	FIDENTIAL Copy RM E51L0
· · · · · · · · · · · · · · · · · · ·	IVAILABLE IAH 1 - 152
N	ACA
RESEARCH	MEMORANDUM
COMPARISON OF TURBOJET	-ENGINE ALTITUDE PERFORMANCE
CHARACTERISTICS	AND IGNITION LIMITS WITH
MIL-F-5624A FUE	L, GRADES JP-3 AND JP-4
By Willis M. Bra	ithwaite and Paul E. Renas
	Propulsion Laboratory veland, Ohio
FOR REFERENCE	CLASSIFICATION CANCELLED
	Authority Marca Les. Els. 7 Date 1-10-5 P.N-111
INDI IO BE TAKEN FROM THIS ROOM	By 113 1-30-57 See
	ASSUFIED DOCUMENT
	ting the Indicate Detries of the Onthe States within the meaning ecs. 793 and 794, the transmission or revelation of which in any 1 by haw.
	VISORY COMMITTEE
	ERONAUTICS
	SHINGTON ruary 27, 1952
CON	FIDENTIAL NACA LIBRAR

NACA LIBRARY LANGLEY AERONAUTICAL LABORATORY Langley Field, Va.

-CONFIDENCEAL

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

COMPARISON OF TURBOJET-ENGINE ALTITUDE PERFORMANCE

CHARACTERISTICS AND IGNITION LIMITS WITH

MIL-F-5624A FUEL, GRADES JP-3 AND JP-4

By Willis M. Braithwaite and Paul E. Renas

SUMMARY

The altitude performance and ignition limits of an axial-flow turbojet engine were evaluated in an altitude test chamber with MIL-F-5624A, grade JP-3 fuel (that specified for this engine) and a low-volatility grade JP-4 fuel. The investigation was conducted over a range of altitudes from 10,000 to 55,000 feet.

Use of the JP-4 fuel resulted in an increase in specific fuel consumption of 2 to 5 percent over that obtained with the JP-3 fuel. This increased specific fuel consumption resulted from a combination of reduced combustion efficiency and the lower heat of combustion of the JP-4 fuel. Altitude ignition limits were found to be essentially equal for the two fuels over a range of flight Mach number and fuel-supply temperature. Inspection of the combustors after 6 hours operation with JP-4 fuel revealed no noticeable carbon deposition.

INTRODUCTION

The need for a fuel having characteristics suitable for jet aircraft and that could be produced in large quantities led to the development of MIL-F-5624A, grade JP-3 fuel. It was found, however, that during rapid climbs to high altitudes rapid boiling of this fuel occurred, thus resulting in large losses of fuel, both as vapor and as entrained liquid (foaming). Such fuel losses seriously decreased the range or endurance of the aircraft.

These losses may be reduced by using a fuel of lower volatility. Previous investigations (references 1 and 2) indicated that a reduction in volatility of the JP-3 fuel from a Reid vapor pressure of about 6 pounds per square inch to 1 pound per square inch resulted in no loss in altitude performance with respect to thrust, fuel consumption, and altitude blow-out, but decreased altitude ignition limits. On the

basis of these and other data, a compromise fuel specification, MIL-F-5624A, grade JP-4, was issued which limits the Reid vapor pressure to 2 to 3 pounds per square inch. It was therefore desirable to compare the performance of this new specification fuel with MIL-F-5624A, grade JP-3 in a full-scale turbojet engine developed on JP-3 fuel.

Such a comparison of the altitude performance characteristics and altitude ignition limits of a current axial-flow engine using JP-3 and JP-4 fuels was obtained in an investigation conducted in an altitude test chamber at the NACA Lewis laboratory. Engine performance data were obtained at simulated altitudes of 10,000, 40,000, and 55,000 feet at a simulated flight Mach number of 0.6 for both fuels. Altitude ignition limits for both fuels were obtained at flight Mach numbers of 0.4, 0.6, and 0.8 with fuel-supply temperatures between 45° and 80° F. At a flight Mach number of 0.6, altitude ignition limits were also obtained for fuel-supply temperatures of about -35° and 0° F.

