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~

CORRELATION OF DATA ON THE STgiIsmICAL
'THEORY OF TURBULENCE®*
By K. Wieghardt |
. SUMMARY

The statistical theory of turbulence affords an ex~
cellent medium for representing the kinematic conditions
in turbulent flow and 2lso serves as a valuable aid to
exact experimental research., But it is still not developed
enough for solving dynamic processes.

Even in the simplest case of isotropic turbulence
the calculation of the correlation curve or of the decre~-
ment of turbulence invariably reaches a point where clear-
cut assumptions, such as omission of the inertia terms,
or, earlier; mixing length assumptions or even merely
general dimensional considerations, must be made. Since,
on the other hand, the differential equations are simply
evolved from Navier-Stokes! and the continuity equations
it is safe to assume that in their multitude of solutions
the actually arising relations are contained alsoj but
there still is no physical principle with the aid of which
the real solution could be dug out from the multitude of
mathematically possible solutions.

I. INTRODUCTION

If a solid body is towed through a fluid two es-
sentially dissimilar types of flow are apparent. For,
if the test is made at a very low Reynolds Number Re,
say, by pulling 2 thin rod slowly through thick oil in
a container, only the fluid in direct proximity of the
rod is in motion. The fluid particles ahead of the roé
are pushed aside to converge again behind it; when the
rod has Jjust passed a certain place the fluid, if in a
small contailner, is immediately at rest again, On the
other hand the body experiences, because :0f the viscosity
forces, a drag even at uniform speedi hence work is per-
formed on the rod, This energy reappears in the forms

*NZusammenfassender Bericht Uber Arbeiten zur statis-
tischen Turbulenztheorie." Luftfahrtforschung,
vol. 18, no. 1, Feb. 28, 1941, pp. 1-7.
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‘'of heat and so the work performed on-the towed body is
changed to heat through the effect of the viscosity
forces. An entirely diffetent flow appears at large
Reynolds Number, say, when pulling arod quickly through
the water. The viscosity forces, now much lower than in
the first case,.are unable to change the work performed
on the rod into heat quick enough. If the rod is already
far away or pulled out of the water altogether, only part
of the energy is changed to heat. By virtue of the law
of conservation of energy the remaining portion must
therefore remain in the - fluid in the form of motion energy.
on the whole, to be sure, the fluid remains at rest, since
the effect of the rod _is confined to the neighborhood of
the track through the fluid; hence the fluid particles
simply move back and forth or form small -eddies. This-
irregular back and forth flow is the turbulent motion
statee. The macroscopically visible motion of the fluid
particles is then gradually changed in motion energy, that
is, heat, under the effect of the viscosity.

II. DISSIPATION FUNCTION

The work, which must be performed in order to tow
a body at uniform speed through a fluid and which is
dissipated in the fluid, is termed the dissipation energy
A. It corresponds to the work performed by the fluid
stresses per unit time by volume and form change on a
fluid element referred to unit volume. In incompressible
fluids the term for A is analogous to the strain energy
of an elastie body. Theé strains become the rates of
strain; Hooke'!s law of stresses proportional to the
strains is replaced by.the linear relation between shear
stresses and velocity gradients. Thus it affords for A

_ "strains"f
als (@) o (@ F, 5 (&)
A=pyz (ax_ *2 \3y/ *t2 \3:
fshear!
r +; _@__y_+_8_u>2 + (9w 4 §i>a + (@.ll. + .@i’.’.)g1
‘ 3x  dy/ ‘ 2z ox/ J

oY oz



NACA Technical Mémorandum No. 1008 ° 3

To make these and the subsequent terms more comprehensive,
-y Yy 2y are rewritteén as ii;ixé;'x34 and the speeds

u, v, w as u;, ug, uz, SO that the foregoing equation

then reads:

- =] )
' oujy du auk1 -
a=ul5s > + 5 w98 Ok luggy 3, k=1,2,3
u!\ ZhZi Yy Iy §1 . Sx1J 1y

