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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL MEMORANDUM NO. 897 

AIRFOIL THEORY AT SUPERSONIC SPEED* 

By H. Schlichting 

A theory is developed for the airfoil of finite span 
at supersonic speed analogous to the Prand.t]. airfoiltheory 
of 1918-19 for incompressiblo flow. In addition to the 
profile and induced drags, account must be taken at super-
sonic flow of still another drag 1 namely, the wave drag, 
which is independent of the wing aspect ratio. Both wave 
and. induced. drags are proportional to the square of the 
lift and depend on the Mach number, that is, the ratio of 
the flight to sound speed. In general, in the case of 
supersonic flow, the drag-litt ratio is onsid.erably less 
favorable than is the case for incompressible flow. Among 
others, the following examples are considered: 

1. Lifting line with constant lif.t distribution 
(horseshoe vortex). 

2. Computation of wave and induced drag anithe twist 
of a trapezoidal wing of constant lift density. 

3. Computation of the lift distribution and drag of 
an untwisted rectangular wing.	 . --

I. INTRODUCTION 

The basic principles for the following computation of 
airfoil flow at supersonic speed are presented in the paper 
of Professor Prandtl (reference 1), and a detailed expla-
nation of the method may therefore be dispensed with here. 

The potential	 T 
speed. may be derived in 

of a stationary sou 

flow. 

* "Tragfligeltheorie bei 
buch 1937 der deutschen

of a lifting line at Buper sonic 

a simple mainer from the potential 
rce in the presence of a -supersonic 

berschal1goschwindigkeit." Jahr-
Luftfahrtforschung, pp. I 181-97. 
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If	 d.enotes.the source potential : of strength 4ii, 
the potential	 T of the lifting line element dy with 

circulation I' about the-y axis is given by 

= x. 
r	 p 

=2—	 I	 dx'	 (1) 
P	

4TT	 .J	 az 

The potential of a source at the point x = y = z = 0 in 
the presence of a flow, with velocity u0 > c in the di-

rection of the positive x axis is 

'l 

=	 -	
il (y2 + z2) 

The potential (2) is real within the double cone with half 
cone angle a, the axis of which cone is parallel to the 
direction Of flow (sin a = c/u 0 ). Outside of this cone 
the potential, according to the formula b i imaginary. 
Actually,	 is there to be taken identically equal to 

zero. The potential has physical reality only in the "af-
ter cone" of the point ,x = y = z = 0. In'tbe "fo±ward. 
cone" it is similarly to be taken identically equal to 

zero,

The potential	 is'the starting point for con.s 

structing the airfoil potential. We shall first derive 
frOm it the potential of a line source of finite length, 
then with the aid. of the operation indicated. in equation 
(1) we shall obtain the potential of a lifting line of 
finite length for various lift distributions.. Prom the. 
lifting line, there is finally obtained by te familiar 
method.',' the lifting surface. In this manner,. a theory 
of the airfoil of finite span for supersonic speed is ob-
tained that forms the counterpart of the Prand.tl airfoil 
theory for the incompressible flow case (reference 2).
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II. CONSTANT LIFT DISTRIBUTION (LIFTING LINE) 

We shall now assume a lin .e source of length b 
(later = span of wing) which lies in the direction of the 
y axis and extends from y' = -b/2 to y' = +b/2 (fig. 1). 
Let g(y') be the initially given local source intensity 
(later = the lift d.is'tribution). Further, let x, y, z 
be the coordinates of a point in the flow and 0, y', 0, 
the coordinates of a source point. Then from equation (2) 
the potential of the line source is 

b 
y'=+. 

p	 g(y') d y' 

Q= I	 -	 (3) 

]{ 22} 

e introduce nondimensional 
lengths by the half-length 
accordingly set 

2x	 2y 
= t;	 = fl;

coordinates by dividing all 
b/2 of the line source and 

2z	 2.' 

b 

Further, we introduce the abbreviated notation 

2

2 
---1= K 

or

	

1	 1. 
tan a =	 = - 

•	 Aa 
--------__ __/ l___ 

4/c2 

where a denotes the Mach angle. 

