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TWO-DIMENSIONAL POTENTIAL FLOW PAST A SMOOTH WALL

WITH PARTLY CONSTANT CURVATURE*

By Werner v. Koppenfels
SUMHARY

The speed of a two-—dimensional potential flow past
a smooth wall, which evinces a finite curvature jump at
a certain point and approximates to two arcs in the sur—
rounding area, has a vertical tangent of inflection in
the critical point as a function of the arc length of the
voundary curve. Close to this point the speed is a func-—
tion of the arc length o in the form

_W_=1+;<1_P_.L)1n lg_
o i Pz P2

where P (o) 1is an exvansion in powers starting with the
linear term, which defines the further variation of the
speed in the individual case. The method discloses that
in the vicinity of the curvature Jjump the assumptions for
Pohlhausen's boundary layer equation into which the first
two speed derivatives enter, are no longer given. In
consequence of the pronounced pressure change at the crit—
ical voint a breakdown of the boundary layer is anticipated.

+ P (o)

I. INTRODUCTION
Local Character of the Conformal Function at
The Critical Point
1. General Theoreﬁ

Within the framéwork of the analysis no restriction
as to generality is implied by the choice of an arc (with

*"Ebene PotentialstrOmung langs einer glatten Wand mit
stiickweise stetiger Kriimmung.," Luftfahrtforschung, vol.
17, no. 7, July 20, 1940, pp. 189-95.
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nondisappearing curvature) which tangentially terminates
in 2 straight line (figﬂ_l) as contour of the surface
along which the flow is being studied.

We establish the character of the conformal function
7 = f(z) 2z = x + iy, 2 = X + iY (1)

which permits the piece of the x axis on either side of
the zero point to correspond to the described contour in
the Z place. It is found particularly that =z = 0
changes to 2 = 0 and the straight piece of the contour
falls in the axis of real positive 2, which is expressed
in the requirements:

i

£(0) 0
(2)

£ (x)

X x>0, X>20

In consideration of the smooth transition of the two
boundary pieces in the critical point, the conformity
must not be disturbed, that is, the first derivation of
f(z) must exist at 2z = 0 (which is followed, as is
known, by the egquivalence of the two boundary values

- f'(x) from right and left at x = 0). Posting

lin f1(z) = 1 - (3)
2z ——=0

we conclude that f(z) in the immediate vicinity of

z = 0O must act as Z. Then the conformal function (1)
reads
1
£f(z) = ——r— (4)
1
- + g(z)
E)

and it is necessary to inguire after the conditions
which the function g(z) wmust fulfill in order that the
transformation has the required characteristics. The
subsequent investigation uncovers the inner reason the

formula reads % = % + g(z) rather than 2 = z + g*(z)

as might be suspected at first. Formulating

£1(z) = 227gl(z) (5)
(1 + zg(2)]
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.we-found that the-eonformal - function has the required
characteristics if

g(z) -has real value for z:> O

- (&)
g(z) has complex value for 2z <0
lim z g (z) =0
c g ~=3>» 0, Lot S S T
g o Lvooc oz -AB)
lim z%g'(z) = O {
z —> 0

-

The conditions (A) express that the reflection of the
axis of the real 1z 1s composed of the semiaxis of the
positive real 2 and a curved arc, the conditions (B)
insure the smooth merging of the arc.

Take the simple example of .

g(z) = — —= (6)
z

and analyze the transformation afforded by

£(z) = S (7)
i _1_ 1 — /2

e

The conformity is disturbed at 2z = and 3z = 4 (doub—
ling of angles) (fig. 2). The axis of -negative real z
is transformed in the curve X® + XY® + Y2 = 0, which in

the zero point merges smoothly but'with,infinitely great
curvature into the .axis of the positive real 2.