A -is the dissipation "for any motion of an incompressible
- fluid, where, of coursey, the continuity.eduation

5 o=l .o (2)

cXj

holds, But the fluid is also to satisfy the Navier-
Stokes motion equation:

N y:j%
Ejui_’_Z ouj _ §Xi 1 ap : ’
k Ug=—= = = - — = + v Au;, where
ot °xx 9%y p Oxy4 1r
(3)
"
AE 34 e

Forming the divergence of this equation,. that is,

e}
%q axi'affords

d . duy ) Z> duy P duy 3uy
— — - . — e———
ot “laxy TNk T S1g B B o
RN
__ , T 52 duj
i = A X3 - — + VX s z S = L
- 1 P AP 1 o\x‘l i dxi

provided that the external forces possess a potential
'V for which AV = 0, AX7 = 0, and because of the con-
tinuity equation i

27
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. BN au . aui".,._ 1 | o ‘ R . ’ . . '
zk axi Xy P P . Cos .
and hence
i)
Tk 21 axk> p APJ (4)

The turbulent motion state will be illustrated later

by small vortices. To formulate ‘this idea mathematically
the general term for the dissipation can be expressed by
the rot-vector. The rotation is defined by the three
vectors '

w. = 28a _9uz
1 00X, Oxs
- 9wy _ dug
W ox ox
3 X1
- du, ézl
W3 ox, Ox,
Forming
. Su, \2 duj duk _ - aui\z 1
Diwi = Tk Tj ('Sfi -%k XZi r- Tx; = YrXi axk) AP, .
affords
A = Tiwi2 - £ -
ML iWs o A pj l(4a)

Analogous to the theorem of minimum strain energy for the
dissipation a law by Helmholtz (reference 1) is applicabdle,
If the inertia terms can be neglected the stationary motion
of a fluid arising under the effect of constant forces with
unique potential, is distinguished by the property that

its dissipation for each region is less than that of any
other motion with the values u, v, w.at the boundary. This
theorem was applied by Vogelpohl to the theory of lubricants
(reference 2). Wehrle (reference 3).obtained a similar
principle for the turbulence problem, According to it,

on the basis of statistical probability considerations

the turbulent motiom state, for which the dissipation
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"éﬁergy“iS“minimum,'1s~the-most=§robahle;-%Butwphysically
1t does not seem very clear that the same minimum principle

should apply to the turdbulent state of motion with inertia
and viscosity effects of the same order of magnitude, as
to the creeping (slow) motion. . .

III. ISOTROPIC TURBULENCE .

. In order to be able toadapt the foregoing formulas
for the dlssipation to the case of turbulent flow the
turbulent motion state must be marked more in detail.

The chief characteristic of turbulence is the irregular-
ity of motion of the individual particles. .So from the
very first it 1s impossidle to define say, the path of

one single particle, other than obtain data by means of
certain statistical averages theoretical or experimental.
However, this limitation is not essential since the in-
terest centers practically only around certain mean values.
With U; denoting the velocity component of the principal

flow and wuj the superimposed turbulent fluctuations, the
momentary speed in i1 direction is Ui + uj. As U; 1is
to represent the mean motion, wuji must disappear in the
mean: uj = 0, regardless of the intensity of the fluct-

uations. An indication of the degree of turbulence is

obtained from the quadratic mean ufzg/ﬁiz. The averag-
ing is always to be understood as mean over a sufficiently

long time interval T; hence ui' i//% fTuizdt. To illus~

trate: for a sinuseiddl fluctuation it is:

uj = A sin 2 w nt uy ! =-% /2 A

The next logical step is to analyze the simplest
field of isotropic turbulent fluctuations, wherein the .
mean quantity of fluctuations in every direction and every
point is identically great, that is, when 1! = ug' = ug!

for each point. This case is not without practical sige
nificance. For instance, the flow downstream from a screen
or the airstream of a wind tunnel, some. distance -away from
the turbulence generator (screens, grids). is isotropic
turbulent; that is, in a system of coordinates moving along
with the principal flow all directions and positions re-

specting turbulent velocity fluctuations are equivalent.