The potential of the line source then becomes

(4) 

1 T1 t =+ 1 

q(tT1) 
= J flt_1

g(iflt) d •fl'	
(5) 

J2
	

K[( - 
i )2	 2j
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We shall now carry out the integration in equation 
(5) for the simplest case of the line sourôe with constant 
source density, that is,g(rt) = const. 	 1. This gives 

r= +3. 
p. __________ 

	

______________	 (6) 

-1	
2[( -	 + 2) 

Writing	 -	 =	 = -1;	 =	 =	 + 1 

	

iV = + ]..	 ==- 1 
and.	 (/K)2 - 2 = a2 

equation (6) becomes. 

2	
1 

=	

_______ = -- (arc am—!. - arc sin_.!) (7) 

3y the operation in equation (1) there i g then obtained 
the potentfal	 T of the lifting line with the constant 

lift distribution r0 , setting 

r 0	 ,'= 
= - /	 d. '	 (8) T	 21T./ 

-.	 =-.3 

The first step of the above operation, differentiation with 
respect to , maybe carried.:oiit immediately but the inte-
gration requires a somewhat longer computation. There is 
obtained

-K	 ____ - ____	 ( g) 

aJa -	 a2J - 

In integrating with respect to	 ,	 and.. t3	 are con-



stant. For the first term, there is.obtained. 

a



/ 
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/	 ''_	 .	
/p	 --	 2d	

(io) 

j a2 .ç2 - 2	
2 •J * 

where there has been set 

= 2 - (K 

The evaluation of the integral gives 

________ = 

a2	
- 

K	 - 2 K2	
2 2 + (	 - 

= - arc tan 
2	

ç---+ K2*(	
-	 - K4 2 2 

2	 2/	 a 
K	 w—Yfl-1) 

= - arc tan	 (1].) 

2	 2	 (r' - 1)	 AJ;-• 

where

2	 2 
w =	 - K [(Ti - )2 + 2]	 (12) 

Since the integral (10) outside of the Mach cone, 
at the end. point Ti = 1 of the lifting line with axis 

parallel to the x axis, 

- k 2 [(Ti - 1)2	 2]	 0 

- is imaginary, i.e., isto be taken equal to zero, the in-



tegration with respect to ,' need not be extended from 
= -. but only from the cone surface along lines paral-

lel to the x axis. For the lower limit of integration, 
we have thus the constant arc tan cxii/2, which we may 
suppress. There is thus found. from (8), (9), and. (ll).the 
required potential: of the lifting line with constant cir-

• culation	 • - -
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= -	 r -	 i3	 -	 arc tn	
- 1)2 

P	
J	 a2h2_ , a	 4TT	 2 ( - 1) Tw 

•	 2 

= - arc tan	 . ^ similar- term for the cone at 
2ii

(13) 

This potential is different from zero only within the two 
4ach cones arising at the ends of the lifting line (w > 0) 
while in the entire remaining space it is equal to 0. For 
a complete circuit about each of the cone axes 'fl = ±1, 

= 0, the arc tan increases by 2 n. The enclosed vortex 
fila4nent therefore has the circulation r0 . The lifting 
line assumed to extend from 

y 

= .-b/2 to y = +b/2 with the 
constant circulation r.0 along the span continues behind as 
a free vort-ex.].ine tn.the twa axes o.f the Mach cones. Equa-
tion (13) thus gives: the potential of a "horseshoe vortex" 
at supersonic flow. As in the case of the incompressible 
flow, this simple horseshoe vortex becomes the starting point 
for more complicated lifting systems. 

In order to obtain an idea as to the appearance of the 
supersonic flow in the neighborhood of a horse-thoe vortex, 
we differentiate the potential (13) to find, the induced ve-
locities

- a	 - a r	 - a C7 .-	 C 
ax	 Jy	 .02 

and obtain 

c= 1•.E_	 ( .n- 1) 

irb (•5 •_
	 t;iz;;-

.=__2_i..	 ..u..	 . .......V 
• •:'	

.b	 (-• l)	 •	 7 
V 	 (14a,b,c)1 

=	

(T - 1) (w - 
22) 

b [2	
( - l)23	 )	 V. 

1 See footnote on next page. 

C 
I!
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The field of these velocities exhibits a number of singu-
larities. On the cone surface all three velocity compo-. 
nents become infinite, On the cone axis c = 0, but 

Cy and. c	 become infinite as 1/i' (where r is.the 
distance fromthe axis). In the neighborhood of the cone 
axis, c1 and c thus behave exactly as in the neigh-

borhood of a vortex filament in the incompressible flow. 
The field of the induced velocities gives a motion which 
encircles the vortex filament traveling downstream from 
the end of the liftingline 'rj = 1, . =. = 0, as may 
be seen immediately from (14). 

