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TECENICAL MEMORANDUM NO. 935

APPLICATION OF THE METHODS OF GAS DYNAMICS TO
WATER FLOWS WITH FREE SURFACE*

PART I1I. FLOWS WITH MOMENTUM DISCONTINUITIES
(EYDRAULIC JUMPS)

. By Ernst Preiswerk

SHOCK POLAR DIAGRAM

16% Inbtroduciion

It is known that in "shooting"** water under certain
conditions the velocity may strongly decrease for short
distances and the water depth suddenly increase. An un-
steady motion of this type is known as a hydraulic jump
(fig. 35). In this photograph the water flows from for-
ward to rear. In the forward part the water "shoots."
Over the entire width of the channel it jumps to a new
water level and flows with considerably less velocity in
the same direction toward the rear. The entire process
de" praecically stationary.

Hydraulic jumps occur only in shooting water; ise.,
in water whose velocity of flow is greater than the wave
bropagation velocity. In_order.to show thiss le® us ®u=
g2ine the forward water %o be at rest and that frem be~
hind there arrives the front of a water wave which arose
from the opening of. . a large sluice. If the wave were Very
small it would move forward with the basic wave velocity

JBR:., Binep, howsver, it has finite height B #sBgs pdt
moves to a first approximation with the wvelocity

*”Anwendun& gasdynanigscher Methoden auf Wasserstrgmunﬁen
mit freier Oberflache." Mitteilungen aus dem Insti-
tut fhr Aerodynamik, no. 7, 1938, Eidgengssische
Technische Hochschule, Zlrich.

(For Part I, see Technical Memorandum No. 934.)
*% Mhe term "shooting" has been used to denote the state

of flow for which ¢f/sh > 1. (See T.M. Nos, 934.)
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Uy W v/%‘<h1 + hy)/2 v/(hg/hl>*v

that is, more rapidly than N/%hl, and also than A/ghg.

In this coordinate system, moving with the shooting water,
the wave ig not stationary. The water may now be consid-
ered as moving with the velocity -u; with respect to the

waves The latter then remains at rest in space. The wa-
ter ahead, however, is not at rest but has the flow veloc-—

ity wi, and this ig greater than. ,/gh;. It has thus

been shown that such hydraulic jumps can be stationary on-
£y i shHooting watbers If the wave existed In gtregmiac
wabter it would, on acceunt of its propagation wvelocity,
whieh in this cagse is larzer than the flow velocity, travel
upstream. There would be the usual outflow from upper to
lower level without shock.** A shock (or hydraulic jump)
in which the wave front is normal to the flow direction,
18 eplled a right hydrauliec jump, It naturally 'has the
property that the propagation velocity of the shock wave
relative to the water is equal and opposite to the water
velocity zhead of the jump.

More general than the right hydraulic jump, is the
less familiar slant hydraulic jump (fig. 36). The water
flows from left to right out of an open sluice. The wa-
ter depth decreases and the velocity increases. The
water flows from a constant upper water level into a basin
with constant lower water level. Since the difference in
head is greater than a third of the upper water depth,
the water after escaping from the sluice receives, accord-
ing to equation (42) a larger velocity than the basgic wave
propaecation veloegity, so that it _shoots. It is thus pos-—
sible that it accelerates so rapidly that the water sur-
face of the flow becomes lower than the lower water level.
There is a portion of the flow for which there is consid-
erable pressure rise over n short distance..  In this flow,
however, the jump does.not take place on a normal to the
velocity but along a line oblique to the flow direction
and we have a slant jump. On the meeting of the rear and
forward jumps shown on the figure, there is a particularly
strong pressure rise.

R z . . : : . :

This formula is obtained from a simple application of
the continuity and momentum equations; for Do=le, 171
ngtukally passesg over into 1y = 8, = ,J% h;. (See Lamb,
reference 1, pp. 307-308,)

* % m

The term "shock" will be used interchangeably with "hy-
drauliec jump" and naturally has nothing to do with the
compressibility of the water.
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The glamt jump, like the righty, oceurs only 'in sheot=
ine water. In order to be able to give a simple numeri-
cal treatment of the slant hydrauwlic jump, we make the
agsumption that the motion is entirely unsteady; i1.e9,
that the water jumps suddenly along a line - the jump
line - from the lower water level to the level after the
Jump. The simplest case of such a jump is obtained if a
parallel flow is deflected by an ancle B (figs 37}« Tlhe
shock in the supersonic flow of a compressible gas has
been treated in detail by Meyer and Busemann (reference 2).
Here, however, it will appear that for the shock of the
shooting water, the analogy with a compressible gas flow
for k = 2, no longer strictly holds. The previous con-
siderations involved as assumption the wvalidity of the
Bernoulli equation, which is equivalent to the assumption
that the flow was without losses. With shock, however,
kinetic energy is converted into heat. In a 2as flow this
azain enters thermodynamically into the computation, where-—
as with the water flow it is to be treated as lost energy.

17: Bheck Polars

For the case of the deflection of a parallel flow by
the angle B, the jump line is a straight line through
the corner, making an angle Y (fig. B37).  For a very
small deflection B —=>0, +the two following limiting cases
are possible:

2 @ right jump; Y 1is then a richt anzla,

2, The flow goes through undisturbed. This is the
limiting case of a jump whose effect approaches zero. The
Jump line passes over into the Mach line through the cor-
ner, Y in this case being the Mach anzle.

We shall take the x-axis such that it has the direc-—
tion of the velocity of approach ¢;. The components in
the: x and y directions are thus wu, = ¢,  and v, = 0,
Let the water depth before the jump be hl, the velocity
after the jump e¢5, its components in, the =x and y* direc~
tions, wy; and vz. The water depth after the jump we
shall denote by hg; ¢n and ¢y, the coumponents of the
velocity normal and tangential. respectively, to the Jump
line. Here, too, we shall distinzuish maznitudes before
and after the jump by the subscripts 1 and 2, regspectively.
As control region for setting up the continuity and momen-
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tum equation, we choose the region ABCDA- (fig, 85 .

With the above notation, the continuity equation
reads:.

hl Cnl = hg C,‘«na (,711‘

The momentum equation for the direction normal to the jump
for the width AD = b, states that the decrease in out-
going momentum by that of the incoming momentum is equal
to the force (area times pressure): '

(pr ep had) cn, = (p Cn,h1b) ey, =bhy gphy/2-dhy gphs/2
or, rearranged:

hy ef, + & h,2/2 = hy of, + @ma/2 e

Writing finally the momentum equation for the direction
tangential to the jump

(p Cnlh1b> ct, = (p Cnghab) Ct,

there is obdbtained, taking account of the continulty equa-
hen (1)

Ctl = th (73)

=1

During the jump only the component of the velocity
normal to the line is changed, the tangential component re-
maining unchanged.

As in the zZas flow, it is convenient also for the
treatment of the hydraulic jump, to pass from the field of
flow to the velocity pnlane. Taking account of eauation
(73), there is obtainéd the diazZram shown in figure 38,
The region of the flow before the jump is in the velocity
diagram represented by T. After the jump, P is the
point of the hodograph corresponding to the flow. The jump
itself is represented by the transition from T to P, '
The direction of the jump line in the flow is given in the
hodograph by the normal to the segment TP, since this
has the direction of cy. '

Fox o fizxed:yelecliy @f sppeosichs. | oy rethatbedisy 8foiiia
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fixed point of the hodograph T, there are obtained for
various deflection angles B, various end states, P,

The tobality of all end states whieh correspond to a fixed
initial state, form a curve, the "shock polar" (fig. 38),
It thle ini%igl state T is changed, then %o each point

T, there corresponds a shock polar. The entire faniij il
the shock polar diagram (fig. 39). In the supplement, the
Latter ig drawn for aix” on: chart 3, and for wabter on chart
4:0

The equation of the shoek polars v, = Plu.) will

now be determined. We start from the following five equa-
tions

1. Continuity equation (71)
2., Momentum equation (72)
s | Baewpoy equation*>
¥ '3}

I B (74)

We also need the two geometrical relations:

Cnl °5) (U-l i 108 ) i |
A —_— = (75)
cn2 ('U.l = ua) U = VBS
* % ok
5. cnl(cnl - Cng) = - (n, = B {76)

In the five equations referred to above, there occur the
variabvlesg Cnys Cngs hy, By, ¥y, Vs, and vp. Elininating
the first four, there is obtained the equation of the shock
polar. (See equation (77).)

In order to carry out this elimination, we first sub-
stitute in equation (7?5) the continuity equation (71):

=
‘From the energy equation (9), we have:

88 s ® 28 Ly & 6" = 22 by = u;®  (wince ¥, = O}
subgustutdne the critical wvelocity a*l before the jump
(equation (42)), we have:

2g b, = 3 &2 - u,? (74)
(For footnotes ** and *** 6 gee p. 6.)
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i u Ty v el
E: = 1l ¥ B e
h, 2

(U.l L 'llg) Py, = V2

Substituting the continuity equation (71) into the momentun
equation (72), there is obtained:

hy ey, + 8 g’ /20 =B ng ) G Yo BaEge

We thus have:

2g ha8 agi b WA h, Cnl<cn1 - cna)
whence
ho 2] a 22h, + 4c (. %o ,-,)
(H—\ = 1 + 4h) ey (Cn ‘qu)/gghl = o n, -, ™na
T 3 3 2

2ghy

Substituting in the above the relations (74) and (76), we
o uGCaln s 3

(Footnotes from p. 5)

* % : 5 .
From figure 38, we may read off directly the two equa~
tions:

o
Up? + va¥ e = ep,
and ﬁ“
W, & “ o = %,
and their difference isg:
o a 2 2 2
Ty =S -ta, = Bn,  WSRS (a)

Similarly from figure 38, it may be seen that

o
e a

(3= uwg) ®'v2 = (e, = eg, ) (v)
Dividing equation (a) by (b) and solving for the quotient
Gng/Cnl, we obtain the above relation (75). This relation
must naturally exist since the three magnitudes u;, u,,
and vy, completely determine the figure 38,
* % K iy .
From figure 38, we read off directly,

Cn, (cnl—cna) = {uy Gos 1) (cnl—cns) =

= .. o i 7.\\‘

=, (o6 ef(cnl cna)] w, (uy-ug) (78 )
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(ho/n;)" = (Zaf“ - 1% + 4 u,? - 4 uy uB)/(Za‘]‘_‘a -~ u,2)

Only the vositive root applies, since the water depths a,
and h,, and hence also their ratio, are naturally posi-
tiie .. ¢ NS 0bbain?

h, T L Py, BE g B
r_.:___+/ 1 ,-,lc" 3 (II)
e
1

b

Setting finally the two right sides of equations (I) and

(II) equal to each other (elimination of h,./h,) and solv-
q i

ing the relation thus obtained for v,2, the required

equation of the polars is finally obtained as

7]

2 | pa 3 2 o = e |

vg© = [ui-us] Lua“ul J/<0ﬂ§ =u,2)/(3a%*"~4 u,u +3 u )|
JET7]

Substituting in the above 7V, = vg/a* , W, = uyfa* and
u; = ui/a*; as nondimensional velocities referred to a¥*;

the equation of the polars becomes:
v.2 = [4.-=-1 = e /7"‘3)/1 = "3)! (77_)
Vs Savig, S, ] u2~alﬁ/(~~ul [/ (3=4 Ty U3 Uy i a
L i
These are the curves f(ug, V,, ﬁl) = 0 wt% W,y

as parameter drawn in fizgure 39 and on chart 4. They are
similar to the shock polars of an ideal gas (chart 3), dbut
show a characteristic difference. Whereas for the maximun
velocity the shock volars in both cases become circles,
the latter pass through the origin for water while for a
gag, the origin is mot attained.