APPARATUS

Engine

A modern axial-flow turbojet engine was used for this investigation. Liners designated as a smokeless type were installed in the combustors. The ignition system used had a 15,000-volt, 400-cycle output to the plugs in two diametrically opposite combustors.

Altitude Test Chamber

The engine was installed in an altitude test chamber 10 feet in diameter and 60 feet in length, as shown in figure 1. The front of the engine extended through the front bulkhead by means of a labyrinth seal. This bulkhead separated the inlet and exhaust sections of the chamber. The inlet section was connected to the laboratory combustionair supply and the engine exhausted into a diffuser elbow that was connected to the laboratory exhaust system. A rear bulkhead was located near the exhaust nozzle of the engine to prevent recirculation of exhaust gas around the engine. The altitude-chamber fuel system included a cooler to provide a range of fuel-supply temperatures from about -40° to 80° F.

2474

Instrumentation

Radial survey rakes at several circumferential positions were installed at the inlet and outlet of each component of the engine to measure total temperature and total and static pressure. The air flow was computed from the temperatures and pressures measured at the engine inlet, and the jet thrust was computed from this air flow and static and total pressures measured at the exhaust-nozzle inlet. The fuel flow was measured directly by rotameters in the fuel-supply line and the engine speed, by remote indicating tachometers.

Fuels

The fuels used in this investigation were MIL-F-5624A, grades JP-3 and JP-4. The specification and an analysis for each of the fuels are presented in table I. The JP-3 fuel is the fuel presently specified for the engine used in this investigation. The JP-4 fuel is one of the lower quality fuels permitted under this specification in that its Reid vapor pressure was 2.1 pounds per square inch, and the aromatics content was essentially the maximum allowed. The final boiling point of the fuel (561° F) slightly exceeded the 550° F allowed by the specification. The high final boiling point is believed insignificant.

PROCEDURE

Performance data were obtained at altitudes of 10,000, 40,000, and 55,000 feet for a flight Mach number of 0.6. At each flight condition, the engine-inlet temperature and pressure were set at values corresponding to the stagnation pressures and temperatures in flight, based on NACA standard atmospheric conditions. The exhaust section of the chamber was maintained at the static pressure corresponding to the particular altitude being simulated. The engine speed was varied from rated speed or the maximum engine speed limited by a tail-pipe gas temperature of 1300° F to an engine speed where the tailpipe temperature was as low as 300° to 500° F.

The ignition limits were obtained at flight Mach numbers of 0.4, 0.6, and 0.8 with the fuel-supply temperature between 45° and 80° F. At a flight Mach number of 0.6, ignition limits were also obtained with fuel-supply temperatures of about -35° and 0° F. Because fuel characteristics have only a secondary effect on propagation of flame from one combustor to another and on engine acceleration, only the ignition phase of an altitude start was investigated. For the ignition studies, the engine-fuel manifold was modified to supply fuel only to the two combustors containing spark plugs, which reduced the amount of fuel

2474

that would accumulate in the engine during an ignition attempt. If the combustors containing the spark plugs ignited, propagation to all combustors was assumed possible.

The altitude ignition limit was determined by simulating a particular altitude and flight speed in the altitude chamber. When the engine rotor speed stabilized, the ignition circuit was energized and the throttle advanced. If ignition did not occur, the throttle was closed and slowly advanced once more. This process of repeatedly varying the fuel flow was continued until ignition occurred or a time limit of 45 seconds had elapsed. Upon completion of two successive starts, the altitude was increased 2500 feet and the procedure repeated. When an altitude was reached where ignition could not be obtained after several attempts of 45-second duration, the altitude was lowered to that at which ignition has previously occurred. If ignition was again obtained, this altitude was, by definition, the altitude ignition limit for the engine.

RESULTS AND DISCUSSION

The effects of different fuel types on turbojet-engine performance will be apparent on variables including fuel consumption, combustoroutlet-temperature profile, and engine stability characteristics. Inasmuch as the dissimilarity between the fuels is not great, the combustor-outlet-temperature-profile effect was not considered. The engine exhibited stable operation over the range of engine speeds for the flight conditions investigated. Consequently, fuel flow, combustion efficiency, and specific fuel consumption are the only performance variables discussed. The data obtained in this investigation are presented in table II.