In the plane 'r - 1 = 0 through the end of the lift-
ing line C = 0 and

>O; c1<O 

< 0: .c,. > 0 

In the plane	 = 0, which contains the lifting line, 
C 1	 0 and

- 1 > 0 : C > 0 

- 1 <0 : c < 0 

The flow picture in the cone, however, in Its detail is 
essentially different from that in the neighborhood of a - 
vortex filament in thi incompressible case. Figure 2 shows 
the flow picture of the y and z velocities in a plane 
perpendicular to the cone axis downstream of the lifting 
line. The figure was obtained by computing the isocline 
field Cz/Cy = const. On the cone surface, as has been 
said., c	 and c	 are infinite, although for the slope 

of the streamlines c/ c7 there is here obtained the sim-
ple value 

cz_

_l -	 -	 c1-

1 A check for th& correctness of this solution is obtained 
by substituting in the linearized continuity equation 

ax	 ay	 az 
which must be Identically satisfied. 
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The direction of the streamlines i' therefore radial to 
the center.- The flow consists partly of the closed stream-
lines which circulate about the vortex filament and, partly 
of the' étreamlines- that enter on. one side of the coneS and. 
leave it again on the other side. ..:' 

'In.add,itiàn. to,. the two Mach cones- that arise from 
each of its ends, the lifting line generates two plane 
waves, which enclose a "wedge space" and, which appear in. 
the streamline picture as the common- tangents of the two 
cones.	 .	 .	 .	 .	 . 

• '. or the . downwash distribution in the plane 	 = 0 
through the cone center, there is obtained. from (14c) the 
simple formula 

2ry x	 .	 j- 2 
tan	 Cz 0 =	 ( 15) 

where.	 . .	 .	 ..	 ..	 '.

b. 
7--

2	 -
(l5a) 

x.tan a'. 

This downwa gh distribution, is shown in figure 3. 

In order to study the processes on an airfoil of fi-
nite length, at supersonic speed, particularly the induced. 
drag, the replacement of the wing . by a lifting line with 
Constsnt circulation as in the case of the incompressible 
flow, appears inadmissible since on account of the iñfi-. 
nite velocity at ' the end. of the lifting line an Infinite 
induced drag would. be obtained.. Thia difficulty in the 
case of the incompressible flow i avoided,' as is known, 
by allowing the circulation to drop to zero in a suitable 
manner toward the wing tips. The induced drag is then 
computed. by the formula. 

y=+b/.e 

!j	 f. c 50 (y)F (y). d y	 •	 ••• (16) 

(where c(y) is the induced. d,ownwash velocity at the 

place of the lifting line, and ' p the ' density). 

Q
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in the case o:f the supersonic. flow, the relations are 
complicated by the fact that in spite of the assumption of 
a lift distribution decreasing to zero toward. the wing tips, 
there are obtained singularities at.the lifting, line posi-. 
tion of such a character as to make the computation of the 
induced drag by formula (16), which maintains its validity 
for supersonic flow, impossible. As closer investigation 
shows, this is due to the fact that the lifting line is the 
geometric locus of the verticte of all the Mach cones that 
pass down behind. This difficulty may be overcome by pass-
ing from the lifting line to the lifting surface. 

III. WAVE RESISTANCE (DRAG.) 

Before proceeding to the corresponding computations, 
we shall discuss briefly the supersonic flow about an in-
finitely long airfoil (two-dimensional problem), a problem 
that had been considered by J. Ackeret in 1925 (reference 
3).

The simplest and at the same time the ideal supersonic 
profile is that of the infinitely thin flat plate of chord 
t set to a small angle of attack	 (fig, 4). For such 

a plate the lift per unit span is , 	 . 

