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NATIONAL ADVISORY COMMITTEE

TECHNICAL MEMORANDUM

.

FOR .AJ3RQNAUTICS.

NO, 1008

CORRELATION OF DATA ON THE ‘STATISTICAL

THEoRy 0F,Tm33uLENciE~

‘By K. Wieghardt

SUMMARY

The statistical theory of turbulence” affords an ex-
cellent medium for representing the kinematic conditions
in turbulent flow and also serves as a valuable aid to
exact experimental research. But it is still not developed
enough for solving dynamic processes.

Even in the simplest case of isotropic turbulence
the calculation of the correlation curve or of the decre-
ment of turbulence invariably reaches a point where clear-
cut assumptions, such as omission of the inertia terms,
or, earliar; mixing length assumptions or even merely
general dimensional considerations, must be made. Since,
on the other hand, the differential equations are simply
evolved from Navier-Stokes ~ and the continuity equations
it is safe to assume that in their multitude of solutions
the actually arising relations are contained also; but
there still is no physical principle with the aid of which
the real solution could be dug out from the multitude ox
mathematically possible solutions.

I. INT13.ODUCTION

If a solid body is towed through a fluid two es-
sentially dissimilar types of flow are apparent. For,
if the test is made at a very low Reynolds Number Re,
say, by pulling e..thin rod slowly through thick oil in
a container, only the fluid in direct proximity of the
rod is in motion. The fluid particles ahead of the ro&
are pushed aside to converge again behind it : when the
rod has just passed a certain place the fluid, if in a
small container, is immediately at rest again, On the
other hand the body experiences, because of the viscosity
forces, a drag even at uniform speed; hence work is per-
formed on the rod, Thts energy reappears in the forms

*llZusammenfas sende r Bericht tiber Arbeiten ZUP statis-
tischen Turbulenztheorie:ll Luftfahrtforschung,
VO1. 18, no. 1, Feb. 28, 1941, pp. 1-7.



of heat and sa the work .per~ormed .onthe towed body is
changed to heat’ through ~lie effect of the viscosity
forces. An entirely diffe-feRt flow appears at large
Reynolds Number, say, when pulling a.rod quickly through
the water. The viscosity fori?es, now much lower than in
the first case,.,:.areun,a”ble to change the work performed
on the rod into heat quick enough. If the rod is already
far away or pulled out of $he water altogether, only part
of the energy is changed to heat.’ By virtue of the law
of conservation of energy the remaining portion must
therefore remain in the fluid in the form of motion e.ner~y.
On the whole, to be’ sure, the fluid remains at rest, sin=e
the effect of the rod..is confined to the .neighborhood of
the track through the fluid; hence the fluid particles
simply move back and forth or form small ‘eddies. This ~~
irregular back and forth flow. is the turbulent motion
state~ The microscopically’tiisible motion of the fluid
particles is then gradually changed in motion energy, that
is! heat , under the effect of the viscosity.

11. DISSIPATION FUNCTION

The work, which must be performed in order to tow
a body at uniform ‘speed through a fluid and which is
dissipated in the fluid, is termed the dissipation energy
A. It corresponds to the work performed by the fluid
stresses per unit time by volume and form change on a
fluid element referred to unit volume. In incompressible
fluids the term for A $s analogous to the strain energy
of an elastic body. The strains become the rates of
strain; Hookefs law of str,esses proportional to the
strains is replaced by,the linear relation between shear
stresses and velocity gradients. Thus it affords for A

ll~trainsll
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TO make these and the subsequent terms more comprehensive,
.-.x,y-;---z<are rewri-t’t-gn‘~s” .-.,,.—.

x-i, X2, X.~., and the speeds
u, v, w as ul~ uz$ U3F so that, the foregoing equation
then reads:

A Is the dissipation ’for any motion of an incompressible
fluid, wherei “of’course; the continuity .equat’io,n

. . ,,., ..,..’,,

(2)

holds. But the fluid is also to satisfy the Navier-
Stokes motion equation:

(3)

Forming the divergence of this equation, . that is,

‘%” ‘“8X3 affords

provided that the external forces -possess a potential
V“for which Av’ = O, -AX< = O, and because .of the con-
tinuity equation ~&*

a.2;.