Performance Variables

The combustion efficiencies obtained with the JP-3 and JP-4 fuels at a simulated flight Mach number of 0.6 and altitudes of 10,000, 40,000, and 55,000 feet are presented in figure 2. The combustion efficiency presented herein is defined as the ratio of the enthalpy rise across the combustor to the enthalpy available from complete combustion of the fuel (reference 3). The JP-3 fuel gave consistently higher efficiencies at all three altitudes than did the JP-4 fuel. At peak efficiencies, this difference did not exceed 2 percent; at off-peak conditions, the largest difference in combustion efficiency was about 4 percent.

The lower combustion efficiency with the JP-4 fuel would require a higher fuel flow with this fuel than with JP-3 fuel; in addition, the

NACA RM ES1LOS

lower heating value of the JP-4 fuel is less than that of the JP-3, requiring a still higher fuel flow. The observed fuel flow is shown in figure 3. At an altitude of 10,000 feet, the increase in corrected fuel flow of the JP-4 fuel over that of the JP-3 fuel was slightly less than the increase indicated for the higher altitudes. At a corrected engine speed of 7500 rpm (approximate speed for peak combustion efficiency) and altitudes of 40,000 and 55,000 feet, the corrected fuel flow was about 3 percent greater for the grade JP-4 fuel than for the JP-3 fuel.

The increased fuel flow required when JP-4 fuel was used resulted in a correspondingly higher corrected net thrust specific fuel consumption, as shown in figure 4. The corrected net thrust specific fuel consumptions with JP-4 fuel were 2 to 5 percent higher than with the JP-3 fuel. These data indicate no significant trend with increasing altitude.

Altitude Ignition

The effects of flight Mach number and fuel temperature on altitude ignition limits for the two fuels are compared in figure 5. On the basis of previous investigations (for example, reference 2), the more volatile JP-3 fuel might be expected to allow ignition at slightly higher altitudes than the less volatile JP-4 fuel. Nevertheless, as shown in figure 5(a), the altitude ignition limits of the two fuels differed by less than the altitude increment of 2500 feet used in determining the ignition limits. The altitude ignition limits presented in figure 5(b) for a range of fuel-inlet temperatures at a flight Mach number of 0.6 were also essentially equal for the two fuels. A slight decrease in altitude ignition limit occurred for both fuels as the fuel-inlet temperature was reduced from approximately 60° to -35° F.

The increased aromatic content and decreased volatility of the JP-4 fuel would be expected to increase the carbon deposition. Examination of one of the combustor liners revealed no noticeable carbon formation after 6 hours operation with this fuel; however, most of this operation was at high-altitude conditions where carbon deposition is minimized.

CONCLUDING REMARKS

A comparison of the performance of MIL-F-5624A grade JP-3 and a low-volatility MIL-F-5624A grade JP-4 fuel in a turbojet engine indicated that the combustion efficiency with the JP-4 fuel was 2 to 4 percent lower than with the JP-3 fuel at each of the three altitudes

NACA RM E511.05

2474

investigated, 10,000, 40,000, and 55,000 feet. As a result of this lower combustion efficiency with the JP-4 fuel, together with approximately a 1-percent lower heating value, the engine net thrust specific fuel consumption was 2 to 5 percent higher with this fuel than with the JP-3 fuel.

The altitude ignition limits were essentially equal for the two fuels over a range of flight Mach numbers from 0.4 to 0.8. Similarly, the altitude ignition limits of the two fuels were essentially equal over a range of fuel-inlet temperatures from approximately 60° to -35° F.

After 6 hours operation with the JP-4 fuel, which had a relatively high aromatic content, examination of one combustor revealed no noticeable carbon formation.

Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio

REFERENCES

- Wilsted, H. D., and Armstrong, J. C.: Comparison of Performance of AN-F-58 and AN-F-32 Fuels in J33-A-23 Turbojet Engine. NACA RM E8K24, 1949.
- 2. Wilsted, H. D., and Armstrong, J. C.: Effect of Fuel Volatility on Altitude Starting Limits of a Turbojet Engine. NACA RM E50G10, 1950.
- 3. Turner, L. Richard, and Lord, Albert M.: Thermodynamic Charts for the Computation of Combustion and Mixture Temperatures at Constant Pressure. NACA TN 1086, 1946.

