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NATIONAL ADVISORY COMMITTEEZ FOR AERONAUTICS

' -TECHNICAL MEBNORANDUN. NO: 1005

THE STﬁESSES IN STIFFEVLR OPENINGS*;

By K. Marguerre j@ ﬁ.:i; - .

. SUMMARY. -

As the 1n1t1al step 1n bne analy51s of stress dls—.
jjtrlbutlon in three dlmen31onally curved rings (as employed
.as stiffeners in stressed skin alrcraft d631gns) the ring
(flg. 1) formed by the intersection of two cireular cyl-—
‘inders is explored for three categories of.load: .tension
in both cylinders (prcduced by hydrostatic pressure on the
cylinder walls), axial force in the large cylinder, and
lastly, shear in. the large cylinder. The discussioen of
these three load.cases enables general conclusions con—
cerning the behavior of the ring stressed by the.shell
forces and affords numerical data for the most. impertant
load categories (obtainable from the cemputed by super—
position). The quantitative results. are illustrated in
- figures 12, 14 and 15, and condensed 1n s1mple approxi—
mate formulas through (4 9), (6.2), and . (7. £). Qualita—
tively, it ca@ be stated that, on wings whlch do not de—
part excessively from the plane, the moment My about i
the normal axis (hence that of the three moments which is
other than zero even on a perfectly straight wing) remains
the paramount stress; and not uwntil there is a very ap—
preciable three—dimensicnal curvature (when the ratio
b/a of the c¢ylinder radii approaches 1) do the two other
components of the three—dimensicnal moment vector, the
bending moment M, and the torque Mgy beccme perceptible.
Since M,, as the graphs indicate, varies but little
with € = b/a if suitable reference quantities are chosen,
rings for "small" openings can be computed as straight
rings with very good approximation.

The Closed) ring is Statically indeterminate, It
effectively evades an excessive stress induced by insuffi-
cient torsional stiffness by responding to the load largely
with bending moments My — still, »n rings fully ineffec—
tive in torsion, it is recommended that the existence of
the shear stresses within permissible limits be eonfirmsed

by approxlmatlng Wluh the help of the cited empirical formu—
las. i

ﬁ"Spannungen in Ausschnittversteifungen.” Luftfahftforschung,
vol. 18, no. 7, July 19, 1941, pp. 253-61.
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The three explored load distributions-are three
column loads for the unstiffened c¢ylindrical shell; hence
they create in the undisturbed shell a pure membrane
stress attitude. The calculation 'is predlcated on the
assumption that this membrane stress attitude is nct ma-—
terially disturbed by the elastic interference effect be-—
tween the stiffener opening and the skin, This assumpticn
is met in the "extreme" case of a very stiff ring and a
thin-wall shell without frames (or with frames located at
some distance from the opening). Foer the frameless shell
would. have to attempt to terminate the "interference loads"
returned by the ring through cross stresses and bending
moments; since these do not become large in the thin sheéell
and are damped quickly besides, any 'aid" of the shell -for
the ring can manifest itself merely in the formation of a
small effective border zone which takes nothing essential
away from the ring. : - : ‘

In the oppos1te extreme case (not discussed here) of
a rlng rigid in strain but flexible in bending and of a )
shell closed a2ll around by closely placed stiff frames or
curved floors — "egg surface" —~ the state of stress and
strain is utterly different. Shell and ring are for the
most part subject to dlaphragm and axial stresses, and
stressed in bending solely by the constrained stresses due
to the incompatibility of the form changes. The ¢ase is
of little practical ccncern, since structural reasons'usu~
ally call for rings which are far from ;neffectlve in bend-—
ing.

The,true:sheil lies between the two extremes. If ‘the

ring is distinctly rigid in bending and the shell either
is thick-wdlled or forms an egg surfac a complicated elas-—

tic interfersnce eéffect results which defles calculation

and must be ascertained experimentally., The present
solution supplies the basis for such experiments by enabling
the estimation of the maximum bending stresses to be expected
through ‘the determlnatlon of their upper llmlt

INTHODUCTICN

The F;et Bing

Concerning the exact stress distribution of three
dimensionally ‘curved rings, such as are used as stiffeners
on openings in shells of all kinds,little data are avail-

able. The present study treats as a typical example a
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ring the center line . .of which is produced by the ‘inter—

= section 6f two 01rcular cylinders of dlfferent diameter.*
Three 'load cases are: analyzed.v. '
i, Axlal and clrcumferentlal stresses in both eyl—
K inders, .the cyllnder_stressef themselves Tt
’ be in the ratio conformal to the cylinders
loaded under internal pressure
2. Pure longitudinal tension in the large eylinder
3. Pure shear (torsion) in the large ecylinder
To simplify the caleculation, it is assumed that the
ring, compared to the shell, is very strong, so that its
deformations have - no perceptible effect on the stress
condition - in the shell.. This provides an upper limit for
the ring stresses actually produced in a shell design,
for, according to the theory of stressed skin statics the
shells, by elastic flexibility of the ring, regroup the
forces depnsited on it in such a manner that the ring is
relieved.
Load case l.— The solution can be given immediately
. in the extreme case a>>b (figs. 1 and 7), that is,

if the ring is "practically" flat. Then the forces ex-—
erted by the small eylinder are secondary alongside those
‘of the 1arge cylinder: the force pa along ‘the circum—
ferential circles and the force pa/2 along the generat-
ing axis. Since an equal tension pa/2 from all sides
stretches the ring without twisting it, the bending stress
can be computed as if the ring were loaded in the manner
shown in figure 2. (Load cases 1 and 2 become identical
except for the exchange of axes.)

