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As the initial step in”’theanalysis of stress, di,s-,
:tribut ion in three dim&,nsionally ‘curved rings “(as emplcjyed
.as stiffeners in stressed skin ~ircraf.~..designs) the,“ring
(fig.,.1) formed by the inter section”cf ttio cir.culai cyl–

“inders is explored for three categoric. { of. load: tension
in both cylinders (produced by hydrostatic pressure.” in the
cylinder walls) , axial force in the large cylinder, and
lastly, shear in.,the large cylinder. The discussion of
these three load.cases enables general conclusions con—
cerning the behavior of the ring s,tressed by. the,shell
forces and affords numerical data, for the most. important
load categories (obtainable from”’the ccm.puted by super-
position). The quantitative resul.ts.arel.illustrated in
figures 12, i4, and 15, and chndensed ,in”’sirnpleapproxi—
mate formulas. through (4.9) , (6..2), and .,(7.$),. Qualita–
tively, it caR be. stated that, on wings whi’ch do’ not de-
part excessively from the plane,, the moment ‘“Ma about
the normal axis (hence that of the three moments which is
other than zero even on a perfectly straight wing) re”mains
the paramount stress; and not until there is.a very ap—
prec:iable three–dirnensienal curvature (when the. ratio
b/a of the. cylinder radii approaches 1) do the two other
components of the three-dimensional moment vector, the
bending moment ~~:1 and the torque MT become perceptible.-
Since M2, as the. graphs indicate, varies but little
w’ith c = b/a if suitable ref’e.rence quantities a’re.chosen,
rings for .llsma”lllfopenings can be computed .as straight
rings with very good approximation.

The (closed) ring is ‘Statically indeterminate, It
I
p. effectively evades an excessive stress induced by insuffi–

cient torsional stiffnesk~by responding to the load largely
with bending moments M2 - still, finyings fully ineffec—
tive in torsion, it is recmmrnended that the existence of
the shear stresses ‘within permissible limits bc eonfirmmd
‘by approximating with the. help of the cited empirical formu–
~a.$...
~-————_— +.-—-———.———- ——.——..——— ——--—. ———
(.~ttspannungen in Ausschnittver $teifungen*” Luftfahrtforschung,
vol. 18, no. 7, July 191 1941, pp. 253-61.

.
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The three explared lnad distribution s:are three
column loads for the unstiffened cylindrical shell; hence
they create in the undisturbed, ,shell a pure,,me~brane
stress attitude. The calculations predicated on the
assumption that this membrane stress attitude is net ma-
terially disturbed by the elastic interference effect ~e-
tween the stiffener opening and the skin, This assumption
is met in the ‘fextreme’f case of a very stiff ring and a
thin–wall shell -without frames (nr with frames located at
some distance from the opening). For the frameless shell

“interference loads”would, have to attenpt to terminate the.
returned by the “ring through’cross stresse$ and bending
moments ; since these “do not become large in the thin shell
and are damped quickly besides , any ‘hidtf of the shell ‘for
the “ring can manifest itself merely in the” formation of a
smal”l effective border zone which takes nothing essential
away”from” the ring. ‘

In the opposite extreme “case (not discussed here) of
a ring rigid in-strain but flexible in bending and of a
shell closed all around hy closely placed st”iff frames or
curved floors - ‘fegg surface” - the state cf stress and
strain is.utterly different. Shell and ring are for the
most part subject to diaphragm and axial stresses”, and
stressed in bending solely by the “const~aine~ stresses due
to the. incompatibility of the form changes. The case iS
of little practical ccncern, since structural reasons’ usu-
ally call for rings which are far froin ineffective’in bend–
ing’,

.

The, true”,shell lies between the’ twti extremes. If “the
ring is d?”etinctly rigid in “bending and the shell eithet
is thic’li—wal.leedor forms an egg surface, a complicated alas-
tic iq5ekferF,n,q’e”effect results which defies calculation”
and must be ascertained experimente;lly+ The present
solution suppli”es th”e ba”sis for such. experiments by “ena%ling
the estimation of the ‘maximum bending stresses to be expected
thr”ough :the determination of their upper limit.

. “ ..

. .
INTfiODUCTICN

.. .

The Flat Ring
. .. ,’
‘.

Concerning the exact stress distribution of three
dimensionally ‘curvedrin’gs, ‘such as are used as stiffeners
on openings in shells of all kinds, little data are avail–.
able. The present study treats as a typical example a

,., ‘~

.
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ring. the center,,line .,of.which is” pr,qduced by the ,inter-~
sect-ion of’ two circular “cy]i’i-d”e&”s””cjf.d,ifferent. diameter .:*
Three load cas,es are ana,ly.zed.:

...,. ,...
‘. . 1. Axial and C.ir’cumferential $tr~ss.es in both cyl–

., inder.,s.:.t:he.cylinder,stress,e $ themselves “tfi,..i be in the ratio conformal to the cylinders
loaded under internal pressure

2. Pure longitudina l”tens ion in the large cylinder
..

3. Pure shear (torsion) in the large cylinder

To simplify the calculation, it is assu~~ed that the
ring, compared to the shell, is very strong, so that its
deformations haveno perceptible effect on the StrGa?SS
cond.iticn. in the shell. . This provides an. “upper limit for
the ring stresses actually produced in a shell design,
for, according to the theory of stressed skin statics the
shells, bY elastic flexibility of the ring, r------- “--
forces depfisited on it in such a manner that
relieved.

egL-uup bIle

the ring is

immediately
that is,
forces ex–

Load case l.– The solution can be given..—__________
. in the extreme case a>>b (figs, 1 and 7),

if the ring is ‘Ipra.ctica,lly’lflat. Then the
erted by the small cylinder a,re secondary alongside those
‘“of‘the l:abg’ecylinder: the fore’e pa ‘along t“he’cir’cum—
ferentia”l” cir”cle’sand the force pa/2 “along ‘the generat-
ing axis. Since an equal tension pa/ 2 from all sides
stretches the ring without twisting it, the bending stress
can be computed as if the ring were loaded in the manner
shown in figure 2. (Load cases 1 and 2 %ecome identical
except for the exchange of axes.)