For this isotropic turbulence a number of relations
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between the différent average values cah be established.
" Because of independehce of position Ap = const every-
where, hence permits averaging over a volume V:

1 . . | .
Ap = = [ Ap dv  and transforming accerding to Gauss'

theorsm Ap = l n® grad p 4 £, 1n being the unit
S . :

vector along the outer mormals. On 1ntegrat1ng, for
example, with respect to a spherical space of radius R,
f dincreases with 'R2, V with R3, and as p is to be =

const in the mean, Ap dissappears asl/R (reference 4).

In virtue of the directional independence the mean
values resulting from the cyeclic transformation of the
coordinates, that is, successive groups, are 1dent1ca11y
great

W ' = w ! = W ! a;= aui (5111
. 3 30 aXi axk
duy Ouy  du; Ouy

a‘ =
dxy Ox; o Oxy Oxg

etcs, where 1, k =1, 2, 3 but i # k. Average values of

the form éﬁi Sy must disappear by isotroplic turbulence,

OxL Ox3
as they exchange the prefix when the coordinate system
is turned through 180°. For kinematic reasons and further-

more because of the symmetry the mean values ay to a,

are then not mutually unrelated but subject to the follow-
ing relations. After sgquaring and averaging the contin-
uity equation affords

a,+ 2-a, = 0 | (5a)
Z5 = 0 as previously deduqed: hence affords with
£ = —p 5 5y %k oui
Pk 21 ox3 OXk

a, + 2 a; = 0 (5b)

B o
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e —-Lastly -the rotation ‘of the coordinate system
.yields a third relation. MTurned through 45°, which
mathematically is most convenient, the transformation
reads

JExt=xey T Bursut
JE.y* = ~X + ¥ and JE o
z

=z e . wWw¥* =W

Thus it affords for example:

. a au* dv* au* av‘
3% '2 TF ~ 5% ~57F *3y%)

In virtue of the isotropy, a1-<:ax;> and so ferth, must

) also apply - in the new system of coordinates. Thus squaring
the above equation followed by averaging gives at last.

a, - ap - a; - a; =0 (5¢)
Combining (5a), (5b),and'(50) then.affords

a, = ay/2 = - 2 a; = - 2 a, - (5)

of which the most important is a, = % a,; hence

1a

12 . : : ’
Juj =1 QEA) with k ¢ i (54)
o0x3 2 “oxk

e Ml T NN,

Now .(with eq. (4) and (4a))the mean dissipation by
isotropic turbulence can be wrltten in the form

+

.‘=» _ aui._‘a . Sl e . . . A,. aui
b HZ?E%<5§;> S HEARTR s By R 7. 5u<§Xk

b 5%

T

' ' - 12 . ‘ . ) .
.for the sum’ ZkZi(%%i ;’” consists of three terms of the

| . . v 2 . ' - :.. . 'z
form éE%)' and six mutually equal terms au1>

with k # i, so that




8: NACA Technical Memorandum No. 1008

o ven L syt e
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N A: B ( . x2 S 7.5 p\ o .

NO Xy

This relation originated with @¢. .I. Taylor (refere
ence 5). :

IV. THE CORRELATION FUNCTIONS

A fluctuating fluid particle affects, because of the
continuity due to inertia and viscosity, its entire surround-
ing. So with a view tao establish a criterion for the scope
of this effect in theoretical and experimental studies G.