The equilibrium conditions on the ring element ds =
bde are expressed in vectorial form from the wvery 'start
in view of their subsequent application to the three-—
dimensional problem, Thus t *denotes. the unit veector of
the tangent pointing toward increasing arc length s, n
the unit vector of the normal toward the center of the
circle, k the unit vector at right angles to the plane
of the ring (fig., 3); N 1is te indicate the resultant,

*In fig., 1 the smaller cylinder .is shown outside the large
one. But the ring formulas apply exactly, if extending
wholly or partly in the large cylinder; .the small cylinder
can be arbitrarily short; it can be formed by the ring
itself, for instance. w7
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M the moment of the section stresses applied at a sectien
with the outside normal t; at the séction boundary for
which t is the inside normal the resultants -, -M are
effective., Since N and M vary with s, the amounts
on "front" and "rear" of a piece of length ds differ dy
dN, dM.- In consequence, the force equilibrium specifies
according te figure 4: S '

dN + p ds = O

the moment equilibrium (in absence of external moment
loading) ’

ax + (3 ds) x N = O
(the choice of moment reference point within length ds
being immaterial, since the differences of higher order

accruing therefrom become small within the limit d-—>0).
These vectorial equilibrium expressions for the bar element

ax

0 h
-+ =
ds P i
L (1.1)
Eg + t x ¥ = 0|
ds - J

can, if load, sectional ferce, and moment are divided into
compenents along t, 1n, k, be written in the form

d . :
— (¥ £ +Qun) +py £ +p, =20
ds o
<~ (M k)+ t x (Nt+Qmn)=020
ds - - ) _
and because of
¢ 1, da_ _ 1 t, t A n =%k | (1.2)
ds b ds b .
are equivalent to the scalor
4N 4 N aM '
_._._9'..=._.pt’ —%-{--—-:—- n» —--+Q,=O (1.3)
ds b ds b - ds

which, in this two—dimensional case couldihaturally have
been read off as’ well from figure 5.

In this ﬁarticular load étudy the components P, Pp
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(dimensions

| ow

force per unit length) should be replaced by

Py = %? sin ¢ cos ¢, -p, = %? sin® ¢ (1.3')“
according to figure 6, The integration of (1.3) presents

no difficulty. With ds = bdeo, the first two equations
give:

N = A cos ¢ + B sin ¢ + E;E cos® o
' (1.4)
Q = B cos @ — A sin ¢ — B%E cos ¢ sin ¢

‘The two integration constants A and B follow from the
symmetry requirements according to which the cross stress
® = 0 and n/z must disappear. Then

A =3B =0 {(1.41")
Entering (1.4) and (1.4') in (1.3) and integrating affords
ba
M= X — E%r— cos? o (1.5)

Integration constant X remains statiecally indeterminant;
it can be computed by means of Castigliano's principle of
least—strain energy

d M=
— - ds = © 1.6
bX\/ﬁ 2E J ( )
For the specific case EJ = const, eguations (1.5) and
(1.6) give o
' 2
M= — Pi? cos 29 , (1.7)

_Iﬁzconsequénce, the two extreme values of the moment at
~points ¢ = 0, ¢ = w/z are inversely equivalent and
amount to ' ' '
W 2
‘ pab
Moax = —5— | (1.71)

Equation (1.5) for the moment can equally be derived
by another Pprocess which is much more simple, to wit:
‘According to figure 6, the first vector equation (1.1),

. when resolved along the vectors i, j, k (place inde—

pendent) characterlstlzlng the space dlrectlons X, y, Z,
instead of along the "natural" variable directions t, n,

k read
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aN pa
—t = J sin ¢ = O

tde <

the integration of this equatlon is even simpier than that
of (1.3); we get .

pab pab :
N =N + 5~ d cos ¢ = Cii + Coj + —5— d cos ¢ (1.8)
that is
pab T
Q =NXn= -0, cos p —Cy sin ¢ - 5 sin ¢ cos ¢ |
_ pab > (1,871)
N=0Nx¢t=-20C; sin ¢ + Cp cos ¢ + 5= cos® o |
Integration constants ©£; and C, disappear because
Q(0) = Q(n/2) = 0; hence
: ) pab : : .
¥ = - J cos o (1.8")
and with it follows, because t X j = — k sin ¢ and M -Z M k
from the second equation of (1.1), and equation (1.5) - -
pad pab
= - cos ¢ sin ¢ 4. © = X — 5 cos o (1.9)

The calculation of the three dimensicnally curved
ring also proceeds in two stages: the determination of
the intersection resultants (forces and moments) as far as
is possible on the basis of the static statements (1.1),
and the solution of the statically indeterminate gquantities
on the bFasis of the strain conditions. The problem is
most easily solved if the vectors for the integration of
the differential equations (1.1) are resolved along the
place—independent system of unit vectors i, j, k, and
then the transfer to a system of axes attached to the
space curve (tangent t and two normals n,, np carried
out the prediction of the integration constants from the
strain.-and symmetry conditions — and these only — necessi-—
tates resolution along the natural axes t, n,, nz, be—
cause the strain law and the symmetry expressions are
amenable to simple formulation only for such components of
the force and moment vectors.
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GEOMETRY OF THE SPACE CURVE

The first step in solving the three—dimensional ring
problem is the laylng down of the formulas characterizing
the geometry of the” spa-ce curve., — With the notation of
figure 7 the space curve is glven by the two formulas .

x2+y2=b2, yc-{.zd—ad,_-,“.