—.- .——..-.———.
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(4)

..
The turbulent motion st’ate w~.11 be illustrate.d later
by small vortices. To formulate ‘this’idea rnathemat”ically
the general term for the dissipation can be expressed by
the rot-vector. The rotation is defined by the three
vectors

;Q%.a%% ax2 aX3

. au2 L3u1
(JJ3.= .—

1 axz

affords

(4a)

Analogous to the theorem of minimum strain energy for the
dissipation a law by Helmholtz (reference 1) is applicable.
If the inertia terms can be neglected the stationary motion
of a fluid arising under the effect of constant forces with
unique potential, is distinguished by the property that
its dissipation for each region is less than that of any
other motion with the values u, v, w.at the boundary, This
theorem was applied by Vogelpahl to the theory of lubricants
(reference 2) . Wehrle (reference 3) obtained a similar
principle for the turbulence problem.. According to it,
on the basis of statistical probability considerations
the turbulent motion state, for which the dissipation

.—, . .,—..— -,---- ,. , ,.,, ,,,,,.... . .... —.-. —---.,,, - , , ,.,,,,-,.- m,-———, .,,.
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lsner”gy is’minimum, is-the most .p.robs.ble.’But physically
It does not seem very clear that the same, minimum principle “
should apply t,o the turbulent state of. motion with inertia
and viscosity effects of the same order .of magnitude, as
to the creeping (-s1o,w)motion. .

IIIc ISOTROPIC TURBULENCE

In order to be,,able, toadapt the foregoing formulas
‘for the dissipation to the case of turbulen$ flow the”
turbulent motion state must be marked more in detail.
The chief characteristic of turbulence is the irregulari-
ty of motion of, the individual particles. So from the
very first it is impossible .to define say, the path of
one single particle, other. than ob,tein data by means of ,,
certain statistical averages theoretical or experimental.
However, this limitation is not essential since the in-
terest centers practically only around certain mean values.
With Ui denoting the velocity component of the principal

flow and ui the superimposed turbulent fluctuations, the
momentary speed in i direction is Ui + ui. AS ‘Ui iS
to represent the mean motion, ui must disappear in the
mean : iii = 0, regardless of the intensity of the fluct-

uations. An indication of the degree of turbulence is
—.

obtained from the quadratic mean Uii=
4

iiiz. The averag-
ing is always to be understood as”.mea over a sufficiently.-.—.—.

z~ j“Tuizdt. TO illUS-iong time interval T; hence ui’ =
/T()

trate: for a sinusoidal fluctuation it is:

Ui = A sin 2 n nt ui r 1=-
f
2A’

2.

The next logical step is to analyze the simplest
field of isotropic turbulent fluctuations, wherein the
mean quantity of fluctuations in every direction and every
point is identically great, that is, when Ml ! =U2? =u3f
for each point. This case is not without practical sig-
nificance. For instance, the flow downstream from a screen
or the airstream of a wind tunnel, some. distance away from
the turbulence generator (screens, grids), iS isotropic
turbulent: that is, in a system of coordinates moving along
with the principal flow all directions and positions re-

specting turbulent velocity fluctuation are equivalent.

For this isotropic turbulence a number of relations



—
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between the different average values caii be established. “
BecaUse of independence of” position A—p = coast every-”
where~ hence permits averaging over a volume V:

AP=: ~Apdv’ and’transforming accarding to Gauss ?

theorem Ap = :j& grad p d f; q being t~e’unit

vector along the outer normals. On integrating, for
example, with respect to a spherical space of radius R,
f increases with “R2, v with R3, and as p is to,be =

const in the”means G disappears asl/R (reference 4).