I. Taylor applied the statistical concept of correlation

to the theory of turbulence (references5, 6). The correlatio
coefficient indicates, whether and toc what extent the con-
current fluctuation velocities at two different points,

are dependent upon each other. 'If P, and P, are two

points (fig. la) whose line of connection is at right
angles to x and whose distance is y, it is possible, for
instance, to relate the simultaneous fluctuations u and

u(y) in x direction through correlation factor g:

_uu (y) i
g (¥) = ————= , or, in isotropic turbulence, with:
utuf(y) ,
u'! = const g (y):E;E_in'
u|2_

The curve of g as function of distance y is as

follows (fig. 2): for y = 0, g has the maximum value

g = 1, after which g drops toward both sides ¥
monotonically to a small negative value and rises again
gradually to zero. From a certain distance on, no practical
relationship exists between the speeds, that is, a negative
or positive fluctuation value of u u (y) is equally prob-
able, so that in the mean u u (y) = 0. To take the older
mixing theory literally, which it never was meant to be,
the correlatlon curve would be a rectangle, the width of
which would correspond to the size of the individual fluid
salls or the mixing path 1tself. The rougher the turbu-~-
ence L; .

o

Ly = J g (y) a ¥ =d} g (y) d y, if ¥ 1is large enough so
that g (¥) = O. - (7)
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' ~Any - number of such correlationicoefficients can be
defined according to position of the line connecting the

two points and the direction of the explored speeds. But

by 1sotropic turdbulence -only two correlation functions

exist which do not dissappear nor can they be reduced by
transformation of the co-ordinates for reasons of symmetry,

which therefore appear at first unrelated. If the previous-
ly defined g 1is one of these functions the other correle

ation is £ (x) = B BAX) (14, 2) that is, the direction
. u

of the investigated fluctuations and the straight line
Joining the two points coincide. With this correlation
also the magnitude of turbulence can be defined.

1»1@ x
L, = J f (x) 4 x = g £ (x) 4 x (8)

Since the speed fluctuations themselves must, like
the principal flow, satisfy the continuity equation, both
correlations f and g are ‘tied together by a differ-
ential egquation. This equation, originally proposed by
Vonkdrmdn (reference 7) can be deduced, according to
Prandtl, by the followlng line of reasoning: OQonsider the
Inflowling- amd outflowing fluid volume through a control
area moving along with the uniform principal flow and
consisting of a hemisphere and its diametrical plane
(Fig. 3). Owing to turbulent fluctuations the flow
volume passgfg through the diametrical plane per unit

time is p f ut g (r) 2 mr d r; g (r) replacing g (y)
0

to indicate that the location of the coordinate system
can, by reason of the assumed isotropy of turbulence,
be arbitrary.

The outflow amounts to
/a2 '
p g ut cos @ £ (r1) 2 m ry sin o rd o = w ut! f(ry) ry2

the continuity therefore demands

T

g ut g (r) 2w rdr=qymu f (r,) r,?

which, after differentiation with respect to ry, leaves

‘ r? f£(r) |
r, g (1‘1) = rlf (rl) + ]2' ';I—‘—- ‘
- . i
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or, since the radius.of hemisphere r is ardbitrary:

g (r) = f“(rj + %'r'g;i_iﬁl : (9)

d r

Integration of (9) with reépect to r from O tocw
then affords '

.IOD
o[£ -1

Another equation (generalization of eguation (5d)) ties
/3!
the mean values of the speed gradients \3;) on one

point in any direction ©® with respect to the y axis:

' .
(g% = %%) J/cosz e + % sin® © (19)

The experimental proof of these purely kinematic
relations (9) and (10) by hot wire measurements in wind
tunnels behind various grids indicate that the flow some
distance downstream from a grid is actually %urbulent and
the correlation test method is correct. (O

. ]
From the aspect of g (y) ~the value. <%§ important

for the dissipation can be obtained as follows: expansion
of g (y) in Taylor series affords

g (y) =wuly) . —l—[u'a + w Qu , ¥ . 92y
12 12 y ay+2!uay2+...

u u

From @° = const follows

whence, after another differentiation;

“23 Gy -
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.For small .y it leaves

: . Y-
yg au>
=1 -2 (ou
g (y) 2T o \5y/
and
N
ou 1ip L= & (¥) , 1
— ] - 18 = . 12 L.
55/ 2 u ;égo =5 2 53 (11)