With the ch01ce of tne angle @ progected into the xy

plane as place parameter and b/a = ¢, -the- trlple equation
reads
z i ST
~ = cos o, A sin ¢, — = * J€ —- ¢ sin” o (2,1)
b‘ b . b €, X o , , :
From the geometry of the snace curve represented by
(2. 1) two groups of formulas are applied: .1) the expres—
sions for the arc length and for the threé unit vectors
of an "accompanying triangle," 2) the relations expressing
the pesition of the curve element with respect to the
force directions., — The arc lengtlh follows from
. / - B - \ 2 o
d ay d
ds d o i//Q~f\ + (—Z . / z\\ d@
\do,/ Ao/ Xag/
with . . _ )
dx _ dy o . \
- = % = - b sin (p, - E ¥ = b ccs @ !
R o _ (2.2)
’ . sin o© co ) 5 ‘
-g'—--.z- =27 % ~ b : . ~-S ®. J[
o e |
at . , -
’ ' l';nea sin® @
~ds ;.bd¢ r— 2,' — o R , (%.3)
A e L R o

The introductionxéf”tﬁeﬂéngle Ay of the -spacé ‘curve tan-—

gent with respect %6 'its projeection- . ’ A

‘4z 7 TéTpin @ cos @ o

tan ¥ = LB e P .ff . ;f'”(2.$)
S T vap - L

m..
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t = — i — J — -k
ds ds 2 ds ~
S . d N . cos -
"= k1 + 7§+ &k). E‘i’- = (R1+ §4 ¥ 2K) ——
. " — s N - ‘

with cos and.sin of V¥ being given by

sin® € sin ¢ cos ¢

cos Y = ¢, sin V = ~ : (2.41)
A 4 o ;

‘ : ~ 1 —¢® sin ® vﬁ ~€® sin® P

according to (2.4),

Defining the two mormals n; and nz by the stipu—

lation (of itself arbitrary, dbut in view of- the simp11c1ty
of ‘the formulas appropriate), to place n; "horizontal;
(n,Xk=0, n,Xt=0, n,°=1), the formulas for the three axes
read* - .

(-1 sin ¢ + Q:éés ¢) cos W + k sin ¥

S 1
12 | {

2y = =4 cos ¢ + j sin @) \ (2.5)
' |
£ X ny = ng = (1 sin ¢ — j cos @)51n W + k cos V J

The foreces that stress the rlng are applied on it by
the cylinder skins.

Consider figure 9, which represents a ring element ds
and (lightly shifted) a skin element at one side of which
(with the normal V) a shear force K is applied. The
load p acting on the element of the ring is, because: of
the equilibrium in the skin element, given by

p =K cos a = K(n 7) (2.6)

There:the ring normal n 1is chafacterized by the fact that

*The use of the so—called natural axes &, n, bt (tangent
principal normal, binormal) for describing the curve is
unnecessary and, in general, inapprepriste. Fora deter—
mination of the natural axes which has not implicit connec—
tion with the principal inertis axes of the section reguires
the knowledge of the third derivations of the-system (2.1);
whereas (2,5) follows from the first derivations only, The
fact that one of the curvature components disappears on the
natural axes 1s an advantage which is of no consequence com-—
rared to this drawback.
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it with T and t is l6cated 'in omne plamne; hence it
falls in the tangential plane of the - particular cylinder.
It is most simply obtained over the surface normal ng

or nrr,’ respectively, to'which it must be at right an—.

gles, ‘The outside mormal of a circular cylinder falls
along the radius vecter. Therefore, because of (2.1)

N

n =

n, € sin ¢ + g;/i ~ €2 sin® o

[

(2.7)

Vg

D = i cos © + J sin ¢(= — n,)

With the identifying signs of figure 10, the desired curve
normals become

£a=_§x’9."=i c2E ? . !
N sin® @ i
|
— €® sin® S e 5 !
+ (1 €2 8in? 9)sin 9 _ k € sin® ¢ cos Vi
< Z z
- 'Jg — €® sin g
y (2.8)

zs affecting the large cylinder . i
ny (= np) = nyp X t = 1 sin ¢ sin V¥
— Jjcos ¢ sin V + k cos W '

relative to the small cylinder,

Later on, the angle between the tangent

tro= (4 «/L — €2 sin® ¢ —~ k € sin @)

!Q.l

at a circumferential circle of the large cyllnde* and the
normal n,  1s particularly needed;

cos(&',ga) = 1t ny, = sin ¢ cos ¥ (2.8')
THE EQUILIBRIUM EQUATIONS

The equilibrium equations for the rlng element (dis-—
tributed outside moments discounted for the time being)
read in vector form as in the twn—dimensional case:
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‘ an
4N + p=20, ==+ t xN=0 (3.1)
ds ds - -

with pds as vector of the external force applied at the
ring element, as results from (2.6); the shear force vec-—
tor .. )

§ =Nt + Qun; + Qens (3.11)
has this time the longitudinal force N and the two cross
forces Q; and Qz as components; the shear moment vec-—
tor
M = Mpt + Myn, + iizng (z,1m)

has the torsion moment Mp ‘and bending moments M; and

Equation (3.1) is integrated in two stages:

~ 5 -0 .
; , a
1. % =1H8(0) =/ padas =3(C) —v] 1p —>=t (3.2)
- % ' cos V
,s. Cp d
2. M = M(0) — [ t x Eds = M(0) -1 [ tx ¥ ———f,—, (3.3)
- - Jo - J o cos V

The integraticn censtant H§(C) is again found by sym—
metry considerations, one component of the second constant
¥(0) remains indeterminate. The symmetry of system and
load regquires the disaprearance of the three antisymmetri-
cal quantities Q,, %z, and Mg (the shear resultants) at
points ¢ = 0 and ¢ = w/2; from Q,(0) = & and Q,(n/2) =
0 follow the i and j components, from Q5(0) = Qo(n/2)=
0, the k component of H(0); frem Mp (0) = 0 and
MT<%) = 0 the i and j components of M(CG) — the k

i

c)
component of ‘E(O) —~ the k component of M(0) rema
to be determined by a strain equation.?*

ns

Denoting the intensities of the shear load of the two
cylinders along the generating axis and the circumferen—
tial circle with - . .