In virtue of the directional independence the mean
values resulting from “the cyclic transformation of the
coordinates, that is, successive groups, are identically
great

“etc., where i k = 1,,,2, 3.9 but i # k. Average values of

the form dl.li’auk must disappear. by isotropic turbulence,
Fg ~

as they exchange the prefix when the coordinate system
is turned through 180°. For kinematic reasons and further-
more because of the symmetry the mean values a~ to a4”

.. are then not mutually unrelated but subject to the follow-
ing relations . After squaring and averaging the contin-
uity equation affords

. al+ 2. a4 = O (5a)

fi= O as previously deduced; hence affords with

=. &Ik &Li”‘pzk~i ~—
aXk

al + 2 a3 = O (5b)

-.+
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... -----Lastly--the rotation ~of the coordinate system
yields a third relation. Tu.rBqd through 45°, which
mathematically is most convenient”, the transformation
reads

J_2x*=’x+y”
.,d~u*=u+’v ~ .

@y*= .x+y and @v”= -ll+v

Z*= Z...;. ,.,... W* = w
‘. ‘.!,.,.,. ,,.

Thus it affords for example:
.,

., ~u
(

1 au* 3T* .. au* WT*
. . ~ =7J .p “~-:~

I )‘w’

()
~~* 2

In virtue of the isotropy, al: ~ 8nd so farth$ must,.
also apply in the new system of coordinates. Thus squaring
the above equation followed by averaging gives at last..

. .
al - a= -a3 - a4 = O

Combining (5a), (5b), and (5c) then affords

al =a.J2”=-”2a3 =-2a4

of which the most important is al = ~ az; he”n’ce

Now .(with eq. (4) and (4a))the mean dissipationby
isotropic turbulence cap be .wri.>ten in the form..

,.., ,. ,,
“ ,9:.

~zkzi auila ‘“: “,’
( J

,.,,,’ aui
A“= ...=

()
= &!Mri2. 3~ri~ : 7.5~w.’, .,, ,.

12
.

for the sum”
‘)

~k~i@$ :’ i“consists of three terms. of
. ,.

form
()

aui !,~ ,“ ,..
‘and six mutually equal terms

()
aui IZ

~’ ~

with k,,# i, so that

...

(5C)

(5)

(5d)

the

. .— .-.—
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‘la ,.

A=~- ,(. )( )6 + 3x~
aui

()
~b-i ‘2

= ?.5 1..-.
2=

(6)

This relation originated with G. .1. TaYlor (refer=
ence 5).

Iv. THE CORRELATION FUNCTIONS

A fluctuating fluid parttcle affects, because of the
continuity due to inertiaand viscosity, its entire surround-
ing. So with a view to establish a criterion for the scope
of this effect in theoretical and experimental studies G.
I. Taylor applied the statistical concept of correlation
to the theory of turbulence (references, :6).. The correlation
coefficient ihdicates, whether and to what extent the con-
current fluctuation velocities at two different points,
are dependent .’uponeach other; If PI and P2 are two

points (fig. la) whose line of connection is at right
angles to x and whose distance is y, it is possible, for
instance, to relate the simultaneous fluctuations u and

u(y) in x direction through correlation factor g:

——. —
u u (y)

g(Y)=— in isotropic turbulence, with:
Uluf(y) ‘ ‘r’

u! = const ~ ~y)=i u (y-)
U12 “

The curve of g as function of distance y is as

follows (fig. 2): for y = O, g has the maximum value

g = 1, after which g drops toward both sides tiy
monotonically to a small negative value and rises again
gradually to zero+ From a certain distance on,no practical
relationship exists between the speeds, that is, a negative
or positive fluctuation value of u u (y) is equally prob-
able, so that in the mean ~n) = o. To take the older
mixing theory literally, which it never was meant to be,
the correlation curve would be a rectangle, the width of
which would correspond to the ‘size of the individual fluid
balls or the mixing path itself. The rougher the turbu*’-
lence L:

L2 = ~mdy)dy=j g (Y) d Y,. if f is large enough so

that g (Y) = o. (?)
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Any number of- such correlation-coefficients can be
defined according to position of the line connecting the
two points and the direction of the explored speeds. But
by isotropic turbulence only.two correlation functions
exist which do not disappear nor can they be reduced by
transformation of the co-ordinates for reasons of symmetry,
which therefore appear at first unrelated. If the previous-
ly” defined g is one of these functions the other correl-—.
iition is f (x) s u u (xl (fig. 2) that is, the directionUtz

of the investigated fluctuations and the straight line
joining the two points coincide. With this correlation “
also the magnitude of turbulence can be defined...

‘;”&
LI = ~f(x)dx= ~f (X) dx (8)

o 0

Since the speed fluctuations themselves,must, like
the principal flow, satisfy the continuity equation, both
correlations f and are tied together by a differ-
ential equation. Thisgequation, originally proposed by
VonKdrmdn (reference 7’) can. be deduced, according to
Prandtl, by the following line of reasoning: Oonsider the
inflowing” and outflowing fluid volume through a control
area moving al”ong with the uniform principal flow and
consisting of a hemisphere and its diametrical plane
(Fig. 3). Owing to turbulent fluctuations the flow
volume passing through the diametrical plane per unit

time is p ~ur g (r) 2 m r d r; g (r) replacing g (y)
o

to indicate that the location of the coordinate syst,em
can; by reason of the assumed isotropy of .$urbulence,
be arbitrary.

The outflow amounts to

+/2

p~u!cosaf(rI)2 nrl sin a rld a = TI ut f(rl) rla

the continuity therefore demands

rl
Jutg(r)2mrdr=m ulf(rl)r12
o

which, after differentiation with respect to rl , leaves
,.

r12 f(r) ~
rl g (rl) =rlf(rl)+~-~ I

!r= rl
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or, since the radius ,o.fhemisphere r is “ar%itrary:

..

. . g (r) =f(r’)+$r~
,.. (9)

Integration of (9) with respect to r from o tow
then affords

L2 =
~+[f(:)rI-%=+Ll

Another equation (generalization of equation (5d)) ties
(al) ‘

the mean values of the speed gradients . on one

point in any direction @ with respect to the y “axis:

(lo)

The experimental proof of these purely kinematic
relations (9) and .(10) by hot wire measurements in wind
tunnels behind various grids indicate that the flow some
distance downstream from a grid is actually ~b-u4-en-t and
the correlation test method is correct.

.,

au t important
.

I?rom the aspect of “g (Y)
()

the value. ~

for the dissipation can be obtained as follows: expansion
of g (y) in Taylor series affords

From TIZ = const follows

whence, after another differentiation;
2

()
@%’+ au = o

~m

,,

———-.,—. ..,,—.,, . . ,.. , , .- . ,,,.,-.,,,,, .,,...-.,- , ,-,—,,,,,—,,, ,, .—m — ,-.,, ,,, , ■ ,,, , , , ,. , ,,,-, , ,,,
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-.For-small y i-t leaves
,.

y2 . !a

g(y) =1 -—. ()a’u2J uf~ a

(11)

The thus defined length h can be geometrically
interpreted as the distance from the zero point in which
the osculatin

?
parabola at y = O intersects the abscissa

g = O (fig, 2 . Expressed with h the dissipation (6)
reads

(12)

The smaller A is, the greater is the dissipation.
Taylor, therefore, considers A as the diameter of the
smallest vortices absorbed by the viscosity. The smaller
these vortices, the more pointed the aspect of .gat y.= O,,
and the quicker such turbulence is decelerated by the
viscosity, while vortices of large diameter die away much
more gradually.