The thus defined length A can be geometrically
interpreted as the distance from the zero point in which
the osculating parabola at y = 0O intersects the abscissa-
g = 0 (fig. 2). Expressed with A the dissipation (6}
reads

% = uta
A 15 “—_7\2 (12)

The smaller A is, the greater is the dissipation.
Taylor, therefore, considers A as the diameter of the
smallest vortices absorbed by the viscosity. The smaller
these vortices, the more pointed the aspect of g at y .= 0,,
and the quicker such turbulence is decelerated by the
viscosity, while vortices of large diameter die away much
more gradually.

One principal problem of the statistical theory of
turbulence is the prediction of the eorrelation curve,
as it affords a complete characterization of the turbulent
state of motion. Von Kfrmdn attempted to solve this
problem for the case of isotropic turbulence (references
7, 8, 9) but the results, in the absence of an essential
declaration so far, are unsatisfactory.
- NN oy

'

V. THE SPECTRUM OF TURBULENCE

] This far the description of turbulent velocity field
proceeded on the correlation of the speed fluctuations at
two different points at the same times. Taylor (reference
10) showed that the concept spectrum of turbulence is also
appropriate. He visualized the speed fluctuations on a
point harmonically divided in sinusoidal fluctuations,
each of a different frequency n, so that u®@¥® (n) d n

e
|
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is the value of the fluctuations with the frequencies .

o .
between n and n + d n; because utz = [ ufa F (n) 4d n
0

oo .
we have f F (n) d n = 1, by definition. Between F(n)
0

and f (x) the following relation exists: f(x) = 3—3755),
Ehzt) u {(t + x/U)
1]

uta

x =X @.- u ..)
U+u U U
In this manner f is represented as correlation of the
velocity fluctuations on a point at different times.
Ur (n) - N 1- .
are then transformed Fourier series, accord-
i ' £

2 /em o

ing to Taylor, for example, the equation

when

it

or written f (x)

1t

U>aul, A

f and

N m . .
_ 4 . 2Tn X .
F (n) = 5 J' f (x) cos — d x (13a)
and .
> 2 n x
f (x) =g‘ F (n) cos é——g—— d n (13v) -

are applicabdble.

Length A is expressed by F(n) in the following
mannert: : .

1 2 2 dn
—_— = 4 T ~ UF (n) == 14

In figure 4, showing the curve of U F (n) plotted
against n/U according to tests by Simons and Salter be-
hind grids (references 10, 11) the spectrum appears inde~ ’
pendent of the speed U of the principal flow. This is
in accord with the fact that the correlation f (x) behind
grids is also almost independent of U. At very small dis-
tances merely the aspect of f (x) and hence length A depénd
on U. But according to (14) the spectrum itself would then
have to be dependent on U. In fact, accurate measurements
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"revesled . that, while the” Speé¢trum is independent of U

for a large frequency range, a different curve resulted

at very high frequencies (from about n/U = 0.6 1/cm)
depending upon the mean speed U. On the other hand, the
high frequenclies are precisely essential for the relation~-
ship of the spectrum with A, according to equation (14).

The concepts of the correlation function or of the
spectrum thus affords the possibility to explore the pro-

" cesses in turbulent flows, for the present of course,

chiefly by experiment,

1

VIi. DECREMENT OF TURBULENCE

The simplest process in a turbulent flow amenable to
theoretical study is the time rate of decrement of isotropic
turbulence by viscosity, so important for the turbulence
factor of wind tunnels, where screens and honeycomb set up
an artificial turbulence which dies out asgain in the tunnel.