*Since, for reasons of symmetry, N and M contain only
the even—number harmoniecs in ¢, Qo(n/2) = 0 follows from
Q2(0) = 0. Hence the cited 6 esymmetry conditiens yield
only 5 independent equations for the determination of the
6 integration constants.
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P1,.p2 for-the large ce¢ylinder

Pz, Pg Tfor the small cylinder

equations (2.6), (2.8), and (2.8') affoerd

. o — .
P = p)1 A + pg(i'Jl — €2 sin® ¢ — € k sin o)
V1 — €2 gin® ©
Xsin @ cos ¥ + py k cos y + py(j cos ¢ — i sin o) sin ¥
(3.5)
whence
B, - - [ p,i---808 0 ds = — plbi/ SRR de
J '\/1 —€?® sin4 [0 ' 1 — €2 gin= )
= — p;bi % arc sin( sin o),
Eel=3~ /. Pzidﬁ —~ €% gin® ¢ sin ¢ cos ¥ ds =
P2db | .
S —— | cosoW/l— €° sin” ¢ + = (1 — ¢®) ginn~2 £.228 9
2 [ 1 — 62._)
Npe= jp Pzk € sin® ¢ cos ¥ ds = pgk €b<:g ~ gin g COS(P>,
. ’ 2

I

—41

N,.o= f D, i cos ¢ sinVds = Pabje

@
o
{
i
I
I

cos¥ ds = — pzg kb o ,

sin @ sin Yy ds

i

r
i
|
\
s
=

€ sin®¢ cos
+ py,bi /ﬁ i deo
' /1—62 sin® o

= —p, i 2 Lsin ¢*/1 —~ €% gin® P - % (sin™*) (e sin ¢)1'
. N

sin ¢© cos® ¢
J Wi - €2 gin= ®

deo

r —1 € €08
=D gLLCOS(PVGn—€BSin2@—-%(l—€2)Sinh 1208 2 (3.6)
€ .

T2

1 —e®J
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It is noted that the.load portions pp and ps,
which produce N, and Nas, of themselves forr no equi-
librium groups, because the N contain a non—-periodiec
portion,which cancels out when psz 1is eguated to

% Pz. This occurs, for instance, if the four forces Py
originate through the same intermnal pressuré P in the
two cylinders,

‘pa P

= , - = pa, = =, = pb (3.7)
P 3 Pz P Pz 3 Pg P

Those values, written in (3.6) and condensed, give

N = .12_:_?1[- i sin qo/l ~ ¢®sin®y

+ 2j cos @«/1 —¢®sin®p — € k singpcoso] (3,8)

Force N is represented by (3.6') with the correct in-
tegration constants, because the i1 and k portion dis-
appears at ¢ = 0, the J portionzat ¢ = n/2. ’

The solution sf the moments accoréing to (3.3) is
predicated on the three vectors t X i, t x §, t x k.
According to (2.5) '

t xi= g siny — k cos ¢ cos v, 3

tx j=-1sinV —k sin ¢ cos ¥, , (2.8)
|

t X k =i cos ¢ cosV + i sin ¢ cos V.|

which, entered along with (3.6') in (3.3) and integrated,
gives with Q(O) = Xk

: 3/8

5 3 o ¢® ein? <

M.—.xgqugi}l_-’iecos c‘o-;g(l sin” %) >(3.9)
2 \" 3 3 €=

By means of the transformation equations (2.5) the natural
components Mp, M, My of the moment vector then follow at

pab?® 1 — €®
Mp. = : - sin ¢ cos ¢ cos ¥ + X sin
_ 2 .
M, = - 3%}~ £ cos © @, (3.9"%)
* - . 4
ab® (1 - €% sin®p)? + ¢® sin® v cos
Mgy = — P ¢ e i + X cosV

6 /1 - € gin® o J
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e ~ these expressions satisfy, as is seen, the symmetry con—
ditions Mqu(0) = Mp(m/2) = 0. '

] The course of the three moments, particularly in the
important practical case of ¢ < 1 (small openings), is
of interest., Expansion in powers of = affords

. 2 - 1
ab® 1 ) sin=2¢p cos?
MT=3_6_..-€-sincpcos 1~ e2<1+ ? (P\,-...J
e . /
2 4
- ¢X sinq)coscP<].+ %T cos . +...>,
ab2 '
Ml = — :E.-.é-.-_ € cos4 P, . (3.9")

=
)
i

pab? c - < - 1 coa N k
N — — -2 in<op - — — e
R sTRTRom g s 9, h

N

2
+ X (1 - & sin2 cos2 —_ e
( 2 ® v /

SOLUTION OF THE STATICALLY INDETERMINATE X

Simple Formulas for Maximum Moments

The prediction of the integration constant X is pred-—
icated upon a strain equation.  If expressed in the form of
Castigliano's principle of least strain energy, the geometry
of the strain condition is secondary (reference 1). In
vectorial form Castigliano's requirement -reads

/h M g ds = Min (4.1)

with k the vector of the curvature change

!

