

TWCHKIOAL MHMORANDUSS
HATIONAL ADVISORY COMVITMED FOR AEROTAOTIOS

NO: 963
$1 \underset{\text { wor Reference }}{100}$ CHORDTIST LOAD DISTRIBUTION OT A SIMPLT RECTANGUIAR HIXG

By Karl TIerhardt

Zeitschriftitlr angewandte Mathematik und Mechanik Tol، 19, No. 5, October 1939

$$
\begin{aligned}
& 1.2 .111 \\
& 1.9,1 .
\end{aligned}
$$

Hashinaton
December 1940
1


NATIONAL ADVISORY COMEI rr표 FOR 로벼OKAUTICS

M巴CHEICAL MEHORANDUK NO: 963

CHORDTISE LOAD DISMRIBUTION OF
A SIMPLTH REGQ
By Karl Fioghardt

## I. SHVERAI VORTEX FIIAKBNTS.

In the airfoil theorr of Prnndtl (referonco l) the wing is replaced by of lifting vortex filament phoso circulation viries over the spon. By this aethod the "íirat problem of airfoil thoorr," nomely, for a given lift distribution to dotermine the shnpc of the airfoil, was solved. The inverso "socord problom," nimely, for a jivon winf to determine the lift diatribution, was then solved by Bets (reference 2), the computation being: sizpler for small aspect ratios than for larse ones. For the latter, an approximate solution was obtained by rreffty (reference 3). The answer ras thus found to the rost important practical question, namely, the manner in which the ring forces are distributed alons the span.

The chordrise distribution theory was simply taken over fron the theory of the infinite wins. The Ackermann fornulas, published by Birnbaur (reference 4), in which the infinite ring was replaced br a plane vortex sheet on account of their linearized fori permit also application to the finite wing and this application mas carried out by Blenk (reference 5) for the rectancular ming. Since in this work a series expanston in b/twas used, the corputation conrerizes only for larse aspect ratios. In the present pajera useful epprorimate solution will be found also for mings with large chord -i.e., axall aspect ratio.

Another nethod of investacating the lift distribution alons the two dimensions (span and chord) was found by Prandtl, (reference 6) in his use of the acceleration potential. This method assumes, horever, ithet the potential is known for a suitable number of source distribu-

[^0]tions over the horizontal projection of the wing. The first application was made by Kinner (reference 7) in his work on the wing with circular plan form, since these functions are obtainable for the circle, The method eppears, however, for the present to offer no promise for the rectangular wing, since no expansion of the potental into a series of known functions is krown for the rectangle. Bar this reason the computation In the present paper will still be conducted br the vortex-shset method.

For accurate investisation of the lift distribution, the wing nust be replaced by a vortex sinzet. A qood idea of the distribution can still be obtained if the wing is represented br a finite number of discrete vortex filaments, and the necessary amount of computation is there-by reduced considerably as compared with the continuous circulation distribution. This is because in tho case of tise vortex sheet, tiae condition that the component of the induced velocity at right angles to the rins should be oqual to that due to tiae flow, siveo rise to en integral equation. Bor individual vortex filaments, however, this flow condition need be satisfied exactly only at single points, so that only a system of linear equations is obtained. Ficure 1 shors such a vortex system, for which the computation was carried out. In order that the results obtained from using only a few vortices, or even a single one. be as | accurate as possible, the distance of the ifrst vortex filament from the leadinz edge is taken to be a/4. It is knorn fron previous mork that the circulation in the neighborhood of the leading eḑe increases as $1 / \sqrt{x}$; the foremost, strongest rortex aiich $\boldsymbol{\xi i v e s}$ the circulation contrioution from tho leadin: edje to the foremost points considered, then lies exactly at the centor of pressure of the for:rard lift portion because the center of gravity of $\boldsymbol{\nabla}=$ $\mathbf{c} / \sqrt{\mathbf{x}}$ lieu at $s=\boldsymbol{x} / \mathbf{3}$. The points at which the total vom locity at right angles to tho ming is made to ronish, lie in the conter betruer two vortex lines and at $x=t m a / 4$. Tho ring is a plane rectangular plnto of zoro thickness with chord $t=\boldsymbol{n a}$ for $\mathbf{n}$ vortices. Tho notation is indfcated in fisure 1. The coordinates of tho noint A aro x* and $\mathbf{y *}^{*}$. The velocity at rijht angies to "10 xy plane. inducel by the bound and trailing vortices at the point $A$, is thon siven by the Biot-Savart lav:

$$
\begin{align*}
& \nabla_{A}=\sum_{1}^{n}\left\{\frac{\bar{x}_{1}}{4 \pi} \int^{+b / 2} \frac{\Gamma_{1}(y) d y}{\left[\bar{x}_{1}^{a}+\left(y-y^{*}\right)^{a}\right]^{3 / a}}\right. \\
& -\frac{\bar{x}_{1}}{4 \pi} \int_{-b / 2}^{+\bar{b} / 2} \frac{\frac{d \Gamma_{i}(y)}{\lambda_{y}}}{\sqrt{\bar{x}_{i}^{a}+\left(y-E^{*}\right)^{2}}} \frac{d y}{y-z^{*}}  \tag{1}\\
& \left.-\frac{1}{4 \pi} \int_{-b / 2}^{+b / 2} \frac{1}{z-y^{*}} \frac{d \Gamma(y)}{d y} d y\right\}: \bar{x}_{i}=x^{*}-x_{i}
\end{align*}
$$

The firctintosral, wis ch arises from tao bound vorticose, rives after intogretion br ports:
$\left[\frac{\left(y-y^{*}\right) \Gamma_{1}(y)}{\bar{x}_{1}{ }^{2}} \frac{\sqrt{\bar{x}_{1}{ }^{2}+\left(y-y^{*}\right)^{3}}}{]_{-b / 2}^{+0 / 2}}\right.$

$$
-\int_{-0 / 2}^{+b / 2} \frac{\left(r-y^{*}\right)}{\bar{x}_{1}^{a} \sqrt{\bar{x}_{1}{ }^{a}+\left(y-7^{*}\right)^{2}}}=\frac{d \Gamma_{1}(y)}{d y} d y
$$

The first expression vanishes since the circulation at the tips Lust be zero; $\Gamma\left( \pm \frac{b}{2}\right)=0$. There is thus obtained

$$
\nabla_{A}=-\frac{1}{4 \pi} \sum_{1}^{n} \int_{-n / 2}^{+b / 2} \frac{d \Gamma_{i}(y)}{d y} \frac{1}{y-y^{*}}\left(1+\frac{\sqrt{\overline{x_{1}}+\left(\bar{y}-y^{*}\right)}}{\bar{x}_{i}}\right) d \bar{v}
$$

Since $\Gamma_{i}(y)$ decreases from the center of the plate tom ward the tips, $\frac{a \Gamma_{\dot{f}}(y)}{d \boldsymbol{y}}<0$, and hence $\boldsymbol{F}_{\mathbb{A}}>0$. From tho condition $W A=\boldsymbol{\nabla}$ sin $a$, there are obtained for $m$ points II equations $\mathbb{F A}_{\mathbf{A}}=\pi_{\boldsymbol{A}_{\mathbf{a}}}=$. . $=\pi_{A_{m}}=\nabla \sin a$. It is thous possible either toassunetho amos spanviso circulation distribution - for example, the elliptic for all $n=m$ vertices - or set up a series expansion rita $\mathbf{r}$ undetormined coefficients for $x=\pi_{i}^{\prime} \mathbf{r}$ vortices.

An example by the second method will first bo computed. For this purpose, the following transformation of coordinates is made:

$$
y=\frac{b}{2} \cos \varphi, y^{*}=\frac{b}{2} \cos \varphi^{*} ; \quad \bar{x}_{1}=x^{*}-x_{1}=\frac{b}{2} \delta_{i}
$$

so that $-\frac{b}{2} \leq y \leq \frac{b}{2}$ corresponds to $\pi \geq \varphi \geq 0$. Equation (la) then becomes:

$$
\begin{align*}
W_{A}= & \frac{1}{2 \pi b}
\end{align*} \sum_{1}^{n} \int_{0}^{n} \frac{1}{\operatorname{COB} \varphi-\cos \varphi^{*}} .
$$

For each $\Gamma_{A}(\varphi)$, atriqononetric series that contains onby thesin (iv + 1) $\varphi$ terns mas assured, since the ralelions are assumed symmetric with respect to the wing conter: $\Gamma_{i}(\varphi)=\Gamma_{1}$ ain $\varphi\left(1+a_{i}{ }^{\left(\mathcal{L}^{\prime}\right)} \sin \mathrm{cp}+a_{1}^{(\varepsilon)} \sin 3 \varphi\right)$. Thus for each vortex filnnent, there are three undetermined coefficients $\Gamma_{1}, \mathbf{a}_{\mathbf{1}}{ }^{(1)}$, and $\mathbf{a}_{\mathbf{1}}{ }^{(\boldsymbol{a})}$. Be the: $h_{0} \cdot \boldsymbol{e}$

$$
\frac{d \Gamma_{1}(\varphi)}{d \varphi}=\Gamma_{1}\left(\cos \varphi+2 a_{1}(1) \sin \varphi \cos \varphi\right.
$$

$$
\left.+a_{1}(a) \cos \varphi \sin 3 \varphi+3 a_{1}(a) \sin \varphi \cos 3 \varphi\right)
$$

