here were finally applied also to the case of diffusion of admixtures,
where at higher concentration ftnite transverse velocities occur at the
wall .

*’$ber die L&ng der laminaren Grenzschichtgleichung an der
ehenen Platte fh Geschwindigkeits- und Temperaturfeld bei
ver&!nderlichenStoffwerten und fk das Diffusionsfeld bei hb~eren
Konzentrationen. Zentrale f& wissenschaftliches Berichtswesen der
Luftfahrtforschung des Generalluftzeugmeisters (ZWB) Berlin-Adlershof,
Forschungsbericht Nr. 1980, August 18, 1944.
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T . INTRODUCTION
.-.

The laminar-lomdary-leyer equaticm for the flat plate lined up
with the flow and with ccmstant fluid properties was solved by Prandtl
(reference 1) and Blasius (reference 2) for the flow field and by
Pohlhausen (reference 3) for the temperature field. Since temperature
and velocity field coincide when kinematic viscosity (V) and tempera-

( )tmre conductivity (a] are identically equsl Pr = ~ = 1 , Ibhlhausen’a

formula for the temperature ffeld contains absolution for the veloclty
field also in the form of an integral equation. Piercy and Prestm
(reference 4), proceeding from a rough approximation, indicated that,
with the aid of this integral equation and an iteration method, the
well-known Blasius soluticm can be obtained in a few steps. This
method of solution has the advantage of being simple and.requiring
relatively little time. It is - as is shown in the following -
particularly suitable for boundary-layer calculations involving
variable fluid properties, because a first, and usually fairly close,
approxhaticm, is already available in the solutian for cmstant fluid
properties. .

Crocco (reference 5) and von K&’m&n and Tsien (reference 6) (see
also reference 9, 10) camputed velocity and temperature field for
variable fluid properties. In both reports, the differential equations
are put in & different form from the elsewhere conv~tion~ bound~y-
byer calculation by changing to new variables. Crocco obtains two
simultaneous differential equations of the second order which he solves
for a gsa with the Prandtl number Pr = 0.725 (air). Von K&& and
T%ien treat the case of Pr = 1 and have to solve only one differential
equation, since then the temperature is rela~ed_in a s@@e manner to
the velocity.

—
●

--

. . .

—
d

In the followlng, it is shown that .anumber of %oundary-layer
problems for the flat plate can be solved in a comparatively simple
manner, involving merely quadrature, by means of the cited integral
equation and an iteratim method. —

11: SOLUTION OF BOUNDARY-IAYER EQUATION FOR VARIABLE PHYSICAL PROPERTIES

The boundary-layer equations for velocity and temperature field at
the flat plate at variable density read (reference 3)

(1]
.

.
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with u end v the
T, the temperature,
y the distance from

(la)

(2)

speed in flow direction &d at right sngle to it,
x the distance from the plate leading edge,
the wall, p the density, w the viscosity, cpthe

specific heat, and h the heat conductivity. In the equation for-the
temperature field, the heat produced by friction is, at first, not
taken into account; as long as the speeds are not excessive and the
temperature differences not too”small, this is $ustified.

For constant density, equations (1) and (2) csn be reduced to an
ordtiary differential equation (reference 3) on the assumption that u
and T are a function merely of the one (dimensionless)

coordinate f~=5%” Since the density depends only on the tempera-

ture, the idea suggests itself that the seinesimplification is possible
also for variable density. We put

(3)

where U is the velocity at the edge of the boundary lsyer,
To smd T1 the wall temperature and the temperature at the edge of the

boundary layer, respectively. The quantity ‘k in the dimensionless 5
denotes the kinematic viscosity for the fixed temperature

‘k~
for

which in suitable manner the wall temperature (k = O), or the tem~ra-
ture at the edge of the loundary layer (k = 1), is chosen. The
boundary conditions for flow and temperature field read

Y’o E=o CD=O 6=0

y+ca ~+oa ~=1 .6=1

Putting

(4)

(5)



.

4 ?TACA‘IT!1275

where the subscript k denotes the density at temperature Tk, gives

by (la)

,V = R(Pu, ~’ W U) (6)

●

hence, by (l), sfter introduction of (5) snd (6), the more suitable-.
form

From (7), regarded as differential

f temporarily as a lmown function
u is derived

.