’ i

= 4 t + Kyny + Kp np

with three components: twist = and curvature changes.
K1, Kz The thin, slightly curved bar serves as basic
strain law, the general case of diagonal bending being
analyzed at once, Taking into consideration

gx = E(w"z + v'"F) = E(KE - K F)

(y, 2 distances from the centroidal fiber of the bar) .
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) r A
My =;/ o, T A4F, Mp= - '/...c,x 747

the law reads
MT='GJT19" )
My, =G J, Ky —E Jip K F - (4.2)

Mp = G Jg K — B J;5 Kz |
. 4

with J,, Jz, Jy the inertia and the centrifugal moments

referred to axes 1n; and 1nj (¥ and %), Jp the tor—

sional resistance. The solution of (4.2) inserted in

(4.1) gives, with the abbreviation

Ji1a®
A =1 - ———
J1Jdz
the equation for X: _
h ‘ 7/
a jf ML a ]r 1 sufe) M§°)J12‘> )
—— s = = —_ cost s
d. X - . EA \ Jz Jl Ja
[ u o) Vg < T ocos®d s I3 ¥ ds
+ i __ sin S G R S S— +
J T3 sin v cs L RIS G Jnp
(o , 7
b//M£O) M) )Jle\ r M£O)
= [ = d o+ / b —=— tan V d ¢
v} “A\ Jz Jldg / ] 64 JT .
o b cos V do [ sin® b 1 .
+ X L e 4.3
LJf EJs. 8 ) cosV dig ¢ ¢ (4.3)
where 1§°), Mf°> = My, Mé??A are the statically deter-

mined portions in (3.9').

The evaluation of (4.3) is predicated on the course
of the quantitie J with s and .¢, respectively, "To

(o
begin with., ﬁ;s_ﬂgg will usually be small, compared with
1 .
Méo), because Mgo) is smaller by three € powers than

Méo) and factor 12/J1 itself "will be perceptibly smaller

than 1, 5o, the second term of the flrst parenthesis can
be dlscounted for the rough calculatiion of X. The same
applies to factor A in the denomlqator which, even by
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marked departure from 1, does not affect the tresult-for
X materially, since it acts in the same sense in the
numerator and the denéminator, If desired, it can be
allowed for .in. the determination of the still remaining
essential parameter

¢J ' Gdp
T
= ee—— <1 N L. R e——— . . 4: . 4
@ EJE‘(l ). er . EJdzh ‘ F,, )

which indicates the ratio of torsional to flexural stiff-—
ness. Assume average values for J; -and Jp to be in-
dependent of s, the X equation simplifies to

- A+ B o ¢ (4.5)
C + D «
with nre - . /e

A :f M(TO) tanVy 4 ®, B =/ M£O) a o
o - ~o ‘ | '
'TT/E 2 'rr/g (4.5 )
! sin=y

C =—/ ————— d ¢, D= J[ cos V d o

cos Jy

For large € values the integrals A...D must be numeri—
cally evaluated, for small € integratinn by series ex—
pansion is suggested.

: 5 A . |
pad - 2 [ 2/ sin‘p N\ N\
A = _/ sin ¢ cos .1 — ¢ 1~ s .14
6 ] 7 \ NI A
pab® 2 [ 5 N
== (1 = 1 — = -, ..
6% 8 S\ TEs, Ty ‘
2 \ ‘
pab 1 [ =/ 1 4 N
B = 2. 1 — / - PR )
z eztf ( € \2 sin“o - 3 Slé'@/ +,?./d¢
. pabTy 3;..(}__§¢ ;_,_,\ > (4.5M)
6 \¢€= s/ A
2 .
c = ez'/ sin®op cosecp<l + i—— (sin®op + siancp) +.}.‘>dcp
2/ 2 ' N
58_{\1_5441 r5/4) —.)
-
D =‘/ (1 - €®sin?o coszw—-}..)dw,:(}—-%f(l;—5/4)-...>



16" "NACA Technical:Memorandum No. 1005

Figure 11 illustrates:the result of the caleulation.
of X for a specified.axis.ratio (e= 1/2), ‘a%ong(w%th
the three statically determinate gquantities M), {01,

Méo) ‘and — for different a values — the curves X sind
and X cos V¥V, respectively, from which the final moments
My and M; must be marked off,

At € =1, the ring degenerates to two flat pieces
(semi-ellipsoids), which meet under a right angle. The
particular loading (3.7) which is symmetrical to the two
ellipsoidal planes, stresses then each half of the ring
in its plane only. In other words, the statically deter—
minate portion of the torsion moment must disappear (first
equation of (3.97) and the statically determinate portions
of both bending moments must combine to a bending moment
about the normal to the plane »f the ellipse. In point
of fact, the moment vector at € = 1" (a = b) . for the -
first and fourth quadrants reads, according to (5.9)

at®
ﬁ(o) = gz;" cos®e (1 — k)

for the second and third quadrants

hence is at right angles to the plane of the ellipse. At
a = 0, that is, vanishing torsional stiffness, the stat—-
ically indeterminate (4.5) disappears, because the other
half’ cannot absorb a bending moment as torsion moment at

¢ = w/2. Hence M(O)(ﬂ/z) = 0, —at a # 0 a reciprocal
restraint occurs which produces torsion and bending moments
‘diverging from M (o , that is, twists the ring half out

of its plane. (The result of the calculation for an¥ )e
and a,, {llustrated in figure 12, indicates that M;°

an Mo N\O actually disagree at a # 0.)