In the ease of a right jump, v, = O. If wé 'dengva
the velocity after the jump by wu,e (fig. 38), equation
(77a) for the latter becomes:

O — (—ﬁl“i—lg%)<<ﬁag"‘-ﬁl /(Z—Eln)/(S—alﬁl Tlag 2 Sﬁla)) (a)

whence we obtain:

*from (a) there is obtained:

ﬁag % s M/(5~ﬁlz)/(3~4ﬁlﬁ3g + Sﬁla). If this equation
is squared, multiplied througsh by the denominator, and ar-
ranged, the resulting expression may again be divided by
(wy = uag) and there igs obtained a gquadratic equation for

W, U,g with the positive solution (77b).
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The values computed from equation (77b) are collected in
table IV. For an ideal gas the relation analogous to (77b)
may be written in very elegant manner:

Uy Ugg = 1 (Prandtl) (?7¢)
Only for the case U, = 1 does (77b) accurately agree

with (77c¢).* Otherwise the right hydraulic jump leads to
no simple relation like the normal shock of a gas. Within
wide limits, however, equation (77c¢c) may also be applied
to water. (See values of W, Upy 1in tadle L)

We wish further to show that a very small jump has a
Jump line which in the limiting case is a Mach 1line., Fron
te S pdlanclie TPRPU of fieure 38,

tan Y = (ul - ua)/v2

From the equation of the shock polars (77a), we have:

~— T, - —
{ e - 1 u > Ul
g_A%M__EJ = o B Lol (774)
L 4 = — e - 2 .
L Ug ~ Uy J’<q"u12>/(3”4h1 g +3U, )
A small jump is ebtained if UWy,——>U,. The root in (774)

then apprdaches 1 and the entire expression becomes inde-~
terminate, By differentiation of numerator and decnomina-
tor with respect to the eritical variadle U,, there is
obtained:

ol e (R Py
(e s | R L
. —_—_“J L g )
E Vo oo Lo Z s
We then have:
o — a — o
Cm™ VIO w w eea® W )M ¢ banf ) e e R eyt a)
Upg=1Ujy
* — L X .
For m,; =1, the shock polar shrinks, however, into a
point (fig., 39).  The only possible state after the jump
is thus WUpg = 1. ' For this case we no longer have a finite

jump dut then the gas flow also agrees with the water flow.
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On the other hand, for the Mach angle o
sin® o = (a‘l/ul)a (1)
For the wave velocity a;, we hawve!
8% v=. 2 By | (2)
The cnergy equation (9) is
wf = 28 (Bl . (3)
As reference velocity, we choose az. For this eguation
(42) applies
afa = % g h, (4)

Eliminating from equations (1) to (4) the magnitudes a,,
hy, and hy, there is obtained for the sine of the Mach
angle o the relation

: -- 2 oy o
sin® o = (3-9, )/o%, (v)
Comparison of (a) and (b) then shows that

. A .
R R ) s.8in a
Ug =0y

18. Water Depnths in Hydraulic Jump

Up to now we have investigated how the velocity
ghangegin "the cage of a hydrgulic Jump. In . this "'section
we shall treat the water depths more in detail.,

For a flow without jump, the energy equation (9) holds

between ¢ and h

8% =8¢ (hg .~ B}

where the total head ho igs 4 constante In the cage 0f a

Jump a portion of ‘the kinetic energy of the water is con-
verted dnbto beat, . For“this.seagonithe totalk héad after

the impact - which, to distinguish from hy, we shall de=
note by hy' - is smaller than it was before. For the flow

after the jump, the relation between the velocity and the

water depth is given by the energy equation in the follow-

ing fTorm:d
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A

¢2 = 28 (hg! —-+h)

The new total head h,' is constant
but after the jump may vary from one

along a stream li ne
streamline to another.

For gases (reference 2%, a clear picture of the pres-

sures in the flow is obtained if the

pressure is plotted

as third coordinate over the velocity plane. For adiabat-

e flow There is thus obtained "in"“the

u,v,p Space & sur-

face of rotation whose meridian section represents p as

8 funetipnfof €.

For the two-—-dimensional flow of

face, the magnitude h° corresponds
L Bl

|1 - (a/pg)

(3a)

(k~l)/k]

water with free sur-
to the pressure p

$n §RO88 fTows’ If we 'plot above™the 'u;v plade, nob
(=]
the water depth dut the values + = gh /2, we shall find

for the water in the u,v,t space the same relations that

medid for a'gae 1in thes uswsD _spoces

The repregentation in the w,v,&8

n®f2 sepace is not

very suitable for the practical computation of the jump.
Nevertheless, we shall first learn the properties of this
representation because it gives a very clear picture of

the entire hydraulic jump process as
and the water depth simultaneously.

2
depitth h'! and hence gh /2, depends
dividually, bdDut only on the absolute

ity ¢ ='fa®+ ve,

regards the velocity

In the flow of water without dissipation, the water

nold i wiond W 0 ins
value of the veloc-

Plottans " above the sy plane,

hene iesobtaingdls suface of.robation. et we eonside®
its moridian section ¢ =:f(c) (fig. 40), abscissa ¢,

oFdinate .
b /
E%s B@"= e2/2e

J

whence

From the Bernoulli equation (9), we have:

(78)

fuZdetifa = (1) 886 - (ug)2) o° + (ghs®/2) (79)

The characteristic shape of these curves of the fourth de-
gree (fiz. 40) which in our prodlem have a physical sense

*
Busemann, in Gasdynamik, pp. 374 and 439,
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il df rom. wde o By may easily be.tnderstoedufzom fisire
41, which shows the parabola (78) and its "square" (79).

For each total head h,' there is one such curve.

The family of all these curves we shall denote as the +&,c
diagram (fig. 42). As long as no jumps occur along a
streamline the relation between t and ¢e; on acecount of
the constant total head, is given by a fixed curve of this
family. As soon as jumps occur along the streamline, the
t,¢ poiant on one curve "jumps" to another t,e curve.

Because the new total head for each jump becomes
smaller than the previous one, we come sach time to a curve
Iying cleser to the origin and not the reversge., To tae
edrvyes of constant total head ho' = gonsbant, which 3Zive
the relation between the gh®/2 and ¢ for the zero loss
flow, there correspond the adiabatics in the gas flow,
these being the lines of constant entropy, s = coanstant.
For the ideal gas, these are affine with respect to the
@¥gxn s but "aot* for ‘water,

The right hydraulic jump may very simply be studied
gnitvhe G,c diagsram. Let us compufie first the slope ef
the tangent of the t,c curve to the axis of abscissas.
From equation (79),

d.t (¢ { i Q
—r oo SR h 5 ey I — & 2 UO
: c 0 c \}10 / g) ( )

and with the enersgy equation (78) this slope becomes

at
de

= L9548 (81)

We shall, furthermore, compute the intercept of the tan-
Zent o8 tite i b waghs, -whiceh. is

QY = QP tan T = ¢ (c¢c h) = ¢2 h
On account of % = ghg/az
0f = QF # 0Q = b ¢ #,8n° 2 ‘ (82)

Physically both the slope of the tanzent dt/dec and the
intercept of the tangent on the t axig have a meaning.
Through a vertical area.in the flow normal to the stream-
lines and whose width is equal to the unit of length there
flows per unit time the wvolume ¢ h. The magnitude h c?
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in equation (82) represents, except for a constant factor
Py the momentum flowing through the same area per unit
time, and the term gh®/2 similarly, except for the con-
stant factor p, represents the pressure force on this
surface.

For the right hydraulic. jump the continuity equation

s HRL) ds

hl Cl = ha Ce (713«)

The momentum eguation (72) becomes:

B Gue ghla/Z = hy ep° + ghaa/E (72a)

These two equations, compared with (8l) and (82) state the

following:

l.” From (7l1a) and (8l): The tangent at the t,c
curve at the point t,,c; before the jump, has the same

slope as the tangent at the point t5,¢5 at the ¢t,ec
curve after the jump.

24, Prom (72a) snd {82): The t intercept of the
tangent at t,,c; 1is equal to the +t intercept of the
tangent at t,5,c,.

Together they simply state that both tangents are one

and the same straight line PQ (fig. 42). If the magni-
tudes~ & .and ¢ _are given before the jump, the right hy-

draulic jump is represented in the t,c diagram by a jump

from P(t,,c;) on the tangent to the t,c curve through

this point to Q(tz,c;), where this tangent touches an=-
gbther | t,6 curve:

bince ag a. .result of ajump, we arrive at a  b,c¢

curve which lies nearer the origin than the +t,c curve be-

fore the jump, it may be seen from figure 42 that the hy-
draulic Jjump is possible only for points P Dbefore the
Jump which lie on the curve to the right of its point of

inflection., This is precisely the case for shooting water

since, according to (80),
d®t/dac® = 3c?/2g -~ hg

At the point of inflection this must be equal to zero, so
that

B e SRyl s
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This is the limiting velocity for streaming and shooting
water.

et us cengider the slant jumps «Thissmay.no Longer
be . drawn, in the' t,c plane; we require the u,w,t. spaes.
Plotting the values gh®/2 perpendicularly above the u,v
plane, there is obtained for the case of a flow without
i@gseg the, surface of rotation of & t.,e. curye. We shall
denote such a surface as a "t-hill" (fig. 43). For each
teobal head h,', there is one such hill ~ each lying with=
Pt the obther. As long as no jumps oceur in a flow, all
possible corresponding values of u,v and &gh%/2 are, on
account of the constant head ho, given by a fixed t-hillf
As soon as a jump occurs along = streamline, corresponding
values of wu,v and ¢t Jump %o a new, smaller t-hill, whieh

corresponds to the new total head ho'. Afverthe jumps,

however, the relation is again given by a fixed new t-hill.

Let P(e,,0,8h,®/2) denote the point in the wu,v,%
space before the jump; Q(u,,v,,8hz?/2)  after the jump
(fig. 44). TFor the general slant jump there is obtained
in the u,v,t space a clear representation similar to that
rew Whe rmight jump in 'the t,e¢ diagram. Thig Tebprfesenha—
Bion ‘will /inelude the right jump.as a spegial. cases

le The glope of the tangential plane at the point P
of the t-hill before the jump is,in the direction m,,
equal to zero, and in the direction 1r,, equal to the

sleopel of the meridian; i.e,, equal to the slope of the t;c
ecurve which, according to equation (81), has the value
¢, h,. The slope of thisg tangent plane at the voint P

&w the direction PQ thus becomes:™
tan Ul = Cl hl C oIS €1 = Cnl hl (8?)

Bbewpe it «q sl¥es ‘onla t'-hill.  The tangent plane
has, in the direction m, the slope zero, and in the di-

fEEELEn " Py, ‘according to (81), the slove Haca. The

slope of the tansgent plane at the point Q of the -
TN S eSS di'r cletiifon T TPQ T s thug:

tan 0, = ¢; hy cos €, = Cn, ha (34)

=

*The Slioper of 2y plgne in any divect llonidg lo qually ol the
slope of the plane in the direction of drop multiplied by
the cosine of the angle between that direction and the
corresponding direction,
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Comparing (8%3) and (84) with the continuity equation for
the slant jump (71), it is seen that the tangent plane

at the t-hill at the point P %before the jump in the di-~
rection PG has the same slope as the tangent plane at
the new hill at point Q after the jump in the same di-
rection PQ. '

2. Let us now compute the slope of the segment P§
in space to the "u,v plane. The height of the point @
PON PitiohdfYo:; ‘that of P is $,. The slope of B4
then becomes:

tan g5 = (t; - tl)/(cnl oy Cn2>

Since, however, P and Q are the points before and af-
ter the jump, the continuity equation (71) and the momen-—
tum equation (72) are applicable. Substituting these two
equations in tan g,, there is obtained from (723

t

)
o

- %, = ghp®/2 - %hla/e = Bq Cﬁl = hg C%g

and with (71) this becomes:

L 1
=ah i eset SEEH S © c = hy e; c - c
i 2 Sa, P 1 “n, ( n, ng)

Hence

Bad oy = (b -6 ) ley, = ey, ) = Hy €5, (85)

Comparison with the result found under 1 shows that the

segment PQ has the same slope as the tangént plane at P
and Q in the direction PQ.

The segment PQ thus belongs to the two tangent
bPlanes and, as a common line of these two planes, has the
broperty that it 1s tangeat both to the t-hill and the
t'-hill,  This result would also have been found by deter-

2t L F glven by my . ead  r,) and at @ (iiven by
hiey and ra)- _There would then have been obtained the
straight line PQ as the line of intersection.

The general hydraulic jump is thus represented in the
b o space as follows: Let P ©Dbe a point before the
Jump. Drawing through this point an arbitrary tangent at
the t-hill (the only restriction on the choice of this
tangent is that it must pass within the t-hill), the pvoint
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indicating the state after-the impact will be found where
thig tangent touches another t-hill of the family., To the
degree of freedom of the tangent corresponds the degree of
froedom of the deflection angle B+ .:ThHo projection on the
u,v plane of all péssible points of cohtaect @ 'of the
tangent of a fixed point- P is the already computed "shock
polar™ threush P,

The right hydraulic jump is obtained for a direction
PQ with the angle "¢, = 0. Figure 42 sinply shows the
vortical section with "€, = O through the t~hill family.

By the inféﬁsity of a jump we shall.understand the
ratio of the total head bvefore the jump to the head after
the jump, this ratio. boing a measure of the energy loss.
The intensity is thus greater the more nearly the angle Y
between the shock wave front and the initial directiomiap-
proaches a:right angle, since ¢€; then becomes smaller
and the tangent. PQ of the t-hill (total head hy) at P
touches t'-hills at Q (total head hy') that lie more to-

ward the interior. The right hydraulic jump has the maxi-
numr intensity. : :

It may be remarked further that the point Que6f an
arbitrary slant or right jump as the point of contact of a
t'~hil) is Tha® point of the straicht line PQ: for whieh
the new total head hy'! is a minimum. Each jump thus is
such that the energy loss becomes a maximums For the
ideal gas, the surfaces corresponding to the t-hill are
surfaces of constant entropy, and the shock is such that
the increase in entropy is a maximum (Busemann).