The equilibrium conditions on the ring element ds =
bd(p are expressed in vectorial form from the’ very ‘start
in view of’ their subsequent application to the three–
dimensional problem? Thus t *denotes. the unit vector of
the tangent pointing toward Increasing arc length s, n
the unit vector of the normal toward the center of the –
circle, ~ the unit vector at.’right angles to the plane
of the ring (fig. 3); ~ is to indicate the resultant,

:..---——————— -—_____ ________ _______ ______ _____ ______ _____ __

*In fig. 1 the smaller cyl.inde.r.is shown outside the large
one . But the rifi’gformulas: apply exactly, if extending .
wholly or partly in th”e’large cylinder; the small cylinder
can be arbitrarily s,h.ort;it can be formed by the ring
itself, for instance. ..

,,, ,,, .,,.,,,, .,, ,,, ,, ,,,, ,.,,,.... .., ,--. —.. --—
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~lth the outside normal
the moment b.f the sectien stresses applied at a sectlen

. ~;-———.—- at the s6cti6n boundary for
which & is the inside normal the resultants –IJ, -~ are
effective. Since ~ and ~ vary with S, the amounts

on ‘tfronttland “ftfear~lof a piece of length ds differ by
d~ , dM. In consequence, the force equilibrium specifies
accor~ingte figure 4:

.,

the moment equilibrium (“inabsence of external moment
loading)

(the choice of moment reference point within length ds
being immaterial, since the differences of higher order
accruing therefrom beco,me small within the Iiait d-0).
These vectorial equilibrium expressions for the bar element

can , if load, iectional fcrce, and moment a’re divided into
components along t_, k2*_.’ be written in the form

.

and because of . ,,

are equivalent t~ the scaler

dN Q= dQ+N’ ‘ dM ~ ‘
–Pt) -=— pn, ;;+ “% =, o’

Z – “{ ii b
(1.3)

which, in this two-,d.imensional c,a-seco,uld naturally have
been read off as” well from figure 5. .. ., ..,

In this particular load study the components Pt! Pn
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(dimensions: -force, peru,nit length) should be replaced by........ .

??ij = ~2~sin cp cos cf,’
pa

‘Pn = ~– sin2 V’ (1.3’) “

according to.figure 6? The’ integration of “(1.3) presexits
no difficulty, With ds = bdq, the first two equations
give:

,. N=
pab

Acoscp~B sincp-t. --z- cos2q”

Q=Bcosq-Asincp-~& “)cos cf sin V
(1.4)

The ‘~wo integration constants A and B follow from the
symmetry requirements according to which the cross stress
(p.o and lr/2 must disappear. Then

A =,B = O (1.4’)

Entering (1.4) and (1.41) in (1.3) and integrating affords

M=X
pab 2. ..——
4

COS2 y (1.5)

Integration constant X remains statically indeterminant;
it can be computed by means of Castigliano ‘s principle of
leasf-strain energy

.,
a I M2

–— ds = O
ST 2EJ

(1.6)

For the specific case EJ = Const, equations (1’.5) and
(1.6) give ,..

(1.7)

Inconsequence, the two extreme values” of the moment at :.

-pO;nts q=o; V = Tr/2 are inversely equivalent and
amount to

M
pab 2

.- ——nax = ~ (1.7’)
.,

Equation (1,J5) for the moment can equally be derived
by ~’nether “>r”ocess“which is ‘much more simple, to wit:
“According to figure 6, the first vect6r equation (1.1),
.w’henresolved ‘along the vectors ~, ~, k., _ (Place inde–

pendent) characteristiking ~he space directions ,x, y, z,
instead of along the “natural” variable directions t_, g,
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the integration of this equation is even simpler than that
of (1.3); we, get

(1.8)

that is,

Integration constants
Q(IT/2) = 0; hen~~ and

C2 disappear because
Q(0) =

pab
g= ~– j Cos Cf (1.8’”]

and with it follows, because t,Xj= – k sin q) and l~zMk

from the second equation of (l~l),–and e~uation (1.5) – –

pab
M=—–

[

pab2
cos cpsincpd.cp=X— ——-cosZ cp

2
(1*9)

4

The calculation of the three dimensionally curved
ring also proceeds in two stages: the determination of
the intersection resultants (forces and moments) as far as
is possible on the basis of the static statements (1.1),
and the solution of the statically indeterminate quantities
on the basis of the strain co~.ditions. The pro%lem is
most easily solved if the vectors for the integration of
the differential equatiGns {1.1) are resolved along the
place-independent system of unit vectors s, j, ~, and
then the transfer to a systen of axes attached to the
space curve (tangent ~ and two normals I!l! 22 carried
out the prediction of the integration constants from the
strain-and symmetry conditions ‘— and these only — necessi—
tates resolution along the natural axes ~, q, gz; be-
cause the strain law anL the symmetry expressions are
amenable to simple formulation only for such components of
the,force and moment vectors.