The maximum amounts of the moments in relation to a
and € are of particular concern. For ¢ < 1/2, they
are readily obtained by means of the series expansions
‘(4.5")., For X there is obtained

2
. _ = ~ 4, €~ _ €2
_.EEga j5 a(1-0.8125¢2+0.2275¢ )+ 8(l C.8437€" )+. .,

by (4.6)

. 2
a(1—0,0625e2—0.0175e‘)+§;(1+o.4063e2)+...
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herce at " a ﬁ O

o ISP ) l ) ) e ‘
o = BRRT 3;~~ 2 4 eE/ 0.1981 ~ —=. ..J (4.6")
| 6 L€ . 4. . . _ l6a / L
at e = 0 (very low to;sibhal~s%iffneséaqf ring)
Bi——;.—- - gt 02788 €2 ,..] oL (a.eM)
6 e€® 4 . :

(The - statlcally indeterminate destroys, as ‘it should in
both cases the strongest term in the expressions (3. 9')
for Mp and Mp). For the maximum values of bending mo—

ment Mg, whlch are located at the symmetry points ¢ =
0, m/2 ... (cosV¥ = 1), there is obtained

at a £ 0O A . oy
‘ 27 g ) .
: pad” ; 1 1 3 2 / 1 > ]
M = 0) = 22— - S+ = — 2 4 e 0.1981 = —i— ).
2 (¢ b sl < €2 a _ l6a
pab 1) 1
= - o |1°= € | 0.264 — —=— )4 J
8 . L N 12a / - A
L2 - - ' S (4. 7)
ra . | 3 -3¢ 1 3
Ma(p = m/2) = m—— | = S5+ 2 T2 4 20020 Y+,
2\@ /, g t pa= p 5 2 2 <2 (..) ]
2
pab? [1 — <o 236 + —— + J
8 L ) 120
at -.a = 0
o L. : a\bg,. g “ 3
Ma(p = 0) = — E-—-—-—] — - 0.365 ¢® + ...}
, 8 L3 :
+ . > . <4.7')
b ‘
Ma(p = m/2) = Bi-—i e 0.168 ¢% + ...‘
8 L3 : 4 J

T

The equations .(4.7) confirm first the "two—dimensional"

. r Pab2 . X
result (e —=0) LMy el = 5 they further indicate that
Mz is reduced at ¢ = g, and likewise at ¢ = 0, as long
as o > 1 = 0.315. For smaller « values the sec—

12 X 0,264
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ond bracket of the first expression reverses s igns: the
maximum amount of the "up" bending moment (< O) at point
0 is greater in the three—dimensional (¢ # 0) than in
the two—dimensional case (¢ = 0). That Mgpax must be—
come greater at small o values should not be surprising:
the ring tries above all to evade a torsional stress;
hence it can not devote much attention to the reduction

of the maximum bending moment (bendlng and torsion are
interconnected on the three—dimensidnal curved ring). At
the 1limit o = 0O +this tendency of the ring even results
in a radical departure.of the My(a,€) curve from the

others: curve M2(€) - - alone passes at € =0 ,

' 5 P=0,a=0 ~ 1 o )
through - 51 pab® instead of the point  — < pab®, . and
drops monotonically %o - 1 pa'b2 at ¢ = 1 aé a func-—

. 6 S

tion of ¢ . Figure 12, where My(¢) has been plotted far
different o values, shows that the Ma (e) curve clihgs
for some distance to the boundary curve My(a = 0) for
small torsional stiffness values, while the extreme value
5/24 pab® is not reached for finite values of a.

o The maximum torsion moment (other tﬁan for a = 0,
wheére Mp is on the whole very small) is approximately

located midway between the symmetry point O and n/z
Hence the amount Mq (n/4) is determined as approximation

f(4.8)

for, MTmax' For small values €  the expansion in series
is again recommended.
pab?® o sin 2 26\ = )
Mp = ==<— ¢ sin cos’ = - {1 + L A
T 6 ¥ mﬂ € 2 Je )
1 3 2 \ 4 c® 4 3
- == -2+ &(000) + L. Kl + — sin + —5~ Sln
<_€2 4 v / 2 ¥ 8 ¥
Pt 1 1
MT(n/4) = T _4{_._ + €2 <£1 - 0. 1984 + —l—\\ j
6 2 2 32 Tea /”
pb° 2/ 1
= - Z— |1 — ¢ — — 0.842
. 24 L ) 8a -
At o = 0 the next term in the series expansion along €
likewise dlsapnears for ¢ = n/4, ledving:
' . pb - 11 5 3 1
MT(n/4) = —— [€°<:—f— + — = ——— - O.2738\l
“(a=0) Co12 128 32 128 /]

’ -
= —Dpb €x 0,0046 ~ 0
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The result of this discussion is‘'that, as regards

Ma, the stress analysis with a small safety margin can'
be carried out according to the-simple formula
= 1 . pan? : . '
¥2m33'~ g_?abf L Lo (4.9&2

For the’ maximum value of the other bending moment My,
‘equation (3.9") affords . .

2 b
I\/Ilmax = (O) 6 Pab = B—é—‘" ) ) . <4r9b)
For Mp a simple approximation, whlch is practlcal up

max

to € = 0,7 and remains on the safe side near € = 1,
is given by the zero point tangent in- flgurellz

pv°
M = -7 pad® = - (4.9¢)

max 24 24

‘M, and MT are in our particular load case independent
of .the radius of the large eyiinder., - '

EFFECT OF ECCENTRIC BTRESS APPLICATION

The effect of the moments which stress the ring di-
rect following eccentriec load application is secondary
compared to the moments (3,9) set up by the cross stress
because of the small lever arms. However, an appraisal
seems desirable; it can be achieved by means of equation
(3.5). To determine the order of magnitude of the addi-
tional moments an approximate assumption is that the
forces p; and pp apply at a lever arm h; along k,
and forces p and pse at a2 lever arm h along n,
(fig. 13). Then the localized load (3.5) produces the
following distributed moments m:

cos o + pphy i sin ¢ co@bv/l —~ €®sin®yp

4.
€2 sin” @

m = - plhl—vr

+ p3 hy (+ 1 sin @'+ j cos @)'+.p4g'3inw' (5.1)

which give rise to the shear moments
o d '
-I-‘iI-IIl = /’\ m ds = Db { his} -—-q---c—P-s— (5.2)
= J 7 J cos ¥
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The integration- glves.