6

	MIL-F-56244	1	MIL-F-5624A			
	JP-3		JP-4			
	Specifications	Analysis	Specifications	Analysis		
A.S.T.M. distillation, (°F)						
Initial boiling point Percentage evaporated		117		148		
5		156		188		
10		178		218		
20		205		255		
30		226		288		
4 0		246		319		
50		267		349		
60		292		378		
70		322	~~~~	409		
80		363		441		
90	400 (min.)	415		475		
95		452		499		
Final boiling point	600 (mar.)	487	550 (max.)	561		
Residue, (percent)	1.5 (max.)	1.0	1.5 (max.)	1.1		
Loss, (percent)	1.5 (mar.)	1.0	· 1.5 (mar.)	1.0		
Freezing point, ^O F Aromatics, (percent by volume)	-76 (max.)	Below -76	-76 (max.)	Below -76		
A.S.T.M. D-875-46T Silica gel	25.0 (max.)	10	25.0 (max.)			
Bromine number	30.0 (max.)	0.5	30.0 (max.)	8.0		
Reid vapor pressure,	50.0 (max.)	0.5		0.0		
(lb/sq in.)	5 to 7	5.8	2 to 3	2.1		
Hydrogen-carbon ratio	5 00 7	0.172		0.160		
Heat of combustion,		0.116		0.100		
(Btu/lb)	18,400 (min.)	18,680	18,400 (min.)	18,500		
Gravity, (^O API)	45 to 63	· · ·		46.9		
Air-jet residue,	t	57.0	±0 00 00	1		
(mg/100 ml)		1.0		11		
Accelerated gum, (mg/100 ml)	20.0	5.0	20.0 (max.)	15		
Sulfur, (percent by						
weight)	0.4 (mar.)	0.1	0.4 (max.)	0.1		
Aniline point, OF		122.0		114.1		
Viscosity at 70° F,						
(centistokes)		1.0		1.1		

TABLE I - SPECIFICATIONS AND ANALYSIS OF FUELS

.__.

NACA

ŧ

~

.

NACA RM E511.05

TABLE II - PERFORMANCE DATA OBTAINED WITH

T											
Run	Alti-	Mach	Engine	Alti-	Compres-	Compres-		Exheuet-			
	tude	number	peed	tude	sor inlet	sor inlet	nozzle	nozzle	air		
	(ft)		(rpm)	static	total	total	inlet	inlet	flow		
				pres-	pressure	temper-	total	total	<u> (1b)</u>		
				sure	$\left(\frac{1b}{1b}\right)$	ature	pres-	temp-			
				$\left(\frac{1b}{1b}\right)$	(sq ft)	(°R)	sure	erature			
				(sq ft)			$\left(\frac{1b}{1b}\right)$	(°R)			
							(sq ft)				
	Grade JP-3										
1 10,000 0.6016 7643 1458 1862 519 3399 1671 75.98											
2	10,000	.5907	6829	1457	1845	520	2627	1343	64.33		
3		.6119	6067	1447	1863	520	2115	1096	53.06		
4		.5953	5563	1455	1849	522	1882	1029	43.48		
5		.5967	4932	1462	1860	520	1725	957	35.66		
6	40.000	0.6152	8000	387.4	500.1	417	1113	1749	24.06		
7		.6253	7586	386.3	502.8	417	1062	1604	23.84		
8		.5938	6827	395.7	502.3	418	913.2	1363	22.33		
9]	.6052	6072	389.4	498.7	416	699.2	1089	18.79		
10		.6186	5562	385.4	498.9	417	574.7	957	15.92		
111	55,000	0.7206	8023	179.6	253.8	426	592.4	1876	11.51		
12		.6285	7531	189.2	246.9	4 28	525.2	1715	11.29		
13		.6336	6848	186.5	244.4	424	458.2	1510	10.53		
14		.6447	6421	187.3	247.7	422	402.9	1295	9.52		
15		.6204	7201	188.0	243.7	4 20	493.8	1555	11.21		
Grade JP-4											
16	10,000	0.5126	7389	1454	1859	521	3133	1554	72.72		
17		.6038	7078	1457	1864	523	2828	1425	67.71		
18		.5896	6453	1459	1846	526	2303	1202	57.40		
19		.5844	6072	1472	1855	524	2114	1105	52.30		
20		•5800	5569	1477	1855	525	1887	1026	43.39		
21.	40,000	0.6103	7998	387.8	498.7	414	1127	1766	23.89		
22		.6212	7592	386.3	501.1	413	1069	1608	23.88		
23		.6196	7064	386.2	500.3	414	971.2	1437	23.16		
24		.6228	6 4 57	387.1	502.8	416	811.5	1230	20.92		
25		.6159	5562	387.8	500.9	418	583.9	961	15.81		
26	55,000	0.6059	7587	189.4	242.7	422	525.8	1720	11.23		
27	}	.6344	7062	187.3	245.6	422	479.1	1554	10.94		
28		.6196	6827	187.8	243.3	413	449.8	1474	10.61_		
29		.6455	6072	185.3	245.2	425	337.6	1204	8.76		
30		.6173	64 50	187.9	243.0	421	389.5	1301	9.68		

