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THE SOLUTION OF THE LAMINAR-BOUNDARY-LAYER EQUATION FOR
THE FLAT PLATE FOR VELOCITY AND TEMPERATURE FIELDS
FOR VARTABLE PHYSTCAL PROPERTIES AND FOR THE
DIFFUSTON FTELD AT HIGE CONCENTRATION

By H. Schuh

SUMMARY

Tn connection with Pohlhausen's solution for the temperature field
on the flat plate, a serles of formulas were indicated by means of
which the velocity and temperature field for varlsgble physical charac-
teristlics can be computed by an integral equation end an iteration
method based on it. With 1t, the following cases were solved: On the
agsumption that the viscosity simply varies with the temperaturs while
the other fluid properties remeln constant, the velocity and tempera-
ture fleld on the heated and coocled plate, respectively, was computed
at the Prandtl numbers 12.5 and 100 (viscous fluids). A closer study
of these two cases resulted in general relations: The calculations
for a gas of Pr number 0.7 (alr) were conducted on the assumption that
all fluld properties vary with the temperature, and the velocities are
low enough for the heat of friction to.be discoumted. The result was
8 thickening of the boundary layers, but no apprecigble modification
in shearing stress or heat-transfer coefficient. The effects of
density and viscosity or density and heat conductivity have opposite
effect for velocity and temperature fileld and almost cancel one
another. Formulas allowing for the heat produced by the friction were
Indicated, but no celculations were carried through in view of the
already existing report by Crocco. The methods of solution developed
here were finally epplied also to the case of diffusion of sdmixtures,
where at higher concentration finite transverse velocities occur at the
well.

*"Uber dis Losung der laminaren Grenzschichtgleichung an der
ebenen Platte fur Geschwindigkeits- tnd Temperaturfeld bei
verénderlichen Stoffwerten und fir das Diffusionsfeld bei hdheren
Konzentrationen. Zentrale flr wissenschaftliches Berichtswesen der
Luftfehrtforschung des Generalluftzeugmeisters (ZwB) Berlin-Adlershof,
Forschungsbericht Nr. 1980, August 18, 194k,
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I. INTRODUCTION

-

The laminar-boundsry-leyer equation for the flat plate lined up
with the flow and with constant fluld propertiss was solved by Prandtl
(reference 1) and Blasius (reference 2) for the flow fleld and by
Pohlhausen (reference 3) for the temperature fleld. Since temperature
“and velocity fleld coincide wheh kinematic viscosity (V) and tempera-

ture conductivity (a) are identically equal [ Pr = g =1 ), Pohlhausen's

formula for the temperature field contalns a solution for the veloclty
Tleld also in the form of an Integral equation. Plercy and Preston
(reference 4), proceeding from & rough approximation, indicated that,
with the ald of this integral equation and an lteration method, the
well-known Blesius solution can be obtalned in & few steps. This
method of solutlion has the advantage of being simple and requiring
relatively 1ittle time. It 1s - as 1s shown in the following -
particularly sultable for boundary-layer calculations involving
varisble fluld properties, because & first, and usually falrly close,
approximation, is already available in the solution for comstent fluid
propertles. +

Crocco (reference 5) and von Kdrmén and Tslen (reference 6) (see
also reference 9, 10) computed velocity and temperature fileld for
variable fluld properties. In both reports, the differential equations
are put in g different form from the elsewhere conventional boundary-
layer celculatlion by changlng to new varisbles. Crocco obtains two
glmultaneous differential equations of the secornd order which he solves
for a gas with the Prandtl number Pr = 0.725 (air). Von Kdrmén and
Telen treat the case of Pr = 1 -and have to solve only one differential
equation, since then the tempersture 15 related in a simple manner to
the velocity.