Substituting this expression in equation (2), there is ob trained:

$$
\begin{gather*}
w_{A}=-\frac{1}{2 \pi b} \sum_{1}^{n} i \Gamma_{i}\left\{\frac{1}{8 \delta_{i}} J-\pi+a_{i}{ }^{(1)} f_{1}\left(\delta_{i}, \cos \varphi^{*}\right)=\right. \\
\\
\left.+a_{i}(a) f_{a^{\prime}}\left(\delta_{i}, \cos \varphi^{*}\right)\right\} \tag{3}
\end{gather*}
$$

where tie functions $f_{1}$ and $f_{a}$ are made up, of integrals which may be evaluated by elementary methods. The intooral $J$, which is also a function of $\delta_{i}$ and $\cos \varphi^{*}$ is, in any particular case to be determined. by graphical or numerical methods. The enteral is

$$
\begin{aligned}
J= & \int_{0}^{\pi} \frac{\cos \varphi \mathrm{d} \varphi}{\cos \varphi-\cos \varphi^{*}} \sqrt{8_{i}^{a}+\left(\cos \varphi-\cos \varphi^{*}\right)^{a}}= \\
& =\int_{0}^{\pi} \frac{\left(\cos \varphi-\cos \varphi^{*}\right)}{\delta_{i}^{a}+\sqrt{\delta_{i}^{a}+\left(\cos \varphi-\cos \varphi^{*}\right)^{\bar{a}}}} \operatorname{coa} \varphi d \varphi+\pi \delta_{i}
\end{aligned}
$$

for $8_{i}$ and $\cos ^{*}>0$. Through this transformation tho singularity at $\varphi \rightarrow \varphi^{*}$ ins bean removed. Since for each vortex line there are three undetermined coefficients, the flow condition can be satisfied for each set of three points between tiro lines and for three roirts at $x=$ $t-a / 4$. On account of tie symmetry $\mathrm{Kn}^{2}$ 。 different point a ne, be chosen on a half wing and for the corresponding points, symmetrical with respect to the center line of the plate, the condition $W A=\mathrm{sin}$ a is then automatically satisfied. Altogether, therefore, the flow condition is acouratelp satisfied for $6 n$ points or, in case one of each set of three points lies on the center line, for $5 n$ points. The entire computation is based on the expectedion that the condition $\nabla_{A} \approx \nabla \sin \alpha \quad \pi i l l$ be, on the average, satisfied at least approximately, also at other points of the surface, and that the singular behavior of WA along each of the lifting vortices ail not kayo too fight at affect on the approximate computation of the circulati eithough nerodynauically this can only be justiffed':; considering the plate as rojlaced by several Wings lying one behind the-other, oachropresented by a
vortex filanent. The choice of the number of vortex filaments $n$ is, for practicalreasons, rostrictcd sincowhile tho numer of points cocsidared inoreasos only linearly\& $\nabla \boldsymbol{i t h} \quad n$, the required conputation Fork of solvinf tho spetem of $\mathbf{H z}_{\boldsymbol{Z}}$ equations increasos at a sreater rate.

The numerical computation was carried out for the following case: $n=4, \varphi^{*}=30^{\circ}\left(150^{\circ}\right), 00^{\circ}\left(120^{\circ}\right)$, ard $90^{\circ}$ (center line) with $\mathbf{b}=4 \mathbf{a}$, corresponitng to an aspect ratio of $A=b / t=1$. (See fiq. 2.) The intespal J . $\left(J\left(+\delta_{i}\right)=J\left(-\mathbf{8}_{\mathbf{i}}\right)\right)$.vas deterainod for the four values $1 / 4,3 / 4,5 / 4,7 / 4$ whick are assumed oy 8 i and, on acm Count of the symmetry, for only three values of $\operatorname{COB} \varphi^{*}$. For $\varphi^{*}=90^{\circ}$, an elizptic interral of the second kind is obtained for $J$. Fror the functions $f_{1}\left(\delta_{1}, \cos \varphi^{*}\right)$ cnd
 ten of 12 equations which was solvod j* the usual olimiration process mith the conputation machinesinco tho systom could rot bosolyod bititurntion. As tho computation was carried out to onlr fivo desimal placos, it res afterwnrds found tn be of insufficient accuracy for tho dotermination of tio last throo unknowns; tio circulation of tho rearrost vortex filanont, therefore, coal\& only jo estinated brextrapolation. For the romaining circulations, thare ris obtained:

$$
\Gamma_{1}=+0.737_{0} b \nabla \sin a \quad \Gamma_{a}=+0.116_{2} b \nabla \sin a \Gamma_{3}=+0.058_{4} 3 \nabla \sin a
$$

$a_{1}(1)=-0.136_{3}$
$a_{a}(1)=+0.564_{a}$
$a_{3}^{(1)}=+0.245_{B}$
$a_{a}^{(a)}=+0.001_{a}$
$a_{3}(a)=-0.061_{1}$

Those circulation distributions are shown on figure 3.
Intorratins oror the span:
$p \nabla \frac{b}{2} \int_{0}^{\pi} \Gamma_{1}(\varphi) \sin \varphi d \varphi=\rho \nabla \frac{b}{2} \Gamma_{i}\left(\frac{\pi}{2}+\frac{4}{3} a_{1}(1)-\frac{4}{15} a_{1}(a j)\right.$
theso mar ho coneiderod by tho Kutter-Joukowsky thooron as the lift contributions of the individual ving strips (along the chord), Tho lift is then distributod as follows:

NACA Technical Kemorandun No. 963

Tron the leading edge to $3 t / 16: \Lambda_{I}-0.512, ~ p b t V^{a}$ sin $\alpha$ Prom 3t/16 -to 7t/16:

$$
\mathbb{A}_{I I}=0.133_{5}
$$

From 7t/lo to llt/16:
$\mathrm{A}_{\text {III }}=0.055 \mathrm{~s} \quad$ "
From lit/l6 to trailing edse

$$
A_{I \nabla} \approx 0.02
$$

The total lift is $A=\Sigma_{\mu} A_{\mu}=0.72 \mathrm{~s} \rho \mathrm{bt} \mathrm{V}^{\mathrm{a}} \sin \alpha$ and the lift coefficient $c_{a}=A / \frac{10}{2} b^{\prime} t प^{a}=1.44, \sin \alpha$. The moment about the leading edse is obteined as tine sum of the moments of the eereral strips: $M=t / 16$ (AI $+5 A_{I I}+$ $\left.9 \AA_{I I I}+13 \Lambda_{I V}\right)$ ond the moment coeffizcient $\mathrm{cm}=0.24_{3} \sin a$. The position of the conter of poessure is' obtained from $9=\frac{\mathbf{c}_{\mathbf{m}}}{\mathbf{c}_{\mathbf{a}}} \mathbf{t}=0.16, \mathrm{t}$, Thero s is tio distance of the center of pressure from the leading edze. Finally, for the forward three vortices tie factor $\nabla_{i}=\frac{\int_{0}^{\pi} \Gamma_{i}(\varphi) \sin \varphi d \varphi}{2\left(1+a_{i}(1)-a_{i}(a)\right)}$ can bc detirmincd: $\boldsymbol{\gamma}_{\mathbf{1}}=0.80_{\mathbf{g}}, \mathbf{V}_{\mathrm{a}}=0.74, . \quad \mathrm{T}_{\mathbf{3}}=0.73,$.

Sinco for all vortices this factor is approximately 'equal to $\pi / 4=0.78_{54}$, it appoers justifiable - at least, for deep rines, that is, small nspect ratios $A=b / 2$ - to assume initiallyr an elliptic spenimiao lift distribution and so conaidarajly aimplify the computation. The fact that this e.sisumption. accordins to the above computed example, is not quite apyiciole to the roar vorticos, is of no great importance on account of the strong rearward drop in the circulation,

Since for clliptic digtribution there is only one undetorminod cosfificieat for oacia to circulation $\mathrm{r}_{\mathrm{I}}$ in the conter of tins span, the flor condition $\boldsymbol{\nabla}_{\boldsymbol{A}}=\boldsymbol{\nabla}$ sin $\boldsymbol{\alpha}$ can also bo satisfied at only one point (and the point symmetrical with resgnct to the center line) botroer each two lines $\varepsilon=x$ at $==15 t / 16$, for this reason, the assumod points are tanco on tie center line and in the center totirnen ench tro sucsendry lines and tie last at $x=15 i / 16$. We then have $y^{*}=0, x^{* \cdot}=\frac{1}{2}\left(x_{k}+x_{k+1}\right)$,
for the rearmost point $x^{*}=15 t / 16$ and $\bar{x}_{1}= \pm \frac{t_{-}}{2 n}, \pm \frac{a t}{2 n}$, $\ldots+\frac{2(n-1) t}{2 n}$ where $n$ is the number of vertices. Substitoting $\Gamma_{i}(y)=\Gamma_{1} \sqrt{1-\left(\frac{y}{b / 2}\right)^{2}}, \frac{d \Gamma_{i}(y)}{d y}=-\frac{\Gamma_{i}^{y}}{\left(\frac{b}{2}\right)^{3} \sqrt{1-\left(\frac{y}{(b / 2)}\right)^{a}}}$. into equation (la), there is obtained for the induced rolocity at the point considered:

$$
\begin{aligned}
& +\mathrm{b} / 2
\end{aligned}
$$

$$
\begin{aligned}
& +b / 2 \\
& =\frac{1}{\pi b^{2}} \sum_{1}^{n} \Gamma_{1}\left\{\pi \frac{b}{2}+\frac{2}{\bar{x}_{1}} \int_{-b / 2} \sqrt{\frac{\bar{x}_{1}+\bar{z}^{2}}{\left.1-\left(\frac{y}{0}\right)^{a}\right)}} d y\right\}
\end{aligned}
$$

The elliptic second integral is roducod to the normal form br the substitution $\boldsymbol{\nabla}=\mathrm{b} / 2 \cos \boldsymbol{\psi}$, sothat there is obtrained:
$\pi_{a}=\frac{1}{\pi b} \sum_{i}^{n} \Gamma_{i}\left\{\frac{\pi}{2}+\frac{\sqrt{\bar{x}_{1}^{a}+(b / 2)^{a}}}{\bar{x}_{i}} m\left(\frac{b / 2}{\sqrt{\bar{x}_{i}^{2}+(b / 2)^{a}}}, \frac{\pi}{2}\right)\right\}$
where $\mathbb{I}$ is that complete elliptic internal of the second

$$
\pi / 2
$$

kind $E\left(k, \frac{\pi}{2}\right)=\iint_{0} \sqrt{1-\boldsymbol{k}^{\mathbf{a}} \sin ^{\mathbf{a}} \psi \mathrm{d} \psi \boldsymbol{w i t h}^{2}}$ modulus $k=$
$\frac{\mathrm{b} / 2}{\sqrt{\overline{\mathrm{x}}_{\mathrm{i}}^{2}}+(\mathrm{b} / 2)^{a}} \cdot$ This function is tabulated, for example,
in Jahnko-Emde: Funktionentcfeln. It has the following
limiting value for $k=\sin \varphi, 0 \leq k \leq 1,0 \leq \varphi \leq \pi / 2, ~$ lImiting value for $k=\sin \varphi, 0 \leq k \leq 1,0 \leq \varphi \leq \pi / 2$. and in the above equation for $\infty \geq\left|\vec{x}_{1}\right| \geq 0: \frac{\pi}{2} \geq \mathbb{E}\left(\varphi, \frac{\pi}{2}\right) \geq 1$.