.-

$ E
f = IJruJd (7) “_. ‘

0

%ndeqmti”m for the quantity qd~ ..

of “g,tie following

r~.

This disposes of the integration constant from

–a
efirOssion for — “.

(8)

considerdj.on of the
bound~-condition (4).
sionless temperature e

Likewise, tiere
the expression

E

.

.-. —
r

where Prk is the Prandtl number with the density at temperature
‘k “

For constant density (q = ~= X= 1), velocity and temperature
field are independent of each other and (9) gives.the ?ohlhausen
expression (reference 3) for the temperature field, which represents
the solution for the velocity field at Pr = 1(V= a). When the
velocity field is known, the solutim for the temperatureby (9) is
obtainable hy simple quadrature. But the calculation of the velocity
field rms into difficulties, at first, because.in (8) the still.
unlmown velocity appears on the r@ht-hand Hide.in the expression
for f.

.. .
The methods of solution by”Piercy and FYeston proceed from a _:- “ .

rsndom approximation for m with which f and J(E) in (8) are R
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computed. The improved value m o%tained forms the starting point for
the next step, etc. Figure 1 represents the several steps of this
approximation method. The intentionally rough approximation m = 1
over the entire boundary layer was chosen as original solution; the
correspcmding first approxhationl co is given by the error integral.
After the third approximation, the shearing Btress shows a mere
difference of 4.5 percent from the exact value. Instead of continuing
the process mechanically, the final solution to be expected was
esthated from the variation of the previously computed approximations
and utilized as basis for the subsequent step; the solution u

contained lut a~-percent error in shearing stress.

With this method of soluticm, the hnprovement effected by each .
step can %e estimated according to order of magnitude. The
equations (8) and (9) are identical for constant density and Pr = 1.
Assuming that the approxhate solution for u was such that for each
individual value u the corresponding ~ coordinate differed hy a
constant factor ~ from the ~ coordinate of the exact solution, the
effect of factor ~ is then o%vfously just as great as that of
quantity Pr for the temperature field. Pohlhausen found, on the
%asis of his numerical calculations, that the heat-transfer coefficient

is proportional to Pr, thus the shearing stress at the wall is
afflicted at each new step by am error of only alout one-third of the
error of the preceding step.

For varia}le density, the discussed solution steps of “mathe-
matical nature can he comlined with the steps of llphysicalnatureft:

Step 1: as &arting point the tiown solutions for constant
density axe assumed:

(a)

(b)

Step 2:

(a)

(b)

The Blasius solution (reference 2) for the velocity
profile

Pohlhausenls method for the .temperaturefield

Calculation of velocity profile hy (8), the temperature
variation being based on the density of the tempera-
ture profile according to step l(b)

Calculation of temperature fie:d ‘by(9) with the velocity
profile according to step 2[a); relation of density to
temperature as in step 2(a)

*
lIt took a stisidiary worker 10 hours to reach the final SOIUtiOII Of

the velocity field in figure 1.
s
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The process is repeated tilJ
exact, usually requirimg three to

.

the final solution is ;ufficientl.y .

four steps. —. .

A few &wneral remarks about the influence of the temperature
variability of the *Y sical properties.- !l?lu.flowwith constsnt
physical properties csn %e regarded as first approxfiti~n, end the
problem is then to aacertain the differences which =e ~oduced by
variable physical properties. The.quality of this approximation .
depends, of course{,on the temperature assumed for the physical
properties at the isothermallfflow. Choosing the wall temperature or
the temperature at the edge of the”bound~ layer as reference tempera- .
tu.?%for the isothermal flow so results on the basis of physical
point of view ps well.as on the basis of the equatians that an increase
of the viscosity or density inside the boundaxy layer is accompanied ly
an increase in the resistance; similarly, an increase in-heat con-
ductivity and density effects a greater heat transfer. But the —

magnitude of the effect of variability of the seperate physical prop-
erties is contingent upon the rati_oof the boud~-layer thickness of
the temperature and velwf.ty field. (The ratio of both is proportional
according to Pohlhausen.)