The line joining all possidble points of contact of
the tangent at a fixed point P is the hydraulie-jump
eurve in the wu,v,%t space, It is a plane curve, its pro~
Jection on the wu,v plane being the already computed shock
volar, :

There is an entire family of shoek curves in space
(parameter point P). In their totality they form a cer-
tain surface. This we shall denote as the shock surface
in the u,v,t s»nace. Tor practical compubtation of the
Jump, the projections of the following,three families of
curves on the wu,v plane are found convenient.

1. The curves of intersection of the shock surface
with the tangent planes of all points P(u,0,t); them give

B e
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the familiar shock polars (fig.: 39).

2 The curwvesyof dntersection: of the shock surface
withe the! planes parallel tie the wuyve .planey that ds,
contour curves. These are the lines .of constant water
depth hs (fig. 45 .and chart 5).

5¢ The curves of intersection of the shoeck surface
with the family of t-hills, These give the lines of con-
stant tetal depth after the jump; that is, lines of con-
stant energy loss (fig. 46 and chart 4).

Lines hy/hy = constant: From the five eguations
(?1), (72), (74), (75), and (76) with the variables cp .,

$ O hy, hp, u,, ug, and vy, there is obtained an’ equa-
tion. of the form F(u,,v,,h,) = 0 if the four magnitudes
(o, @ h and u are eliminated. These are the curves
By’ “Ba’ 10 1

of constant water depth after the jumpd In order to ob-
tain these curves the elimination was partly carried out
graphically. The method used will be briefly explained
in what follows.
From (71) and (72) there is odbtained:
ghag/e = ghlb/Q +4 hy Cn, <Cn1 = an)

which, with relation (78)

= ghlg/e + hy; u; (w1 - uz)
or

(ha/hg)® o (hy /850 04 (473) (3/28Bs) (Bi/Bo) B (W =us)

£

Substituting the critical velocity equation (42): % SRR
2ghy/3) szgives:

b/ Bg Vo reniil. Miads % (408) §,(Bjteriy) (B fmg)” (86)

SBL¥inEg for" u.t

- r =
ass e 2 a2 dogs ’ ] i 3
Yo ="y e ((hg/ho) = (hl/ho) }/i?( Uy (ﬂl/ho) ! (86a)
i b 3
We still need equation (74), which reads:
1 2
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Substituting (42) in the above there is obtained:

iy Aoyt =0 B v earf (87)

In order to draw the lines hg/ho, two methods were em-
ployed:

a) Assume a fixed value ha/ho ='k_ _and variols el
ues W, for the variable. To each TW; there corresponds
by equation (87) a value h;/h,. With W,, the corre-
sponding h;/h, and the fixed h,/h,, there is obtained
from (86a) the velocity component Uy after the jump.
The point on the shock polar through WT;. which has this
abseisge Uz, 1is a point of the curve hy/hy = k. By
varying %; there is obtained the complete curve hg/ho

]
"

b) Deteormine the values ha/ho along ‘an arbitrary
sbraight line in the wu,v plane. (The straight 1line
throuzh W =1, ¥ = 0 was taken.) Assume W,; meabure U
at the voint of intersection of the straight line with the
shock polar for v;; substituting 7u;, the correspondiag

value h;/h, obtained from equation (87) and the above

.determined value of ED in equation (856) gives the value

of hg/ho at the point of intersection. By varying U
there is obtained hglho along the entirergtrgilisht "Lifiee
From these values there are obtained dy interpolation
points of the family of curves ha/ho = constant.

- . ¥ !
In pdrticular, the wvalues of hz/ho may be computed
for the right hydraulic jump. We have:

o
<

(hy/hy)” = (hy/hg)” + 2 (bi/he) T (W1 =~ Upg) (861)

ol

Substituting in the above the values for ﬁag computed
from equation (77b), there are obtained the water-~depth
ratios hy/h, =ziven Iin table IV for the richt hydrauliec
Jjump.

* o

The maximum water depth in the state after the jump
is obtained from equations (86b), (87), and (77b) for the
jump which starts from the values Uy = Z/J 83  that 30,
for Byflg = 25, cug, = 3/2 /6, end v found bo e ‘i,
= 4/5, and hy,'/h, = 19/20. We thus have the highest
point of the above described shoek surface in the wu,v,%t
sPacee
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19. Energy Loss During Hydraulic Junmp

The energy loss during the jump bears a simple rela-
tion to the intensity of the jump ~ that is, to the two
total heads before and after the jumpe In the flow over
a horizontal bottom the potential energy is a minimum if
the water depth h 1is zero.. If we set the potential en-
ergsy equal to zero, then for a mass of water m at a
depth h the potential energy is P = mg h/2,

Since the kinetic energy at points of rest is equal
to zero, the energy losgs AE which occurs in the hydrau-
lic jump, may be computed as the difference of the poten-
tial energy at a point of rest before and after the jump.
For the mass of water m, this becomes:

AR = mg (hof2 - hg'/2)

Dividing by the energy before the jump, E = mg 29, the
relative energy loss is obtained as

Ae.= AE/B = 1 = ho'/hg (88)

This is the relative energy converted into heat. For
water, it is to be considered asMost." In a gZas, how=
ever, where the heat content is the magnitude that corre-—
sponds to the water depth, the total heat content remains
the same before and after the shock. For the gas, the
heat arising during the shock is not "lost" energy. The
energdy equation is the same before and after the shock:

e s 80N, = 1) = B (1, ~ 1),

Now will be computed the curves of constant total
depth h,'! after the jump. We start from the Bernoulli
equation which for the flow after the jump reads:

Caa = gg(ho' = hg)
This equation divided by a*? = 2gh,/3, 3ives:

(Ca/af)a = 3 (ho'/ho = hz/ho) (89a)

and solved for h,"/H,:

AR Rams s AR R ta e ot £

e values e are the velocities referred to ni

3 vE
: - * 2 = #
for example, n = ca/a B4 . Bap S uag/a e
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From the above formula the curves hy'/h, = constant (fig.
46) were drawn similar to those for hy/h, = constant. The

following methods were employed:?

1. The values hgy'/h, for the right hydraulic jump =

that is, along the u-axis, (v, = 0) - are obtailned by
substituting the previously computed values ha/ho and
Uag ((77v), (86Db), (87)) in eguation (89b). They are

alco gawen 1in table IV.

may be read off

2% &long the cirele; ha/ho = 2 1
/ho ol

O] &
directly, and from eguation (89b), h,'

3« Along general arbitrary curves ~ in particular,
along circles about the origin (¢p = constant), and along

the curves given in figure 45, hp/h, = constant - the val-
ues ¢, and hp/hy,  may be read off, and from (89b) we
have hy'/h, along these curves.

4, - Points of fixed curves h,'/h, = k 'may also be
gispect Iy computeds To egch ha/ho there corresponds with
the assumed fixed ratio 'hy'/hy = k, a value ¢3 from

-equation (89a). The intersection of the circle with this

value of €, as radius, and the origin as center with the
corresponding hg/ho curve Zives a point of the required
sugll bt/ by = k.

By means of the methods given above the curves of
constant energy were drawn in figure 46 and on chart 4.

Sinece in a gas the heat content after the shock at
points of rest is still the same, the critical velocity
which for an ideal gas is computed as

is a constant magnitude in the entire flow plane even when
shoelkg ocour,

In a water flow, however, it is to be observed that
the analogous critical velocity for water is not constant,
equation (42) being wvalid:
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Thi's dits fconigbtant lonlyl if sthe total ‘hegd h, 1is constant;

that is, in a flow without hydraulic jumps. If these oc-
cur, however, we have seen that the total head is constant
ohly between jumps, dut for each discontinuity, "jumps!

to 'a new value hy', so that at the same time there is a
Jump in the critical velocity =. the latter after the jump

assumes a new value az, which is smaller than a*:

e
.- %

the ratio between the two being:

a:/a: = S8 ¥ hy _ (90)

The change of the critical velocity (the limiting ve-
locity of streaming and shooting water) during hydraulic
Jump, has the following important consequence:

Let the critical velocity before the jump be a% 3
the flow velocity ey (point P in fig. 47), . After the
jump, let the velocity be ¢, (point Q). PQ is a shock

pelar, As a result of the jump, the total heaé and hence
a* have become smaler than hy and a¥% , respectively.

It may then happen that in case Cy igs sl80 smaldserm Shan
.51 u C; mnevertheless becomes larger than a*,. This
means fhat the water continues to shoot after the jump,
dfem If o, < 8% . Thers sxists a curve o,/a8% = 1 (fis,

47). According to whether the point Q is without or
within the area bounded by the curve and the wu-axis, the
water, after the jump, is shooting or streaming. For a

gas this limiting curve, on account of a*l =k QRS gk

2 9
Ligs gl el 6" 2 bout @ 0%

The curve cg/a*2 il itibiiaite- holds for water, is found
in the following manner. Substituting in equation (89b)

the relation (90), we have:
Bo'/ho = /By + = ho'/By (cg/a*,)
Putting Ca/a*a = 1, there ig obtained the equation:

hy'/by = <§) hz/ho

From the family of curves ho‘/ho = gengtant , and hg/ho 2

— il
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constant, that curve along which this relagtion is satis-
fied, is , drawn., This is the required limiting curve.

Since hydraulic jumps occur in shooting water only,
two cases are possible: 1) Shooting. water goes over after
the jump, into streaming water. 2) The flow is shooting
alsc after the jump,

All right hydraulic jumps are followed by streaming
water.after the jump,

If the velocities are plotted in the. characteristies
and shock diagrams to an absolute velocity scale, then to
each total head would correspond its own diagram, All
these would be similar to one asnother. If, however, we
Plot the nondimensional velocities (referred, for example,
to a* ) only a single diagram is required. It is to be
observed, however, that in the shock diagram after the
jump (point Q), we deal with the velocity c, referred to

a*,. If, however, the further changes in velocity are de-

sired -~ whether of the characteristic diagram of a flow
without losses, or of a new jump - the velocity c, must

D Eelerted to a¥,, 1l.e., cp/a¥;, This ks giwen im S8
hodograph by the point Q! fig. 47). It is ebtalned
fuam. Ga/8* by multiplication by a*pla*y. what i,

from (90):
& /a% = o /a¥ Jho/bo!
Hor this “ea"on the curves of constant tota l head aftpr

1rqtond Y by B By e e F——

In order to avoid having to pass from Q to Q' af-

N
ter the jump PQ, the shock polar could also have been
defined as the geometric locus of all points Q' which
correspond to a fixed poin P. There would thus be Jost,

however, the property of the shock polarg, that the nor-
mals to thelr chords are parallel to the shock wave front
in the flow.

20, Summary
We have seen that the flow of a compressidble gas with

k = 2 for the case with shock is no longer analogous to
the flow of water on a horizontal bottom., From figure 46
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it may-be seen, however, that the energy loss Ae =1 =
ho'/hO is extremely slight over a large region. For
shocks (hydraulic jumps), for example, whose state after
‘the shock is given by voint Q 1lying in the hatched re-
gion, the relative loss is less than 1 vercent. On account
of this small shock loss the analogy of the two types of
flow is still satisfied to a first approximation also for
the case with shock.,

In order to have a comparison there has been drawn on
figure 48 a shock polar for water and the corresponding
shock polar for a gas (k = 2). There is also given the
corresponding characteristic - the same curve for gas with
k = 2 and water -~ in order to show that for continually
decreasing shocks, the two shock polars approach one an-
other and tend to coincide with the characteristic.

ELEMENTARY SOLUTIONS OF FLOWS

For flows, bounded on two sides, in which hydraulic
jumps occur, there are a number of problems which will be
treated in thig section.

There arises, for example, the question as to what
occurs when a disturbance wave encounters a jump wave
front. For the limiting case of a very small jump, this
must naturally aporoach the case of two intercrossing dis-
turbance lines,. Other problems are the crossing of two
hydraulic jumps of different families or the encounter of
two jumps of the same family. Furthermore, it is possible
fer two flows of different directions that start from the
same state of rest or from two independent states of rest,
to meet. During this meeting it may happen that both are
paraliel flows in the same direction and form a vortex
sheet at their surface of separation. Then there arises
the further question as to what happens when a disturbance
wave meets such a vortex sheet.