The oppression in parentheses in equation (1) gives the coefficients for the linear nonhomogeneous system of equations for the $\mathbf{n}$ unknowns $\Gamma_{1}, \Gamma_{a}$. . $\Gamma_{n}$. Putting ib on the right side, it reads $2 b \mathrm{~V}$ sin $\boldsymbol{\alpha}$ for all equations, on account of the condition $\nabla_{A}=V$ in $a$. $T h e$ coefficients. of the principal diagonal are all equal and similarly in each diagonal from upper left to lower right. Thus, for example, for $\boldsymbol{\lambda}=6, \mathbf{n}^{\cdot}=\mathbf{4 ;}$ that is, $\overline{\mathbf{x}}_{\mathbf{i}}=\mathbf{\pm} \mathrm{b} / 40$, - $3 \mathrm{~b} / 48, \pm 5 \mathrm{~b} / 48, \pm 7 \mathrm{~b} / 48$, $t h e \mathrm{gratem}$ becomes'

$$
\begin{aligned}
& 16.346_{1} \Gamma_{1}-14.34 \sigma_{1} \Gamma_{a}-4.250 \mathrm{~s} 1_{3}^{2}-2.284_{a} \Gamma_{4}=2 b \nabla \sin \mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4.284a } \Gamma_{\mathbf{1}}+6.250 s \Gamma_{\mathbf{a}}+16.3461 \Gamma_{\mathbf{3}}-\mathbf{1 4 . 3 4 6 \mathbf { 1 } \Gamma _ { \mathbf { 4 } } = 2 \mathrm { b } \boldsymbol { \pi } \operatorname { s i n } \boldsymbol { \alpha } , 0} \\
& 3.4704 \Gamma_{1}+4.284 \boldsymbol{\Gamma} \boldsymbol{\Gamma}_{\mathbf{a}}+6.250 \mathrm{~s} \boldsymbol{\Gamma}_{\mathbf{3}}+\mathbf{1 6 . 3 4 6 \boldsymbol { 1 }} \boldsymbol{\Gamma}_{\mathbf{4}}=2 \mathrm{~b} \mathrm{~V} \operatorname{Sin} \boldsymbol{\alpha}
\end{aligned}
$$

with the solutions

$$
\begin{aligned}
& \Gamma_{\mathbf{1}}=1.3344 \mathrm{t} \nabla \sin \boldsymbol{\alpha} \Gamma_{\mathbf{3}}=0.328_{0} \cdot \mathrm{t} V \sin \boldsymbol{x} \\
& \Gamma_{\mathbf{2}}=\mathbf{6} .558_{\mathbf{3}} \mathrm{t} \mathrm{~V} \sin \boldsymbol{\alpha} \quad \Gamma_{\mathbf{4}}=0.179_{1} \mathrm{t} V \operatorname{ain} \boldsymbol{\alpha}
\end{aligned}
$$

The lift contributions from the four strips of the $w i n g$
 $\boldsymbol{A}_{\text {III }}=0.257 \mathrm{~s}$ b $\mathrm{t} V \sin \mathrm{a}, \boldsymbol{\Delta}_{\mathbf{I V}}=0.143, \mathrm{~b} \mathrm{t} V \sin \boldsymbol{\alpha} ;$ the coefficients: $\mathbf{c}_{\mathbf{a}}=3.76 \mathrm{~s} \mathbf{s i z}$ cL. $\boldsymbol{c}_{\boldsymbol{\pi}}=0.754$ sima $a$, $\mathbf{c}_{\mathbf{m}}=0.92_{\mathbf{3}}$ sin $a$, and the distance of the center of pressure from tho leading edge $\boldsymbol{s}=0.24$, $t$. A comparison of the results by this method and those by -the Vortex-surface method will be made in the third section.

Still simpler is the limiting casio of the above syn ten for $\boldsymbol{n}=1$. The confutation is then reade rith a For' texrith spantise elliptic circulation distribution at the diatanco t/4 from the leading edge'. Tho single point consfdorod lies at $x=3 / 4$ t. The center of pressure, according to the assumption tho, always-lies at $\mathbf{s}=\mathbf{t / 4}$, Which ia sufficiently accurate for rather large aspect rad tios $\boldsymbol{\lambda}>3$, as shown by the confutation with tho vortex: shoes. The circulation and the. coefficients in this case can, in general, be explicitly expressed:

$$
\begin{aligned}
& \Gamma=\frac{2 b \nabla \sin a}{1+\frac{2}{\pi} \sqrt{1+\lambda^{a}} \pi\left(\frac{\lambda}{\sqrt{1+\lambda^{2}}} \frac{\pi}{2}\right)} ;
\end{aligned}
$$

With infinitely increasing aspect ratio there is thea ono trained a limiting value for $c_{a} \operatorname{lin}_{\lambda} \lim _{\infty} c_{a}=\frac{\pi^{2}}{2}$ air a. From the potential thoory,ontio other hand, there is obtained for tho wing with infinite span $\boldsymbol{c}_{\mathbf{a}}=\mathbf{2 \pi}$ sin $\boldsymbol{\alpha}_{\mathrm{a}}$. This ifference is readily oxplainfole from the fact that elliptic circulation distribution (that is, factor 7, previously defined, equals $n / 4$ ) has been assumed above. Acrordins to Beta, however, this factor for rectangular wings jecones larger with increasing $\lambda$ up to the limiting value 1 for $\lambda \rightarrow \infty$. Hence, multiplying by $4 / \pi$, re have actually $\frac{4}{\pi} \lambda^{-\lim } c_{a}=\left(c_{a}\right)_{\text {pot }}$.

It is now simple to refine this method by asounins a trigonometric series for $\Gamma(\boldsymbol{r}): \mathbf{y}=\frac{\mathbf{b}}{2} \cos \boldsymbol{\rho}, \Gamma(\varphi)=\Gamma \sin \varphi$ $\left(1+a_{1} \sin \varphi+\ldots \cdot \cdot a_{2} \sin n \varphi\right)$. Then, amain, equation (3) is obtained -thin tine for ore vortex $\boldsymbol{\sim i t h} \boldsymbol{\delta}_{\mathbf{1}}=1 / \lambda$; that is, without the summation sign. The drag ic determined $\operatorname{fron} \pi=\rho \frac{b}{2} \int_{\pi}^{\pi} \Gamma(\varphi) \nabla(\varphi) \sin \varphi$ ar $\varphi$ where $\quad \nabla(\varphi)=$ $\frac{1}{2} \frac{1}{\pi b} \int_{0}^{\pi} \frac{1}{\cos \varphi-\cos \varphi} \frac{d \Gamma(\varphi)}{d \varphi} d \varphi$, and there is obtained $c_{w^{2}}=$ $\left(\frac{\pi}{2}+\frac{4}{3} a_{1}+\frac{2}{\pi} a_{1}{ }^{a}+\ldots . \frac{\Gamma^{a}}{V^{2} b t}\right.$. In tho exncples there $\quad$ mas sot: $\Gamma(\varphi)=\Gamma \sin \varphi\left(1+a_{1} \sin \varphi\right), \varphi_{1}^{*}=30^{\circ}, \varphi_{a}^{*}=60^{\circ}$, which corresponds to $\boldsymbol{y}_{1}^{*}=\frac{\sqrt{3}}{4} \mathrm{~b}, \boldsymbol{y}_{\mathbf{a}}{ }^{*}=\frac{\mathbf{b}}{4}$. On fissure 4 . the lift-distribution coefficient is plotted against the
aspect-ratio. It nay be seen that the experimentally obtaine lift coefficients (reference 8-)-are very closely approached by this simple a amputation.