This is illustrated by the following case~-which is, at the same
time, of practical importance. The temperature boundary lsyer Is
asswed very mall compared to the flow boundary layer; consequently,
the variation of the physical properties tithin the thermyilloundary
layer can be disregarded for the shearing stress and the -latter
computed as if the temperature at the edge of the boundary layer
reaches to the wall. The same holds for the velocity profile, with the
exception of a small area within the thermal beundary lsyer, where the
velocity profile by the viscosity vsriation is deformed correspondingly
But for the temperature profile’this area is exactly decisive.

—

B

—
Frcm the equality for the shearing stresses the velocity gradfmts

at the walls ere:

the su%scqpt 11 denotes the “isothermal’tflow with the physical prop-
erties at temperature T~. The variability of density is noneffective for—
the field of flow, in this instance. It can be mathematically derived from
the formulas (8) and (9). The ratios for the temperature field are
discussed in the next chapter by means of the two exemples.
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III . FLOW AND

~ accordance with

7

TEMPERA1’uREFrmD FOR Vzscous FLmDs

the physical properties of viscous fluids, the
velocity and temperature field were camputed on the assmnption that
only the viscosity should change with the temperature hy the following
formula

()Tk”+ Tc b
A=
~k T+TC

(11)

where b and Tc are constants, chosen so as to reproduce tlietem-

perature variation as closely as possible. The eulscript k is to
%e O or 1, depending upon the choice of the physic’alproperties
in the dimensionless ~ . The choice was b = 3 (viscous lubricating
oil) end the two cases of a heated and cooled plate computed with
V.

y= ~ and 8 and Tro = 12.5 and 100; it thuE concerned identically

great temperature differences of the same fluid, since Pro is

for the present formed with the dxvsical properties at wall temperature.
Choosing- To as reference tempe~a%re gi~es-by (11)

‘=&=i’(i@)+J
The result of the calculation by the iteration method of
secticm is seen in figures 2 snd 3. In both graphs, the

(12)

the preceding
dimensionless

wsll distances go ~d El, forlnedwith W. and ~1, are plotted to

the scale l:fi and $:1, respectively, so that the actual wsd.1
distsnce y is the ssme for both abscissas. Besides the solution u,
which took three steps to compute, the isothermal velocity profiles
(0) snd (u)l at constant density at temp&rature To and “Tl are

she% plotted agatist the dimensionless coordinates ~ and %.2 “

Tn the subsequent ccmnpilation To and u denote the s’hearingstress

( = $$)0 );
at the wall and the heat-transfer coefficient a

2.
For the ‘isothemnsl” temperature profiles (0) snd (G)l, the

o
T&andtl numbers at temperatures To snd T1 must be inserted. For

exsmple, h figure 2: =0 = 12.5 and Fr = 100.
1
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()To and (a). are the corresponding vslues in isothermal flow with
1

the viscosity at temperature ‘1 - ‘o”

Table I
r

(;) * ‘r. w< (’)0 ‘

Eeated wall 0.841 1.20 12.5 1.58 1.84

Cooled wall 1.08 0.98 100

Although in both cases the thermal boundary-layer tmctiess is f~
from small compared to the flow lound~ layer, the shearing stress
can still %e computed satisfactorily by the isothermal fwmil.a with the.
viscosity of the wall temperature. The assmnptions ‘coec@ation (10)
are thus shown for Pr > 10.

The conditicms are more complicated for the heat-transfer
coefficient; from (9), it follows that-the heat-trsmfer coefficient

c
a is proportional to a(pr) g, wherein, &ccording to Pohlhausen,

c is, with high accuracy, assumed as 0.664~. Bearing in mind that
Pr = ~, it fo~lows that the heat-tr~efer coefficient is ~~ersely

proportional to the sixth root of the viscosity. Since all physical
“propertiesexcept the viscosity have teen assumed constant, there
results, when it-is referred once to the wall temperature; the other
time to the temperature at the edge of the

(a). IJl /6

(Jq= ~

●

A comparison tith the foregoing .talml.ation

bohdary layer

(13) ““

indicates that (a)l

supplies a poorer approximation for the heat-transfer coefficient
~ (a)o; thfs iS readi~y’expla~ed bY the v~iation of the velocity
profile (fi~es 2 and 3).. It is ta be expected that the:ccmdltibns

-.

are simfler at higher Yrandtl numbers.

-.

-

—

—

.-.