In the following, it is shown that & number of boundary-layer
problems for the flat plate ¢an be sclved in a comparatively simple
manner, involving merely gquadrature, by means of the cited integral
equation and an iteration method. —

IT. SOLUTION OF BOUNDARY-LAYER EQUATION FOR VARIABLE PHYSICAL, PROPERTIES

The boundary-layer equatlions for velocity and temperaturs field at
the flat plate at variable density read (reference 3)

u . d au)
bl — i e e 1
pus + - > (pay ( )
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oom) - &l oo ()
chu% + cppv% = 3?’(7\?3; ) (2)

with u and v +the speed 1n flow direction and at right angle to 1it,
T, the temperature, x tThe distance from the plate leading edge,

y the distence from the wall, p +the density, n the viscosity, Cp the
speciflc heat, and A the heat conductivity. In the equation for the
temperature field, the heat produced by frictlon is, at first, not
taken Into sccount; as long as the speeds are not excessive and the
temperature differences not too small, this is Justified.

For constant density, equations (1) and (2) can be reduced to sn
ordinary differential equation (reference 3) on the assumption that u
and T are a fumctlon merely of the one (dimensionless)

coordinate ¢ =-%FV§§ Since the density depends only on the tempera-

ture, the 1dea suggests 1tself that the same simplification is possible
also for variable density. We put

_ T ~ T /T
BRI e A O ‘%sz; )

where U 1s the velocity at the edge of the boundary layer,

To and Tg the wall tempersture and the temperature at the edge of the
boundary layer, respectlvely. The quantity Vk in the dimensionless 3
denotes the kinematic viscoslty for the fixed tempsrature Tk’ for

vhich in suiteble manner the wall temperature (k = 0), or the tempera-
ture at the edge of the boundary layer (k = 1), is chosen. The
boundary condlitions for flow and temperature field read

y=0 E=0 w=0 6 =0
(%)
T ® E> e o=1 9 =1
Putting
'&= L: —L:
g V(9 i OB O (5)
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where the subscript X denotes the density at temperature Tk’ gives
by (1a)

hence, by (1), after introduction of (5) and (6), the more suitable

form
Gp)- 08 s o

From (7), regarded as differentisl equation for the quantlty ¢g? and
f temporarily as a known fumction of g, the following expression for

o 18 derived
3
£ :/“ Lae

¢
w=§-§—i—%; J(g)=fo%e . 4t (8)

This disposes of the Integration constant from consideration of the
boundary condition (4)}. ILikewise, there is afforded for the dimen-
glonless temperature 6 +the expression . -

g g
e [ L
o = XE) K(§)=f %e kdog X gt

where Prk ie the Prandtl number with the density at temperature Tk'

For constant demsity (¢ = ¥ = X = 1), velocity and temperature
field are independent of each other and (9) gives the Pohlhausen
expression (reference 3} for the temperature fleld, which represents
the solution for the velocity field at Pr = 1(V = a). When the
velocity field is known, the solutlion for the temperature by (9) is
obtainable by simple quadrature. But the calculation of the velocity
fleld runs into difficulties, at first, because in (8) the still.
unknown velocity appears on the right-hand side in the expression .
for f. The methods of solution by Plercy and Preston proceed from a
rendom approximation for @ with which f and J(&) in (8) are

ov = \/&-—’E(pué -fog pu fl__g) (6)
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computed. The improved value o obtained forms the starting point for
the next step, etc. TFilgure 1 represents the several steps of this
approximation method. The intentlionally rough approximation = 1
over the entire boundary layer wag chosen as original solution; the
corresponding first approximationl o 1s given by the error integral.
After the third approximation, the shearing stress shows a mere
difference of 4.5 percent from the exact value. TInstead of continuing
the process mechanically, the final solution to be expected was
estimated from the variation of the previously computed spproximations
and utilized as basis for.the subsequent step; the solution

contalned but au%-percent error in shearing stress.

With this method of solution, the improvement effected by each
step can be estimated according to order of magnitude. The
equations (8) and (9) are identical for constant density and Pr = 1.
Assuming that the approximate solution for  was such that for each
individual value o the corresponding £ coordinate differed by a
constent factor p, from the ¢ coordinate of the exact solution, the
effect of factor X 1s then obviously just as great as that of
quantity Pr for the temperature fileld. Pohlhausen found, on the
basis of his numerilcel calculations, that the heat-transfer coefficient

is proportional to @’Pr, thus the shearing stress at the wall is
afflicted at each new step by an error of only about one-third of the
error of the preceding step.