2l. Level Drop about an Edsge

£
Figure 26 shows the level drop about an edge as ob-
tained by the charaeéteristie method. .In what folilews, it
will be directly computed for water, the computation being

*For fisgure 26, see Part I, T.M, No. 9%4.
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the same as that carried out by Meyer for gases (reference
Zh -

The origin of coordinates is taken through the edge S
and the coordinate axes as shown in figure 49. 1In the three
equations of continuity, irrotational motion, and energy,
pelar coordinates are substituted in order that the prop~
erty of a flow about an edge - namely, that all magnitudes,
as water depth h and velocity c(cr,ct>, on.& wray thmcueh
the edse are constant, may be simply expressed. The conti-
nuity equation (11) in polar coordinates is

dhep 1 1 oh- cy
_— . = S he + = ——— = 0 91
or ™ ik r 09 iga

Tie equation for the condition of no yvorbticity Bu/ay =
ov/dx = 0O Ybecomes:

C/l
Q
'S o
Q
(o o
Hl
ol o
o Q
=
1l
@
i
0
N
B

Expressing now the fact that all magnitudes are fuanctioas
of & alone, we obtain from (21) and (92), if we also add
the energy equation (9), the three equations:

d(h cy)
Rk k. L S (93)
d v
d cp
Gy = =—akt =0 (94)
b ad
gy +le® * 2g b = 2@y . (95)
where ¢p, €, and h are to be considered dependent vari-
ables. Eliminating ¢, and ¢, from the three equations,

there 1s obtaineds®

¥Mhe flow will not be investicated in detail here, bdut
mainly the change in the water depth on traversing a dis-
turbance wave. Sinece for the disturbancesmaveg the de-
flection angle of the velocity is the characteristic fea-
ture, .there will also be determined the change of the war
ter depth as a function of the velocity deflection.

**From (95) we have cp dcp/d8 + c¢ dey/dé + g dh/d8 = O.
This multiplied by h and replacing dcp/d8, according to
(94), by ¢4, gives: h cpcg + h ct dcy/dd + gh ah/as = O.
Multiplying equation (93) B e and subtracting, there is

\

finallly obtained: (gh - cta) dh/aé = 0.
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—— %

gy e @, cy = = et 4 (96>

The velocity component Cts normal to the ray throusgh the
edge, is equal to the wave-propagation velocity (sound ve-
locity in the gas). These ravs are thus the Mach lines

of one Tamilys

Substituting (96) in (95) there is also obtained the
radial component ‘¢, of the velacity as a function of the
water depth h: ;

o s G0k w B By boo = % of 26 bumw B2 B (97)
We now have also the angle V which the streamline forms
with the straisht ray throuszh  S:
= &9 h/h gl
¥.= (tan” ")(ey/cp) = = (tan )A//~~—~Z~Q~~~ (98)
2 - 2% h/h
o

The flow is determined bvy (96), (97), and (98). We still

l
\
Wequire h as & funotion of §. PFrom (97)

dep dep db . 1
@ar o Tug

dd ¢ dh dv

JEnhg I SE T
Substituting (96) and the above equation in (94), there is
found

3 d(h/h,) WE . E(Bh/ b el

Yy - (99)
J1'= (38, =1}

ad =

e
v (2 = 3n/no)n/n,
Integrating, there is obtained:
- v ]
¥ = ﬂ%; (gin~% ‘(3 h/hO - 1) + constant (99a)

For the flow about an edse 8 starting from a parallel

*That the sign of ¢y (98) must be negative may readily

be seen., 'In'figure 49 all masnitudes are so drawn that
they have vositive signs in the gZiven coordinate system.
The £l ow e Necn |l efit *vo Tight, S0 fthat for it B - 0%

For the same reason in (97) cp -~ 0, a8 may also be found
from the fact that the flow about the edge (decreasing 9)
s equivalent to a jet ‘expansion and that this in the case
of shooting water must lead to a sinking in level as a con-
sequence, so that the sign in equation (99) is correct.
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fliow with the Mach number M = 1, .the constant dis

i / .‘1‘\
By et AN
B g o¥

The welocity ¢ . forms with the direction of the x-
gxieEn angle ), where @ =W + 9§, @ bvelmegTvie anals
g deflection of the velocity from the direchiien of an-
broech. Only because we had laid the x~axis in the direc-
tHlowl of "epproach, is thig deflection .angle W, Here edual
to the angle ® of the velocity diagram. Figure 50 ghows
h/h, as a function of w (¥ equation (98) + 94 eguation
(99a)) for the flow which starts with M = 1., The values
are collected in table II (p. 53).

The change in the deflection angle is
dw = d¥ + 4d
Taking dY from equation (98):

d(b/hg)
2(1 « n/h,) Jifg) sl =80

ay = -

and d3d from eguation (99), we have:

d(n/he) . o Ty 1 = B/hg)

This equation may also be obtained from eguation (40a) if

the expression 2ghg - 2gh is substituted for ¢ since

the velocity curve of a flow about an edge is a characters
istic., The values computed from equation (100) are Ziven

Thiwable III.

T J2/8 = u/h, (100)

288 Refrection and Refleotion of Wawves at a Verbex Sheet

We shall assume that a flow (fig, 51) has a vortex
sheet along AB., Above and below the gheet the flow is as-
sumed parallel with the velocities Coy 2nd Cbl'* The

water depths hal and hyp, are of equal magnitude. Fur-
thermore, let the Mach numbers on each side of the vortex

*The first subseript (a2, b) distinguishes the uvpper from

the lower flow. The second subscripvt (1, 2, 3) denotes the

corresponding field for the flow under consideration,
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sheet be greater than 1, In the lower flow no disturbance
line 1s assumed, The line s 1is assumed to be a disturb-
ance line in the upper flow, and it meets the vortex sheet
&b Bs

We consider now the conditions that hold for all these
problems:

15 At each point of the flow and also at B, | there
are two families of disturbance lines; so that from B
there ean start out at mest the two disturbance linssg st
and t'., The Mach line ¢t cannot be a disturbance line be-
cause it lies upstream of the region of influence of the
the assumed disturbance s.

¢e The wvelocities e¢,, and ey, must be parallel,
o i)

3¢ The water depth in the field a3 must be equal to
that in the field b3,

The above three conditions are sufficient to deter-
mine the angle of deflection produced by the refracted
wave s!' and the reflected wave t' in the flow. For
small disturbances, we have:

p Ca(n 7
Ah = (dh/aw) Aw; An/he = 3(B/Bo) py, | &(B/Bo) o o
dw . 4w
Hence
¥

ha'\ = ha e (dh/dw)a Awalg (°>
ha, = hy, + (dh/aw), Aw,, . (v)
hy, = by, + (dh/dw)y Awyp, . (c)

In addition to these three equations, we have the condi-
bibng

hey = Bny (a)

Bay & By (e)

Awb13 = Awais, WO (f)

where A'\:)als = Awalz = AwaQE * % (g)

*Awal2 denotes the angle of deflection of the velocity‘

of flpw -a when it crosses the disturbance wave ¢ from
region 1 into region 2., The Aw are taken positive in the
direction in which the deflection lies if the wave under
consideration is a wave with level drop.

*¥ (Bee ps 27)
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¢ From the above seven equations with the magnitudes:
hal, h(;ea haS' hbls hbg’ Awaa’ A(Uaas, Awa‘ls' Awbls’
oy 5
(dh/aw),, (dn/dw)y
where those underlined are to be considered as given, all
the unknowans may be computed. In particular,
s ( = t (10
Awaas = Anala AuaIS (%03}
and 5
bwy = Aw = Aw (102)
O oa - 810
i 13 12 [1 + (ah/dw)y/(dh/dw), ]
In the above formula (dh/dw)y/(dh/dw), will be made non-
dimensional by introducing the total heads hoa and hob'
dn dh,/ho /dh/ho\ //, §
——— = ] Vg Big s
¥ aw/ 9w 4 'n dw: /. e
b b Ob b/ Y'b
= / } o= SIS = ;—-—‘ (lO?‘)
] ~ 8 ‘;
- '—"‘_’;'"— ’, R T T <k / * O a
my/ dw 4, dw /a
where ¥y, and ¥y ore written, for briefness, as the nu-
merator and denominator, respectively. From equation (100)
n /
2 T = ho
~/ &/ﬂx/h /" - h/h,
Subgtituting the Mach number M in place of the water
(=) o Lo} . -
SRS, TERle BYH, (M = e"/a® = 2 hy/h - 2), there is ob-
tained:
¥ “::g:::: (104)
W gy~ AL
* * ik s X e e e e e g e e o St S e o S —————————
! (From p. 26)
Here we nust subtract since if Qw4 nd Awagg have
equal sisgns, g and &t are,both bvarefzciionaor beth
Y condensations. The angles of deflection of the velocity
then act in opposite sense because s and ' are waves

ofvdiEfedent Tamiliecs,
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Equatioen (102) mav then be written, finally:

\(L) o
Aw ALVD

e SN
Aualz Awalg

and equation (101) bveccomesn:

Aty Aw

e g o L

Wk gy i
_b7;§";“i (105)
o/ ¥q

S
‘turvance lines are the deflection angles referred to t?

For clarification, two numerical ex~nmples will be
computed:

According o P—“_i—ﬁ ey ~“~_;—m«"- EE

to qip Ma= ; =3 2 ma=3, My=2
egquation , p

(104) Yo = 24078 3¢18

y‘b/:’ra = 1.53 '7?6

lo(,) (63} AS,, = et i alﬁ

( A a‘13/ Wa, 84 1

(106) Awaas/[swal2 = G 16 -.16
—— sttt = o e i o Pt U e a R s SN P

These two examples are schematicnlly represented in Fig~
ure 52 for an approaching level drop wave as vwell ng for

a level rise wave, The numbers written beside the dis-—
he
deflection angle of the ~nproaching disturdance,

We shall consider this behavior more in ceneral. In
figure 53, y 1is shown as a function of M. The expres-—
n

2 "'-‘ : : .
y = M5/ W/ M® -1 is to be investizated for M > 0.

e ¥ 18 real enly for M > 1l ¥ . bhss no réal zeros

w ¥ > a) for M—s1 as vy = 1/V/2(m s )
b} for I:*——)(ﬁ as = M

e
ol 0 = 5 0 =
3 9¥ =M (U7 - 2) a) ¥y ‘has a minimum at ¥ = 42
aM (1\”2 1)3/2. ¥
y T

i
) o U » 24 'y inerBgacs

c) - % v decreases
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o e always ‘positive'l @iy > 2. "Terieachl v there conmes
spond two nossible Mach numbers M. All possible ratios
of any two values of y are positive:. 0 < (yb/yq) A
<
Thus, according to equation (105)

0 < (Aw Aw Pz 2

=)

This means that the wave passing through and refracted by
the vortex sheet, is of the same type as the incident wave
and has up to twice as large a deflection angle as the in-
cident wave. Furthermore, the reflected disturbance line,

gt ascetat of - 1.< <Aqu5/ﬂwa~~) < + 1, has at mod¥'the

same deflection as the incident disturbance, but may be of
the same or opposite sign. The following table summarizes
the various possible cases:

= Maa/ﬁffae - 1, ¥p = }.{bzl/ﬂffbe =+ 14

p . &.2/(1.+ yb/2) and . g Lo D 0 Deg Fall

e

My > 1, My >' 1 lA w /uc L oag S/AL g
ev 4 5 . AR W S L
30 Wy> Ve 1. M, < Jog gt ybi 25 48y JEEY TG
b) ¥o B ybg T S o D i a
2. M V/é c) o 2 ybg - I L el 0
|
; 4) Wyy > wobr AW e B SR
PR MR b fige 2 ) w, Syl 2 NIRRT SRag
e R 6 (ol S 5 e
MU ST cay -y 0SSR Rp R T | Se s TR
bz B ol 2.0 0 0¥ L

In figure 54 are shown several clarifying sketches.
The first series holds for My > v 2, the second for
e i i
Mb < 4 2s The numbérs beside the disgturbance lines are

the wvaluesg Akvﬂlwa . Since the eguation
12
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Ma°/V/Ma -1 = Mb“/A/Mb -1 ’
has the two positive solutions

My = My
and B N0 U (Y L\ TV )

M, = My/ /My =1

there are two cases for which a disturbance wave passes
througsh the vortex sheet without any reflection. The
first case is self-evident. The two flows a and b are
equal to each other. In the second case, however, a vor-—
tex sheet is present. Nevertheless the disturbvance wave
is not reflected but passes through - though refracted -
and has before and after, the same deflection angle for
the velocity, '

Since the hydraulic jump loss is still small, even
for rather large jumps, the ratio of the Mach numbers on
the encounter of two flows that arise from the same state
of “rest, and of which one has exverienced a jump while “the .
other is. without loss, is in the neighborhood of one.
- is then approximately equal to ' and it follows

from equations (105) and (106) that the main portion of the

incident waves foes through the vortex sheet and only a
much smaller part is reflected.*

2% Flows with Hydrauliec Jump

a) Critical angle.~ To each Mach number M, or %o [
each nondimensional velocity ¢, Dbefore a hydraulic jump /
|
|
|
|
|
|

(shock), there corresponds a shock polar to which a tan-
gent may be drawn from the orizin, The angle between this
tangent and the u—axis is the maximum angle dbv which the
flow with the corresponding Mach number may be deflected.