*

.
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Another reference point for the heat-transfer coefficient is found
in the velocity gradient at the wall; ly (10) and allowing for (3),
there follows

(14)

the subscripts io and il denoting isothermal flow at tempera-
ture To and T1. These relations are confi=d in figures 2 and 3.

.

With these formulas, lhits can be indicated for the heat-transfer
coefficients (figures 2 and 3). One is given according to (13)
hy (m)lj %ecause the velocity profile (m)l yields at all pints

higher velocities at cooled end lower velocities at heated wall. The
other lfmit is given by a velocity profile of isothermal form, where
the abscissa scele is so modifiecithat its gradient at the wall agrees
with the actual velocity distribution. From the remark”about the
convergence of the method of solution In 11, it follows then that the
heat-transfer coefficient is proportionel”to the third root of the
velocity gradient at the wall; for this extreme velue, the second

equation of (14) gives:
v
6 Q (U)o. Summed up, the limits of the
P.

heat-transfer coefficients, %y a change in viscosity, are

the

For
the

r6&). (15)

upper signs applying to heated, the lower to cooled wall.

Hence, the followlng approximate rule for viscous fluids (Pr>lO):
computing the resistance, the physica3 properties are referred to
temperature at the’edge of the boundary layer; f“6rheat transfer,

to the well temperature.

IV.FLOWAND~X!XJR!3F13ZLD ATPr =0.7 (m)

FOR !ITMPERA5JREVARIABILITY OF EVERY PHYSICAL PROPERTY

Tn the -500 to 140° temperature range the physical properties
of the air can %e represented hy the following fomn.d.as
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T = temperature in absolute degrees. With

To - T1
d =

Tl

there results

P
[ 1

_=f#= 1+79(1-(3)0.78
VI

.

—

and similar expressions for ~ and X.

The calculationsfor a heated plate and O = ~ and. ~ showed
only moderate differences in the velocity and temperature field from
the fcmm for isothermal flow (Table 2). For the investigation of the ““
conditions at higher temperature differences, the case ~=20
and To = 620°. C. was computed. The velocity and temperature fields
already esihihit,according to figure 4, a~reclable differences.from ..n_

the fom for constant physic&l properties; ~. and El are formed

with the physicsl properties at temperatures To end Tlj respectively.
This results h a sulstanti~t htckentig of the boundary layer for both

*

fields; nevertheless, wall shearing stress and heat-transfer coefficient
indicate only minor departures from the velues for constant physical
properties=

Table 2

‘o
o & ~ ‘& &

‘=$
0.575 0.490 1.02 1.00 1.01 1.00

79‘i .514 .420 1.05 1.00 1.02 1.00

To = 620° c
.2% .235 1.11. .93 1.03T1 = 20° c .96

L .

—
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The explauatl.anfor it is that in air the growth of the viscosity with
the temperature acts in the sense of a resistance increase, the drop
in density in the sense of a resistance decrease, wad both effects
practically cancel one another at Pr = 0.7, where thermal and flow
boundary-layer thickness ere about equally great. The conditions for
the temperature field are almost identicel, %ecause the heat con-
ductivity end the viscosity are s~larly affected by the temperature.

The frictional heat can be allowed for in similar msnner;

equation (2) contains then en additive term w
()

&2

%
on the right-hsnd

side, end the solution reads

e‘w(’) ‘B(E)

The iteration method can be applied again, slthough a little more
paper work is involved. For constant physical properties, equation (16)
reduces to Eckertls solution (reference 8). The thermometer problem
(vanishing temperature gradient at the wall) can also be solved by
suitable variation of the titegration,constant. ~ view of Crocco*s
calculations for a gas with Pr = 0.725, it was decided not to csl-
culate any model pro%lems by the new method.
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V . APPLICATION TO A Q13ZFUSIONPRO=

The concentration field for the problem of diffusion at the flat
plate csn be calculated in the seinemanner as the temperature field.3~4
The differential equation r6ads