One principal problem of the statistical theory of
turbulence is the prediction of the correlation curve,
as it affords a complete characterization of the turbulent
state of motion. Von K5rmAn attempted to solve this
problem for the case of isotropic turbulence (references
?, 8, 9) but the results, in the absence of an essential
declaration so far, are unsatisfactory.
J@.11, ~~~~

v. THE SPECTRUM OF TURBULENCE

This far the description of turbulent veloc$ty field
proceeded on the correlation of the speed fluctuation’s at
two different points at the same times. Taylor (’reference
10) showed that the concept spectrum of turbulence is also
appropriate. He visualized the speed fluctuations on a
point harmonically divided in sinusoidal fluctuations
each of a different frequency n, so that ul~p (n) d n

-.

—.
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is the value of’ the fluctuations with the frequencies ‘“ .

between n and n + d ..n;because u12 = 7U1.= F (n) d n
o

we have ~ F (n) d n = 1, by definition. Between F(n)
o

and f (x) the following relation exists: f(x) . —u=~,
—. —— —.— uf2

or written f(x)=.
u (t) u (t -1-x/TJ)

? when
u 12

x
U>>.uf, ~ t =—

.x.
(
lU

)
--.4 .

U+u G u

In this manner f is represented as correlation of the
velocity fluctuations on a point at different times.

f and U F (n) ...
are then tir-ans.fo’&@edFourier s“~r~es, accord-

2F
-.1...:

ing to Taylor, for example, the equation

~jm f “(x) Cos 2_mnx ““
F(n)=Uo

u
dx

and ,

f(X) =~m F(n) cos2n~xdn
.

(13a)

(13b) -

are applicable. .’

Length A is expressed by F(n) in the following
mannei:

(14)

In figure 4, showing the ,curve of U F (n) plotted
against n/U acoording to tests by Simons and Salter be-
hind grids (references 10$ 11) the spectrum appears inde-- *
pendent of the speed U“’ of the principal flow. This i$
in accord with the fact that the correlation f (x) behind
grids is alsq almost independent” of U. At very small dis-
tances merely the aspect of f (x) and hence length A depend
on U. But according to (14) the spectrum itself would then
have to be dependent on U. In fact, accurate measurements
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re;&”8j”6~~ “that ,’,“w”hi’1’ethe ;s“p”edt’r’u-mis f-n’d”erp-e”n”d=en-tof- U
for a large frequency range,, a different curve resulted
at very high frequencies (fr’am about njU = 0.6 l/cm)
depending upon the mean speed U. On the other han.d.~,the
high frequencies are precisely essential for the relation-
ship of the spectrum with A, acc’crding to equatibn ,(14).

., .,.,.
T“he concepts of”the correlation function or of” the

spectrum thus affords the ,pos~tbility to explore the proc-
esses in turbulent flows, for the present of course,
chiefly by experiment,

VI. DECREMENT OF TURBULENCE

The. simplest process i“n a “turbulent flow amenable to
theoretical study is the time rate of decrement of isotropic
turbulence by viscosity, so important for the turbulence
factor of wind tunnels, where screens and honeycomb set up
an artificial turbulence which dies out again in the tunnel.

.—.
The kinetic energy of turbulence is E =

3 p ur~:Ziuia =;

the time rate of decrease -~ corresponds to the dis-
dt

sipated energy

U12
‘A = 15 Ww =

dE 3 d ul~
-—=-~P~dt

Changing from the moving to a space system of co-
ordinates d/’dt ea,n be replacedby U d/dx for station-
ary basic flow., so that .