%5 numerical example that illustrates this is the follow-

tngg Ay My = 1,758 2. Bat/h, = 0s95 for the flow.whieh
experiences a jump. Then with hy, = hy, and hy /hy',

we have My = 1,68, With these two Mach numbers, there is
obtained from equations (104), (105), and (106), depending -

on whether a disturbance wave meets the vortex sheet from
below or adbove:

(Awgof Awy,)

On99 . and 1a0%; respectively o
and

(AwBs/Awla) 050 - " "‘O.’.)l, m



e
h
.acterized by the jump AB on the shock polar through A.
.BB!'! is the change in velocity due to the jump loss; gee
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Bowslf the angle of deflesction were larger, .the jumprcoewld
no longer %o past the edge bdut would travel upstream of
the edge, If the side Boundaries previnfandbely long, it
tr¥avels upstream to infinity and only streaming walter res
mains at the edge (subsonic flow). If the boundary of tlae
defleébed Jet is finite (sec fig. 85), the jump 2lso brav-
els upstrean for the above critical angle but always: re-
madnesgt a finite dlqt ance from the obgtacle., :

Begides the eritical angle, which indicates whether
a jump is at all possible, there is another somewhat small-
er Iimitinsg angle, alse depending on the Mach number of
the flow - namely, the deflection angle, for which the
Mgeh munber M after the jump, is exactly equal HoTls
(fee alsp filg. 47.) 1In figure 56, the eritical angle is

shown as a function of the nondimensional velocity ¢,
before the jump.

ixed wall.- If a
Jumnp, for example, as a wave of the lower family, impinges
on & fixed wall, only waves of the upper family can start
Qut from there, The reflected waves must make the veloe-
ity after traversing the incident, and reflected wavesg
have the same direction as before the incident wave. From
this 1€ follews that the reflected wave must algeo be fa
Jump with the same deflection angle as the incident wav
Figure 55 shows an example. Let the incident jump be ¢l

f b) Hydraulic jump imwinging on a fixed

algso figure 47. We then have the jump B'!'C, and finally,
the adjustment -CC!

En fileows with hydraulic jump, in addition bto'the two
field coordinates, we need the depth referred to a 'fixed
depth (for exampvle, that of the approacih flow) as a third
coordinate, in order that the depth lines of the ‘water
surface may be drawn,

As for the simple slant jump, there is algo for eaech
Mach number a critical angle which indicates the upver lim-
it of the deflection of the jump against -the wall in or=
der that reflection may be possible.

In Figune 165 1is Afavwvn -the Liniting curye, oubsliderof

which the impinging jump must lie in order tnat reflection
may be possgibles There is also ghown, with the aid of an

example g Bow thieg limiting curve is foundy It is determined

by the condition that the reflected jump gived rise to its
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greatest possible ‘deflection, The critical reflection an-
g£le of “the refleeted jump is approximately half as large
as for the ordinary jump (fig. 56).

¢) Hydraulic jump impineinz on a free jet boundary.-
At the free jet boundary. the pressure nust be constant,
This condition is satisfied if, at the position where the
Jump strikes, a family of waves with level drop starts
oub . If the jump were free from losses, the deflection of
the wvelocity at the free jet boundary would dbe twice as
large as the deflection by the incident jump, and. the mag-
nitude of the velocity would not change. Actually the de-~
fleection is somewhat smaller, depending on the losses and
the velocity decreases.

o 2

R

d) Encounter of two hydraulic jumps of 4iff

ffereny fam-
i J

ilies (crossing).- Whereas, for the impact of a jump
against a fixed wall, only a single condition on the direc-
tion mugt be satisfied, and for an impact against a free
jet boundary, only a condition on the pressure, in the case
of the intercrossing of two jumps, conditions on both the
pressure and direction must be simultaneously satisfied.
QuilrY #f the'angles of deflection of theTtworintercrossing
Jumps are equally large, does the problem lead to a con-
dition on the direction only and hence to case (%).

THel'soliubion of the general cage I8 obtained dy trials
Bhedireetion-of the vellocity, after the two jumpgy, 1s @b~
tained to a very good approximation if the jumps are con-
sidered as though there were no impact losses. For tae
determination of the water depths and the velocity on the
hodograph, the four different impact losses may subseguent-
Yy beread off land corrected fors ' For dpawidg aceuracy
this is entirely satisfactory. In what follows, we shall
consider the process theoretically in somewhat greater de-
taliRrgPies '57).

ot

>

=

LIS

In the velpeity diagram, let the impact coming from
above be given by AB, the corresponding adjustment vy
BBEy 2and the Inpaet stPiking frenm below; by ACOTV, &fber
the crossing, there is a jump, OC'BE'! on one side, and
B'EDY on the other.. The poln¥g "D¥ and 'E¥ nust, on
the one hand, lie on the gsame ray througsh 0, and on the
gtheP Yamds the waler '@epth fof DY (losses of A after
B,gndiof BY1 480es! D)y and the wabéd. depth for BI
(lBashd ol o W fatteprlly and of OF -afher ®), must Be
equal to each other. Since, however, the product of the
values ho'/hy for the jumps AB and 3B!'D with very
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great accuracy is equal to the product of the values ho'/ho
fOr" the shocka  &C -and  C'EB, . the:polmta D% i ang) WS co~
incide; and furthermore, the vortex sheet starting from

the crossing position, is very weak,

e) Encounter of two hydraulic jumps of the same family
(overtaking).- The jump AB with the adjustment BB' -and
the succeéding jump B!'CC! are given by the deflection an-
gle of the wall (fig. 58). The two impacts are waves of
the same family (in the example, the lower one). They meet
at tle boint P of the flow. All possible waves whilch
pass through this point are drawn. At this point we have
a meeting of! 1) the two £iven imbacts; 2) the Mach lines
a, b, ¢, and 4 - the latter causing no disturbances. From
P there start out: 1) the resultant impact PG; and 2)
the disturbance line PR. The streamline passing through
P is obtained as a vortex sheet in its upstream lying
portions, The impact 'PQ and the wave PR are determined
by the condition that, avove and below this vortex sheet
the water depths and velocity directions agree; i.e., the
polnts B! and D of the velocity dlagram must lie ‘on the
same ray through 0, and hg, must be equal to hp. The
Impaet losses for the two jumps AB and B!'C followiag
each other are, together, smaller than the single impact
loss of the jump AE, (If, instead of two discontinuous
deflections, there were many very small ones, the lower
flow would finally pass over into a flow without dissipa-~
tion, while there would alwavs start out a finite jump
with dissipation, from the meeting point of all the dis-
turbance lines.) The product of the values hg'/hg for
the jumps AB .and B'C, is thus nearer one than ho'/ho

for the jump - 4Bs TFor this reason, E'! must 1lie nearer
the orizin O of the velocity diagram than D,

In the example computed, the result was obtained that
the disturbance PR (line of the upper family) is a level
drop wave to which, in the velocity diagram, corresnonds

_the characteristic O'D.  The deflection caused dy it is

very small compared to the two changes in direction due to
the jumps. In most cases the overtaking of two jumps is

..also computed with good approximation by superposing the

deflection angles upon each other,*

*In the example the first deflection of the wall is 19.40,
the second, 6,89, The velocity deflection by the result-
ant jump ig 27,3°. If the deflection angles of the two
Jumps were simply added and the sum taken as the deflec-
tion 8f the resultant jump, the error would have been o

s c 215 S
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turbance waves with hydraulic jumps.—- Figure 59 shows the
tlwpee poseible tasest 194v2), and 3)y In the firet ease
the disturbance line prosses the jump. This is a limit-
ing case of the intercrossing of two jumps (section d).
Practically, there occurs no vortex sheet, and after the
crossing both the jump and the disturbance wave deflect
the velocity with extraordinary accuracy by the same angle
as before the encounter. ]

The second and third cases are both limiting cases of
the overtaking of two hydraulic jumps. Here, too, the de-—
flections may be approximately superposed, which means that
the reflected wave PR is neglected compared to the inci-=
dent wave.

An idea as to the strength of the vortex sheet and the
order of magnitude of the reflection PR may De obtained
by a simple consideration. The disturbance line meeting
the jump is imagined as a zero-loss rarefaction of the
same deflection angle of the velocity as the jump. This
rarefaction is assumed to be concentrated on a single line
(fig. 60) which, of course, is not actually the case. If
the shock polars were characteristics and the junmps were
without losses, the jump and the disturbance would then
balance each other at point P, from which point there
would . .not start out then any jump PQ, disturbance line
PR, or vortex sheet., For the actual jump these lines do
not vanish, however, and from them an estimate may be made
of the order of magnitude of the reflection that occurs if
only a small disturbance strikes against the slant hydrau-—
Lic i jumps

Figure 60 shows these ‘relations by an example (case
3)s On crossing the Jump from refion A to region  B' in
the flow, the state in the velocity diagram jumps from A
to B on the shock polar AB with the corresponding im-
pact loss. To B is addeé¢ the adjustment BB', From re-
gion B to C, a zero-loss rarefaction is crossed which
by assumption is concentrated on 2 single line, and whose
defleection“brings 'the velgcl'ty inte the direection before
the jump. Orossing this rarefaction means for the condi-
tions in the velocity diagram a traveling on the character—
istie B'C. The waves PQ (lower family) with the ini-
tlal point A, and PR (upper family) with the initial
point O, must bring about the condition that in the re-—
gions E and D of the flow which are separated by the
vortex sheet starting from P the nressure and direction
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of flow are equal. These conditions determine D and E
in the velocity diagram lying on the characteristics €D,
and AE, respectively.

The reflected wave PR (level rise), and the wave
PQ (drop), which in the case of equal and opposite de-
flection angles at the corners S and T give the devi-
ation from simple superposition of the deflection angles,
are both very small compared to the wave TP overtaking
the jump.¥*

g) Summary.- All flow elements with hydraulic jump
have the common property that a vortex sheet arises which
may generally be neglected; To satisfy the conditions of
equality of pressure and direction on the two sides of
the vortex sheet, two waves are developred whose deflec-
tions are determined from these conditions. Especially
striking is the case where jumps overtake other jumps or
disturbanece lines since in this process all given waves
are of the same family; nevertheless, small waves arise of
the other family,

h) Application.— Let shooting water (M = 2) flow in
a channel of 24° deflection.*™ Let the deflection be facil-
itated through a vane at the center of the channel, go that
the Dbanking of water on the concave side of the wall may be
reduced (fig., 61). The contour of the vane is on the upper
side made up of a circular arc with short straight pieces
at the ends and a straight line at the lower gide making
an angle of 12° to the direction of approach. The lower
wall of the channel is assumed to be a c¢ircular are, The
upper (left) boundary of the channel is determined so
that the flow at the upper side of the vane is without
losses and at the end of the vane there is again produced
g paralibel. Plow with 'M = 2., This side of the flow il
thus -a ¢lear channel which deflects a parallel flow in the
simplest manner,

At the end of the vane at both sides, arises a hy-
draulié¢ jump since the vane angle there is not zero.

*In the example of figure 60, the jump angle is about 25°
for hg'/hg = 0,90, The impinging wave has the same change
in direction of the velocity (25°). The deflections of
the reflected jump and of the deviation, however, amount
to only 1°, Only 4 percent of the waves overtaking the
Junp are reflected,

*#*Th, ve Karman (reference 4) in 1938, congidered the de-~
flection in an open run analytically.
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These two jumps are determined from the pressure and direc-
tion conditions for the upper and lower sidés of the stream-—
line starting from the trailing edge.

X -SURFACES

As previously remarked, the position-determining poten-
tial itself is not required if the velocity diagram and the
flow are drawn simultaneously. We wish, however, to see
what the appearance of the X -surfaces (formulas 24-3)) of
Severald flows ig-like,

245 1 ParagllelvElaow

In the entire field of flow the velocity components
u and v ‘have the fixed values Ve THE On account of

dX = Xy du + Xy dv = x du + 7 dv

X' "shus has a fixed valmne XO. The points of the X-surface

all coincide at the single point Wa s Tols XO. The slope ,
of the X-surface, however, is not constant, being given

according to equations (24a) by the coordinates x and. ¥

gL the yflowdt: Xy .= %3 Xy =¥« For an infinlitely wide par-

gl St ows It thus Haked o all values.