GEOMETRY OF THE SYAC12 C&@VE ;
,. ..... ..-..
,,

The first step in solving the three–dimensional ring
problem is the laying ,d,own, pf.,:th.e.f&rmu,la.#.,characterizing
the geometry of the”””spa-cc cur-~”e., ~,W~’tk the notation of
figure 7 the space curve is given by the two’ formulas. ,’

~2~Y2=b2, yZ ~Zz= a?.,....
,, ’,. ,,.

. . . .

With
,.

the c:h..&ic:e~of .,*he angle ‘Y projected” ‘tnto.,t,he xy
plane as plaqe ‘parapeter and b/a = 2, thetri pie: equation
reads

x Y z lJ” -..5” ‘“’ “’”=cosql, -=siny ,—=—i —efi
;

sin (.2,T)
b ~~,

. ,’
,,, ,..

“:l?r~rn the ~eornetry’of the’ s~ace curve.”repres$nted” by,
,,

(~.l): two group s,’of formula s’are appiied: .S,’)the expres–
sions tor the arc length anti for the three unit vectors
of an ffaccompanying triangle )112) the relations expressing
the pes it ion of the curve ?lement with res:~e~t to the
force d“ire’ctionsg -“ The arc ’length follows frnn

at

-.. . .... . .. . .. ....”..,.“,’.~. :,:...-:

.,
... . .

.
: (2:2)

.,.,

(,~.3)
,.

The intro dtiction tif’”ttie’.dn&Ie ;~ of {he ,s”.pac~~‘c~r”~i tin—
ge-nt’“with respect” ~~ ‘:i~sprojee~-~on. . , . ..:. .

. ..,....’ ,.,. . :“ .,’
!. . ,.. . . .

Cos q.
..;.~.’:~ifi,y, ___ , : ;’ “’(’2.4.)

. tan ~ = _d_z-“& _ ----.____— ,
.’ .,:hdv .,..v{ 2 .. ,.”’
. E2 sin..-. ,9 ,, :... ...,.

. . ...’
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,,.

with cos and $in of @ being given by

..[

—-—— --—- --—

1 - C2 sins cf 6 sin cf cos qI
Cos .$ = —-—e.—- , sin V = - —.-.—.————

2 4,., . 1 -“c sin cp : ~ d-:-:z-;;;~-;

according to (2”04.), ‘

Defining the two mormals Q1 and ~z by the

.

.,

‘(2.41)

stipu–
lat ion (of itself arbitrary, but in view, of the simplicity
of the f“ormulas app~bpriat e.), to place Ill 11horizontal ~t!
(~lxk=~, glxt=O, Ql ‘l)\. the forrr+ulas for the three axe:
read*

The forces that stress the ring are applied on it by
the cylinder skins.

Consider figure 9, which represents a ring element ds
and (slightly shift~d) a skin element at one side of which
(with the normal V) a shear force K is applied. The
load ~ acting en the element of the ‘ring is , because of
the equilibrium in the skin element, given by

Q = ~ cos’a = K(IL-iY) (2.6)

There” the ring normal ~ is characterized hy the fact that
~—___ _____________________________________________________

*The use of the so—called natural axes ~, ~, Q (tangent,
principal normal, binormal) for describing the cur”vk is “
unnecessary and, in general, in.appr~p’ria,te.,’ l?or’a dete’~-
mination of the natural axes which has not implicit conr~ec—
tion with the principal inertia axes of the section requires
the’ ~n.owledge of the thirdderivations of the-system (2..1);
whereas (2,5) follows from the first derivations only, The
fact that one of the curvature components disappears on the
natural axes is an advaqtage which is of no consequence com-
pared to this draw%a.ck.
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it wit,h ~ and t is l-ocated “in one plane; hence it
falls in the tang~nt ial plane of the particular cylinder.
It is mnst simply obtained over the surface normal ~1

or ~1’I‘ respectively, to ,whi,c.hit must be at right an–

gles . The outsid’e noraal of a circular cylinder falls
along the radius vecter. Therefore, because of (2.1)

!iith the identifying signs of figure 1’0, the desired curve
‘normals become

= ~ XI+ = i
Cos

Da ———.—.— -—————
‘.& - CZ ~in’ q

———.——.—————

!

+: j (1 – cz sinz ‘m)sin 0
..

-–-ZZZ=––”-’”-”’ – _
I

k ~ sin=.—-.———— (f Cos vi—
— c2 sin T I

I

as affecting the l;arge “cylinder
~(2.8)
1
,

X t = i sin cf sin~ !~~(= 22) = :Ir _ –

.,
–j’cos cfsin ’~’+ kcos~’” , I

— — I

“relative” to the small’ cy”linfier,
.. Ii

,Ls.ter on,
/

the angle between the tangent’

J

.. . .—--——__—_—.
t’‘ = (:J.1,— ~2 sin2 $o– ~ 6 sin y.)—

,..
at a circumferential circle of the large cylinder and the
normal % is particularly needed;

cos(~l,ga) = ~Qa = sin V cos~ (2.8’)