2. The Case of Finite Curvature Junp

In the sense of'ﬁhe initially posted question the
"case of a finite curvature Jjump is of particular impor—

tance; hence it involves the:specialization of the arbi-—
trary function g(z)- to_the extent where the image curve
has a finite curvature in. the zero point. .Te-this end
the image curve in the .vicinity -of the zero point. is -
visualized as being replaced by its curvature radius and
the next question is to find the additional -conditiorn
which the function g(z) must meet in order that the
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image  curve of the axis of the negative real 'z Ybecomes
a circular arc. ' - '

It is readily seen that in this case f(z) must
have the form

1

hix) + ime

£f(z) = (8)

for negative real 2z, where h(x) 1is any real-=value
function of x. In point of fact

1

h(x) + imec

X+ iY =

deconmposes into

hi{x) X — weY = 1 ‘|

o f (92)

which form the parameter representation of a circle:

meX + hi{x) Y

me(X® + Y®) + Y = 0O (9)
1
with the center 2 = — —— i1 and the radius:
2mce
= i (10)
P 2me

In order that f(z) may show the behavior postulated

in (8), it is necessary with regard to (4) for g(z) to
have a constant imaginary part for negative real =z,
owing to which the zero point evinces a logarithmic
singularity of the function g(z) and whence follows %the
representation \

g(z) = ¢c. 1n 2 + P(z) ‘ (11)
where R(z) 1is the expansion in power of a regular
“funetion in 2z = 0, the coefficients of which must be
real in order that the reguired Lehavior on the axis

of the real = is not disturbed.

Hence the general representation of the conformal
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- function in the vieinity of ~the -transition point for the

case of straight line changing to a circular arc reads:

i 1

Af(z) = e 3 S (12)
IR L, cin g+ B(z) - '
. 2 " _ S

In this manner the locél character of the cdnformaivfunc—
tion in the vicinity of the eritical area is established
for the most general case ¢f a finite curvature jump.

" The effect of the curvature Jjump

21m¢c = L

is readily apparent. The form of the function represent-
ed by g(z), which is regular at 2z = 0 and of no.sig—
nificance for the local behavicr of f(z), largely de—
fines the further aspect of the boundary curve.

3. Examples

a) Circular Arc Triangle with a Straight Angle

The first example consists of a family of circular
arc triangles having one straight angle and the sides of

~‘which all pass through one point (fig. 3). If this common

intersection point which at the same time is the point
of variable curvature change, 1s transferred by linear
transformation to an infinitely remote point, the circu-
lar arec triangle is transformed in a triangle with
straight sides, two of which are parallel (fig. 4).

According to the Schwarz—Christoffel formula the

function
: _ et
f <._-_._ dz* (13)

conformally transforms the lower 2* half plane onto -
the part: of the . Z* plane situated to the lefTt of the
contour, The inf.iinitely remote voints..of . both planes
match and by suitable choice of integration constants
it is insured that point  Z* = 0O ceorresponds to point
z* = 1, On transition .to the planes :of the. reciprocal’
variables
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7 = -:;'-;.’ yA _-:_._l_. (14)
. 'Z* . Z*

the critical point falls in the zero point of the Z
plane and is the reflection of the zero point of the

Zz .plane, while point =z = 1 gives a corner point situ—
ated at Z = ow. Thus the function : .

2 = f(z) = - 1 N (15)

. N K—-l
\/Ql ~ z) 4z
z2

affords a transformation which permits the piece of a
circular arc corresponding to the semiaxis of the positive
real z° and the semiaxis of the positive real Z to cor—
respond to the interval O < z < 1, which touches the
circular arc in the neutral point (fig., 5). While the
integral cannot be evaluated, as a rule, with elementary
functions, the expansion of the integrand in the vicinity
of z = 0 affords

A1 A1
1 o .1—-<1>Z+< 2>Ze“+ .o .
o

dz
f(z) g

+ (A -1) in =z -_.'_P_(z)- (16)

1}

N

where the general behavior ascertained in (12) is con—
firmed. :

A comparison of (12) and (16) with (16) reveals that
the image circle of the axis of the negative real z has
the radius* ’

.
. A— (17)

2 (N —~ 1)

*The transformation of this prcfile had been investigated
back in 1911 by A. Sonnefeld — "Flows about Compound
Cylindrical Shells," Thesis, Jena 1911. ©Purpose of the
work was the calculation of the forces on a bent plate
with round head; hence it contains no detailed study of
the effect of the curvature Jjump.
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hside from:the. $trivial case --A =.1y- which .affords

*théﬁsame transformation, are mentloned the specific cases

(figs. 6 and 7)*

ned, A_-h-z_.1,1=01-3 (18)
2" () ; 2 T
and
A =2, —te=2%4 112 (19)
f(z z

The structure of (15) has plainly indicated on what
basis the simple formula is evolved Tor the dependence
of the reciprocal wvariables l/z and l/Z, that is,
circular arc and-straight line meesting in the 2 plane
become in the Z*(= 1/Z) plane parallel straight pieces,
the distance of which is equal to half the curvature
jump at 4 = 0. (On transformation of Z* = 1/Z the
circle (9) becomes the straight line Y* = mwc.)