.For the X-surface of a parallel flow, we find a bun-
dle of infinitely many plane elements through a point.
The reason why this X-surface degenerates so strongly is
o nbewfound iIn the fget tThat the inwverse trensformatieon
from the velocity field (X,u,v) to the flow space
(6,x,y) for a parallel floew is infinitely many-valued.
All flows whose transformations to the velocity space are
not reversible (parallel flow and flow bounded on one
side), have degenerated X -surfaceg. Although in these
casespny o0y ldavaet dfizeprselyreilve uunlduely X 5 g S
there corresponds to each element &, x, y, ®x, &y of the
g-surface a guite deriflite.element X, 1, ¥, Ays Xy of the
X —-surface and conversely. '

25, BovalSNozzle “for M = 2

The X -surface for the experimentally investigated Laval
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nozzle (fig, 77) is shown in figune 62... Itg only diseon-
tishimistde s (ie i@t the boundary since Ho f6aeh Joant Vel iin
the .interior there corresponds uniquely a point of the
flows' In mporitdecullar, Al an'd. Bfs gigel podmste off Whe, type

described in section 24.

n
Hy

8, Urifilice

e “wich toe consider the flow out of -5n orifice. wiblk
gmall back pressure (fig. 63), Let the vparallel flow of
approach in the minimum cross section have the velocity
RN T e TaEt T = 1. To this %here eorresponts 1h "Ehe
velocity diagram, the point A'. The first Mach line
sl St arte fron' P oatrikes the edge Q. The fivstiBls-
i bance A9ne!, howewver, that gtarts from P or q, strikes
the symmetry axis in R (not in 4), depending on the mag-
nituwde of the increments that are chosen for the disturb-
ances. The level sginking about the edge P has no effect
at the edge @, and conversely. We first have about cach
edge .in its immediate neighborhood a normal level drop
bounded on one side (sec. 21); the disturbance waves start-
ing out from P, for example, are given by the normals to
the characteristic A'B!' (depending on the chosen incre-
ment of the deflection angle). Analogously, the states
gt @ are Tiven on the characteristie 4T3". . The lewel
sinking proceeds up to points such as B' and 3B", whose
speeds OB!' = 0B", according to the energy equation, cor-
respond to the given lower water depth. (For a gas the
expansion proceeds until the prescribed back pressure is
attained.) The wusual flow about an edge (flow bounded at
one edge) holds until it impinges on the first disturbance
line RS or RP? (fig. 63)e. From there on the crossing
famidy of distupbance lines is constructed as for the Laval
nozzle. Along the AX axis the velocity is horizontal for
reasons of symmetry. In the velocity diagram it changes
e Sills c ke XY .. T%,.1s furbther teo. belfenarked: thatyabey X
the water depth is as great as it would be for a one-side
bounded flow about an edge if the flow had twice as larsge
2 HEFlcoiior a8 that about P or @. Althouzh the disw
turbance lines (straight rays) of the one-side bounded
flows about P and Q are not superposed simply as such,
the angles of the wvelocity deflections are, aowever, super-
posed. The processes at each side of the' axis are such as
though the axis were a fixed wall, a8 mugt be the case

since each streamline may be considered as a fixed wall

Thie woricin' of the coordinate systenm'  x,¥y i placed
s

ifh Whe,opifice cros ection and in the channel center

w
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(point 4 of fig. 63). All points of the orifice cross
seck von PAQ have, in the wvelocity diagram, the single
image poin® | A'. ‘Binece mlong the entire dlstance PAQ

x = 0, the X -surface at A' in the direction of the -
anciiau e "o rd sontal | In the directiom of sthe ' T—aucies,
however, it has at A' all slopes between = yo< X< +
Yo Since there is no constant wvalue for %, we shall
Set % et A' equal to zero.

To the point @ of the flow, there correspond all
points of the characteristic A4'B" of the velocity dia-
gram., The X-—surface is thus of such character that for
23l podnts of A'B", 4t hag the slopes %Ky = 0 asll B =
+ ¥o+ The edge of the X-surface, whose projection is
the characteristie A'B", +thus lies in & plane. .The dat-
ter has, in the v direction, the slope yo. and since we
hhve set X 1in A' equal to zero, it passes through the
u~axis. With its points vertically above A'B", it sives
not only points of the X~surface dut also the tancent
plane %o the surface at these pointsg. Similarly, the plane
through the TU-axis with the slope Xy = - ¥g 8gives sym-
metrically points over A'B!', together with the tangent’
plane of the X-surface. Furthermore, this surface has,
above the T-axis, a horizontal tangent in the v-~direction
since the velocities along the d-axis (¥ =.0) 4in the
fEliow oicour om the channel axis and Wwhere 'y = 0.

o

7]

The X ~surface appears as a valley between the two
planes described above, ending at " A', and which in all
sections U = constant ranges through all slopes "=fig,"=
Ky =" F Foe

Particularly noteworthy is the behavior of the X-—
surface with regard to the point A4A'. The wvalumes.of X
Ttigpll £ are centinuvous. The slope in the ¥ . direction,
however, becomes discontinuous in 4A' since, although the
surface ends comntinunously 'in a point, the slope s%dldl has
81l Faluen’ befwoon "Ry ' = ~ y; and Xg = + ¥y, (fik. G@),

27, X-Surface of the Flow adout an Edze
Since the flow about an edge is a flow bounded on one
side, and since it is discontinucus at the edge, its X~

surface degenerates.

Since all the velocity vectors have their ends on a
singdiereharactierdstic,; the latter ds the projection of WHhe
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X=surface. If, furthermore, we place the origin of the co-
ordinate system x,y in the edge S (fig. 49), then for

~

Fowy@hiw Ned, "fo'r the entire characterisiticy lon' accound

o/

ofiadl = & ¢+ Wgdw = x du + y dwy dXU= 0F Bheb SELWK -

constant = X,. The portion of the X-surface correspond-

ing to the polnt S5 is thus a curve lying vertically above

the characteristic at a constant height or, more accurate=-
15, "an infinitely narrow horizontal stripe

Furthermore, along a fixed ray throush S the veloc-
ity components W and v are constant and therefore
(azain on account of dX = x du + y dv), X = constant =
k for each ray through the edge S. The constant k for
gll ‘rays has at the edge, however, the congtaant value "k =
Ko+« Thuos for the entire flow adbout an edge, XK = Xge
Since there is no constant value for the position~determin-

ing potential, we may set X, = 0., The X-surface shrinks

i@o & icharacteristic.

To a fixed ray through the edge there corresponds, in
the velocity diagram, a single point of the characteris-
tic. Since along this ray y/x and hence XV/Xu is con-
stant, dbut X, and X, themselves are variadle, the X=-
surface at this point consists of a bdbundle of surface ele-
ments.

The X—surface of the total flow about an edg€e con-

gists of a bundle of infinitely narrow’ surface strips
which lie along a fixed characteristic in the wu,v plane
(figs 65).

EXPERIMENTAL INVESTIGATIONS

T

jes)

ST SET-UP

28, Measuring Channel

The tests were conducted at a flow tank of the Aero-
dynamic Institute of the Swiss Technical High School at
Zupiech, The water used in the test was circulated by =«
pump which delivered up to about 25 dms/s. Figure 66 shows
the test set-up., At 1 the water from the pump enters the
tank. Through a screen 2, it is calmed and reaches the
straightening section 2, 3 on the lower side of the inter-
mediate bottom BB, At~ 3 and 4 are deflecting wvanes. The
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water, after two deflections, reaches the honeycomd 5.
There the veloecity is small compared to the velocities in
the test portion, the water being.led from the approach run
6, where itnis greatly accelerabed; o the Laval nozzle lin-
vestigated 7. The condition of a quiet -flow of approach
is thusg attained and the measurement of the total energy in
the minimum cross section actually shows that, except for
points in the immediate neighborhood of the bottom and side
walls, the total energy has a constant value over the cross
section to within 1 percent.

Figure 67 shows the investigated Laval nozzle 7 as
seen from above, and figure 68, as seen from the nozzle
end. There may also be seen the two side walls of the flow
tank. 1In the background may be seen the honeycomb.

29. Measurement of the Depth

The shape of the surface (surface in space) of the wa-
ter flowing through the Laval nozzle was obtained by gaging

with a fine point (fig. 68). A horizontal cross beam on two
aeccurately horizontal longitudinal beams and normal to: them,

s movable pargllel to itself in the longitudinal direection
oif the chaanel. K On the crosg beam is mounted -a blocksdto
which the point movable in the vertical direction is fixed.

Gaging ”lth the pin voint gives measuring values which
are accurate to at least l/lO millimeter . .and may be well
observed since on the finest contact with the surface of
the moving water, capillary waves are set uDe

30. Measurement of the Total Enocrgy and
of the Boundary Layer

In the theory of the eharacteristics method it was
assumed that the flow was frictionless. In the “ctu"l
fleowls both % the bottom and at the side walls, boundary
Bayveors: are formed as a result of the "rlctlon. In order
to avoid the resulting deviation Ffrom the theory, the side
walls used in computing the flow were displaced inwardly
with respect to the actual (material) walls of the noszzle
by the boundary-layer thickness. Onlf a _mwmarallels displace=s
ment is necessary since the mean thickness of the boundary
layer over the depth from the minimum cross section to the
nozzle outlet only slightly increases. (See fig. 73b.)

JFurthermore, the bottom was not laid horizontal but slight-

ly inclined to correspond to the increase in the bottom
boundary layer.
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Figure 69 shows the set-up for the determination of
the total energy. The cross beam of the coordinate appa-
ratus runs across the picture, and to the left may be seen
8 portoon of a longitudinal bean. On the cross beam from
Isefitr To Ticht ares .4

1: The micrometer screw to which in thée depth measure-
ments a point hasg been clamped and provided with a support,
to which &s fixed a glases pitot tube. The diptance.of the
tube from the bottom may thus be adjusted. This fine ad-
Justment is used for the measurement of the bottom boundary-
layer thickness.

2. To the game block, displaceable along the eross beam,

is fixed a second micrometer screw which displaces a needle
vertically, for measuring the height of the water in the
pitot tube.

3« Finally, on the right i¢ seen the mounting and ad-
Justment of the block which is used for measuring the
boundary laver at the vertical side walls of the nozzle.

BOUNDARY LAYER

Sk i

DEF
widh ALE

ferential Equation of the Laminar Boundary Layer
ine Velocity Profiles in a Constant-Width Channel
Let 1 denote the depth of the water (fig. ?0), e
the undisturbed velocity at the pogition x, § +the bound-
ary—~layer thickness, and p the pressure in the boundary
Saery b, de, 46, and dp o~re the changes in these mag-s
niimdes @ pasEing from the position 'x to 'the" pPogiticn
x + dx, The width b of the channel is assumed constant
and egual to unit length., Furthermore, let ec¢!'/ec De set
equal to ¢ and z/@ =z'M.7 Then fob¥a' beundery léayerwilith
affLne weloclty profiles, ¢ = f(N) 4is 2 curve independ=-
guk ¢f & and &, 2nd 4he macnitudes) o, B; ¥ defined
by the following exprecssions:?

n>1 1
n
o = (% IS8T =, L Liad %7 4N
! 4
m>1 1
2 a2
B = b =, Bl 28N 2 (L= £.).47
Lo :O

2
1l
o
[N
=5
N
o
Ut
S
=
>
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are constants.independent of x. PFrom these are computeds:

The volume bdoundary-laver thickness S iy o o

Hy
fle
JY
.

3
} -
N

The "momentum boundary-layer thickness" 8; = B 8 (
The tangent intercept & = % B - o Bl Sl

An important result is obtained from the continuity
equation ‘in connection with the energy equation. At the
position x in the boundary larer and in the undisturbed

flow, the same amount of fluid flows throuzh as ay m ¥ 4z,
so" ittt

or in differential form:
(vt 6y) = (e # de) (B & 4h =~ B & 48%) (107)

By the energy equation (9)

(&)
Qo
~

@ fdignfe o igeidiy (LK

there is obbained, eliminating dec

BE e e (109)

As long as the volume boundary-layer thickness is small by
comparison with the water depth h, we may set h = &y = k.
Uglng also the relations & h = a® and e¢fa =M, equation
(109) vecomes, on dividing both sides by dx, R

.-2 d_(s
A rIiiN . Bo% (110)
& ¥ - 1w

or, with (108),

B 8 2 8 T2 {30 )

The slope (dh/dx) of the water surface certainly never
actually becomes infinite. Since, however, the denomina-
vew =h the risht for M = 1 v ssumes the value zero, in
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order that the left sides of equations (110) and (111) may
remain finite, the boundary-layer slope dﬁv/dx for those

values of M must have the value zero. The points for M
=1 are the eritieal points; i.e., those where the flow
velocity ¢ 1is equal to the wave propagation velocity

»~/ gh. The boundary layer varies in such a manner that its

thickness 8y, in the neighborhood of the critiecal posi-
tions neither increases nor decreases in the direction of
the flow.

While normally a flow (for example, as a potential
flow) is determined by the boundary walls (boundary condi-
tions), and this flow then determines the course of the
boundary layer ; the relations at . the critiecal points, on
account ‘of the great sensitivity of the flow to cross-~
sectional changes, are just the reverse, In this casge the
boundary layer acts as a determining factor on the flows

We shall now apply the momentum equation to a portion
of the boundary layer. Let the elementary region to which
the equation is applied be bounded by the contour shown in
S uge PO 0y thie thick line: bettom, vertiecal ‘af ¥ x "B dxs
bound@ary layer outer limit, vertical at x. The wolume
peR i dechnd flowing at =x into the region is:

BE="c (0'2 85) =¢c (6 = af) 9 {1~ d)'c 8

The volume per second flowing at x + dx out of the region
S _ :
T e &
Waige = (1 = ol {6 6 + & fo 8]
Thus the volume per second flowing through the upper side
of the region is

V. = (1 = &) (c a8 + & de) (a)

dv = Verax = Tx

This quantity transfers through the upper side a momentum
in the x-direction:

R
—~
:
o
LI

By = & p 4% = (L = a) p e (g 45 + 8 a8

|

The momentum flow through the vertical side at =x is:
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Similarly fhere‘is'obtained the outflowing'momentum through
the vertical side at 'x + dx:
. e A s
fopga=r4 98 Blop (e ¥ do) (81 jad)
Hence the total momentum flowing into the region through
bthe .verthical sides, is ]

= - (L~ B) pc (c ad + 28 dc) (c)

GRa = dy ~ leigx C

Through the Yottom surface no momentum enters the region.