The following table is to be used in connection with figure 4:

II. VORTEX SET

With tho nothod of íscrcte vortex filaments, a furthor reininoment in tho lift distribution - hence a= increase in the accuracy $\mathrm{b}_{\mathrm{i}}$ increasing the number of vorticos - is practically excluded on account of tho computelion labor iュтolvod. It ซeathoreforo married to the lirit $\boldsymbol{r} \rightarrow \infty$, ard an attempt was node by aralptical methods to restrict the computation work as far as possible. On increasing $n$, the circulation contributed on each of the vorticose and their distances apart become sailer up to the li:nitinn case $n \rightarrow \infty$. when the circulation distrábum tion becomes a surface distribution. The dinenaions of this surface distribution $\boldsymbol{\gamma}(\mathbf{x}, \boldsymbol{\nabla})$ are circulation per unit chord, that is, centinotors per socond. An infinitoain meal vortex $Y(x, \forall)$ dx inducos, according to equation (1). at any point of tho surface, tho yolocity:

$$
+b / 2
$$

$d W_{A}=\frac{1}{4 \pi} \int \frac{\left(x^{*}-x\right) \gamma(x, \forall)}{\left[\left(x^{*}-x\right)^{3}+\left(y-y^{*}\right)^{2}\right]^{3 / 2}} d x$
$\cdot \frac{1}{4} \pi \int_{-b / 2}^{+b / 2^{-b / 2}} \frac{1}{\nabla-\boldsymbol{y}^{*}} \frac{\partial \gamma(x, y)}{-\partial^{\prime} x} d x[1+$

where a isassumed small enough so that $\sin ^{a} \alpha \approx 0$ and cosan $\boldsymbol{\sim}$. Tine equation would te strictly true if tho trailing fortices moro sbod in the diraction of tho ring. Intozratirg the first intogral by parts, thoro is arair obtrinod, on account of $\boldsymbol{Y}(\mathbf{x}, \boldsymbol{y}= \pm \mathbf{b} / 2)=0$,
$\nabla_{A}=-\frac{1}{4 \pi} \int_{0}^{t} d x \int_{-b / 2}^{+b / 2}\left\{\frac{\sqrt{\left(x^{*}-x\right)^{a}+\left(y-y^{*}\right)}}{\left(x^{*}-x\right)\left(y-y^{*}\right)}+\frac{1}{y-y}\right\} \frac{\partial \gamma(x, y)}{\partial y} d y$
The condition $\boldsymbol{W}_{A}=V$ sin a $\frac{3}{3} \boldsymbol{7 e s}$, after a trensformetion of coordinates,
$x=t / 2(1+\xi)$
$y=b / 2 \eta$ $\int_{-1}^{+1} \int_{-1}^{+1}\left\{\frac{\sqrt{\left(\xi^{*}-\xi^{2}+\lambda^{2}\left(\eta-\eta^{*}\right)^{2}\right.}}{\left(\xi^{*}-\xi\right)(\eta-\eta *)}\right.$

$$
\begin{equation*}
\left.+\frac{1}{\eta-\eta_{1}^{*}}\right\} \frac{\partial \gamma(\xi, \eta)}{\partial \eta} d \xi \Delta \eta=4 \pi A V \sin \alpha \tag{5}
\end{equation*}
$$

This is $n$ two-dimensionnl linear integral equation of the first kind $\frac{\partial \gamma(\xi, \eta)}{\partial \eta}$. On account of the sinayinrity


$$
\eta \rightarrow \eta^{*}
$$ equation could not be solvef eten approximntely since the usual rethod of amproximatins the kernel by a folynonial, sosumes continuity. Also the particular proyertor of the kernel on which it denends ( $\xi-\xi^{*}$ ) nnd ( $\eta^{-\infty} \eta^{*}$ ) could not be uaed for a solution method.

The only recourse therefore is to sinplifr the intem ral equation by au aerodenamicnlla reasonable assunption. It ras thus assuned that the spanmise circulation distribution is the same for nll k. This results in a lowering of the order of the intorial equation. althouph the flow condition can then no lonser be satisfied oror tho ontiro Tiza but only on $\Omega$ otrnizit line $\eta^{*}=$ const. For obrious reasons olliptic distribution was assumot over the span. and $\eta^{*}=0 ;$ that le. tho flow condition mas to bo satisfied on the center lino nf the plate. For thece points of the surface then, the condition $\nabla_{A}=V$ ain $a$ is requirod,
and for other point's it is expected'thet tho deviation front this condition-la not too larges:

$$
\text { With } \gamma(\xi, \eta)=\gamma(\xi), \sqrt{1-\eta^{2}} \cdot \frac{\partial \gamma(\xi, \eta)}{\partial \eta}=-\frac{\eta}{\sqrt{1-\eta^{2}}} Y(\xi)
$$

and $\boldsymbol{\eta}^{*}=\mathbf{0}$, equation (5) simplifies to the following:

$$
\int_{-1}^{+1} r(\xi) d \xi \int_{-1}^{+1}\left\{\frac{\sqrt{\left(\xi^{*}-\xi\right)^{3}+\lambda^{a} \eta^{2}}}{\left(\xi^{+}-\xi\right) \eta}+\frac{1}{\eta}\right\} \frac{\eta}{\sqrt{1-\eta^{a}}} \text { d. } \eta=4 \pi \lambda \text { v in } \alpha
$$

In the integration with respect to $T_{1}$, on ellipticintegral is again obtained:
$+1$
$\int_{-1} \frac{\sqrt{\left(\xi^{*}-\xi\right)^{2}+\lambda^{2} \eta^{2}}}{\left(\xi^{*}-\xi\right) \sqrt{1-\eta^{2}}} d \eta=$.

$$
2 \sqrt{1+\frac{\lambda^{2}}{\left(\xi^{*}-\xi\right)^{2}}} \int_{0}^{r} \sqrt{1 \rightarrow \frac{\lambda^{2}}{\lambda^{2}+\left(\xi^{*}-\xi\right)^{2}}} \operatorname{sir^{2}} . \varphi d \varphi
$$

With $\eta=\cos \varphi, \quad \sec t h s t$

$$
\begin{aligned}
& +1
\end{aligned}
$$

$$
\begin{align*}
& \ddot{2 \pi} \lambda T \text { sin } \alpha^{* *} \tag{6}
\end{align*}
$$

* Corresponding internal equations cen also be set up for. airfoils with arbitrary plan form symmotricel with respect to the center line. If $b(\xi)$ la the span, varying with the chord, equation (5) becomes:

$$
\begin{aligned}
& \lambda(\xi)=\frac{b(\xi)}{t}: \int_{-1}^{+1} \int_{-1}^{+1}\left\{\frac{\sqrt{\left(\xi^{*}-\xi^{\xi}+\lambda^{8}(\xi)\left(\eta-\eta^{*}\right)^{8}\right.}}{\left(\xi^{*}-\xi\right)^{\prime}\left(\eta-\eta^{*}\right)^{*}}\right. \\
&\left.+\frac{1}{\eta+\eta^{*}}\right\} \frac{\partial \gamma(\xi, \eta)}{\partial \eta} \frac{1}{\lambda(\xi)} d \xi \mathrm{~d} \eta=4 \pi \mathrm{~V} \text { sin } \mathrm{a}
\end{aligned}
$$

(Continued on p. 14)

Equation (5) is tbus reduced to a one-dlnenefonal interral equation. The kernel, it is true, has jecome rore complicated, and thesinsularity for $\xi \rightarrow \xi^{*}$ raturally, still recains. Bor the approximate solution of this equation, there is assured for $\boldsymbol{\gamma}(\xi)$ a series of functions whici BIrnbaum has used in his paper
$\gamma(\xi)=A_{1} \sqrt{\frac{1-\xi}{1+\xi}}+A_{B} \sqrt{1-\xi^{8}}+A_{3} \xi \sqrt{\lambda-\xi^{2}}+A_{4} \xi^{2} \sqrt{1-\xi^{2}}$
The four undetermined coefficients $\mathbb{A}_{1}, \boldsymbol{A}_{\mathbf{a}}, \mathbf{A}_{\boldsymbol{\prime}}, \mathbb{A}_{\mathbf{4}}$ are so deterained that the intergalequationissatisfiedet four points $\boldsymbol{\xi}_{1}$ to $\boldsymbol{\xi}_{4}$. Since thokerrel containa $\boldsymbol{\lambda}$, it is necessary to compute each tine for a defi=iteaspect ratio. Tine integrations, on account of twecorplicatedixernel. nust be carried out sraphically or numorically. The grocedure of tie ver: laborious computatior thus, is the تolフoring:
 ceries of values of $\xi$ froo -1 to +1 , ars zirst convuted; then for thesame aryuments for a definite A. tine kornel functions $\boldsymbol{\varepsilon}\left(\boldsymbol{\lambda} ; \xi^{*} . \xi\right)$ for the four poirtg sonsirna ered. (In the exarplos carriod out $\xi_{1}=-\frac{1}{2}, \xi_{1}=0$, $\xi_{3}{ }^{*}=+\frac{1}{2}, \xi_{4}^{*}=+1$; thon, oz account of $k\left(-\xi^{*},-\xi\right)=$ $\left.\mathrm{k}\left(\xi^{*}, \xi\right)+\pi, k(-0.5, \xi)=k(+0.5, \xi)+\pi.\right)$ Hack of these Fernel functions is multiplied by $\gamma_{1}(\xi), \gamma_{3}(\xi), \gamma_{3}(\xi)$, $\gamma_{4}(\xi):$
** (Contirued froz?. 13)
For the elliptic winz tiero is obtained for olliptic lation distribution ovor tho span with $\lambda(\xi)=b_{\text {max }} / t \sqrt{1-\xi \tilde{y}}$ : $\int_{-1}^{+1}\left\{\frac{\sqrt{\left(\xi^{4}-\xi\right)^{2}+\lambda^{2}(1-\xi)^{B}}}{\left(\xi^{*}-\xi\right)}=\left(\frac{\lambda \sqrt{1-\xi^{k}}}{\lambda^{2}\left(1-\xi^{2}\right)+\left(\xi^{*}-\xi\right)^{2}}, \frac{\pi}{2}\right)\right.$

This oquajion is solved anmoxinately as in tho caso of tha rectangular $\begin{gathered}\text { ring. Tho Iiniting case } A \text { sivos for }\end{gathered}$ $\left.\frac{1}{2 \pi}{\underset{-i}{r} \frac{1}{\xi^{\pi}-\xi}}_{+1}^{-1} \xi\right) \mathrm{d} \xi=\mathrm{V}$ ain a the solution of the potoniicl
 $\frac{\pi}{2} \sin a, s=\frac{1}{4} t$.