THE EQUIL’13RIUI!”EQ,UATIOITS ‘

The” equilibrium equations for the ring element (dis–
“tributed outside mcments discounted far the time” being)
read in vector form as in the twc—dimensional cas’e:
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dl!l dll
~+2=~Y–=+Lx.E= @

ds
(3.1)

with ~d s as vector of the external force applied at the
ring element, as results fror.c(2.6); the shear fcrce vec–
tor

has this time the longitudinal fcrce N and the two cross
forces QI and Qa as components ;.tne shear moment vec–
tor

has the torsion moment M~ and bending moments ~~~ and
M2,

Equation (3.1) is integrated in two stages:
s .,-Q

1.
d (f

~=u(o)-( p ds =X(C) –bi p —-—-- (3.2)
“o , !0 Cos $

v

2. !!II= M(G) – f’s tx~ds= ~(0)–b r
dcf

~xlJ -——-— (3.3)—_
Jo – “J o — Cos O

The integration constant ~(~) is again found by sym—
me try considerations , one component of the second censtant
y(o) remains indeter~.inate, The symmetry of system and
load requires the disap~arance of the three antisymmetri-
cal quantities Ql, Qz, and MT (the shear resultants) at
points v = O ‘and V = ~/2; from Q1(C) = 0 and Ql(TT/2)=
O follow the & and ~ components , frorl Qz(o) = Q2(TT/2)=
o, the k component of g(o); frcm I~!~(0) = O and—
MT (~) = O the ~ and ~ components of J!(G) – the g

component of ‘M(o) - the & component of y(o) remains
to be determine~ by a strain equation. *

Denoting the intensities of the shear load of the two
cylinders along the generating axis and the circumferen-
tial circle with
---------------------------------------------------------
*Since , for reasons of symmetry, ~ and M contain only
the even–number harmonics in V, Q2(17/2) = O follow’s from
Q2(0) = O. Hence the cited 6 symmetry conditions yield
only 5 independent equations for the determination o“f the
6 integration constants.
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I?l). P2 f or the large cylinder

P3 , P4 for the small cylinder

equations (2.6), (2.8), and (2.8’) afford
.————.——

p=pl~ CosV i-p2(~(il-ez5inzq– c~sincf)—-..—_— _______

fi-C2sin4 cp

Xsin cf COSIJ + p~g cos~ + p4(~ cos cp-~ sinq) sin’~

(3.,5)

whence

[~l._, pl&_–_::5-2__-–– ~s . – plb~

.[

Cos q

L-czsin’v
——— —____ ____—— __________
A– 62 sins cp

= – plb~ + arc sin( sin q),

N–3=–
.!

p3&cos~ds=–p3~b y,

.

f

C sin2cp cos q
~41 = — P4L sin q sin+ds = + p4bi f ——__________f-—-————_—____

N
’42=

f
P4~ cos V sin$ds = p~bjc

“’ Jl - C2 sin2 cf

.
–.– $. (sin–l ) (~sinq)l

-J \

drf

(3.6)
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It is noted that””the load port’ions p2 and P3,
which produce g~z and g3 , of themselves for~ no equi-
librium groups, bec”ause the “~ contain a non–periodic
portion,which cancels out when p3 is equated to

$ P2* This occurs, for instance, if the fo”ur forces Pi

originate through the same internal pressure p in the
two cylinders.,

(3..7)

Th9se values, written in (3.6) and condensed, give
,.

g = l&[- & sin ~ Kc’sTi’,

+ 2j cos q 1 -c2sinzcf - e ~ sinqcoscp] (3.6)

Force N is represented hy (3.6’) with the correct in--
tegrati~n constants, because the J and Jg portion dis–
appears at q = O, the J portiontiat q = 17/2.

The solution of the moments accor~ing to (3+3) is
predicated on the three vectors tx~, tXj, ~Xk.
According to (2.5)

——

which, entered along with (3..61) in (3.3) and integrated,
gives with M(O) = 11~

. . 3 /2

~ =x~+-
paba [. c cos ‘VJ _k (l -- 62 sin2 q)
——..

.2 F ‘-”T--” ‘-——— )
— (3.9)

3 ~2

By me”an”sof the transformation equations (2..5) the natural
components ~!T, 1!1 142 of the moment vector then follow at

. pa%’ 1- “C2
MT.= ---–– —z---sin q cos y cos O + X sin vi

Ml = pab2 4
7 Y-6–- f Cos ~,

\
‘(3.9’)

M2 =
pab’ (1 - Cz sinaq)’ + ~’ sin2 ? COS4V +x Cosv

— —-—— .—---.—..— .—-— ---——-.——.—7— -——
6“ c2 &:-~~-;;i2-; 1

. . . ..-——.. —.--... ,,..,-,... .,- ., ,.. -- .. ..



..- ..--..— . . . . ..-—. -. .- . .. ...-—_-

NACA Technical Memorandum No. .1005 13

these expressions satisfy, as is seen, the.:symmetry con—
dit ions MT(O) = MT(TT/2) = O.

The course of the three moments, particularly in the
important practical case of C ~ 1 (small openings) , is
of interest, Expansion in powers. of ‘c affords

MT
pa% 2——--
6

sin Cos 1 sE2 1 -4
sin2q cos2cfj.-..—--- .—

2
-..

/1

1

.)

(3.9”)

50LUTION OF THE STATICALLY INDETERMINATE x

Simple Formulas for Maximum Moments

The prediction of the integration constant X is pred-
icated upon a strain equation... If expressed in the form of
Castiglian,ols principle of least strain energy, the geometry
of the strain condition is secondary (reference 1). In
vectorial form Castiglianols reauirement,reads., .

[
M ~ ds = Min (4.1)—-

with k the vector of the curvature change—

k = + t + K1~l + ~ag2—

with three components: twist ,Q and curvature changes .
Kl, K2. The thin, slightly curved bar serves as basic
strain law, the general case of diagonal bending bei,ng
analyzed at once, Taking into consideration

(y, ii distances from the centroidal fiber of ‘the bar) ,..

l.__....._..-–- . . ..—..- ---- -----
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,. MT= GJTS L.].. ..

with Jl, J2, Jlz the inertia and the centrifugal moments
referred to axes 31 and lZ2 (Y and Z), JT the tor-
sional resistance. The solution of (4.2) inserted in
(4.1) gives, with the abbreviation

A=l — ----

J’IJ2

the equation for X:

(4*3)

,11$0)where , Nl$”) = Ml, MJ:)
1 “’ are the statically deter-

mined portions in (3.9!).