Mp = pybdhy %151n )(€ sin. @)

1

z (1 — €?) sinh ——————m

+ —5— i Lcos ¢A/l - €a sin® ¢ +

+ pab hjp {‘1 cos ¢ + Jj sin ?} — pa b Kk ——«/ﬁ - eé sin® ¢ (5.3)

and, with (3.7) added,

~

b ' ' '
M_ = ..p.?'_... 1_ l.h <cos ¢ \/l _ EE 'Sin2 ¢
L€ ecos ® '
+ l——~£— sin 1~::::_~>-P hy € cos @1
1 — €% J

+
[
=2
ot
M|
PRy
w
e
:3
~——
—
(4]
1]
[ 2l
s
S
et
+
m
oy
n
/2]
[
o
..6
| IS
+
‘ AV
I
[n2
L
ol
I
m
[1M)
ur
[
=
~ N
BS)

4)

?ince these moments are small compared to (Z.9) in the ratio
1,

3; and 7?, a rough estimate in whlch only the lowest

powers of ¢ are retalnea, is suff1c1ent

Accordingly,

pab | 3

Mooz ———‘ii(z h1 + ¢hy) cos ¢ + J(h1 + ehg) + 2 k ha‘?
or

pad .
Mp(m) = ~——[( h1.+ 2'¢ hz) sin @ cos @]

b ~ :

Mi(m) = — Eg— [hy, cos® ¢ + (h,; + e hz)] - (5.5)

ab .
My (m) ='£§~ - €hy sin® ¢ cos® ¢ + 2 hz]

Since at a > b the component M,  1s greater than,
M,,  according to figure 11, the inertia moment in Mj
direction itself will be enlarged on the ring dimensions;
hence it is logical to assume that h, =~ -e¢hp (fig. 13).

With the subsequent simplifications -
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N 'l

& Ea' \'7;. [

?Mi(éﬁg= .. 3 ha sin ¢ coé ¢
'Ml(g);=ﬁgig é ha cosz ® S ‘ ; (5.6)

— ’ i j
it is readily seen ‘that” these quant;tles can have no effect
on the determination X, since M, had acted no part
previously and MT and Mz both are small in the ratio

—1;— compared to the prev1ous values. The maximum anounts

themgelves change. .in all three components by quantities
"'that - are small in the ratio: hg/b hence inclusién of the
moments due. to eccentric load application are not worth
while, which leaves for the ring dimensions the extreme
valies of.figure 12, supplemented perhaps by a- small safety
margin, P .

LOADING 'IN ‘PURE TENSION o, i

The calculatlng process is.the same as'before.‘ in the
axial-farce table (3.6) py; = 0,t and ©pp = Pz = Ba = O}
for the moment according to (3. 8) '

. d
M=o, % sz[ 'e'(Sin )(es1n cp)[,J sin \lf -k cos\l! cos @] g;ggw
(6.1)
The integrations again give . .
- cos 1 BN
M = 05 ¢ bai S i = (sin~ 1) (e sin o) )|+ X sin V¥
T 1 e /) 2. :_ 4 €
. L - V1l —e®sin”o : _
Mi'efcl t b % isiﬁ2¢ ~ &in o V1 — easinz¢<;%(sin_lf(€sin @iﬂ
L :
My = — o, ¢ bz{-lsd& — ¢? sin* ¢ -
i. €€ .
s B N
"+ sin” ¢ cos ¥ «(cos (e sin @)}( + X cos V¥
J
(6.21)

or, developed for small ‘e :
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I

10 e® . €2 . 4
MT = cltbe-g.tsin ¢ cos @ {1 + e sin®p + - sin P+ L.,

- 2
'~ ¢ X sin ¢ cos cp<1 + gé__ sin® o +>

r 2

z 81n4 ® 2 € s 8 .

My = o4td + sin~ @ + ...
: 15

R - 4 4
3

' 5 17 € .4 € .6 € .8 1
My = — 0,tb2% =5 |1 + == sin ~ —— sin ¥ ——— 22 S
2 1A €?QLA; > ¢ = ¢ g~ sin P+ J
. 2 _ N
+ X {1 — = sin® ¢ cos® ¢ — ...) (6.1")
2 .

The maximum moments are obtained aceording to the pre~
vious considerations. They are snown in figure 14. In the
vicinity of € = 0, that is, on a ring that does not depart
too much from the flat ring, the curves (figs. 12 and 14)
are in complete agreement — the loading is, indeed, approx—

imately the same except for the 90° rotation of load direc—
tion. In the region € = 1, on the other hand, the stress
of the ring is typically different in the two load cases:!
at point ¢ = O the ring is smooth, but at ¢ = m/2 it
has a distinct precurvature which at € = 1 degenerates
into a discontinuity; hence the load direction (and, of
course, the subsidiary effect of the small cylinder in the
first load case) is essential for the type of stress in
point.

Possibvle approximatihg formulas,'which fail, however,

in this instance near € = 1, ‘are:

, Mp o= % G ,tb3
My =%—o’ltb2l<l+ §€2> (6.2)
D e = T3 O380

LOADING OF LARGE CYLINDER IN PURE SHEAR T

With Txy = Tyx = T indicating the two conjugate

stresses, the first is applied at an area x = const.;
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(hence with hormal ' i)+ and falls in-veetior direstion

-

- (jﬂ/l,v €2 sin? @ — € k sin.@).

hence stres§és ' the ringy according to0+(2.8), with a load
per unit length of e

cos'¢ \
Pa =«/1 =====3 (g«/l — €®5in® @ — € k sin ) (7.1)
— €% sin’. ¢ .- . .o

The second stress is applied at an area with the normal
t and falls in direction 1i; hence, according to (2.8'),
stresses the ring by - . :

Pz = 1 sin @ . cas ¥ . (7.2)

The total loading of the ring is P = p; + Pz, whence,
according to (3.2) follows the shear lcad XN in the form