Those 16 function must now be Integrated graphically or numerically: for example, by theSinpson rule:

$$
I_{k}=\int_{i_{k}(\xi)}^{+1}{ }^{(\xi \xi}
$$

$$
-1
$$

Since the $k\left(\xi^{*}, \xi\right)$ and hence the $f(\xi)$ become infinite for $\xi \rightarrow \xi^{*}$. it ${ }^{\prime}$ is necosgary in the quadrature to $8 x-$ claude a region $\xi^{*}-\varepsilon<\xi<\xi^{*}+\epsilon$ and npproxinntcly detorino by analytical =ethods the Cnuciy principal value

$$
\xi+\varepsilon
$$

for $\int_{\xi-\varepsilon}^{\beta} 1(\xi) d \xi$. Ti thus finally info tin cocfficfonts
$I_{k}$ for tho linear nonhorogonoous gystor of of rations:

$$
\sum_{v=1}^{4} I_{4 \mu+v} A_{v}=2 \pi \lambda v \sin c c . \quad \text { for } \mu=0,1,2, E, \ldots
$$

froe which the $\dot{A}_{v}(\lambda)$ can bo deturcined; Mo then have: $\gamma(\lambda ; \xi, \eta)=\sum_{1}^{4} v A_{v}(\lambda) \quad \gamma_{v}(\xi) \sqrt{1-\eta^{2}}$. In this manner tho circuration distribution mas doternincd for the aspect ratios $A=1 / 4,1 / 2$, and 1 .

For greater aspect ratios, A $>$ 2, the lo graphical quadratures are not required, but the approximate computelion can be carried out analytically. for this purpose the elliptic intorial must approximately evaluated for $45^{\circ}<\varphi \leq 90^{\circ}$. Since $\sin \varphi=\frac{\lambda}{\sqrt{\lambda^{2}+\left(\xi^{*}-\xi\right)}}$ and $\left|\xi^{*}-\xi\right| \leq 2$,

$$
\begin{aligned}
& f_{1}(\xi)=k\left(\xi_{1}^{*}, \xi\right) \gamma_{1}(\xi) \quad i_{s}(\xi)=k\left(\xi_{a}^{*}, \xi\right) \gamma_{1}(\xi) \\
& I_{g}(\xi)=k\left(\xi_{1}{ }^{*}, \xi\right) \gamma_{B}(\xi) \\
& i_{B}(\xi)=k\left(\xi_{z} *, \xi\right) \gamma_{a}(\xi) . \\
& i_{3}(\xi)=k\left(\xi_{1}{ }^{*}, \xi\right) \gamma_{3}(\xi) \\
& i_{4}(\xi)=k\left(\xi_{1}{ }^{*}, \xi\right) \gamma_{4}(\xi) \\
& \text { etc. to } \\
& i_{18}(\xi)=k\left(\xi_{4}^{*}, \xi\right) \gamma_{4}(\xi)
\end{aligned}
$$

$\boldsymbol{\varphi}=45^{\circ}$ is that smallest argument for $\boldsymbol{\lambda} \geq 2$. For this range $\boldsymbol{\pi}(x, \pi / 2)$ was replaced by $\vec{H}(x, \pi / 2)=1+$ $0.44 \sqrt{1-x^{1}}$. At first there was set $\boldsymbol{F}(x, \pi / 2)=1+$ $\left(\frac{\pi}{2}-1\right) \sqrt{1}-\mathbf{x}^{\mathbf{B}} \sum_{0}^{\pi} \boldsymbol{a}_{v} \boldsymbol{x}^{\boldsymbol{v}}$, but the computation then became so complicated that there was no adrentare wined over the previous method; $\mathbb{F}$ is thus dotormined with an error witch is approximately -3 percent for $\boldsymbol{\varphi}=45^{\circ} \mathbf{i}+\mathbf{3}$. percent (maximum value) for $\varphi=80^{\circ}$, anal approaches azo to as $\boldsymbol{\varphi} \rightarrow 90^{\circ}$. For $\boldsymbol{\varphi}=90^{\circ}$, the first derivatives slءо $\mathrm{d} \overline{\mathrm{T}}(\mathbf{x} \quad$ 픈)
agree: $\lim _{\mathbf{x} \rightarrow 1}-\frac{\mathbf{I m}}{\mathrm{d}}{ }^{2}{ }^{2} \rightarrow-\infty$ and

$$
\lim _{x \rightarrow 1} \frac{d \pi\left(x, \frac{\pi}{2}\right)}{d x} \lim _{x \rightarrow 1} \int_{0}^{\pi / 2} \frac{-\quad \sin }{\sqrt{1-P \sin ^{a} \varphi}} \varphi d \varphi \rightarrow-\infty
$$

For $\boldsymbol{\lambda}>2$ the radical can oo devolopod into a poticr sorios mitch converses for ell $\xi^{*}$, since $\left|\cdot \xi^{*}-\xi\right| \leq 2$. With
and

$$
\Xi\left(\frac{\lambda}{\sqrt{\lambda^{2}+\left(\xi^{*}-\xi\right)^{2}}}, \frac{\pi}{2}\right) \approx \mathbb{T}\left(\frac{\lambda}{\sqrt{\lambda^{2}+\left(\xi^{*}-\xi\right)^{2}}}, \frac{\pi}{2}\right)=
$$

$1+0.44 \frac{\left|\xi^{*}-\xi\right|}{\sqrt{\lambda^{3}+\left(\xi^{*}-\xi\right)^{3}}}$
and
$\sqrt{\lambda^{2}+\left(\xi^{*}-\xi\right)^{2}} \approx \lambda\left[1+\frac{1}{2}\left(\frac{\xi^{*}-\xi}{\lambda}\right)^{8}-\frac{1}{8}\left(\frac{\xi^{*}-\xi}{\lambda}\right)^{4}+\frac{1}{16}\left(\frac{\xi^{*}-\xi}{\lambda}\right)^{6}\right]$
equation (6) then becomes:

$$
\begin{aligned}
& \int_{-1}^{+1}\left\{\frac{\lambda}{\xi^{*}-\xi}+\frac{1}{2 \lambda}\left(\xi^{*}-\xi\right)-\frac{1}{8 \lambda^{3}}\left(\xi^{*}-\xi^{3}+\frac{1}{16 \lambda^{5}}\left(\xi^{*}-\xi\right)^{5}\right\} \gamma(\xi) \alpha \xi\right. \\
& +\int_{-1}^{+1}\left(0.44 \operatorname{sign}\left(\xi^{*}-\xi\right)+\frac{\pi}{2}\right) \gamma(\xi) d \xi=2 \pi A v \sin a
\end{aligned}
$$

Again substituting $\boldsymbol{\gamma}(\xi)$ from equation (7) sudintegrating, there ore obtained on the left side for the coefficients of $\mathbb{A}_{\mathbf{y}}, \mathrm{A}_{\mathbf{a}}, \boldsymbol{A}_{\mathbf{3}}, \mathrm{A}_{\mathbf{4}}$, the following functions of $\boldsymbol{\lambda}$ and $\boldsymbol{\xi}^{\boldsymbol{\top}}$.

$$
\begin{aligned}
F_{1}\left(\lambda, \xi^{*}\right) & =\pi\left[\frac{\xi^{* 5}}{16 \lambda^{5}} \pm \frac{\xi^{* 4}}{32 \lambda^{5}}+\left(\frac{5}{16 \lambda^{B}}-\frac{1}{8 \lambda^{3}}\right) \xi^{* 3}\right. \\
& +\left(\frac{15}{64 \lambda^{5}}-\frac{3}{16 \lambda^{3}}\right) \xi^{* a}+\left(\frac{15}{128 \lambda^{5}}-\frac{3}{16 \lambda^{3}}+\frac{1}{2 \lambda^{2}}\right) \xi^{*} \\
& +\left(\lambda+\frac{1}{4 \lambda}-\frac{1}{64 \lambda^{3}}+\frac{5}{256 \lambda^{5}}+\frac{\pi}{2}\right) \\
& +0.280_{11}\left(\arcsin \xi^{*}+\sqrt{1 \sim \xi^{* B}}\right)
\end{aligned}
$$

$$
\#_{a}\left(\lambda, \xi^{*}\right)=\pi\left[\frac{\xi^{* 5}}{32 \lambda^{5}}+\left(\frac{5}{64 \lambda^{5}}-\frac{1}{16 \lambda^{3}}\right) \xi^{* 3}\right.
$$

$$
+\left(\lambda+\frac{1}{4 \lambda}-\frac{\frac{3}{3}}{64 \lambda^{3}}+\frac{5}{256 \lambda^{5}}\right) \xi^{*}+\frac{\pi}{4}
$$

$$
\left.+0.140_{00}\left(\operatorname{arc} \sin \xi^{*}+\xi^{*} \sqrt{1 \infty \xi^{* a}}\right)\right]
$$

$$
F_{3}\left(\lambda, \xi^{*}\right)=\pi\left[-\frac{5 \xi^{* 4}}{129 \lambda^{5}}+\left(\lambda+\frac{3}{64 \lambda^{3}}-\frac{5}{128 \lambda^{5}}\right) \xi^{* a}\right.
$$

$$
-\left(\frac{\lambda}{2}+\frac{1}{16 \lambda}-\frac{1}{128 \lambda^{3}}-\frac{5{ }^{\prime}}{2048 \lambda^{5 /}}-0.093_{37}\left(1-\xi^{* 3}\right)^{3 / a}\right]
$$

$$
B_{4}\left(\lambda, \xi^{*}\right)=\pi\left[\frac{\xi^{* 5}}{128 \lambda^{5}}+\left(\lambda-\frac{-3}{54 \lambda^{3}}+\frac{5}{128 x^{"}}\right) \xi^{* 3}\right.
$$

$$
-\left(\frac{\lambda}{2}-\frac{1}{16 \lambda}+\frac{1}{128 \lambda^{3}}-\frac{25}{2048 \lambda^{5}}\right) \xi^{*}+\frac{\pi}{16}
$$

$$
\left.+0.035_{01}\left(\operatorname{arc} \operatorname{sill} \xi^{*}-\xi^{*} \sqrt{1-\xi^{* 8}}\left(1-2 \xi^{* 2}\right)\right)\right]
$$

Again 8 definite value is taxon for $\lambda$ and for four points (hero, too, the points chosen were $\xi_{a}^{*}=-\frac{1}{\beta^{*}}$, $\xi_{2}{ }^{*}=0, \xi_{3}{ }^{*}=+\frac{1}{B}$, and $\xi_{4}^{*}=+1$ ) there are computod tho 16 coefficient's of the system of oquationa $\sum_{i}^{4} \cup F_{,}\left(\xi \mu^{*}\right) A,=2 \pi \lambda V \sin \alpha$ for $\mu^{\circ}=1,2,3,4$, from

od. For $\boldsymbol{\lambda}=2$, this computation. strictly speaking, is at least for $\boldsymbol{\xi}_{4}^{*}=1$, not valid because.thoseries into which foo radical iras developed is no longer convergent in the limiting case $\boldsymbol{\xi} \rightarrow-1$.