The evaluation of (4.3) is predicated on the course
of the quantitie

7
J with s and .cp, respectively, “To

M[0.:J12
.,

begin with., ~-————-- will usually be small, compared with
d~

My ,
because ~$o) is smaller by three C powers than

M~O) and facto:r J’12/Jl itself ”will,be perceptibly smaller

than 1, So, the second term of the ,first,parenthesis can
be discounted for the rough calculation of X. The same
applies to factor A in the denominator , which, even by
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ma

x
nu

al

es

.rked depa?t<r”e frbm 1.;“dties not
Iriateria}ly, since it acts in’t

.merator and the denominator, I
lowed for.in. the determination
sentialparameter :

.’

a“ffec.t“the<re’sultfor
he same sense in the .
f desired, it can be “
of the still remaining

GJT
—-——
EJ2A ‘

(4.4)
.,

GJT
.. a = --—

EJ~
(<1 ) cr .=

which indicates the
ness. Assume averag
dependent of s, th

,tio of
values
X eq

t
f

ua
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Ba————
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+
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Figure 11 illustrate s”:the resultof the’ calculation.

X for a specified .axis. ratio ‘(c= 1/2), jalong ,w~th
the three statically, determinate quantities M~O~, @“]i

~jo) ‘and”_ for “different a values — t~e curves X’sin~
aid Xcosljr respectively, from which the final moments
M~ and Ma must be marked off.

the ring degene~ates to two flat pieces
(semi~~ll~p~olis) , which meet under a right angle. The
particular loading (3.7) which is symmetrical to.the two
ellipsoidal planes, stresses then each “half of the ring
in its piane only. In other words, the statically deter-
minate portion of the torsion moment must disappear (first

. . equation of (3.9!)) and the s taticall.y determinate portions
of both bending moments must combine to a bending moment
about the normal to the plane ~f the ellipse. In point
of fact , the moment vector at ~ = 1’ (a = b) for the’
first and fourth quadrants reads, according to (3.9)

for the second and third quadrants

~(o) . pab2
= —————,. 6

COS3~(~ + k)——

hence is at right angles to the plane of the ellipse. At
a= o, that is, vanishing torsional stiffness , the stat-.
ically indeterminate (4.5) disappears , because the other
half: cannot absorb a bending moment as torsion moment at
q) = ?T/2. Hence M(o)(m/2) = 0; – at a+o a reciprocal
restraint occurs which preduces “torsion and bending “moments
‘diverging “from M(o) .

twists the ring ha,lf out
of its plane. (The ~eSl!~tojS~he’ calculation for any c
and a, illustrated in figure 12, indicates that M(o)

and Ma(o) actually disagree at ~}o.)

The ‘maximum amount-s of the moments in relation to a
and E are of particular concern. For c < 1/2, they
are readily obtained by means
“(4.5”). For

of the series expansions
X there is obtained

p~72a 1.
a(l–0.8125.c2+0.2275 c4)+S8E(l–C .8437c2)+ ..,

x= ––— —- .——— _____ .________ ____ __________
6 ~z (4.6)

a(l–0,0625c2–0. 0175 64)+~8~(1+0.4063 c2)+. ..
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hence at” “~“+o: .:’’....,;: ,, ..,.;..
,. ..- .“,.,.

=pab2: 1 ,3 ; ~2(o ~981 I ~:+ I
.,- ,-——-—- ---

.\ ”,,.
.—

1,
“’(4.6’)

.. 6.” L62 .,,4.. ...-.:,,. l~al “’. ,.

at ,a =,0 (very Iow””tor.sional stiffness of ring) . ‘.
,,

= “’paba- 1 5 ,,
-..—6—~ ?=

1
– ~,+ 0,.2738 CZ + ,., ‘... ,. ‘“ (4.6”)

~c .,. .

(The statically indeterminate destroys, as it sh’oul{, in
both cases ‘the strongest term in the expressions (3..9!’)
f or MT and :.Ma). ,l?or the maximum values” of bendin”g mo-
ment M2, which are located. at the symmetry points q = ..
0, TT/2 ... (COS ~ = 1) , there is obtaj.ned

at u # o ‘,. .

M2(cj= O),=~:E:I–_l–+ 1 3 2 (— ~ + c..
:6~ ( ) “]

0.1981- -“i:;: +;.
<2. ;Z

.,,

2.

..=,. l\7.
- ‘~j– [l;- ‘c2 [,0-264 - i~~/!+ ““j.,,

‘(4.7)

M2(q,= 2 [-”;=+ :-::::..+ :-–%2(..)+;.] .Tr/2) ..::6:–
~2 4

= pab2
[

.2———-
( 1
0.236:;; -r-.. “

8 ~l.–g

2r ‘

M2(v = O) = - ~~–1
5
–- O;365C2+ ...

8 L3 1
,.

‘ “J”

(4.7’)“zr
Ma(y = n/2) = .~~:—[~

-1
-0.168C2+ ...