The external forces. acting on the elementary region
under considerption in the x-direction are:? 1) at the wer=-
tical side at x: pg (h - 8§/2) 8; .2) at the vertical side

at x + dx: - pg <h + dh - é—im§§\ (& & @F)ys "3 ) g tA8

’ 1 > / ,
upper side: , pg (% %ﬁ b - .d%> d8; and 4) at the Dbot=

~‘\ - S
tome, T dx « where 1T is the shear stress of the fluid at
the bottom at.the position x. All these forces have, as
the resultant force in the x—~direction, the sum:

dK = - p2 & dh - T dx (a)
We may now write the momentum equation, which states that
the rate of change of momentum in the region corresponds

%o 9 fTornese that balances the external ferceg:?

(1-a) pc(cdd+sdc) = (1-B) pc(cdb+rddc) = + pg & dh + T dx

(e)
For the shear stress, we have?
dc(‘\ L i X U‘OC
8. i ﬂ et = nc/OT :vpC/OT i (f>
dz /Z:'O 2 i O i
(N is dhe dynamic viscosity, e = v, the kinematic vig-
cosity.) Between the depth of the water and the velocity,

holds the energy equation (108):
@ Ge = =g dh ()

Substituting (f) and (g) in (e), there is obtained the dirf=
ferential equation of the boundary layer:

Y (28 -a) 8524 Y (B-a)ec b= (iE ]
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This. equation states that the rate of increase of the
boundary-layer thickness decreases as the flow is more ac-
celerated. For very large accelerations the thickness
even decreases. .

32, The Behavior of the Boundary Layer in the
Throat Section of the Laval Nogzzle

If we consider the Laval nozzle at the minimum cross
section (throat), we have approximately the relations in
& channel of ¢onstant width. At a short distance ahead of
the s€etion M < 1: +that is, Tl O, -so that "firen
equation (110), if the boundary-layer thickness increases
(d8y/dx > 0), the water surface drops (dh/dx < 0), and
conversely. If the boundary layer would continue to in-
crease toward the critical positions instead of remaining
constant as we have seen from (110), the water level there
would drop more sharply, The more it drops, however -
that is, the greater the acceleration, the smaller .the in-
crease in the boundary layer. A balanced condition is
thus obtained, when the level at the minimum section drops
so rapidly and the acceleration becomes so large that the
boundary-layer thickness no lonZer increases. There thus
remains an inclination of the water surface even if the
side walls at the minimum cross section have a small curve-
ture fand..all effects of the latter wvanlsh.

3, 40 egquation (112), for dc we substitute &4 From
equation (108) we have:

- - %g 4B | wip - 4y 113
(2B - a) 8 g dxv+ (B~ a) c™8 i v e ( )
From the above we obtain with d§/dx = O for the minimum

cross section a relation between the slope of the surface
and the boundary-layer thickness:

i 5 . ve w
dx N(2p -~ o) o

Whbts @& = a = /%¢ h,/3. We then havel
R e . (114)
fx o 8 a2 (Bad) L (P B 2)
' 2a (04 /

A similar relation holds for a g£as, the surface slope being
replaced ®7 a2 pressure Arop.
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33, Tests on the Boundary Layer in the Throat Section

The velocity profile of the flow at the channel cen-
ter on the bottom was obtained for various total heads
(variable discharge quantities). The results are shown in
fRZuns §715 8y denoting the volume boundary~layer thick-
ness, 81 the intercept of the tangent of the velocity

pefile, and Si the momentum boundary-~layer thickness.

The averaged test values from figure 71 substituted
in eguation (114) zive dh/dx as o funetion of ho’ Thig
ig the continuous curve of fisure 72.

The slope of the water surface at the center of the
minimum cross section was also directly measured, these
tiest 'points aligorbeing platted im figure 72,

24, Boundary-Layer Variation at the Side Walls

Figure 73a shows the contour lines of tae total meas-
ured boundary-layer thickness at the gide walls. On fig-
wre 73b is plotted.the wvariation of the values averaged
over the water depth along the walls. The boundary-layer
thickness is practically constant and only increages some-
what at the end of the nozzle. The side walls of the noz-
zle uged in computing by the characteristics method are

shifted inward with respect to the real walls by the amountdt
of "his thickness.

35. Bottom Boundary Layer

Figure 74 shows the contour lines of the measured
boundary-layer surface ‘at the bottom. If this "HWill¥ is
revlaced by a mean plane the latter has a slope in the
longitudinal direction of the nozzle of 0,8 mm/m. The
bottom of the nozzle was inclined by this amount, thus ap-
proaching more closely the theory which assumes a horizon-
tal bottom for frictionless flow,

From figure 74 it may be seen, furthermore, that in
the region of the minimum cross section the slope of the
surface is extremely esmaAll in the direction of the flow,
as must be the case according to previous consideration.
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TEST RESULTS OF THE DEPTE MEASUREMENTS

36. Hydraulic Jump (Shock)

In a series of preliminary tests, measurements were
also made on the hydraulic jump. The velocity of approach

at 2 corner had the Mach number M = 2 (exit l£¥am! tHalifio g~

zle)., For various deflection angloe B (sen 24" ZRIETLHe
angle Y of the shock-wave front and the mean Water depth
hy, at some distance after the shock, were measured. The

test results are shown in figure 75.

37. The Water Depths in the Minimum Cross Section

Theoretically, the water-depth ratio at the minimum
eross section h*/ho should assume the value 2/3. Fig-
ure 76a shows the direct measurement of the water surface
for various total heads along the channel center in the
region of the minimum cross section. From this measursg-
ment were also taken the values dh/dx which were used in
section-38, ;

On figure 76b are plotted the measured water depths
a* a8 g runotien of hye For all total heads that are

somewhat smaller than 10 cm, i.e., for the ratio

/ total head &
\width of minimum cros

o % O.5>
s gsection

h*/h, has the constant value 2/% to 1 percent. Only with
increasing total heads are the deviations somewhat larger.
%8. Water Surface in the Nozzle

a) Theoretical surface.- Figure 77a shows the computed

disturbance lines for the half-nozzle. Since the side walls

of 3-millimeter~thick sheet brass showed small deviations
with respect to the nozzle drawn in figure %4 (straight

line QR, circle RS, and portion determined by them ST),

-

the aetual wall in figure 77a and the corresvonding bound-
ary layer were laid as a basis for the determination of the
flow by the characteristics method. In order to obtain the
lines of constant water depth with sufficient dccuracy the
velocity deflection was choqen in gtepe of Iya”,
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On fiegure %D are drawh the lines of -coastant water
depth and also the measured depth contours for the total
head hy = 31,1 mm.

b) Measured water surfaces.-~ For six different total
heads the water surface was obtained with the apparatus de-
scribed in section 29. In each measurement the flow was
sufficiently stationary. By polishing and cleaning the
side walls a condition was obtained where hardly any capil-
lary waves on the water surface appeared except for some
waves toward the nozgzle exit.

Figures 78a-f show the test results. All depth data
refer to a point in the minimum cross section 0.5 mm above
the bottom. Since the thickness of the boundary layer for
the flow with hg = 80 mm 1is &8y = 0.5 mm, the depth
measurements for this total head is directly comparabdble
with the theory. In the other measurements, corrections

were to be made for h of from +0,05 mm for hy = 100 mm
to =04,25 mm for hy, = 25 mm, depending on the total head
and the corresponding thickness, according to figure 71,

The symmetry of the depth contours to the nozzle axis
is well satisfied. From these measurements (figs. 78a-f)
the water—-depth ratio h/ho along the nozzle axis was Ob-
tained and compared with the theoretical (fig. 79).

39. Comparison of Measurements with Theory and Conclusions

Figure 77b shows that for the total head h, = 31,1 nm,
there is satisfactory agreement between theory and experi-
ment both with regard to the depth curves and the magnitude
of the depths.

For the largetotml heads, 1004 .8045 and 60 mm, there
is, however, a deviation that is not to be overlooked.
The water surfaces for these heads have, in the lower por=-
tion of the nozzle, a well-marked valley (figs. 78a,b,c),
with an adjoining hill while, according to the theory of
the two-~dimensional flow of shooting water, the surface in
that region shouwld be horizontal. Also, the character of
the depth contours deviates from the theoretical for the
large heads, In the first place, the two side valleys
move too slowly upstream toward the center of the channel
and, . reaeh the latten too lates Secondly, they hawve an the
theoretically straight portion a break which becomes more
marked toward the nozzle end.



NeAdoCoAs Technical Memorandum Ng. 935 49

Widh deoressing total head) L =160, 40% 80iMm, the
depth contours show more nearly the theoretical appearance
and the weter-depth ratios also agree in maganitude. Fig-
ure 79 shows very clearly how, with decreasing water depth,
the appearance of the surface along the nozzle axis tends
mores toward the theoretiesl and, for - h, = 40, 30,  ands &5
mm; o @lmost agrees with it.

o}

Only for still smaller total heads do the deviatiomns
again increase on account of the decreasing measuring ac-
curacy and on accouint of the relatively increasing effect
of the bottom boundary layer.

The reason for the incressing deviation with increas-
ing waber depth is prodadbly to be found in the fact that
the assumption of the theory - namely, the neglecting of
dw/dt, compared with the acceleration of gravity, is no
longer quite satisfied.®

It may further be seen from figure 79 that at the
minimum eross section for all total heads, there is a de=
viation which does not decrease with decreasing water
depthe. «This ig the intecraction discussed in sections 32
and 33, of the boundary layer with the flow at the ecritical
positions. ‘

A4s long as the assumptions of the theory are satis-
fied, the stationary flow of shooting water with free sir-
face may be determined by the characteristics method. It
is here a question of determining the first approximation
0T the three-~dimensional flow of an incompressible fluid,
and this may be computed as a two-dimensional flow of a
compressible fluid.,

40, Photographs

In the following, a collection of several flow photo-—
graphs is presented. Figure 80 shows for a large total
head hy that the water flows through the nozzle with ap-
proximately parallel flow at the éxit. The capillary
waves are here desirable since the waves reflected by them
allow the shape of the water surface to be seen.

* . ~ N . .
An estimate of the order of magnitude gives for the Laval
nogzgzle investigated

) ¢ X s
i AR B LTty OB
BLEE = %Uy °%Z = 0,04 for 1, = 100 mm and

0e00E " Y b = S0 ‘mmn
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Figures 8la-h show the flow at the nozzle exit for
constant total head ho but decreasing water depth of the
lower. water into which the nozzle empties.  Figure 8la
shows the right hydrasulie jump. If the lower water is
banked still higher, this jump travels upstream into the
nozzle and loses its normal front in the interior wvhere the
flow is no longer parallel. In figure 8lc the lower water
level is still higher than the water depth at the nozzle
gxit. ' The two e¢lant hydraulic jumps that arise, eross
each other, In figure 8ld, the two jet boundaries are al-
most: parallel, vhile in figures 8le~h, the lower water
level lics lower than the surface at the! nozzle end and for
this reason there occurs a sinking at the edge and the jet

"explodes." The end of the sinking - the darker lines
starting from the edges which are at the same time the in-
ner boundaries of the liszsht reflections - may bve clearly

distinguished from the jet boundary, which is approximately
given by the outer boundary of the light reflections on the
water.

Figure 82a shows a cylindrical body which hags some—

what the shape of a cutwater in the parallel flow with X
M = 2. PFigure 82b shows the same body fron behind, viewed

obliquely. Comparison of this picture with figure 83 (ref-
erence 5) shows to n gsurpricsing degree the analogy of the
compressible gas flow with the water flow with free upper
surface. In particular, there should also be noted the
region behind the body. .

The same tapered body produces, when set obliguely to
the flow and the deflecting angle of the flow is greater
than the critical shock angle corresvonding to the approach
velocity, ~ quite different flow (fig. 84). The shock no
longer lies at the edge and the shock wave front is no
leonger straicht ,.f but bent.

Fizure 85 shows another cutwater—shaped body whose
taper half-angle is greater than the critical angle of the
approach flow. The shock separates from the edge and would
travel upstream to.infinity if the:sides deflecting the
stream were infinitely long. Only because the vody has a
finite length does the shock-wave front remain stationary
at a finite distance ahead of the body. The shock, how-
ever, has changed its character as compared with that for
the more tapered ©body. The front is curved and only at
some cdistance does it pass over into the form of shock ob-
tained with the other body. With both flows (figgs. 82 and
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95) the shock decreases in intensity with increasing dis-
tance from the bYody similarly on account of the finite sigze
of the body.