NAC

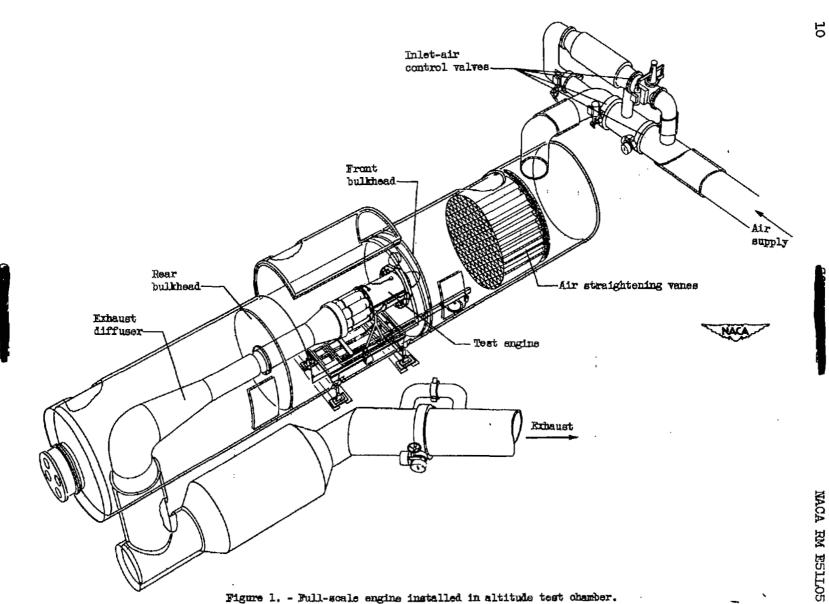
٩

24.74

NACA RM E51105

MIL-F-5624A, GRADES JP-3 AND JP-4 FUELS.

.