b. Circular Arc Triangle with Two Straight Angles

As further illustration of the general forumula (12)
we briefly analyze. the transformation of the half plane
on a circular-arc triangle with two extended aﬁgles (ref—
erence 1). According ‘to the~generalﬁtheory, the con-—
formal function is the guotient of twoe linear unrelated
solutions of the hypergeometric differential equation

2(1 = 2) ur(z) + 22 8B =8) iy oo (21)

formed with
3

@ = - =

8 g = 1

g , —Q{ Y = 0 (20)

2

*The conformal functions of the circular—arc triangle

with the angles §,m = m, 8§om = Am, 837 =.(2 — A)m are
equally obtainable without the Schwarz—Christoffel formula
as quotient of two solutions of the hypergeometric differ-—

ential equation formed with &« = <1, B =1 — A, ¥ = Ot
z{(1 — z) u"_+ (A - 1) z a! (A - l) u o= @.. JThe;one
solution is ul = z. the other follows from u; ' uz —

ualul = (l ad Z)
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where 8w -~ is the third angle of the triangle..: The solu-—
tions of this differential equation can be achieved in

the form of certain integrals which are to be extended
along continuous paths in the 2z plane. Suffice it to
prove the characteristic behavior on one of the two
"smooth" corners.. In the vicinity of 2z = 0, the follow—
ing linear unrelated solutions .(reference 2) are afforded:

N

_ /1l -8 3 =5, .
u'.l—ZF\" 3 Ty 7 23 Z> '

r 1 - & -
ug = 2 LFlé- §, S, 2; ?> % (22)

+F<-1f5.3;5;z; z)lan

where F denotes the hynergeometric series and F; a
certain power series which starts with term ‘

L1 and then progresses in positive powers of z. The

aB z
quotient of these two solutions

o

f(Z) R = (23)
' Up F 1 -8 3~ 8 :
. —2 (- , ; 23 z>-+ ln 2z
F. 2 . 2

shows the generally established behavior,

II. RELATIONSHIP BETWEEN CONFORMAL FUNCTION,
CURVATURE (OF STRE-HMLINE, ASD SPEED
1. Decomposition of Acceleration Vector
In order to procurse a basis for the discussion of
the flow velocity in-re;aticﬁ to the - streamline curvature,
we first define the accéleration vector of a potential

flow.

The flow in the =z plane is given by the complex
potential .
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from which, by differentiation,vthefﬁélocity'vectof re—

flected on the real-axis

=== u - 1v = 22 4 - (28)

dz at
of absolute amouﬁﬁ”%oliows at

w=lw'(z)] = AT+ VE (26)
With the components of the velocity vector*

ix _ _ 3 -

'&";t- = u(X-Y) = Cpx {

(27)
ay ' ) ( .
35 = vi(x,¥y) = Py | |

and the components of the acceleration vector

a®x _ 1
at—e' = 1u U.X + v VX |
‘ (28)
gizf= uv, —vau
at? x x
we form thé‘curvature of the streamline:
dx d%y dy a%x
at® ~ dat dt° (W2 = v®)vy -2 u v uy
= (29)

at
k = )
. =2 T3 3
- /<.i§>"’+/§.z> JaF v 7P
- & Nat \at

and the time rate of change of the absolute'speed

*With consideration toifzéj'fﬁe functions u and (-v)

satisfy the Cauchy-Riemann differential equations.
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dx dax dy 4y

aw _ atat®  atcat® (0¥ S vT)uy v 2w vve Y (30)
V/F< 2 dy \° Vu? o+ P
dt‘ . |

Equations (29) and (30) may be combined into one complex
equation: ) ’
—_—B, . - X
f RRTTN .
w (2)wiz) aw _ oy 2 (31)
lw'(z)i at _ '

and represent the decomposition of the acceleration vec-
tor tangentially and normally to the streamline.
2. Transfer to the Image Plane

In the presentation of the plane of flow by an
analytic function .