Finally, equation (6) waa'alao considorod for tho two linting cases $A \rightarrow \infty$ and $A \rightarrow 0$. Bor tho win; of infinite span, $b, \lambda \rightarrow \infty, E\left(\frac{\lambda}{\sqrt{\lambda^{2}+\left(\xi^{*}-\xi\right)^{a}}}, \frac{\pi}{2}\right)$ becomes oqual to 1 and tho oquation goos.ovor into $\left.\int_{-1}^{n} \frac{1}{\xi^{*}-\xi} \boldsymbol{\gamma} \boldsymbol{j} \boldsymbol{j}\right) \mathrm{d} \xi=$
$2 \pi \mathrm{v}$ sin a . Substituting the above expression for $\boldsymbol{\gamma}(\xi)$, there is easily recognized as a solution $\boldsymbol{\gamma}(\xi)=2 \mathrm{~V}$ sin $\boldsymbol{\alpha}$ $\sqrt{\frac{\boldsymbol{I}-\boldsymbol{\xi}}{\boldsymbol{I}-\xi}}$, which is the distribution given by the notestidal theory. Since as $\mathbf{A} \rightarrow \infty$, the spanirise distribution becomes $\boldsymbol{\gamma}(\boldsymbol{\eta})=$ canst, this solution satisfies the flow condition at each point of the surface. The same result la also obtained-when in the method of solution for $\boldsymbol{\lambda} \boldsymbol{\lambda} 2$, the $\boldsymbol{F}_{\boldsymbol{v}}\left(\boldsymbol{\lambda}, \boldsymbol{\xi}^{*}\right)$ are considered for very large $\boldsymbol{\lambda}$ and this system is computed. Then there is also obtained $\mathbb{A}_{\mathbf{1}}=2$, As $=\mathbf{A}_{\mathbf{3}}=A 4=0$. The Eft coofícient rill then be $\mathbf{c}_{\mathbf{a}}=$ $\frac{\pi^{\mathbf{a}}}{2} \sin \mathrm{CC}$, and the moment coefficient $C m=\frac{\pi^{\mathbf{a}}}{2}$ sin $a ?$ whereas, according to the two-dimensional potential theory, $\boldsymbol{c}_{\boldsymbol{a}}=\mathbf{2} \boldsymbol{\pi}$ sin $a$ and $\boldsymbol{c}_{\boldsymbol{m}}=\frac{\pi}{2}$ sin a. This is aras due to the fact that elliptical spanrise distribution was assumed for tho rectangular wing; multiplying, subsequently. by $4 / \pi$, the two results become identical. If er elliptical wing is considered and $\boldsymbol{\lambda}$ is made to approach infinite, there is inmodiatoly obtained $\mathbf{c}_{\mathbf{a}}=2 \pi \sin a$ and $\mathbf{c}_{\boldsymbol{m}}=\frac{\pi}{4}$
sin a sin a $\boldsymbol{s i n}^{\boldsymbol{n}} \boldsymbol{\operatorname { c o s }}$ the roforonce area for tho coefficiontinis $\pi / 4 \mathrm{~b} t$.

> Of considerably grater difficulty is the Iinitir:
case of the ring with infinite chord $t \rightarrow \infty, \lambda \rightarrow 0$. Here the coordinntoa must bo made nomdinensional through the span instead of through the chord as heretofore: $x=$ $\frac{\mathbf{b}}{2} \nabla, x^{*}=\frac{\mathbf{b}}{2} \boldsymbol{\nabla}^{*}$. Equation (6) with $t \rightarrow \infty$ then goes over into:

$$
\int_{0}^{\infty}\left\{\frac{\sqrt{1+\left(\nabla^{*} \rightarrow \nabla\right)^{2}}}{\nabla^{*}-\nabla} \pi\left(\frac{1}{\sqrt{1+\left(\nabla^{*}-\nabla\right)^{B}}} \cdot \frac{\pi}{2}\right)+\frac{\pi}{2}\right\} Y(\nabla) d \nabla=2 \pi V \sin \alpha
$$

Agein it mas sought to find for $\gamma(\nabla)$ a sorios of func-- tions mith undetorinod cooificionts mhich mould then be doternined through satisfring the integral equation nt soveral points $\boldsymbol{T}^{*}$. In this caso, howoter, no sorios of functions could bo found which at tho leading odec $\nabla \rightarrow 0$, Increases as $I / \sqrt{v}$ and $\quad \pi i t h \cdot \tau \rightarrow \infty, ~ c o r r e s p o n d i n 弓 ~ t o ~$ the solution for $A=1 / 4$, which decroasos approximitely as $1 / \nabla^{3}$. For this roason, only tio follorins single functions were investi弓ated: $r,(\dot{v})=\frac{\sqrt{4}}{\sqrt{\nabla}+3 v^{3}}$ and $\gamma_{2}(v)=$ $-\sqrt{\pi}+\frac{C}{D_{\nabla^{5}}} \cdot$ Since ngain the intospal could bo orsimatod only sraphically or numerically (on account of $0 \leq\left|\boldsymbol{\tau}^{*}-\boldsymbol{\nabla}\right|<\infty$ a sories davolopcent of tho?-sruel could not be consideroi). it $\quad$ es nocessnry, beforo substitutins, to ersumo $B$, and $D$, respoctively, תs firod snd then, by ouadraturos, Set up $A\left(3, \nabla^{*}\right)$ nnd $C\left(D, \nabla^{*}\right)$, rompoctively, for soteral faluos of $\nabla^{*}$. In order to inint tho integration intorval, it ras a;jain gocessary to meko anothor trangformation:
$u=\frac{1}{1+v^{\prime}}, \quad u^{*}=\frac{1}{1+\mathbf{T}^{*}}$

$$
\begin{aligned}
& I_{1}\left(B ; \nabla^{*}, A\right)=\int_{0}^{1} \frac{\sqrt{1+\left(\frac{u-u^{*} j^{a}}{u^{*}}\right.}}{\frac{u-u^{*}}{u u^{*}}} \mathbb{D}\left(\frac{1}{\sqrt{1+\left(\frac{u-u^{*}}{u u^{*}}\right)^{a}}} \frac{\pi}{2}\right) \\
& \left.+\frac{\pi}{2}\right\} \frac{d u}{u^{2}}-\frac{\Delta}{\sqrt{\frac{1}{u}-1}+B\left(\frac{1}{u}-1\right)^{3}}
\end{aligned}
$$

Since the interrand apain became ininsular at trio points, namely, $\boldsymbol{n t} u \rightarrow \mathbf{u}^{*}$ and $\mathbf{u} \rightarrow \mathbf{l}$ ( $\mathbf{u}=1$ corresponds to the leadina edse, $u=0$ to the trailing edse), the principal values hcd to be approximately detormined by analutical methods. The ontiro laborious trial procoas, howovor, not

With little success as tho effoct of the various coefficients on the result was too difficult to estimato. As an approxination, it is poseiole to sot at nost $Y(v) \boldsymbol{\approx}$ $-\sqrt{\nabla}+\frac{12}{2.4 \nabla^{3}} ;$ for the range $0.1 \leq \boldsymbol{\nabla}<\infty$, the dovnicesh orror with respect to $v$ sin a then arounts to about 7 percont - this orror, however, strongly increasing tovard tho locding edse ( $v<0.1$ ). Tho lift would then acount to $1=0.789 \mathrm{~b}^{\mathrm{a}} \mathrm{T}^{\mathrm{a}}$ sin $\alpha$, and the cuntor of prossuro rould lie nt $s=0.219 \mathrm{~b}$.