-i
,

The equations .(4.7) confirm first the ‘ftwo–dimensionally

result (c - 0) [Mmax! = s;::; they fur,th’er,indicate that

M2 is reduced at q = z,
2

and likewise at q = O, as long
1

as a> -————_——__ = 0.315: For smaller a: values the sec—
12 X 0,264

1,
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ond bracket of the first expression reverses s igns~ the
maximum amoun,t of the llupllbending moment (< O) at point
Q.. is greater in the three-dimensional (c ~ O) than in
the two-dimensional c“ase (c =0). That ‘2max must be-
come greater at small a. values should not be surprising:
the ring tries above all to evade a torsional stress;
hence it can not devote much attention ‘to the reduction
of the maximum bending moment (bending and tors”ion are
interconnected on the three-dimensional curved iihg) . At
the limit a=o this tendency of the ring even results
in a radical departure .,ofthe Ma(u, c) curve from the
others: curve M2(e ) .alone, passes at E =0.q=o,a=o
through – -& pab2 instead of the p-oint - & pab2, “and

dr~ps monotonically to -’~pa%aatc=l as a .func-,.

tion of c . Figure 12, where M2 (c ) has been plotted for.
different u values , shows that the M2(c ) curve clings
for some distance to the boundary curve M2(a = O) for
small torsional stiffness values , while “the extreme value
5/24 pa%2 is not reached for finite values ,of a.

.
The maximum torsion moment (other than for a=O,

where MT is on the whole very small) is approximately

l~cated midway between the symmetry point O and rr/2.
Hence the amount MT (T1/4) is determined as approximation
for. ‘T “ For sma~l values c the expansion in series

max
is again recommended,.

“2
MT =

f~

(

sin2@ coszf.p\l
~~6~– c si”n cf cos”cf< –u – 1 + —.——

l\c 2
-,-,2 (...)

1

-( 1.- -
C2

MT (IT/4)

‘) /1+,2 4

+ C2(. ..)+ . . .

A

—-” sin 4 q + ~~- sin8 (p
2’. 8

pE3 ;

{

1 2
––+E

(

5—- — i)+.,}
62

– 0.1984 + —–
2 i; 16a)

3-
pb

= - ___
.(

~1 – ~a ~- – 0.~42
.24 I- 8a )1

Ata .() the next term in the series expansion along c
likewise disappears for cp=il/4, leaving:

3 /

[(

M~(lT/4) = ‘~– ~2 ::– + :– – –:– _ o.2738’)~

(a=o) 12 128 32 128 /J

=— p b3C2x0.0046 = O



The result of this discussion is’tha”t,:.ab’regards
.M~, the stress analysis with a small safety margin can
be carried out according to’ the.’s,imple f’d~qula

I&ax, = $:pabz :
,...

(4.9a)
,:..”

Tor the’ ~axirnu~,value of the other bending moment Ml,
equation (3.91) affirds ,. ,.,.. .,,

M =w~~)’=c’z 3“ ~laax (4,9b)~ Pay = ~:-.

For MT a simple approximation, which is practical up
ma~

to e = 0.7 and remains on the safe side near 6 = 1,
is given by the zero point tangent in.figure 12

MT =
~b 3

max
~cZ pab 2 = –2–4-

,.
(4.9C)

“Ml and ‘T are in our particular load case independent
of the radius of the’ large cylinder., ~~

,..

EFFECT 03’ECCENTBIC 6TRESS APPL1C+4TION

The effect of the moments which stress the ring di–

rect following eccentric load application is secondary

compared to fhe moments (3,9) set up by the cr6ss stress
because of the small lever arms, However , an appraisal
seems desirable; it can be achieved by means
(3.5).

of equation
TO determine the order of magnitude of t“he addi-

tional moments an approximate assufi~tion is that the
forces pl and P2 apply at a lever arm hl along ~,
and forces p and p4 at a lever ,arm h along Ql
(fig, 13). Then the localized load (3.5) produces the
following distributed moments g:

which give rise to the’ shear moment’s

I —

(5,i)

(5.2)



.....—.- ,-.

The ,iri%e’gra’tion. gfves ~~ . : ~ ‘ ~,.....’ ..

M.rlJ
l./~fn-l)(~ ‘s<in,q) - :=plbhl~ z.,

. .,

and , with (3.7) added,

~ince the~~ moments are small: compared to (3.9)” in the ratio
1

and --,
T

a rough estimate in which only the lowest
b , ..

powers of c are retaine~, is sufficient.

-4ccordi>gly,

MT (g) = 3?:!![(-hi”+ 2°c hz) sin v cos V] .,

..1

.

,..

Ml(g) = - ~~~ [hl GOS2 (P’+ (hl + ch2)] “ (5.5)

I

Since at. a>% the component M2 is greater than.
M-”1, according to “figure 11, the inertia moment in M2
direction its-elf will be enlarged on the ring dimensions;
hence it is logical to assume that hl =,ch2 (fig. 13).

With the subsequent simplifications -

.. . .
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.. .. ...,,: ..
,, ..,... Y’, ;M; (y)-.=”3’pa.~_’_..,..“ ‘ ,, ,,”:::‘“,::,:_:,: .:: ,.:

c h2 sin q cos v
2\

,,. .. .. .. . .,<,,]“.,..,. Ml(i)””=,::~:~”dha “CO”S2+ )
1.‘,,..’ ,;.,.,, , ..’:.-,.,.’;”,,,.’’”