2 = 2(z) (1)

the complex potential must be transformed and from the
"transformed potential

Q (2) = w(z) (32)

follows, after differentiation, the.cqmplex velocity

Q1(2) = =t wi(s) = 3 . (33)

£ (z ) oar
‘where 'T indiéates the time measured in the reflected
plane. This formula makes it plain that the transforma-
tion of the flow on the image plane must also include a
time transformation, for a comparison of (25) and (33)
gives

4z 1 dz.o . (34)
aT  f£'(z) dt

and, in.addition,

dt 1

it TP (35)
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. With consideration.to this new time- -T- the absolute’
velocity W in the image plane and the curvature KX of
the streamline are associated through the relation cor~

. responding to the representation (31)

G'%(z2) an(z) _ 4¥

—— - 1 K W% 36
IQ'(Z)I at (36)
Assuming in the,-z plane a parallel flow past the x
axis with constant velocity 1, we post
a7
| w(z) = Woz, w'(z) = Wo = 3¢ (37)
that is, o
The regu}t'ln the image plane then .is,. according to (33)
- . Wy .
Q'(Z) = e , IQ' = W = ——.——2___. (38)
: £1(z2) | £ (z) |
so that (86) is transformed into
Wl M (2) aw
\ =.— -iX W% . 39
it (z) 1321 (a) &t (39)
or, with respect to
dW 4w 1 aw W,
AT o at Tf' (572 T 37 TFv (5 (40)
aTt . dt |£'(z) | Sdx |f (z)l : |
into
£ (2) 1 4w
- T o —— - 1K (41)
I£1(z) t£1(2) W, dx :
and, with the insertion of the arc length
=J I£7(2) | y=const OX (42)
of the streamline into which fhe'streamline ¥y = const
is transformed, we find:
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1 £ (z) T L. 1 aw

- . = lf!(z) -
[£'(z)] f'(Z)Jyﬁédnst ly= const Wo dC

i K| (43)

This formula itself suggests that on an area where
the curvature of the streamline changes variably, the
derivation of the velccity with respect to the arc length
becomes 1Df1n1+e, for, real and imaginary parts of an
analytic function usnally become concurrently singular.

3., Discussion of the Speed Vicinal to the Critical Point
a) Measure for the Curvature Jump

In order to obtain a practical approximate represen-
tation of the speed in proximity of the eritical point,
it is expedient to pass from the case "circular arc -
straight line" to the generalized case "circular arc -
circular arc," for, in the first case, it is difficult to
introduce the concept of "quantity of curvature jump."
But it is always possibvle to quote a similarity transfor-
mation which allocates any desired value to the curvature
Jump., Yaturally, this also holds true in the case where
two cirgular arcs of finite radii p,, Pys» meet in the
zero point, dbut then the nondimensional quantity

Pi

A=1- .= 44
o _ (44)

affords a suitable indication for the curvature Jjump.
Particularly, A <1 characterizes the case where the
curvatures of the circles differ very little from each
other., Quantity AN 1is none other than the curvature

Junp Xi - Kz = g» - 5; measured at the length of the
T 2

circle radius P

he linear function

1k¢]
(]
—

z*x = pa B . (45)

[AV]
©
n
4
=
™
fae}




3

YACA Technical® Memorandum No.* 996 13

transforms. the contour of figure 8a into-that of figure
8b, without distortion 1n the v1cinity of the zero point,
and gives the radii*

S
L= T Ry (46)
p P,
l
The conformal function (12), wherein ¢ = S takes
o

the form after transformation (45):

Z* = (47)

1

1,01 .1;‘_.._1;.)' z S
7t 5 o o ln 5 + B(2) + 3 o
where E is the length.unit in the 2z  plane. With p;
chosen as this unit and

. Z* ) -
pl * pl . :

as a new variable in the original and in the.reflected
plane, the nondimensional representation

2y = £1:(z,) = 1 - : > (49)
;:'+ 5 in zy + == i+ B.,(23)

is used in the subsequent discussion, with special emphasis
on the case where the parameter A, which measures the
curvature Jjump and usually is situated in the 1nterva1

0 <« A< 1l, 1is small with respect to 1.