The kinetic energy of turbulence is E = % Ty ui® = g p utk
the time rate of decrease - %§§ corresponds to the dis-
sipated energy

—_ w2 4B _ _ 3 d ute

R T 2 P T3t

Changing from the moving to a space system of co-
ordinates d/dt ean be replacedby U d/dx for station-
ary basic flow, sb© that T

UQ_J.E"_..

dx- (15)

To integrate eq. (15), A must be known in relation
to u' and x. g . :

1. leing Length Assumptlons

When a fluia ball having “a speed u!t "relaflve to
the principezal f1low intermixes the kinetic energy E per
unit volume is lowered by the amount of A E ~ p/2 u'2,
The' time interval +t during which this occurs is of the
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order of magnitude 1/u', where 1 = mixing length. .The

energy loss.per unit'timév ﬁ% is.therefdre ~p ués; A
-comparison of this loss with the dissipation discloses
“h ut3 ut? o A i)
T~ OT - o~ . The mixing length 1 can be
1 b AZ 1. 1.out & &

[o.]

sét down proportiohal to the turbulence I, =/ f d y, so that

A | a

—_ = A L

Yy | (16)
where A is a numerical constant. IL; 1is no longer de-
pendent on wu' according to assumption, but solely on

t and x, respectively. The simplest assumption is
L, = const (proportional to the size of the mesh). Then

equations (15) and (16) give’ J%~3 f% -ﬁﬂ. as confirmed
1
in many tests (reference 5). According to other tests
by Dryden, L; = Lsa+ ¢ X was recorded, so that
u /L ex o '
at = log i? + ?r> where M denotes the mesh size of the

screen (reference 12).

2. Dimensional Analysis

WhileVen XK4rmdn obtains the same eguation (15) by
dimensional analysis, he assumes the time rate of decrease
of intensity of turbulence L to be dependent on ut,

. n
‘hence &£.L ~ u!, so that A% = S kx and-H'”6§> results
d t n U u! \M

with x = U ¢, L ~ x1-n,  onis result is also confirmed

by experiments; n was defined from the egquation for A2
and agreement established between the last egquation for
U/u' and the measurements (reference 7).

The foregoing discussion Is but a rough summary of
the decremental process. For exploring the physical de-
‘tails the turbulence can be explained by ed@ies, as the
equation 1,=~u EEMGEE suggestss, Eddies-of the order of
magnitude of mesh size are produced on the screen, after
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.which these eddies split up-into smaller ones-to be
absorbed by the viscosity effect. (Considering two
particles of a vortex filament of angular velocity

Wo, with mean distance d,, it is, according to Taylor
(reference 13), more likely owing to.the diffusive effect
"of the turbulence, that distance dy has-  increaded after
some time. If the viscosity is negligible at small W,

, o 7 : Wa - . .
and great diameter, W increases: uJ_=-iL&‘ "according

to Helmholtz'!s vortex theorem. After  has increased to
a certain amount the viscosity effect can no longer be
neglected, in which instance the foregoing consideration
fails., But it seems problematical whether a statistical
process, namely, diffusion can be assumed for such close
distances as d,, because, non-statistically argued a

reaction force results on a vortex filament when d " in-
creases, which pulls the particles together again. Taylor
and Green (reference 13) tried to follow up the process
mathematically by insertion of a formula for wu, v, w,
that roughly corresponds to an isotropically turbulent
flow, in the equation of motion. They obtained a slight
rise in dissipation for small time intervals, which,

> e

because A = p T3 wi? also indicates a rise of the mean

rotation. But owing to the inferior convergence of the
very difficult calculation no definite conclusions can be
drawn respecting the behavior for longer time intervals,

VIiI. LAW OF SIMILITUDE FOR THE TRANSITION POINT

According to Reynolds' law 6f similitude two flows
are equivalent when the ratio of inertia-viscosity forces
1s the same. 1In most cases this simple law holds even for
turbulent flow. However, in many instances, the turbulence
‘plays such a prominent part that the Reynolds number alone
no longer suffices for characterizing the flow attitude.
Then the type of turbulence must be closer characterized
by additional phase quantities. For isotropic turbdulence
there are afforded two mutually independent characteristic
quantities, namely, the degree of turbulence u!/U and the
size of turbulence I, (equation (8)).