_ . | k /. PPa
N =7tb( 1cos ¢~ jsing - =1 €2 sin? ¢ )+ Lo (7.3)

The load distribution being:antisymmetrical, this time with

respect to ¢ = O and g, the axial load N must disap-—
pear at points O and g for reasons of symmetry; whence
N,=1xk ' (7.4)
5 £

" Quantity X remains statically indeterminate. From (3.8)
and (7.3) is obtained '

-t X N = Ttb

i s e e e e e .
L V1 ~€® gin® P

- €2sin @ cos =g
+ 2 <sin P cosﬂldi—-egsin§¢ + —::::Q;:::fi cosW)
, 1 — €®”sin®p

+ k(cos?®p 4fsih?§)édé ¢_~'%sxﬁgosﬂi(i bb§:¢iﬁ.j sin ¢)

and then, aé¢cording to (3.3),

M= Tth“Li j:_(sin—l)(é'Sin ) — J cos- @ %‘Jl'* € ®sin®p
: e - M . E . N . .

+ k(sin ¢ cos @) — X(i sin ¢ — j cos @) + M0] (7.5)
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The integration.caonstant M/ is zero-.since the two bend-

ing moments M£°) and Méo),' which must be antisymmetri-
cal with respect to-:'¢ = O and g disappear. With (2.5)
and (7.5) the three-.components’ of the moment are:

Mp = — Ttb® %!.% gsin ¢ cos ¥ (sin” ') (c sin @)
. ‘ 2 :
cos® o R
+ 2 } + X cos V
V1 - €® sin ¥
My = — Tt - L% sin @ (sin~?) (e sin @) = (- (7.51)
— sin @ cos e~/ 1 - € sin® m}
’ - l T . ,. . —1\ .
My, = | tb? TBsin @ sin V (sin” ") (€ sin @)
- . . |
+ sin® ¢ cos @ cosdﬂ— X sin V
- /
or developed agdin for small €:
‘- i - 2 " - :}
: €
M,I(,O_>. = — T1tb® 1 l 1+ — sin_4 P .
€ | 6 . ,
5 ' 2
e* /—— sin® P - - sin® @>}
24 15
(0) . R - 2 v-€2 .0 s - - \ '<7v\5")
M7/ = — Ttb® ¢ L g+t & sin® wJ sin” @ cos o
o : B
Mé ) o Ttb2 ¢2 sin® @ cos @[-2 + £ sin® o
3 5
2
c- -
.4
+ —
5 sin” ¢ + .r.‘
-

/

It is observed that the statically: indeterminate
(whlch this time is a cross force rat? s than a moment)
does not reappear in Mg, whereas ) 15 no 1onger

gsmall with relation to M2 , SO that in the executlon

of the staticaliy indeterminate calculation the:effect
of M; cancels only for the case of non—obligque bending.
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When restrlcted to this partlcular case (J,2 = 0), the
calculatlng process concerning the determlnatlon of X
also remalns the same as before w1th the sole. difference

that thls t1me the‘ (O) portion contalns the lower €
fipowers ‘86 that the extreme case
i R ch
a = ——2 —= 0
BJz
also adjoins the case o # O ‘without ‘discontinuity.

The formula for predicting X can again be written

A, + B,a N
X =
C, + Dia
with, /2 T/8
' {0) . ’o)‘ .
A, = My - & @, B, = My tan v d ¢ » (7.6)
Jo sy : '
"'\';/2 T—T/a . 2 '
sin® ¥
Cl = coS \L’ d ¢, Dl = —————— a P
Jo o cos W )

for € > 1/2 the integral must bve agaln numerically eval-—
uwated; for small ¢
~ L s €2, b, 10me?
Ty - T 16__ 64 384
€ 2 2 4
4

1 - £ _ o0.0175¢” +%€7 4 0.4063 E-E_
16 8 8

. . ) ‘2 . .. : .
= 1 <1 + ;72—2'62 + -5 (4.09 - 4.8l o + 1.56 a?) +..>
€ 8 100 . 2o '

The result is shown in figure 15. This time Mg,
max
falls in the symmetry points ¢ = 0O, n/2, Mgmax near the

point ¢ = mw/4. Then, Mzp..' 1s seen to be little
greater than in the extreme case ¢ —> 0O at o = 03
whereas Mg increases consideratly near € = 1. The

ma x

(7.7)
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torsion moment has the opposite sign at O and n/2. At

P = n/2 the dependence of the maximum tcrsion moment on
a is as expected; it rises with increasing torsional '
stiffness. This aspect of Mp(a) is due to the fact

that the statically indeterminate portion, which at ¢ =
n/2 is smaller -in amount than the statically determinate,

decreases with increasing ao. -~ At ¢ = 0 the conditions

are reversed: Since the statically indeterminate portion

governs the sign in this instance, (MT) decreases
extra

with increasing a. The curve of the other bending mo-—

ment M; has been omitted in figure 15, since it is al-
most straight and weuld intrude, moreover, in the range

covered by the MT curves.

The following simpie approximate formulas remain:

1
M, = ZTtb2 1
max 2
M, = £ ttp2(1 + 0.15 €2) (7.8)
max 6
R € w2 2
M = — Ttb°(1 + 0.3 €¢*®)
max 6
the last one falils near € = 1.

Translation by J. Vanier,
National Advisory Committee
for Aeronautics. ‘
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Figure l.- Section of two cylinders.

K Figure 2.- The first load case
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FPigure 6,- Resolution of skin stress
x applied at ring
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Figure 7.~ The three projections
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Figure 9.~ Solution of linear load

p ( the plot lies in
the tangential plane of the
cylinder,

Figure 8.~ Defininition of angle V.
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