For variable density, the dlscussed solution steps of mathe-
matical nature" can be combined with the steps of physical nature':

Step 1: as starting point the known gsolutions for constant
denslity are assumed:

(a) The Blasius solution (reference 2) for the velocity
profile

(b) Pohlhausen's method for the .temperature fleld
Step 2:

(a) Calculation of velocity profile by (8), the temperature
variation being based on the density of the tempera-
ture profile according to step 1(Db)

(b) Calculation of temperature field by (9) with the velocity
profile according to step 2(a); relation of denslty to
temperature as in step 2(a)

1Tt took & subsidiary worker 10 hours to reach the final solution of
the velocity field in figure 1.
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The procesg is repeated till the final golution is sufficiently
exact usually regulring three to four steps. _

A few general remsarks about the Influence of the tempersture
variability of the physical properties.- The flow with constant
physical properties can be regarded as first approximation, and the
problem 1s then to agcertaln the dlfferences which are produced by
variable physical propertles. The quality of thls approximation . _
depends, of course, on the temperature assumed for the physical
properties at the "1sothermal” flow. Choosing the wall temperature or
the temperature at the edge of the boundary layer as refsrence tempera-
ture for the lsothermal flow so results on the basls of physicsal
point of view as well as on the basgis of the equations that an Increass
of the vliecoslty or density inside the bowmdary layer 1s accompanied by
an increase in the resistence; similarly, an increase in heat con-
ductivity and densglity effects a greater heat tremsfer. But the -
magnitude of the effect of varlabllity of the separate physicel prop-
erties is contingent upon the ratioc of the boumdary-layer thickness of
the temperature and velocity fileld. (The ratio of both is proportional
according to Pohlhausen.)

This 1s 1llustrated by the following case, which is, at the same
time, of practical Importance. The temperature boundary layer 1s
assumed very small compared to the flow boundary layer; consegquently,
the variation of the physical properties within the thermel boundary
layer can be disregarded for the shearing stress and the latter
computed as 1f the temperalture at the edge of the boundary layer
reaches to the wall. The same holds for the velocity profile, with the
exception of a small ares within the thermal boundary layer, where the
veloclty profile by the viscosity variation is deformed correspondingly.
But for the temperature profile this ares 1s exactly decisive.

From the equality for the shearing stresses the velocity gradients_
(a“ for Pr'=) « (10)

at the walls are:
Su
oy oy

the subscript 11 denotes the "1 gothermal” flow with the physical prop-
erties at temperature T1. The variability of density is noneffective for

the field of flow, in this instance. It can be mathematically derived from
the formulas (8) and (9). The ratios for the temperature fileld are

digcussed Iin the next chapter by means of the two exemples. . _
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ITT. FLOW AND TEMPERATURE FIELD FOR VISCOUS FLUIDS

In eccordance with the physical properties of viscous fluids, the
velocity and temperature field were computed on the assumption that
only the viscoslty should change wlth the temperature by the following
formula .

' b
Tk + Tc

T (11)
T + Tc

M

where b and T, are constents, chosen so as to reproduce the tem-
perature variation as closely as posslble. The subscript k 1s to
be O or 1, depending upon the choice of the physical properties

in the dimenslonless & . The choice was b = 3 (viscous lubricating
0il) and the two cases of a heated and cooled plate computed with

U
>-= % end 8 and Prj = 12.5 and 100; 1t thus concerned identically

H1
great temperature differences of the same fluid, since Pro is

for the present formed with the physical properties at wall temperature.
Choosging T, as reference temperature gives by (11)

3
q)=-L= 1
Ho .
9<:ﬁl_9 - 1:)+-1
Hy

The result of the calculation by the iteration method of the preceding
section is seen in Tlgures 2 and 3. In both graphs, the dimensionless
wall distances ¢, and §;, formed with Ho and Ky, are plotted to

the scale 1:VB end 8:1, respectively, so that the actual wall
distance ¥y 1s the same for both absclssas. Besides the solution o,
which took three steps to compute, the isothermel veloclity profiles
(a.))o and (a))l at constant density at temperature T, and ‘T, are

shown plotted agsinst the dimensionless coordinates ;O and 51.2

In the subsequent campilation TS and o denote the éiearing stress

at the wall and the heat-transfer coefficlent (a = );
o

(12)

2 .