Engine fuel flow $\left(\frac{1b}{hr}\right)$	Net thrust (1b)	Thrust spe- cific fuel consumption (<u>lb</u> (hr)(lb thrust)	Cor- rected engine speed (rpm)	air	$\begin{array}{c} \text{Cor-}\\ \text{rected}\\ \text{fuel}\\ \text{flow}\\ \left(\underline{1b}\\ hr\right) \end{array}$	Corrected thrust specific fuel consumption (1.5 (hr)(1b thrust)	Combus- tion effic- iency	Run				
	Grade JP-3											
4452 2623 1481 1071 760 1698 1465 1067 630 449 954 798 598 451 675	3311 1824 787 365 74 1282 1162 878 473 245 651 576 454 324 522	1.345 1.437 1.882 2.935 10.219 1.324 1.262 1.216 1.333 1.833 1.466 1.384 1.317 1.391 1.292	7643 6822 6061 5546 4927 8925 8463 7608 6782 6205 8855 8293 7576 7121 8005	86.34 73.86 60.33 49.91 40.61 91.27 89.94 84.41 71.37 60.52 86.97 87.85 82.41 73.32 87.54	5059 3005 1680 1222 864 8017 6878 5009 2986 2124 8782 7530 5728 4272 8513	1.345 1.436 1.880 2.926 10.209 1.477 1.407 1.355 1.489 2.045 1.618 1.524 1.457 1.542 1.457	0.979 .974 .970 .971 .957 0.944 .953 .958 .949 .898 0.857 .906 .936 .888 .821	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15				
	675 522 1.292 8005 87.54 6513 1.436 .924 15 Grade JP-4											
3868 3108 1939 1517 1101 1774 1525 1238 869 472 826 669 591 367 459	2803 2183 1181 782 352 1298 1176 991 683 252 585 495 445 234 239	1.380 1.424 1.643 1.938 3.133 1.366 1.297 1.248 1.272 1.872 1.412 1.350 1.329 1.568 1.395	7374 7050 6415 6042 5536 8955 8510 7910 7212 6198 8414 7832 7653 6710 7161	82.94 77.17 66.19 59.95 49.79 90.52 89.96 87.50 78.83 59.94 88.28 84.97 82.31 68.37 75.95	4394 3514 2210 1721 1249 8426 7219 5863 4085 2222 7986 6390 5761 3500 4439	1.377 1.418 1.633 1.928 3.114 1.530 1.454 1.398 1.421 2.086 1.565 1.497 1.489 1.732 1.548	0.968 .971 .967 .956 .944 0.922 .935 .945 .945 .945 .861 0.891 .923 .939 .901 .902	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30				

-

NACA

9

2E

Э

I.

- 11 - 11

ĸ

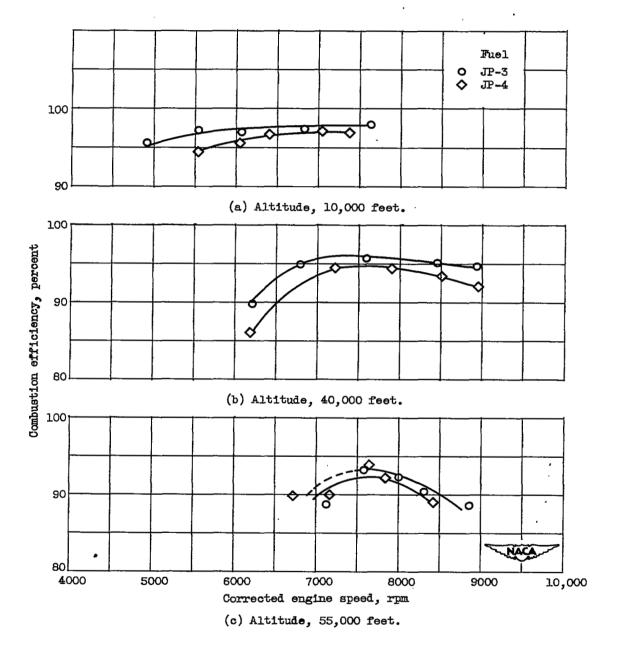
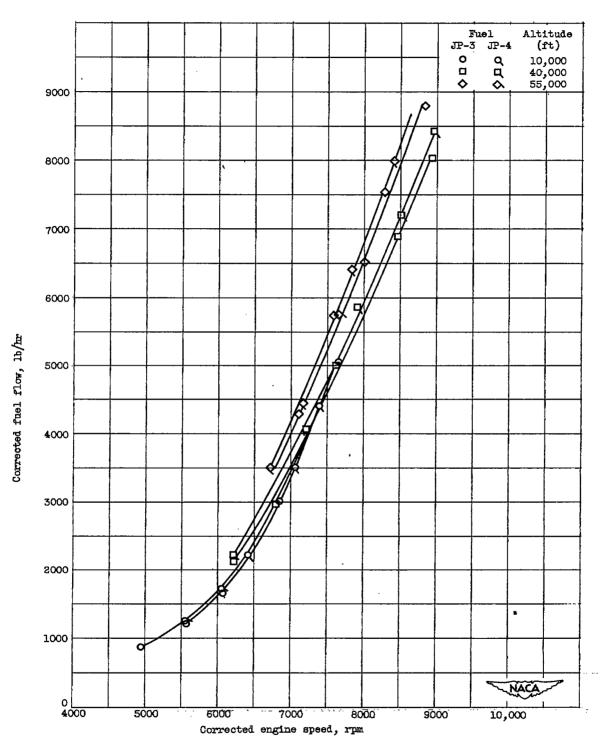
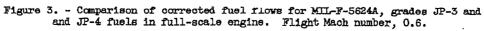


Figure 2. - Comparison of combustion efficiencies for MIL-F-5624A, grades JP-3 and JP-4 fuels in full-scale engine. Flight Mach number, 0.6.