., .
,“

To integr-ate eq.,:~,(>5), ~ mast be known in relation
to U1 and x.. ,...,,.,-,.-

.... ,,.., .,
10 Mixi~?g ‘Length Assumptions

,’. i

~~hen a fluid ball ha.vlng ’a,speed u,! “relative to
the principal flow intbrm’ixes the kineti’a energY E per
unit volume is lowered by the amount of A E P p/2 u!2,.
The’ time inte”rval t during which this occurs is of the



—.
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order of magnitude I/ur, where t= mixing length.. The
...

energy loss. per unit time & ‘“is therefore - p $.. A
. At..
.co”mparison of this 10’ss.with the dissipation discloses

,,.
p ut3 ~!2

“P–hp +,”
/“”

v ‘“

1
The mixing length 1 can be

;=” co
‘set down proportional to the” turbulence L1 =~ f d j, so that

o

l—

(16)

where A is a numerical constant. LI is no longer de-
pendent on u; according to assumption, but solely on
t arid X, respectively. The simplest assumption is

,,

L1.= const (proportional to the size of the mesh). Then

equations and (16) give” ~ .: ~ ‘ ~,
A2 L1

as confirmedUt

in many tests (reference 5). According to othertests
by Dryden, L1 = Lo+ c x was recorded, so that

(U_ ~ log Lo cx )u! ~+~ where M denotes the mesh size of the

screen (reference 12).

2. Dimensional Analysis

; WhileVOn Kdrmdn obtains the same equation (15) by
dimensional analysis, he assumes the time rate of decrease
of intensity of turbulence L to be dependent on u?,

‘hence ~ - u!, so that X2 = ~~ and~,-~’~ results

with x = U t, ,L x xl-n. This resu,lt is also confirmed
*“

by experiments; n was defined from the equation for Aa
and agreement established between the last equation for
U/u! and the measurements (reference 7).

The foregoing discussion is but a rough summary of
the decremental process. ??or’exploring the physical de-
tails the turbulence can be explained by eddies, as the

——.—..- .
equation Ir=w xi ‘i2 suggests+ Eddies’of the order of

magnitude of mesh size are produced on the screen, after

1 I
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..wh,ichthe~”e edd’ies split. up--iht o s-m-alle-r-.omes. to be
absorbed by “the viscosity effect. Consideriiig two
particles of”a vortex filament of angularvelocity,
Wo * with “mean distance do, it is , according to Taylor
(reference 13) , more likely owing to, the’’diffusive effect
of the turbulence, that distance. .d~ has in’crea~ed after
some time; If the viscosity is.negligible at small W.

,.
LI+J

and great diameter,. w increases: w = —d
“do

according
.,. .,

to Helmholtz?s vortex theorem. After” w has increased to
a certain amount”the viscosityeffect can no. longer be
neglected} i,n which instance the foregoing consideration
fails. But it seems problematical whether a statistical
process, namely, diffusion can be assumed for such close
distances as do, because, non-statistically argued a
reaction force results on a vortex filament when d ‘in-
creases, which pulls the particles together again.. Taylor
and Green (reference 13) tried to follow up the process
mathematically by insertion of a formula for u,, v, w*
that roughly corresponds to an isotropically turbulent
flow, in the equation of motion. They obtained a slight
rise in dissipation for small time intervals, which,.

because A = w xi wi~ also indicates a rise of the mean

rotation. But owing to the inferior convergence of the
very difficult calculation no definite conclusions can be
drawn respecting the behavior for longer time intervals.

VII. LAW OF SIMILITUDE FOR THE TRANSITION POINT

According to Reynoldsl law @f similitude two flows
are equivalent when th~ ratio of inertia-viscoiity forces
is the same. In most cases this simple law holds even for
turbulent” flow. However, in many instances, the turbulence
“plays such a prominent part that the Reynolds number “alQne
no longer suffic,es for characterizing the flow attitude.
Then the type of turbulence must be “closer characterized
by additional phase quantities.. For isotropic turbulence
there are afforded two” mutually independent characteristic
.quanti’ties,,namely”, t-he de.gr.eeof. turbulence ut/.U and the
size of turbulence Ll (equation (8)).