For the "ilsothermsl™ temperature profiles (9)o aend (6)1, the
Prandtl numbers at temperatures To and Tl must be inserted. For
example, In figure 2: Pro = 12.5 and Pr1 = 100.
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the viecosity at temperature T1 and To"
Table T e
o e = |6, | &)
0)1 m)o dt /o at, .
Heated wall o.841f1.20! 12.5 1.58 1.84
Cooled wall 1.08 }0.98| 100 0.255 | 3.01

are the corresponding values in isothermal flow with

Although in both cases the thermal boundary-layer thickness 1s far
from small compared to the flow boundary layer, the shearing stress

can gtill be computed satisfactorily by the isothermal formula with the
viscosity of the wall temperature. The assumptions to equation (10)
are thus shown for Pr > 10.

The conditions are more complicated for the hegt-transfer
coefficient; from (9), 1t follows that the heat~transfer coefflclent

a 18 proportional to o(Pr) .VE, whereln, gccording to Pohlhausen,
- v x

¢ 1is, with high accuracy, assumed as 0.664 \Y/Pr. Bearing in mind that
Pr = g, 1t follows that the heat-iransfer coefficient ls inversely

proportional to the sixth root of the viscosity. Since all physical
"properties except the viscoslty have been assumed constant, there
results, when it 1s referred once to the wall temperature; the other
time to the temperature at the edge of the boundary layer

(00) (ul S/ 6
Eo['jl Ko
A comparison with the foregoing -tabulation indicates that (a,)l

supplies a poorer approximation for the heat-transfer coefficlent
than (a)o; this 18 readily explained by the varlation of the velocity
profile (figures 2 end 3).- It is ta be expected that the cond.i'bions
are similar at higher Prandtl numbers.

(13)
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Another reference point for the heat-transfer coefflcilent is found
in the velocity gradient at the wall; by (10) and allowing for (3),

there follows
(E% )D = I'll (25 )D 1
= —_—— e — —_ (][)

Bl = [BL VS

the subscripts 1o gnd i1 denoting isothermal flow at tempera-
ture To and Tl' Thege relations are confirmed in figures 2 and 3.

o

With these formulas, limits can be indicated for the heat-transfer
coefficients (figures 2 and 3). One is glven sccording to (13)
by (a);, because the velocity profile (w)y ylelds at all points

higher velocities at cooled and lower velocities at heated wall. The
other 1limit ig glven by a veloclty profile of isothermsl form, where
the absclsea scale 1s so modified that its gradient at the wall agrees
with the actuel velocity distribution. From the remark about the
convergence of the method of solution in II, 1t follows then that the
heat-tranafer coefficlent is proportional to the third root of the
velocity gradient at the wall; for this extreme value, the second

equation of (14) glves: Vsﬁil (m)o. Summed up, the limlts of the
Ho
heat-transfer coefficients, by a change in viscosity, are

6/fo S ¢

Hy

Sa

(a), =@, (15)

the upper signs applying to heated, the lower to cooled wall.
Hence, the following approximate rule for viscous fluide (Pr>10):
For computing the reslstance, the physical properties are referred to
the temperature at the edge of the boundary layer; for heat transfer,
to the wall temperaturs. '
IV. FLOW AND TEMPERATURE FIELD AT Pr = 0.7 (AIR)
FOR TEMPERATURE VARIABTLITY OF EVERY PHYSICAL PROPERTY

In the -50° to 140° temperature range the physical properties
of the air can be represented by the following formulas
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- . 0.821
o= KiTO'TBO p=ET 1  M=ET

T = temperature in absolute degrees. With

there results

E—:Q):EL""B(J. "9]0.78
]

and similar expressions for ¥ and X.