Ma(g) = ~ab’ h2 ,..
.J

21

,,>,

(5.6)

,. ,,, . . .. . .,
,i.t.is r“eadily k.e’.en‘t:tiat-these “~’uantiti’’es:ca!n’have ‘no eff Gct
on the determination X,’ since Nl”’ had acted no part
previously and both ar,e.,small in the ratio‘T an,d..M2 .. .. . .~~.h,z .,. .
.—— — compared to the previous values.
k

The maximum amounts

them,s,elv.es ,c@n.ge. .in all three components by quantities
‘,t~at are small in t,he ratio h2/b - ,hence inclus’ibn of” t“he
“moments’ due. to. eccentric load application are not worth
while;. which leaves for the “ring dimensions the extreme
yaiiies of.fi&re 12, supplemented perhaps by a small safeliy
margin. .-

.,, .,
>. ,,, ,..,. ,.

“.
LCAD.ING I~t PuR~ TjNS ION cll”~

. ..,., -..
,. . . .

Tie cal~ula~i,ng ,process is. the same as “befOre. In the

axial-f orc,e..ta}le (3.6) PI = alt and P2 = P3 = F4’ = 0’;

for the moment , according to (3.8):

IJ..=.al..t b2 r +{sin–’)(csin rp)[~ sin’$ - ~ COSW”COs ~] ~~~$
‘J ,..

(6.1) ;
The ,integrations again give

2[ J
——_—____—---,

M2 = –crltb$<l-c2 sin 4V : ‘

(6.1’).
,..,

or , developed for Srna”ll“c-: - ““,, ,,

— —
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,?

1sin (VI .)11
z- s in2cp i-

4
sin +

‘T
-1-C’os . .

(‘“1 +-
4

sin 4 ... )x sin Cos

~
‘sin

1
4V—— -—

3

2,32

iz5–
● ✎✌

“1
sin G+ Cf+

,.
Crltba

r. ,

.1,
1 +

2
E
—-

2

(
1

4
6
-—
3’

3C4
——-

8
..* 1-i

4
sin sin G Cp+’

~inE3v+

q COS2sin2x . . . (6.1”+

.. The maximum moments are obtained accord i-rigto the pre-
vious considerations . They are “shown in figure 14. In the
vicinity. of 6 = O, that is, on a ring that does not depart
too much from the flat ring, the curves (figs. 12 and 14)
are in complete agreement — the loading is , indeed,, approx-
imately the same except for the 90° rotation of load direc-
tion. In the region c z 1, on the other hand, the stress
of the ring is typically different in the two load cases!
at point cfI= O the ring is smooth, but at q = n/2 it
has a distinct precurvature which at E = 1 degenerates
into a discontinuity; hence the load direction (and, of
course, the subsidiary effect of the small cylinder in the
fi”rst load case) is essential for the type of stress in
point.

Possible approximating formuias, which fail, however,
i’n this instance near E = 1, are:

M2 = ~ altb2
ma x 1’

Ml =;
(

u1tb2 1 I .+ ~ g z
max \5

)[

(

MT
c

= 75
ultba ..

max j

LOADIITG OF LARGE CYLINDER IN ‘PURE SHEAR ~
,.

With Txy = Tyx = ~ indicating the two conjugate

stresses , the first is applied at an area x = const.;

(6.2)



(-hi3.nce WI tlr normiia.1”
.

‘ i’)%: ‘“and”’fa.l~lsin!””+-e’e%?or.’“dir’e’ct”io~n”‘i ‘:”-. .. ~,..... ,. ,..,..,,...,.:,. . .. ..’,.:,.,, ....,-.. —----- !, .
j~,~.- ~~ s~na q .– c ~ sin..(f)... . , ....

hence stre S&es:’the kin& hCcb?d5ng t~.:(2’.8), ‘with a. load’ ‘—
per unit length of

..,:, .. .,:“’, . .?,.,..:,,,,.
Cos ql ———_—-_-— ---

(JL - E2””sin2 y -
“ = z=:=:~;.:~=; -, -. ~~,=,.,-

...
The second stress is applied at an area

.,,,.
.,,

;-,.’,

E& sin q) (’7.1)

with the normal

.. ..r

22 = ~sin. q.cosw. (7,2)

The total loading of the ring is
~=21+p2! whence ,

according to (3.2) follows tlie’shea”r lead H in the form

(
~L-,C.&in.cfj+~o (7.3)

—————. ——.—.
~ =Ttb ~cos V—~siny —

c

The load distribution being .;antisyametrical , this time with

respect to ~=~ and ~, the axial load N must disap-
2

pear at points O and ~ for “reasons of sytimetry; whence
2

.,. N’= ~xk’
—o b–

(7.4)

Quantity X remains statically indet,etiminate. .I?rom (3.,8)
and (7.3) is obtained <

-tXN=Ttb~r&
Cos Cfl

—_
Ld

—=Z=====C= ==.
i –Czsin4 q

+j -( -1
sin y cos @dl-C3.s.ihGq +

C2sinqcos2rf )———_—.. ..—,——-—.———-—.—..- COS*J

+ lC(COS%p -“sii2ipjc0’s * -2 x... b
and %hen, ”adc-ording to (3.3)’,

1-’”” --.——.———

g ~a. (sin- l)(c” sin (f)- ~ ‘COs.Cf’}ZC2~in2q= +tb 2””~ –1-
... L

. .

+ Ic(sin cf cos cp) – X(Z sin cf - J Cos Cp) + M.1 (7.5)
-J



24, NAQA ~echgical Memoraqdurn,.~o. 1005.,..:: .... ..

The integrat ioncqps,t,ant ~ti is z,ero.sfnce, the two bend.-,. . .

ing moments M$O) and M$o)$. ..............which must be antisYmmetri—

cal with respect ’t’o~Q = O and ~ ~isappear. With (2.5) -

and (7.5) the threecornponents”. of th?.moment ,.a~?:;’

2A ‘1

L

MT = – Ttll ~ ~ sin q cos * (sin-l)(e sin v)

2., Cos V
+ —.—.————-——-—.— -.—-——-

)’”

{ x Cos t

A/l - c’ sin’ q
. . . .,’

... .