A particularly profound effeect of the turbulence is
that on the position of thetransition point, that is, the
location of the area where the friction layer becomes tur-
bulent. This relation of transition point and turbulence




16 NACA Mechnical Memorandum No., 1008

was explored by Taylor with his statistical turbulence
theory (reference 5), on the basic assumptlon of the
turbulent fluctuations of the pressure gradients affect-
ing the position of the transition p01nt through the
turbulence. This is indiécated to the extent that ‘the
separation of the laminar friction layer itself is large-
ly defined by the outside pressure gradient. ' The cal~-
culation pressumes that the body is in an isotropic tur-
bulent flow. For the pressure fluctuations in direction
of the basic flow (speed U), which are equivalent to the

turbulent velocity fluctuations u, it is p ~ % u?;

whenee the fluctuations of the pressure gradients are

o

gﬁ ~pu 5;, or, because of the directional independence
au .

p U —=> and the mean square

Q

¥y
. : — J————— :
? J p———— .
Sp\ _ (53p>2 ~ 2 3 u¥ 3
($2) - /(32 S (a53) ~ e wi(2y)  an

Then -the mean value 337> can be put ‘in relation
with u' and L. Together with (1) and (16), equation (17)
givesy * : o : '

(G2 - ep2 Aln g

Then the previous assumption can be formulated by
dimensional analysis as follows: it is presumed that the
location of the transition point (coordlnate X, on the ‘
" sphere, for instance, the arc length from forward stag-
nation point to transition point) depends, besides U

'
and v, on '(EL%) . Accordingly the Reynolds Number Re
a. .

(X) must be supplemented by a second dimensionless number

consisting of quantity X, dynamlc pressure }q_=ﬁ% U? and

1
<a.P . with which the following nondimensional is formed:
X

. 4
(a pj) T E;p> X ’ T .
r .
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With the computed expression for <a LR it affords

(“‘) % X Y e
Ia v/ v V// V//Ll U | ( .é)

Now, according to the previous assumptlon the .Reynolds
number of the transition point Re (X) must be a function

of this characteristic factor A'

Re (X) = H;§ = f (A') = f;[./Ré(X) '

or
T /5]
re (1) - 5, [(&) (5;)1 "] (20)

If the turbulence is produced by a screen of mesh
size M, one may simply put L;~ M. for larger Reynolds
M ut

v
to Taylor. Then (20) finally reads:

Re (X) = Ff ( > <X>1/5J (20a)

This relation has been well confirmed on flat plates
(reference 6) and on an elliptic cylinder (reference 14),

numbers of turbulence from about = 60 according

Taylorl!s calculation is of special importance for
the critical Re number of spheres, since it serves a
criterion of turbulence of wind tunnels. Regritical

i1s defined as that Reynolds number at which the sphere
has the drag coefficient ¢y = 0.3, This drag value
defines on different spheres and degrees of turbulence

a certain geometrically similar state of flow: hence the
ratio X/D (D = sphere diameter) has a certain value C

at cy = 0.3, so that BRe,pjticar (D) va 3‘% Re (X).

Herewith equation-(20)- ~gives

Regryy (D) = ¢ [(%%) (ﬁ)l/sJ (21)
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.Figure 5 gives.the.experimental proof-of: this
calculation according to measurements by Dryden (ref-
erence 12); all. test points on different spheres, screens,
and degrees of turbulence are leocated on one curve, if the

1/5
critical Reynolds number is plotted against ( > ( >

<L2 = X L1 ~'M>o~

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.
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Figure la.~ Definition of correlation coefficient g(y).
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Figure 1b.- Definition of correlation coefficient f(x).
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Figure 2.- Aspect of correlation functions downstream
from the screen (mesh size M).
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Figure 3.~ Definition of continuity equation expressed in correlation
functions in isotropic turbulence.
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Figure 4.~ Spectrum of isotropic turbulence.
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Figure 5.— Critical Reynolds number of sphere against turbulence. (12)
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