## III. RESULTS

Br the methods describod, tie chordrise lift distribution ras conputcd for elliptic spenvise distribution for five ospect ratios, namely, $A=1 / 4,1 / 2,1,2$, and 6 , $n$ nd rraphically interpolated for arittrary $\lambda$. The results are presented in figures 5 to 10 and are tajulatodin the appendix. In fizure 5 the coefficients for the circulation functiors are plotted esainst $A . A_{1}$ Increases ronotonically cnd for larse aspect ratio approaches 2 as the asymptotic value. The absolute values of the other coefficients increase up to e maximum at about $A=\frac{1}{2}$, then drop rapidly to zero; A, and A, are alनar positivo, and $A_{a}$ and $A_{4}$, nezative. Tio amaller $A$ is, the less rapidly do tbe $\boldsymbol{d}_{v}$ converje, sothat to obtain the same accuracr as for lerge espect ratios, a lonjor sorias of functions for the circulation must be assumed. The curvo $A_{1} \sqrt{b / \lambda}$ shors the increase in the circulation in tho neighborhood of the leadin; odge for constant spen as 3 function of $\lambda$, since $\lim _{x-0} \boldsymbol{\gamma}(\boldsymbol{x})=\Lambda_{1} \sqrt{\frac{b}{\lambda}} \frac{1}{\sqrt{\bar{x}}}$; here, too, the naximum lies between $A=\frac{1}{8}$ and $\lambda=1$. The valuo for $A=0$ obviously is in orror, fror: which fact it mey bo soen that the siven approximation for $\boldsymbol{\gamma}(\boldsymbol{r})$ does not corroctly represent tie behavior in tionoivhboriood of the loadins edro. If tho chord is held fixed and tho span varied, $\mathbb{A}_{1}$ itsolf ites the increnso since $\underset{x \rightarrow 0}{\lim } \boldsymbol{\gamma}(x)=$ $A_{1} \sqrt{t / x}$.

[^1]lover and uppor sidos of tho plate reincrod to tho dynaric pressure $\frac{p_{u}-p_{0}}{\frac{\rho}{2} \boldsymbol{T}^{\mathbf{a}} \sin \boldsymbol{\alpha}}=\frac{\pi}{2} \gamma(\xi)$ ar's plotted against the chord. Inficuro 6 the abscissa refers to the chord, ard ir fioure 7, to the span. Ir tie first represertation the liaitins case $\lambda=0$ coincide3 with the enordinate nxes,
 betweon tho axe3 era the linitin; case $\boldsymbol{\lambda}=\boldsymbol{\infty}$. In tie second representation tkie liniting case $A=\infty$ coincides with axis of ordinates. This method of plotting is particularly surceptible to error3 in taz circulation distria bution and shows thnt ext $A=\frac{1}{3}$, a small orror is to be assumed through inaccuracy of one of the そraphicrl quadratures or the approximated principal valuo. Similarl:, the limitins case $\lambda=0$ appens as only n verr rousil approximetion aince intersection of the curvos with eaci other ie verf inprobabie. It is geon, 上omover. that for very small nspect ratior a rurtior incroese in tio ciord hes only a maill effect on the circulation iistribution, oither in tio noighborhood of tian loading edpe or - oring to tie strong docrease - fa-ither tomara ths rear. Thic is geon ospecially ciearl- from tio curvo for $A / p \mathrm{D}^{a} \mathrm{~V}^{2}$ sin a (fig. B), Fhich si:ows how the total lift increases rhen tho gpan is ield constant nnd tho chordis raried.

On fisures 9 and lictio lift, dra; nnd momont coorfciente are plottod as function3 of $A$. Thoy ere computed from tine valuos of $\mathcal{A}_{1}, \mathbb{A}_{\mathbf{a}}, \boldsymbol{-}_{3}, \mathcal{A}_{4}$ a3 follors: The lift according to tho Kuttancoukowslcy theorimis:
$A=\rho \nabla \int_{-b / 2}^{+b / 2} d y \int_{0}^{t} T(x, y) d x=\frac{\pi^{a}}{B} \rho \nabla b t\left(A,+\frac{1}{2} A 3+\frac{7}{B} A_{4}\right)$
from which $\quad c_{a}=\frac{\pi^{2}}{4} \frac{I}{V}\left(A_{1}+\frac{1}{2} A_{B}+\frac{1}{8} A_{1}\right) . \quad$ Sinilarly, the roment about tho leading odzo is
$y=p \nabla \int d y \int \gamma(x, y) x d x=\frac{\pi^{a}}{16} \rho V b t^{a}\left(A_{1}+A_{8}+\frac{1}{4} A_{3}+\frac{1}{4} A_{4}\right)$ $-\mathrm{b} / \mathrm{2}$. 0 .

duced draf is
where

$$
\nabla_{i}=\rho \int_{-b / 2}^{+b / 2} d y \int_{0}^{t} \gamma(x, y) \nabla(y) d x
$$

$$
d \pi(y)=\frac{1}{4 \pi} \int_{-b / 2}^{+b / 2} \frac{\partial y(x, y)}{\partial \bar{y}} d x \frac{d \overline{\bar{y}}}{y-\bar{y}}
$$

rith

$$
(x, y)=\frac{b}{2} \sqrt{1-\left(\frac{y}{b} \frac{1}{2}\right)^{2}} \sum_{1}^{\frac{4}{\sum}} A_{v} \gamma_{v}(x)
$$

re inave

$$
\frac{d r(y)}{-a x}=-\frac{i}{2 b} \sum_{1}^{4} v A, \gamma_{v}(x)=\text { const }
$$

on nccount of tie olliptic epnewise aistricution. So that $\sigma_{1}=\frac{\pi}{4 \lambda}\left(A_{1}+\frac{1}{2} A_{a}+\frac{1}{3} A_{4}\right)$ na $\pi_{i}=\frac{\pi^{3}}{32} p t^{2}\left(i_{1}+\frac{1}{2} \Delta_{a}+\right.$

Eonce intila case aiso, $\frac{c_{a}^{a}}{c_{\pi i}}=\pi \lambda$. Cn account of the ellintic circulation distribution. the factor $\boldsymbol{\nabla}=\pi / 4$; hence multiploing by $\frac{4}{\pi} 7(\lambda)$ to tako accourt of the $v$ factor riich incroasos with $A,\left(d c_{a} / d x\right)$ oincreases up to $2 \pi$ as $\lambda \rightarrow \infty$. (The factor $v$ was takon fron the dissertation 0 . Pets.) The inducod arar coefficient incroaces $\quad$ ith ircreasirg $A$, has a maximun at about $\lambda=2$ and then. since tia draz rerairs fintto rinile the arca bocones larjer, drops to zero. the position of the conter of pressure is obtained fron $s=\left(c_{m} / c_{a}\right) t$. This curve rapidly approaches tho ascrptoto. At $\lambda=3$, tho deviatior fror the initir; value $s=0.25 t$ is only óperceュt (fis. 10).

The agreonent of tie computation results br the vortexfilament rethod aith those by the vortex-sheet rethod is surprisinqlp goo.d. Even mith tso vortex filarents tre deviations in the coofficients are amall, rioreas witi four
vortex filamentis the deviations become large orly for very déop.plates rith $\lambda . \leq 1$. (For $\lambda=1: \Delta c_{a} / c_{a} \approx-0.4$ percent, $\quad \Delta c_{\mathrm{p}} / \mathrm{c}_{\mathrm{m}} \approx+3.4$ percent; fori $\boldsymbol{\lambda}=1 / 2: \Delta c_{\mathrm{a}} / \mathrm{c}_{\mathrm{a}} \approx$ - I. 6 percent, $\Delta c_{m} / c_{m} \approx+90$ percent. $)$ The indifidusl 1ift portiona contributed by the four strips of tho $\boldsymbol{\varepsilon} \boldsymbol{f} \boldsymbol{r}$ faco do not agree so well; for example:

Four vortex filnrints Vortex eheot

$$
\begin{aligned}
& \text { Lift fron 0-3t/16: } 0.711 \text { b t } \boldsymbol{\nabla} \boldsymbol{\operatorname { s i n }} \boldsymbol{\alpha} \quad 0.665 \text { bt } \boldsymbol{\nabla} \text { sin } \boldsymbol{a} \\
& \begin{array}{llll}
\text { 3t/16-7t/16: } 0,264 & \text { II } & \text { 0.274 } \\
\text { 7t/16-11t/10: } 0.141 & \text { n } & \text { c.144 } \\
11 t / 16-t: 0.071 & n & 0.378
\end{array}
\end{aligned}
$$

Tho circulation of the foromost fortex alrays cones out too hish, ana that of tho othor vorticos too low. In obtainm inf the moneat thiserrnris partially compensated jy tio considoretion that too Inroe Icver ermore used for the three rear vortex filamonts, which do not lie at the centers of sratity of $\boldsymbol{A}_{I I}, \mathbb{A}_{\text {III, }} \boldsymbol{A}_{I V}$.

With both methodatio assurption of elliptic distrí bution over the spen - shici assamption rakes possible the solution of tice interral equation in tho caso of tho vortex shoet - should be the rroatest source of error. For this reason, too low lift coofficicnts ore also obtained. Tho subsequont multiplication by the factor $v$ doos not appeor to kelp sufficiently. $\therefore$ ecording to tho pressure dís.
 tainod for the squere plato only, the distribution over the spanat the loading odso is approximately olifptic, but farthor toward tho rear alrost up to the edse - It is constant, tine edfe disturbances mificharisefrom the siarp edpes of the investipated plate, horever, not bein; taken into account.

```
APPENDIX
```

I. 'Several vortex filanents: Tro vortex filament8 vith elliptic circulation distribution over the span at $x=t / 8$ and $x=5 t / 8$.
 Tour vortex filamenta $\boldsymbol{\text { Fith }}$ elliptic circulation $\mathbf{i} \mathbf{i s} \boldsymbol{a}$ trioution ovor the spen et $x=t / 10,5 t / 16,9 t / 15$, and 13t/16.