*This is apparent. when the - p- .circle of the 2 plane is
taken as the image of the real axis of a 2Z' plane:

) 2= _uﬁé_g___‘. and transformation (45) applied -to- it:

20 + 172!
% = 2P_Pa_ z!
S oA
FRRPR Ly g
p + P
2 p p2

Hence: 2 P, =
p + pa
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b. Approximate Representatlon of.the-Speed

Postlng (49) in the form ) h;‘fr':
1
f, (Z ) = T (492a)
;:"- gl(z )
with T
A 1~ A
gl(zl) = 5;:;n”gl_+ = -; t-gl(z1> . (49b)

followed by formlng

. s -
1 -z, gl‘(zl)

'r(zl) : ~ — (50)
[I + z.8,(24)]
gives the logarithmic derivative
fat(z,) 2 ozygr' + z3%a1" . g1+ ozygy!
- = N + 2 (51)
£, (z,) 1 -2,%g 1+ 28

With the interrelations

lim z2; g,(2,) = 0
g —> 0

lim "(z,) = 0

2
LET-%1
z, —> 0

the approximate representation in the V¢cln1ty of the
cr1t1ca1 p01nt follows at ' S

:-"(Z ) . . ) .
1 1 v
- ————— = 2:g,(z,) + 4 z,g,'(zy) + z,%g,"(z,) (52)
£.0(z ) | _
If 2z, ~is a point of the real axis (z; = x,;), then

(- “_—Sf_l)m,g R (g.(x)) + 4 %,B(g,'(x1)) + 21"R(g2"(x1))
\ '(x,)
1 (52a)

which, confined to the constant term of the ensuing ex-
pansion gives, together with (49b)
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f1"(x;) A _
= R <' > - >= Riag 4 = (342 1lnlx,|) (53)
| £,0(x,) 2m

For the imaginary part, it affords with (49b):
flﬂ(xl) . - ‘ 1 fof~-xl < 0 ‘
F( = 2 F(gy(xy)) - . (521p)
£1'(xy) 1 -A for x, >0
With regard to
£1(0) = £,'(0) = 1 (54)

the arc length In the vicinity of the critical point is,
according to (42):

C= X = p.xX, . (55)

and hence, according to (43):

dW/Wo _ p;ﬁ(— f"(x)} < "(xl)>

——

dd/Pl ft(x) 11 (xy)
A
=2ag+ — (2+21n p_1]> (55a)
f"(x)'
K = F
- (fl(x) (
-~ L (x,< 0)
SR (Bt y )P B
1 (551b)

f.,(x.) 1
1 1 1
£ (A= 1) = = — 1
o ( ) oa (x:>7)

\
The negative signs of the curvatures are due to the fact
that the region in which the flow is explored is the outside
region of thecircles. :

From (55a) the integration for the speed in the vi-
cinity of the critical point affords the approximate rep-
resentation

W (e} AN o
= =1+ 2 a5 — + — -—-<1 + 2 1n I> (56)
V'O ° Pa 2m P (
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c. .Discussion

The representation
dW ’W
—l-o = 2 a, + — (3 + 2 ln'——w > (55a)
dO‘/pl S APy

first enables a prcc1se statement in the critical point.
It discloses that the flow velocity in the critical point
(0 = 0) where the curvature undergoes a finite jump has
.a vertical tangent. Owing to the symmetrical behavior of
the derivation for positive and negative o this point
_is an inflection point (no peak). '

As approximate formulas (55a) and (58) are to be
construed as follows: On the contour of a given profile,
that 1s, for every specififed function g, of the form
(49b) an interval can be marked off about the critical
point wherein (55a) and (56) are applicable. They apply
in this range within the scope of accuracy in which
z,8,(z;) and z,2g,'(z,) may be disregarded with re~-
spect to 1, that is, within the scope of accuracy within
which f3'(z,) may be put equal to 1, according to (50).
It is apparent -that the rangeée of validity is likewise de-
fined by the regular function P,;(z;) additive in (49b) and
and this, in turn, depends largely upon the further aspect
of the profile. Hence, no generally valid predictions as
to the range of validity of these representations can be
made without knowledge of the further aspect. :Even the
constant term a, of the power expansion P,(z) in (49)
exerts a profound effect. Under these conditions no pre-
dictions independent of the length scale (chosen previous-
ly equivalent to radius p;), for any othér choice of
length unit .. (EV  instead of E) modifies in respect to
In -2 = 1n 2 - 1n 2.l the constant term a
plementary expansion. ‘This fact is not surprising from
the mathematical point of view, for it is cuite natural
that on the basis of the given curvature jump alone, that
is, on the basis of & statement concernlnn the unsteady
behavior of ‘the conformal function at one particular )
point, any binding conclusions concern only the conditions
at that particular point, The precise conclusion here
is the fact that the development of the velocity in the vi-
cinity of the critical point contains the characteristic
lOgarlthmlc term (cf. (56)), wherefrom follows particularly

o of the com-
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the  existence of thé vertical tﬁrning tangent. . More and
farther reaching.generally. valid predlctions are. mathe—

. o ‘
In splte of thls fundamental reservatlon regardlng
the scope of the approximate representations (55a), (56)
it is interesting to follow the course of the approxima-
tion curve. In-the casesA = 0, -“which corresponds to

~the.constant curvature' change at 0. = O;? the approximate
'curve is” rectilinear w1th the pltch e S

dG/pl K:o

so that (56) can-bé'writtéﬁ in the form.