L
Ml = – ~tb2 ~ + sin y(sin-l)(c sin 9) “’

-—-.——.——.——---
— sin q2 cos cpdl – $2 sin2 v

+ sin3 cf COST costi~– X sin$
A“

or developed again’ for small < :

(7.5’)

“
,- ~2 “1”

~;o)’ =
.- Ttb2 ~[1 + -- sin’ cf

c’
,,, ?.

6

+ C4 ‘–5– sinn
2

(
v —— sin 6V

24 15 )1

My = -
\ .(7,5”)-~+c2 . ~ ~iin3

Ttb2 c
1 3 >– ‘ln ‘J

Cp cos’”~

i

M(o) ‘2 2

2 =— Ttb2 C2 sin
L

5(fcoscp i+-: sin2 cf

~,.z
. + — sin

3
4 q+....

-1 !
It is,,observed that,,the statically, indeterminate

(which this ‘time is a cross “force ‘rat e than a &oment)
does not reappear in Ml; wher.ea.s, ??Mlo

~:o) - ,,,.%%,.l:%:r
small. witha,relat ion to 9 so that in the execution

of the statically ind.eterrninat.ecalculation ,t’he:effect
of Ml cancels only four the case of non—obliqu”e ,bending.

— ———— ---- J
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Whe’n rest~icted. to this particula~ case (J12 = O), the
ca’lculat’ing:’@ocess concerning the determination of “x
also remains the .sa’meas before, with the sol’e difference.

that th’i,s,,timethe M(o) portion contains-the lower c.,,,,. T
‘:~po’wers; so that the ext’reme case

,.. - ,. .. .~ . . ..
,,,

.“. ~ ‘ ‘GJT ~, o
a = -——..

“13J2
,.

., . ... .. ,.,.

also adjoins “the c’ii’sea ~ O “’witho’ut“disco”nt”,inuity....

The formula for predicting X can again be written.,

Al + Bla N
x = –––––––-

c1 i- Dla

‘?-r/2

[

I-T/2

r sin2 $
c1 = cos V d cp, Dl = –—––– d v

c< . .
0 0 Cos ‘J

1

for g’> 1/2 the integral must be again numerically eval-
uated: for small c

4 4 ““

l+ Ls-+l Oa~
.

1
——- .—

x = – —------------- —––---.—mL––..–––––––64
c ~2 4

1 ——- — 0.0175 C4+9~8~ + 0:4063 ~-~–
16 8

L(l +. +S’E2 + –52_ (4.09 _
.

-J”

‘~\
4.81 cc + 1.56 CL2) + (7.7)

8’ 100” ;.’

The result is shown in figure 15. This time ‘T
max

falls in the symmetry points ,q = O, n/2, M2max near the

point cf = n/4. Then , M2max’ is seen to be little

greater than in the extreme case c —> O at U=o:

whereas ‘T increases considerably near c = 1. The
max

...——.—....-.——
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torsion moment has th=’ opposite sign at O and 77/2. At. ”

v= 71/2 the dependence of the rnaxirnum tor,s.i.on moment ,on ,
a is -as expected; it r,ises with increasing torsional
stiffness. This aspe~t of MT(a) is due to the fact
that the statically indetermi.nate portion ,,.which at v =.
lT/2 is smaller. in amount than the statically determinate ,
decreases with increasing a. - At q= o the conditions
are reversed: Since the statically indeterminate portion
governs the sign in this instance, (MT ) decreases

extra
with increasing a. The curve of the other bending mo-
ment Ml has been omitted in figure 15, since it, is al-
most straight and would intrude, more over,. in the range
covered by the ‘T curves .

!The following simpie approximate formulas remain:

1
M

2
2n2ax

-~tb
‘2

Ml = : Ttb2(l + 0.15 62) ~
max

(7.8)

the last one fails near C=l.

Translation ’by J. Vanier,
National Advisory Committee
for Aeronautics.
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Figure l.- Section of two cylinders

@

Figure 3.- Identification of axes
~, A, ~ on the flat

ring.

Figure 5.- Equilibrium of
ring element.

flat

,@ Px
Figure 7.- The three projections

of the space curve.

Pigs. 1,2,3,4,5,6,7,8,9

rigure 2*- The first load case
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within the limit

= 6-+0.
a

&t~&
4

*d
-4

&

-L!/
Figure 4.- Equilibrium of ring
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Figure 6.- Resolution
applied at
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of skin stress
ring

Figure 8.- Defininition of angle VO Fi~e 9a-
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Solution of linear load
p ( the plot lies in

the tangential plane of the
cylinder.
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Figzre 10.- Relhtive position of
the different normals ~.
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Figure 11.- Moment distribution
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Indetermimte portion Xplotted
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Figuxe 12.- Maxikuummoments ( interrd preseure p.)
againet &

parameter (3JT
c$=a*
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Load:internal pressure p.

Irigure13.- Ring section,
moment lever

arms hl, h2.
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Jfigum 14*- Maximum momonts against
~ par=.eter GJq

c = a~ cx=—ILT2

Load:tensiondlt.on cowrison
with ~igure 12.-note t~t in the
●xtreme-wse c+O the
and dlt ~t=llY a~ee

loads ~
2

Figure 15.- Max-moments against
~ parsmeterd QJT

c = a8 = ~“

Load:shear~ t in large cylinder~
M2 (m~4)=M2~x increaeesby

decreasingd.
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