11


,


3E

. ٩

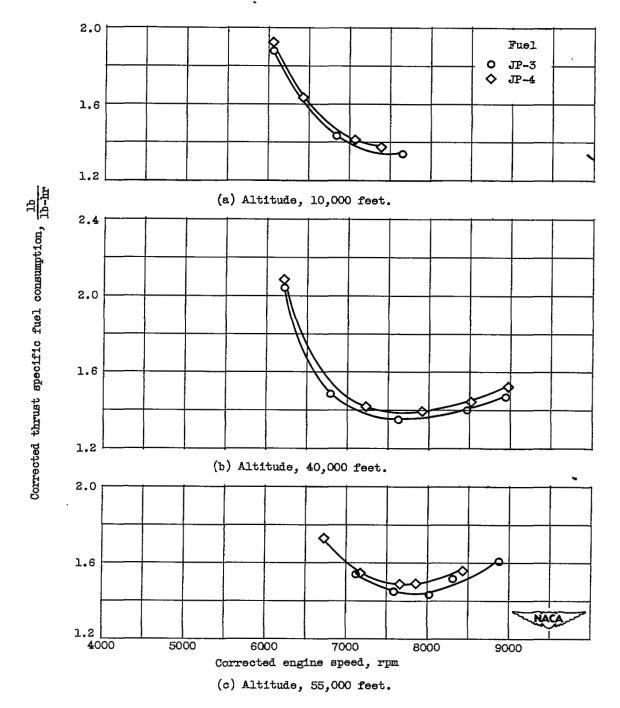
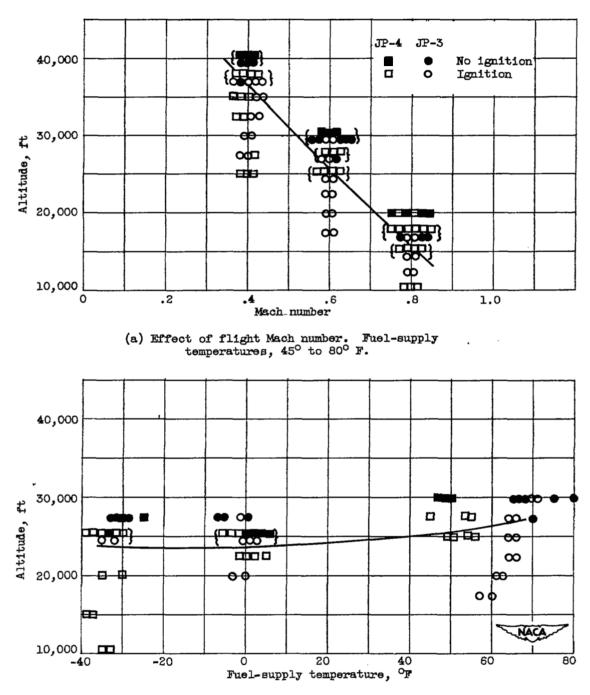



Figure 4. - Comparison of corrected net thrust specific fuel consumptions for MIL-F-5624A, grades JP-3 and JP-4 fuels in full-scale engine. Flight Mach number, 0.6.

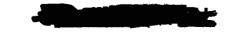
4

n

(b) Effect of fuel-supply temperature. Flight Mach number, 0.6.

Figure 5. - Comparison of altitude ignition limits of full-scale engine obtained with MIL-F-5624A, grade JP-3 and JP-4 fuels as affected by flight Mach numbers and fuel-supply temperatures.

SECURITY INFORMATION



ť

·

.

.

the second se