W . dw/wo> g
1l o |
+ — /1 - ~—> (l + 2 ln"fll\\fl (56a)
am \ 1p }/p

If, on the other hand, 'a finite curvature jump prevails,
it evinces a typical antisymmetric. discontinuity with a
vertical tangent in the eritical point (fig. 9)¢ :The -
place on the edge where the ordinate of the approximate
curve shows. the greatest dlveraence from: the stralght '

line is that where. dﬁ/wO =m = 2 a thdt is, - according
: do/pl. . co -
to (55&) at » _
o% = e T py = #0.283 p, .. (58)
. .o E -‘l‘_= : : . _‘" . . i
For the approx1mate curve k = 1 - Bi < IJ the amount
AR . p2 .

of the deviation is proportional to the curvature Jjump
and, measured at: rlght angles ta:the- straight line, anounts
to '

- ce L Do R R S e

"o p]_ 1l + In2

fThe‘iéﬁgfhécaréfréféfféa,td73§1;':énd,ifgis-assuﬁedlfhat

the ratio of the curvature radii is small with respect to l.
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So, while the bulging of the approximate curve is small
for small curvature Jjumps, it is of comparatively wide
extent, The maximum departure from the straight line is,
according to (58), about one-fourth curvature radius from
the transition point. The bent curve gradually adjusts
itself to the normal. : '

It is again emphasized that no general prediction
of the extent to which the actual velocity curve follows
this approximate curve i1s fundamentally possible, because
of its dependence upon the further aspect of the profile,
as exemplified in our equations by the regular function
in the critical point (49), the coefficients of which
must be defined from one case to the next. To illustrate;

With the profile shown in figure 7, apply the the
conformal function, first in the form
Zl = 1 ' (I)

% + ¢ 1in (¢ z)

then in the form

Zy = ! (11)

1
7 + ¢ ln z

In‘(I) the lengths are referred to %, in the othef,

(1I1), to 1. This affords a supplementary additive con-

stant ¢ ln ¢ 1in the denominator, In both cases the

eritical point is situated in the neutral point and the

image circle of the axis of the positive real =z has the
1

radius p = E——. The two differ only in theilr length of
TC

trailing edge, since the reflection of the bdbranching

point 2z = — gives first; 2, <-]-'-\= .1—; then: Za<l>=
c _ c/ ¢ L c

l 3 [
(1 - 1in c)' In the first transformation the ratio ‘of
1

radius to length of trailing edge is constant = <=3 in
: . 2m
'the other it changes with ¢ and amounts to ;#(l - 1ln e).

~

When ¢ —> 0 it grows beyond bounds, although both trans-
formations then become identical., On determination of the
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~velocity it affords a maximum only to the right of the

critical area, but not t9o the left, in the first case
where the ratio of radius to trailing edge is equal to
é:. In the second case, however, there is a maximum to
the right and to the left of the critical point for small
C, as is seen when the exact value of the velocity is
expanded in powers of ¢ and stopped with the linear
term, which is permissible for suitably small ¢. The
real course of the velocity curve in case (II) is plot-
ted for ¢ = 0.25 and ¢ = 0,1 in figure 10, Each of
the two curves comes from. + o (for x = -o) and has an
inflection point for x < 0. If ¢ = 0.1, the curve is
found to follow largely the course of the approximate
curve, obtained from small ¢ in the form W/W =

1 + co(l + 2 1n g). It can be obtained from (56a) by

posting pp = o, p, =7 s> and m = -2 ¢ 1ln 2 cm., It
2me

is to be noted (fig. 7) that in this example it is use-
less to make the curvature jump equal zero and to speak
of the velocity curve of normal variation. This example
makes it plain that without wnowledge of the further
course of the profile no valid conclusions can be made of
the extent to which the approximate curve (fig. 9) ap-

proahces the true velocity curve,.

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.
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