: : “eee 1
The calculations for s heated Plate and 49 = % and 5 showed

only moderate differences in the velocity and temperature field from
the form for isothermal flow (Table 2). For the investigation of the
conditlions at higher temperature differences, the case ?1 = 20

and T, = 620° ¢ was computed. The veloclity and temperature fields
already exhibit, according to figure k, appreciable differences from
the form for constant physical properties; £, .and £, are formed

with the physical properties at temperatures T, end Tl, respectively.

This resulte in a substantlal thickening of the boundary layer for both
flelds; nevertheless, wall shearing stress and heat-transfer coefficilent
indicate only minor departures from the values for constant physical
properties. ' )

Table 2

s a0 To To a
Heating (dgl)o (@51)0 (7o) [{T0)7 | (@) (;31

3 = % 0.575 | o.k00 | 1.02 | 1.001.01] 1.00
9 = % .51h A220 | 1.05 | 1.00f1.02] 1.00
T, = 620° ¢

286 2351 1.11 .93 1.03 .96
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The explanation for it is that in sir the growth of the viscosity with
the temperature acts In the sense of a resistance increase, the drop
in denslity in the sense of a resistance decrease, and both effects
practically cancel one snother at Pr = 0.7, where thermal snd flow
boundary-layer thickness are about equally great. The conditions for
the temperature fleld are almost identical, because the heat con-
ductlivity and the viscosity are similarly affected by the temperature.

The frictional heat can be allowed for in similar manner;

2
equation (2) contains then an additive term u(%?) on the right-hand
slde, snd the solution reads

o = L33t - 5(t)

g
Ae) = fo %e'R(g) ag

- >~ (16)
o Py AT ; Ug ow 2R (E) dg’ o, R(E) at
X LJo

™

B(t) = (_l—'_TTD)-
3
R(E) = _/; .f%.). at AT =§P

A

The 1teratlion method cen be applled again, slthough g little more

paper work 1s involved. For constant physicel properties, equatlion (16)
reduces to Eckert's solution (reference 8). The thermometer problem
(vanishing temperature gradient at the wall) can also be solved by
sultable variation of the integration constant. In view of Crocco's
caelculationsg for a gas with Pr = 0.725, it was decided not to cal-
culate sny model problems by the new method.
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V. APPLICATION TO A DIFFUSION FROELEM | | .

The concentration field for the problem of diffuslon at the flat
plate can be calculated in the same menner as the temperature fleld .3,k
The differential equation reads

ac ac 32 .. - : - . =
E ' vay kay2 (.17) L

where k 1s the diffusion factor and ¢ +the concentration which 1s
defined as quantity of gas or vepor per unlt volume. The physical -
properties are regarded as constant, but it 1s also taken Into account =
that for greater concentrations the veloclty v at the wall no longer
disappears, as already pointed out by Nusselt (reference 7). When
fluld from e wall is vaporized, say by a gas such as gas flowing along
a wotted wall, substasnce passes continuously into the flow.

Hence v(0)>0 at the wall. When, on the other hand, vapor condenses _ .
at the wall or when alr contalning semmonia, for example, passes over ' ., . =
blotting paper impregnated with hydrochloric acid, it results _ -
in v(0)<0. The boundary conditions for v are according to the - _
equations (100) and (101) of reference (T): : =

_k Bc) 1 - v(0) (18) .
ST /o B - 1 | ; S s
Po : B :
wherse ¢ 18 the concentration of the gas or vapor, for which the wall
1s permeable, ¢, the concentration at the wall, Py the corresponding

partial pressure, and p the total pressure. _ _ . : . AT T TER RN

Tntroduction of the flow velocity U and the dimensionless 3 .ol
resulte in . — . — - -

(y') --fEL oo (99)\/—6-_ ¢c=o_C (19)
A 200(1’_-1)0@50_\/1 _ Y S

3Eckert reported a solution of this probleém at the l9h3 meeting
of the VDI committee for heat research in Bayreuth, whers an approxima-
tion method similar to Pohlhausen's method for the flow boundary layer
was used.