. (17)

where k is the diffusion
defined as quantity of gas
properties me regarded’as

factor and c the concentration which is
or vapor per unit vglume. The physical
constant, but it is also taken into account

that for greater concentrations the velocity v at the wall no longer
disappears, as slready pointed out %yNusselt (reference 7). When
fluid from a wall is vaporized, say by a gas such as gas flowing slang
a wetted wall.,substance passes continuously into the flow.
Hence v(0)>O at the wall. When, on the other hand, vapor condenses
at the wall or when air containing emnonia, for example, passes over ‘
blotting paper impregnated with hydrochloric acid, it results
in V(o)<o.. The boundary”conditions for v m according to the
equations (100) and (101) of reference (7):

--()-kac 1 = v(o) (18)
COTYOL-l

Po
—

where c is the concentration of the gas or vapor, for which the well
is permeable, co

partiel pressure,

Introduction
results in

the concentration at the wall, P. the correspmding

and p the total pressure. _

of the flow velocity U snd”the
—.

() -Fco(:-+(-=)ogc=I&cl-co dc50=

.-

dimensiofiess 5

c- Co (19)
c1 - co

%ckert reportec iasolution of this proll-at the l~h3 meeting
of the VOI committee for heat research in Bayreuth, where-an approxima-
tion method similsr to Pohlhausenrs method for the flow boundary layer
was used.

4
Dsmk&lerrs esttite for the present problem was published in

.. .-

.__.

—
Z. f&rElektrochemie, 1942, p. 178.- - _ .“’.-. ---

.

-.
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where co snd Cl are the concentratlon at the wall snd at the edge

of the bamiiary layer. MMlsrly to (5), it gives

:=g[.+.,.:]

and similarly to (9), the solution

‘=-%3(%)0’20)
for the concentrateion

where I is a quantity analogous to the Prandtl
k

velocity 0, simply put ~ = 1 in eqmtion (21)s

zumiber.

The concentration gradient at the wall is contained
can, in the first instance, be solved for sny M vslues

N=- $( cl-co,\/- computed.with the aid of the vslue

“/co(k-1))
the solution for

()

g
d~o” ‘he

calculated M snd N values
ccmcentration gradient at the

velocity and concentration

sre represented in figures

field

d~

1

(21)

To obtain the

in M; -but(21)
end the quantity

o’btainedfrom

fields for the

5 ~a6, the
wsll,i.n figure 7. MSO denotes evapora-

tion at the plate; M<O, condensation end absorption at the plate; the

vaI_w-o.6 chosen fo’rthe quantity Y is applicable in good approxima-
k

tion for the d~ffusion of water and auunoniain air.5 Strictly speakin~
for the specified higher concentrations, the density and viscosity of
the two fluids sre dependent on the concentration; and the diffusion
factor, on the temperature. Cases of that kind can be calculated
with the aid of the described method. If the diffusion is

5According to Ten Bosch: Die W’&?me;bertragung,Berlin 1936,
pp. lb and 257.
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accompanied by a heat transfer, the.solution for the concentration field .

can equally %e applied to”the temperature field with god aPProx@tion!
In the same way, the heat tm.nsfer can be derived from tie solution for
the concentration field, when air is exhausted or blown at the plate
with transverse velocities at the wall corresponding to.equaticm (20).

CONCLTIDII?GIJOTE

After completicm of the-calculations the

—

—
writer received knowledge

of a report by Schl”ichtingand Bussmann (reference M) a’boutthe
velocity profile at the flat plate for exhustim where the transverse
velocity at the wall was expressed by

Between the present value M and C the following relation exists.
(see slso (19) and (20)).

c = -M ---

The present velocity distributions agree to about 1 percent with those
calculated by Schlichting (by a different method), with exception of
M= 1, where the writer plainly chose too few approximation steps and
the differences are thetieforea little greater. For the present
calculaticm three steps were usuelly sufficient.

Translated by J. Vsnier
National Advisory Cmmittee
for Aeronautics

.

.

.

.—
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Figure l.- The severalapproximationsforcomputing“me veloci~
distributionattheflatplateby themethod ofPreston and Piercy
(constantphysicalquantities).
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kinematic viscosi~ at wall tem~erature To and e
T1 at the edge oftheboundarylayer.
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Figure 5.- Velocityfieldatdiffusionwithhigherconcentrations,where
finite transverse velocities occur at the W-W (see text for eqtiations (18)
to (20)).
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Figure 6.- Concentration
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distribution to figure 5.
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against N (see text for equations (19) and (20)).
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