Vortex shoot


## Vortex ghoet

| $\lambda$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $A_{\text {II }}=0.4385$ | " | (0.4425) | $c_{4}=0.754 \sin ^{2} \alpha$ |
| - | $\mathrm{A}_{\text {III }}=0.2576$ | " | (0.2525) | $c_{n 1}=0.923$ sin $a$ |
|  | $A_{I V}=0.1406$ | " | (0.1465) | a $=0.245 \mathrm{t}$ |

## al Vortay =inciace: Exmmplos for $\lambda<2$

$\lambda=\frac{3}{4} J_{1}=6.3138 \quad J_{3}=0.6725 J_{3}=-0.7284 J_{4}=0.5566$ $J_{5}=8.2523 J_{\boldsymbol{B}}=2.4074 J_{7}=-1.1575 \quad J_{\mathbf{0}}=0.6169$ $J_{0}=9.1427 \quad \sigma_{10}=4.0623 \quad J_{11}=-0.7284 \quad J_{12}=0.0772$ $J_{13}=10.0592 \quad J_{14}=5.2057 \quad J_{15}=0.2581 \quad J_{16}=1.4000$ $\boldsymbol{A}_{\mathbf{2}}=0.3435 \mathrm{v} \sin \boldsymbol{x} \quad \boldsymbol{c}_{\boldsymbol{2}}=0.3839 \operatorname{sir}, \boldsymbol{\alpha} \boldsymbol{\Lambda}_{\mathbf{1}} / \sqrt{\lambda}=0.087 \mathrm{~V} \sin \mathrm{a}$
 $\lambda=\frac{J_{1}}{}=6.8189 \quad J_{a}=0.6345 J_{3}=-1.0013 \quad J_{4}=0.0956$ $J_{B}=8.6508 \quad J_{B}=2.4574 J_{7}=-1.5044 J_{B}=0.613$ ! $J_{0}=9.7617 \quad J_{10}=4.2703 \quad J_{11}=-1.0013 \quad J_{12}=0.5381$ $J_{13}=10.38 i^{\circ} \quad J_{14}=5.8817 \quad J_{15}=0.5725 \quad J_{18}-1.7546$
$\boldsymbol{A}_{1}=0.5793 \mathrm{v} \sin \boldsymbol{a} \quad \boldsymbol{c}_{\mathrm{a}}=0.7846 \sin$ a $\boldsymbol{A}_{1} \sqrt{\lambda}=0.819 \mathrm{~V}$ ain $\boldsymbol{a}$
 $\Delta_{3}=0.3710 \quad n \quad \dot{c}_{\mathrm{m}}^{\circ}=0.0922^{\circ} \sin \alpha$ A, $=-0.1697$ n $\quad \mathbf{n}=0.1175 t$

$$
\begin{aligned}
& \lambda=1 \quad J_{1}=8.1785 \quad J_{a}=0.1265 \quad J_{3}=-1.1401 \quad J_{4}=0.8755 \\
& \boldsymbol{J}_{5}=9.6696 \boldsymbol{J}_{\boldsymbol{\sigma}}=2.4674 \boldsymbol{J}_{\mathbf{7}}=-1.9864 \boldsymbol{J}_{\mathbf{a}} \quad-0.6169 \\
& J_{9}=10.6560 \quad J_{10}=4.8083 \quad J_{11}=-1.1401 \quad J_{12}=0.3583 \\
& J_{13}=11.3206 \quad J_{14}=7.0036 \quad J_{15}=1.3577 \quad J_{16}=2.4958 \\
& A_{1}=0.8182 \mathrm{~V} \sin a \quad c_{2}=1.4450 \sin a A_{1} / \sqrt{\lambda}=0.818 \mathrm{~V} \sin \mathrm{cc} \\
& \mathbf{A}_{\mathbf{a}}=-0.4424 \quad \text { " } \quad \mathbf{c}_{\mathbf{w}}=0.5 \mathbf{5 0 2} \boldsymbol{g i n}^{\mathbf{a}} \boldsymbol{\alpha} \mathrm{A}=0.7233 \mathrm{p} \quad \mathbf{b}^{\mathbf{a}} \mathbf{\nabla}^{\mathbf{a}} \\
& \dot{\Delta}_{3}=0.2440 \quad c_{21}=0.2563 \mathrm{sin} \alpha \\
& A_{4}=-0.0852 \quad \text { II } \quad s=0.1771 t
\end{aligned}
$$

Exampies for $\boldsymbol{\lambda} \geq 2$
$\lambda=2 F_{1}=3.0683 \pi F_{2}=-0.4078 \pi H_{3}=-0.5899 \pi F_{4}=0.4204 \pi$, $F_{B}=3.9707 \pi H_{B}=0.7854 \pi F_{7}=-1.1230 \pi F_{B}=0.1904 \pi$ $F_{9}=4.1905 \pi F_{10}=1.9786 \pi F_{11}=-0.5898 \pi F_{12}=-0.0277 \sim$ $\mathrm{F}_{13}=4.3408 \pi \mathrm{~F}_{14}=\mathrm{Z} .1208 \pi \mathrm{~F}_{15}=0.9732 \pi F_{16}=1.2815 \pi$
$\Lambda_{1}=1.0790 \mathrm{~V}$ sin or $\boldsymbol{c}_{\mathbf{a}}=2.3029 \sin$ a $\Lambda_{1} / \sqrt{\lambda}=0.763 \mathrm{~V}$ sin a $\dot{\mu}_{\mathbf{a}}=-0.2389 \quad$ " $\quad \boldsymbol{c}_{\boldsymbol{\pi}}=0.8886 \mathbf{s i n}^{\mathbf{2}} \boldsymbol{\alpha} \quad \mathrm{A}=0.5937 \mathrm{p} \quad \mathbf{b}^{\mathbf{a}} \mathbf{V}^{\mathbf{a}}$
$A_{3}=0.0834 \quad \| \quad c_{m}=0.5288 \mathrm{gin} a$
$\Lambda_{4}=-0.0149 \quad$ II $\quad s=0.2238 t$
$\lambda=6 \quad F_{1}=7.6008 \pi F_{a}=-2.3693 \pi F_{3}=-1.5710 \pi F_{4}=0.9304 \pi$ $F_{B}=7.8924 \pi F_{B}=0.7854 \pi F_{7}=-3.1037 \pi H_{B}=0.1964 \pi$ $F_{9}=8.0425 \pi F_{10}=3.9401 \pi F_{11}=-1.5710 \pi T_{1 a}=-0.5377 \pi$ . $F_{13}=8.1334 \pi F_{14}=7.0466 \pi F_{15}=2.9898 \pi F_{1 G}=3.2617 \pi$

$$
\begin{aligned}
& A_{1}=1.5449 \mathrm{v} \sin \tau c_{a}=\mathbf{3}: 6946 \text { sin } a A_{1} / \sqrt{\lambda=0.631} \mathrm{~V} \text { sin } \pi \\
& A,=-0.09344 \quad \text { " } \quad c_{17}=0.7242^{2} \cdot \sin ^{2} \alpha, \quad A=0.3079 \rho \mathrm{~b}^{a} \mathrm{~V}^{2} \\
& A_{3}=0.0380_{B} \quad \| \quad \mathbf{c}_{\mathrm{m}}=0.9002 \sin \mathrm{a}
\end{aligned}
$$

$\lambda=\infty A_{1}=2 \nabla \sin x c_{a}=\frac{\pi^{2}}{2}$ gin a instecd of $c_{a}=2 \pi \sin \alpha$

$$
\begin{aligned}
\Delta_{a}=A_{3}=\Lambda_{4}=0 . \quad c_{m} & =\frac{\pi^{2}}{8} \sin \alpha \quad \text { in } \quad c_{m}=\frac{\pi}{2} \sin a \\
\mathbf{s} & =0.25 \mathrm{t}
\end{aligned}
$$

Tr-nslation by S. Reiss,
Zrti 0 ani Adrisory Commettee
for Aerorautics.

## 

1. Prandtl, L.: Tragflächentheorie I und II. Göttinger Jachrichten 1918-1919.
2. Bets, A.: Beiträpe zur Trasflitseltieorie mit oigondorer 3ertucksichty

3. Treiftz, स.: Prandtlache Trarflächen- und Propeller~ Theorie. Zeitschrift fur anserancte Mathematik und Kechanis. Bd. I. 1921, S. 203.
 tef sur Behandiuns des eoener Problems der Tra;-
 und :Techanitr. Bd. 3, 1923. S. 290.
4. Elenk, H.: Der Eindecker ala trarende Tirbel:゚äche. Zeitschrift fitir ansewandte i:athenetik und :Iechanik, 3d. 5, 1925, S. 30..
o. Prandtl, I.: Beftrar zur Theorio der trasenden Fläche. Zeitscirift fur arsewandte :fathenatk ind Mechanik, 3d. 15. 1936, S. 860.
5. Xinner, T.: Die kreisförmipe Tra̧fläcke ouf potentialtheoretischer Grundlaje. Inrenieur-Archiv, 3d. 8, 1937. s. 47.
6. Tinter, H.: Flow Phenomena on Platos and Airfoils of Short Span, T.ií. Ho. 798, NACA, $1930{ }^{\circ}$.


Pigure 1.


Pigure 2.



Figure 7.- Circulation dietribution over the chord; $b=$ conet.

Figure 3.- Circulation dietribution of the forward three vortex filaments at $\mathbf{x}=\mathbf{t} / \mathbf{1 6}, \mathbf{5 t} / \mathbf{1 6}$, $9 t / 16 ; \lambda=1$.

Pigure 9.- Lift and drag coefficients
as functions ofh.


Figure 5.- Coefficients cff circulation functions for various aspect ratios.


Figure f.- Circulation distribution over the chord; $t=$ const,

iigure 8.- Total lift as a function of the chori.


Figure 10.- Moment coefficient and distance of center of pressure from leading edge as functions of $\lambda$. (points $x$ computed with four vortex lines).


[^0]:    * $n$ Uber die Auftriebsverteilung des einfachen Rechteckfithele thber die Tiefe." zeitschriftfir ensemandte Mathematik und liechenik, vol. 19, no. 5, Oct. 1939, pp. 257-270.

[^1]:    On fisures 6 and 7 the circulation distribution $\boldsymbol{\gamma}(\xi) / \nabla \sin \alpha$ and tho pressure difforence botweon the