lFDamkohler 's estimate for the present problem was published in o . .
Z. fur Elektrochemie, 1942, p. 178. ~ A e L -
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whers . o and c, are the concentration at the wall and at the edge

of the boundary layer. Similarly to (5), it glves
v : M k_ %1 "% fac
T =L [mg-f mag+—] M=-3 (_) (20)
U TUx 0 2 v cQ(E_ -1 g o
and similerly to (9), the solution for the concentration field

4
R VARG OLE

.c=%i L(%) = L e | ae.
> (21)
3
= u
£(8) -2j; 2 at
J

where Y 18 a quantity analogous to the Prandtl number. To obtain the
k

velocity w, simply put % = 1 in equation (21).

The concentration gradient at the wall is contained in M; but (21)
can, in the first Instance, be solved for any M values and the quantity

c,a -c
N=-%[—2_"° ) computed with the ald of the value obtained from
E)
Co\Po
the solution for (%-%) . The velocity and concentration flelds for the
o

calculated M and N values are represented in figures 5 and 6, the
concentration gradient at the wall,in figure 7. M >0 denotes evapora-
tion at the plate; M<O, condensation and absorption at the plate; the

value 0.6 chosen for the quantity % is applicable in good approxima-

tion for the diffusion of water and ammonia in air .5 Strictly spesaking,
for the specifled higher concentrations, the density end viscosity of
the two flulde are dependent on the concentration; end the diffusion
factor, on the temperature. Cases of that kind can be calculated

with the aid of the described method. If the diffusion is

5Ac:cord,ing to Ten Bosch: Die W‘a'.meabertragung, Berlin 1936,
pp. 189 and 257. : -
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accompanied by a heat transfer, the solutlon for the concentration field
can equally be applied to the temperature field with good approximation.
In the same way, the heat transfer cen be derived from the solution for
the concentration field, when alr is exhausted or blown at the plate
with transverse velocities at the wall corresponding to equation (20).

CONCLUDING NOTE -

After completion of the calculations the writer recelved knowledge
of a report by Schlichting and Busemann (reference 11) about the
velocity profile at the flat plate for exhsustion where the transverse
voloclty at the wall was expressed by

o]

= - &, Mo
vo(x) - 2 x

Between the present value M and C the following relation exists
(see also (19) and (20)).

C = =-M .

The pregent veloclty dlstributions agree to about 1 percent with those
calculated by Schlichting (by a different method), with exception of
M = 1, vhere the wrlter plainly chose too few approximation steps and
the differences are therefore a little greater. For the present
calculation three steps were usually sufficlent.

Translated by J. Vanier
National Advisory Committee
for Aeronsutice
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Figure 1,- The several approximations for computing the velocity

distribution at the flat plate by the method of Preston and Piercy
(constant physical quantities).
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Figure 2.- Velocity and temperéture distribution at a heated plate

for variable viscosity. Viscosity exponent b = 3.

(w)os (8)os

and (w)l, (e)l isothermn.al velocity and temperature distributions,

.V, and v, kinematic viscosity at wall temoerature T, and

o]

temperature T at the edge of the boundary layer.
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Flgure 3.- \.Telocﬂ:y and temperature distribution at the cooled plate.
Viscosity exponent b = 3. (w)o, (e)o, and (w)l, (e)l isothermal

velocity and temperature distributions, v o and vy kinematic

viscosity at wall temperature T, and temperature T, at
the edge of the boundary layer.
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Figure 4.~ Velocity and temperature distribution at a heated plate
for Pr = 0.7 (air); all physical quantities constant with
temperature.
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Figure b.- Velocity field at diffusion with higher concentrations, where
finite transverse velocities occur at the wall (see text for equations (18)

to (20)). :
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Figure 6.- Concentration distribution to figure 5.
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Figure 7.- Concentiration gradient at the wall and quantity M plotted
against N (see text for equations (19) and (20)).
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