Translation by S. Reiss,
Nationnl Advisory Committee
for Aeronautics.

REFERENCES

l. Lamb, H.: Lehrdbuch der Hyvdrodynamik. Deutsche Aus-
Sehe, zweite Auflasge, 1931, S. 3072308, ' G. Bs
Teubner, Leipzig und Berlin.

i
24  Meyew, Bh.: ﬁber zweidimgnsionale Bewegungsvorgange
in einem Gas, das mit gberschallgeschwindigkeit
! _— . | .
stromt. Mitteilungen uber Forschungsarbeiten auf

dem Gebiete des Ing.-Wesens, Heft 62, Berlin, 1908,
Abschnitt b), 8. 46~57. (Dissert. Gottingen.)

Busemann, A.!: Gasdynamik. Handbuch der Experimental-
physik, Bd., 4, sec. 27, 1931, 5. 431=440,." Akadeou-
ische Verla%s;esellschaft, Leipzig.

Sw pilpandtl, ‘L., and Busemann, 4, N%herun%sverfahren Zur
zelchnerischen Ermittlung von ebenen Strgmungen mit

5 ﬁberschallqeschwindiqkeit. Feogt sohpift Dnt A

& Stodola. Orell-Fussli, Ziriech, 1929, S. 502,

Busemann, A.% (See reference 2, 8. 374 and 439.)

4., von Kirmén, Th.:, Bine praktische Anwendung der Aﬁqu*
Z2ie gwischen Uberschall~8trbmung in Gasen und uber-
kritischer Stromung in offenen Gerinnen. Z.f.a.M.M.,
Pa, 18, ¥r, 1, 1938.

5. Adckeret, J.: Gasdynamik. Handbuch der Physik, Bd. 8,
1925, S. 338, Abb. 61. Heraussgeber Geiger und Scheel,
Springer, ‘




52

Ligt of Most Frequently Occurring Symbols

max?

NadeGliarBeehaibesl "Menorandun ifow#9 85

acceleration of gravity.

gay constanb.

kinematic viscosity.

density.

precsure.

absolute temperature.

heat content.

specific heat at constant pressure.
speéific heat at consgtant volume.
adiabatic exponent.

velocity notential.

position~determining potential.

rectangular coordinates in the flow space. -

polar coordinates in the flow plane G o)

curvilinear coordinates in the velocity plane,

characteristic coordinatesgs
general variables.

components of the wvelocity in the
directions.

and Zs

rolar coordinates in the velocity diagram (two-

dimensional flow).
maximum velocity.
velocity increment.

in gas® velocity of sound.

in water: propagation-wave velocity 4/gh.

evitieal weloecity.
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usvgcyoon,

M = c/a,

a=(sin~1)(a/c),

h,

ho,

hOl ‘hou :
*o’To’io’ho’

S8, 78,0,

8, 550

T

X,

Section 31

N iy

(

ity

ig. 71) A

nondimensional velocities (reference veloc-
ity a%; in hydraulic jump a%  &he

critical velocity before the jump).
Mach number.
Mach angle.
water depth.
$otal head (water depth for e = U),
total heands after hydraulic jumps.
subscrint 0O: stagnation state.
critical state.

agterisk * :
subscript 1: before hydraulic jump.
subseript 23 after hydraulic Jjumps
veloecity after right hydraulic jump.,.

coefficients of linear partial differential
equation of second order.

coefficients of the differential equation in
normal form. '

coefficient of the differential equation of
tite fTlow in normal forms

small deflection angle.

deflection angle of the flow without dissipa-
td ona

deflection angle for hydraulic jump.

angle of the hydraulic jump wave front.

6, boundary-layer thickness.

constants of the affine Velocity
profiles.

8¢ =a 8, volume boundary-layer thickness.
63.= B 8§, mementum boundary-layver thickness.
8 = Y 8, tangent intercept.
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TABLE I1I
Water, k = 2
St h L. 2 & _hel B fe. 8 ¢ -
R~ R, ot . PR - — e g AL P = i e o
R T - i el Sl o P Laed EINE
(deg.) (deze)
0 2/3 {1,000 {1,000 o 26 04234 |1.516 | 2456 [~0.160
1 06624 |1e062 114098 | 24068 27 0223 | 14527 | 2464 - 177
2 208l HgI0k | 14160 2,07 28 212 | 14568 Lass -e196
3 2576|1129 14214 1440 29 «201 | 1549 | 2482 -e218
4 +5Bb| 1156 | 16267 | 14014) 30 +180 | 1559 Re98 -84
5 +535{ 1,182 | 1,319 758 31 180 | 1,562 | 3402 - 0252
6 $0161 19207 | 14371 «590) 32 o170 | 14873 | 815 -7l
7 428 1,229 | 1,422 478 33 +160 | 14588 | 3424 | =291
8 «e481] 14249 | 14470 0304l 324 o151 | Le597 | Be86 | =edld
2 2464] 1,269 | 1,520 «318 35 o141l | 14605 | 3449 ~0336
10 «448| 1,288 | 1,570 2 63 36 «132 | 1abl3 | 8868 ~035
11 0432| 14306 | 14622 | <215) 37 123 | 14621 | 3478 | =e38
i 0 417] 14323 | 14674 « 170 38 o115 | 13629 | 6u88 ~ o4
13 0402 1340 | 1,727 «133 39 107 | 1aB27 | 4401 | =443
14 0387|1356 [1e781 | 103} 40 0099 | 1,644 | 426 | =46
15 e373| Le372 | 1835 «072 41 o098 | 1851 | 4ad4 | —-e49
16 «359] 14387 | 1489 « 046 42 o085 | 14687 | 4463 ~e5R
i e345] 14402 | 1495 020 43 <078 | 1,663 | 4485 —oD&
18 0331 16416 |2401 | ~4004 4d 072 | LeBES | 5208 | =458
19 0318| 14430 [ 2407 | ~4028 45 0066 | Lob675 | 5285 -e62
20 2305] 14444 [24,13 | ~4050 46 080 | 14681l | 5abR | ~a66
21 2292] 14457 | 26280 | =071 47 +054 | 1a686 | 5425 | «~e¥0
23 +2B80| 14470 [2,27 | ~o089) 48 0048 | 14691 | 6430 | =675
23 o268| 14482 |2.34 | -e108) 49 2043 | 1,696 | 6a68 | ~e81
24 e256] 1a494 [ 2,41 | =416} 50 o038 | 1,700 | 7¢ll | =86
25 e245] 1,505 | 2448 | —e143{65° 53{0 Wil o -~
B 1

(For table

L, gee Part I,

T.M. No.

934 )
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TABLE IIIX

dw/d (n/ho) JB JoTE S hfbafz (1 = bfks) J8/k, 1200}

Bt "_>dw/d(h/£;) d(h/ho)/dw_-~
2/3 0 ' ®
0.65 22.79/4 0.0441/,
] .625 34,2°/1 . 02R ),
! .50 41,4 .0242
! +B75 46 .6 .0214
| B85 50,8 .0197
JB525 54.2 .0184
i o 5% .4 L0174
g .45 62.7 L0159 i
| ! 67.6 .0148 i
| ¢35 - « 01376 %
| B 78.4 .01276 |
| .25 85.6 .01168 %
2 94.8 .01054 i
15 ; 108 .00923 E
| } 131 .00762 !
.07 ! 156 .00642 f
0 ‘ o 0 i
e |
l
[
|
|
|
|



N.A.C.A, Technical Memorandum No. 935 56
TABLE 1V
Normal Hydraulic Jump
Uy iy b, /hg Tag ba/ho | ho'/ho Uy Uag
1.0 140 0.667 50 o 0.667 P 1.000
T8 ¥ 1.032 L6573 .980 .679 1.000 1.000
1.04 1.063 639 .960 .692 .999 .999
1,06 1.093 .625 .941 .704 .999 .997
1,08 Sl 611 . 9282 .715 .098 .995
Ealr ¥ 1.3}61 597 « 208 s 720 .098 ,993
¢ 1.198 .582 .884 « 789 .997 .990
$.14 Ta oy 567 865 747 .996 .986
1.16 14,278 .552 .846 . 756 .994 .981
18 la718 .536 827 .765 .993 .976
1.20 1.359 520 .808 e .990 <920
;) 1,404 .504 .789 R .987 .963
1,24 1.448 4By I Y7 ,785 .983 .955
1.26 1.498 G472 .751 . 791 .979 .946
1.28 1.550 454 . TEL .795 .973 .936
B 1,608 AT « T2 .798 .967 .925
1s32 1,867 419 .692 .799 .959 .914
Iadd 14730 Se0L | | .e7E .800 .951 .901 !
1.36 1.796 $ 88 | .E8B2 .799 .941 .887
el | 1a867 iss | .em2 .798 931 .872
1ol 1 1,042 247 | 611 . 795 .919 .855
1.45 | 2.164 300 | 557 + 718 .881 .808
1460 § 2.45 .250 500 783 . 834 .750
lehl § 2.54 L9 L4338 .706 770 .679
el | S.41 147 - L2568 . 540 .685 .589
108 |- 4,43 gihs I _ogh 542 .566 .470 ‘
L4 7O { .25 035 ; .174 .36 .369 .296
e | o A | © 0 0 0
Before jump: hg,, total head
4,, welocity referred to a¥%;
a% , oritical veloeclty
M,, Mach number
h;, water depth
After jump: hj', total head
Usg s velocity referred to a¥%;
hy;, water depth
|
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Figs., 35,26,37,38

Figure 36.~ Slant hydrsulic jump.
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Figure 37.- Slant hydraulic jump
(ground plan).
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Figure 47.- Boundary line between streaming and shooting after the jump.
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Figure 40.,- t, c-curve,

lemax,

Figure 42.- Right
hydreulic

jump in t,c-disgrem.
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Figs. 40,41,42,43,44

Figure 41.- Charagter of
the t, c-curve (c®p,,~2ghj.
to=gh?/2).

Figure 43.~ t-hill.
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Figure 44.- General hydraulic W
jump in plen form

(see fig. 38).




TM' Figure 50.~ Water depth ratio
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Figure 54.- Refraction and reflection of
waves at a vortex sheet.
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Figure 55.~ Reflection of a

; hydraulic jump
against a fixed wall.
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Figure 57.- Crossing of two jumps. (In this

srated though D' practically coincides with E!),
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Figure 61.- Deflection vane in & channel with

shooting water. Top: hydraulic
Jumpe and disturbance lines, bottom:
stream lines (20 steps).

(1) Crossing

(2) and (3) overtaking

Incident jump

e L disturbance
line.

== Resulting jump

- " disturbance

line
Figure 59.- Jump and
} disturbance line.
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S/ o
Figure 60.~ Determination of the “@/ %\

order of magnitude
in the overtaking of a disturb-
ance line and a hydraulic jump,

Figure 62.~X-~surface of the

Laval nogzle. (x=0,
¥=0 in minimum cross section
in center of channel),
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Figs. 63,64,65,66,70,71
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Figure 68.~ Test nozzle seen
from the nozzle
end. Measurement of the water

surface.

45°

Figure 67.- Test nozzle seen
from above.

Fiéufé 69.~ Boundary leyer

Figs. 67,68,69,75,76

meesurement.,

h/h, Water depth

|

|

|

|

|

|

t

|

|

t

‘ 1
i \

Streaming i

BB e AR ) !

|

|

|

|

|

|

‘

|

|

|

|

|

{

|

Figure 75.- Hydreulic jump.
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dhfdx
—— From boumndary layer measurement.
--- " direct measurement.
02 Pl
2l g Figure 72.- Check the relation
/ between the boundery
o1 layer thickness and the slope of
// : the surface from equation (114).
/’c‘;
0 5 10 15¢cm by

Boundary l(ayer thickrness

Mz

ho=80 mm Equrdisfarce 01 und 02mm
mm Sy
2
b 1
0~— 10cm —= SRR
Micrcrnurm ¢<ross section

Figure 73.~ Side wall boundary layer. (a) total surface, (b) value averaged
over the depth.

Bowuridary layer thickness ¢

he= 80.5mm Eguidistorice 005 und 01 mm
Figure 74.~ Bottom boundary layer surface.
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Figs, 77,79
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the nozzle axis.
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@)  h,=997mm Equidistarce 1mm Masstab 1.2

Figure 78a-f.-Meeasured water surfaces,
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Figure 80.- Flow tarough the nozzle

viewed from the nogzle

Figs. 80,82,83,84,85

end,

Figu;e 82a.~

Figure 82.- Tapered body in water., Shock wave starts from the tip.

Figure 84.~ Tapered body set
obliquely, shock
engle above critical.

Figure 85,«1 " =
Tapered body whose teper shock angle
is greater than the critical angle

of the flow; shock wave released by

body.




Fig. 81
b
d
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Figure 8la-h.- Varius conditions at the nozzle ex.