A particularly ‘profound effect of the turbulence is
,.

that on the position of thetransi,tion point, that is, the
location of the area where” the friction layer becomes tur-
bulent . This relation of transition point and turbulence
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was exp+ored bY Taylor with his statistical turbulence
theory (reference), on the basic assumption of the
turbulent fluctuations of the pressure gradients affect-
ing theposition,of the transition poig’t through the
turbulence. ,This is ind~catied to the exterit that “the
separation of the larninar friction l“ayek’”itselk’is large-
ly defined by the outside pressure ‘gradient. !i?hecal-
culation pressumes that the body is in an isotropic tur-
bulent flow. For the pressure fluctuations in direction
of the basic flow (speed U), which are equivalent to the

turbulent velocity fluctuations u, it is p - p.u2;
.

whence the fluctuations of” the pressure gradients are

dp au—.pu~$or,
ax

because of the directional independence

pl+ and the mean square

Then the mean value ()
:;_’”

can be put in relation
with u! and L1. Together with (31) and (16), equation (3?)
gives:

(18)

Then the previous assumption can he form”ul”a”t”edby
dimensional analysis “as follows: i-t is presuined that the
location of ‘the transition ‘poin’t(coordinate. X, on ,the
sphere., for” insta”nce, the arc length from forward stag-
nation point t.o transition point) depends~ besides U

agf
($

andu, on’— Accordingly the Reynolds Number Re
a “ . ~~

“(X) must be supplemented by a second dimensionless number
‘p@ andconsisting of ‘quantity” Xy:dynamie pres$ure q =.—., 2

.- ‘,,( ) with whi,ch the following .nondimensio.nal i$ formed:
ax

At .= [~}~.~(~j~ ~~~ ‘,19)
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.With the -computed. expre.ssion’for ~:’,.:.
()

it aff,ords”
, .,.-.. a“~ ,.. ... .

Now’, according to the previous assumption the .Reynolds
number of the transition point Re (X) must ..bea function

of this characteristic factor At

. . .. .“

or

Re (X) = %[(~) (;)1’5]
1

(20)

If the turbulence is produced by a screen of mesh
size 1!, one may simply put L1- M. for larger Reynolds

M U!numbers of turbulence from about —=6o according
v

to Taylor. Then (20) finally reads:

Re (X) = F [’(~) (fi)’”] (20a)

This relation has been well confirmed on flat plates
(reference 6) and on an elliptic cylinder (reference 14),

Taylor!s calculation is of special importance for
the critical Re number of spheres, since it serves a
criterion of turbulence 0$ wind tunnels. Recrit ical
is defined as that Reynolds number at which the sphere
has the drag coefficient Cw = 0.3, This drag value
defines on different spheres and degrees of turbulence
a certain geometrically similar state of flow; hence the’
ratio X/D (D = sphere diameter) has a certain value C
at Cw = 0.3, so that Recrit ical (D) =~=~ Re (X).

Herewith equa$ion .(20)-gives

Recrit (’) = G [(~) (:)”5] (21)

,. ., . . . . - . .. . . . . .—..-.—..-—.-.— .—
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.Figure 5 gives, the;.exp:er.imental.p~oof- of: this “’
calculation according to measurements by Dryden (ref-
erence 12) ; all..test p.o.intson..different spheres, screens,
and degrees of turbulence are located on one curve; if the

critical Reynolds fiumber is plot$ed against (;) (:)”5

“(
1 LIL2=Z

)
-M - ..

. . . .

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.
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Figure la.- Definition of correlation coefficient g(y).
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Figure lb.- Definition of correlation coefficient f(x).
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I?igure2.- Aspect of correlation functions downstream

from the screen (mesh size M).
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Figure 3.- Definition of continuity equation expressed in correlation
functions in isotropic turbulence.
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‘1cm

Figure 4.- Spectrum of isotropic turbulence.

Re
crit

Figure 5.- Critical Reynolds number of sphere against turbulence. (12)
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