A = 2 tan a	 t P UO2	 (1'?) 

or

A . = Ca	 4 tan a	 (18) 

2 
iuo t 

On account of A = P u0 r 0 , the relation between the an-

gle of attack of the wing and the circulation is 
-	 -	 ,-

f u0 tan a = - -	 .	 '	 (18a)
2t 

Prom the incompressible flow, the supersonic flow 
about the airfoil differs in that, for the latter case, 
even if the fluid friction is neglected, there is always 
associated a drag that originates from the plane 'waves 
which start out' from the lifting surface and'are inclined 
to the latter by the Mach angle and which,therefore may

c2
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bedenote& as the wave drag. For the flat plate, th.e wave 
drag per unit span is 

Wwave = -	 k = - 2 tan a	 t P. u0 8 	 (19) 

or

	

waie =
	 = 4 tan	 (19a) 

2	 wave 
2b0 t	 - 

The resultant of the lift and, the drag is here at right 
angles to the plate. This comes from the fact that at su-
personic flows there is no suction force at the leading 
edge of the plate. From equations (l and (ISa), there is 
obtained for the polar of the wave drag 

Ca2 

	

C	 = 
Wway

4 tan a 

which is thus a parabola as in the case.ofthe incompres-
sible flow, 

Plane waves start out from the leading and trailing 
edges of the Inclined, flat plate (fig. 4) and in the space 
bet-ween them the induced d.ownwash.velocity is 

1	 r0 

c zwave =	 u0 

= - ' t tan a	
(20) 

The wave drag, on the other hand, can also be computed from 
this downwash velocity induced by the plane waves, accord-
ing to the formula , 

Wwave = p r CZ	 (21)
4 

ag may be seen by comparison with (19) and (20). In the 
next 'section it will be shown that, for a lifting surface, 
the velocity induced by the tip vortices like Czwa.cre is 

proportional to F0 /t tan a. It then follows ' frozi equa-

tions (21) and (16) that the wave drag behaves in 3actly 
the same way a the in.uced da from the, t .ip vorticcis, 
For'pratice.i ap1iations it is th3refore'of no inter-. 
est to- consider the inducd. 'drag alone, but it is the 'sum 
of the induced, and, wave drags that must 'be consid.e:od. 

a
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For an airfoil of finite span and constant chord with 
circulation that is constant along the chord and variable 
along the span r(y) = t Lv (y) the total lift and. wave 
drag are given by 

y=+b/2 

A= Pu0 j
	

i'dy=pu0bt j Lv ('fl)dT	 (22) 

y=_b/a	 'fl=_i 

+b/2	 S 

W	 = P/cz0 i'd y =	 b tJ	 Cz0'Yd 'fl (23) 

where

1	 L 

= -	
tan a	

(24) 

is the induced wave velocity. Accordingly 

•fl = +1 
P bt 

Wwave =__	 (25) 
4 tan a 

By comparison of equations (22) and (25), there is found 
the relation between drag and lift 

Wwave	 2	
t t:n a	 b)

	
(26) 

In the above equation Z is a nond.irnensional coef-
-	 ficient that depends only on the lift distribution 

d	
)2	

(27) 

From equation (26), It follows that:
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- Z	 ca a	 (28) 
-	 wave	 tan 

The numerical values of Z are given in table I for sev-
eral simple lift distributions. 

TABLE I - Values of the Coefficient Z for Various 

Lift Distributions (Wing of Rectangular Plan Form) 

Number Lift distribution 

1	 rectangular 

2	 ellipse 

3
	

trapezoidal 

" b' = b/2 

4	 parabola 

5	 triangle

z 

	

1/4	 = 0.250. 

	

8_	 = .271 
3ir2 

2+ -
b 

3(l+)

= .370 

= .300 

=' .667 
3 

TV. LIFTING SURFACE WITU CONSTANT LIFT DISTRIBUTION 

For the successful computation of the induced, drag 
for supersonic flow, according to section II, the simul-
taneous assumptions must be made of a suitable drop in 
lift toward the edges and a surface distribution of 'the 
bound vortices. This twofold extension meang naturally 

•	 a considerable swelling of the, computation of the field 
of induced velocities as compared with the Incompressible 
flow where the computation involves mostly a lifting line. 
In order to be able to recognize more clearly the effect 
of each of these two extensions, we proceed in two iteps. 

C-
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We first maintain the lift d.istribution constant along 
the span and. consider only •the transition from lifting 
line to lifting surface. The field of induced velocities 
thus obtained for a wing with constant spanwise circula-
tion distribution andconstant chord, while it does not 
enable as yet the computation of the induced. drag nevor-
tholess furnishes many useful results so that we proceed 
first to compute this fiold. 

We assume therefore the. circulation r 0 constant 
along the span b as uniformly distributed over a rec-
tangular lifting surface of chord t and. extending from 
x = 0 to x = t (fig. 5). The circulation for a strip 
of the lifting surface of unit width is therefore 'V 0 = 
F0 /t. It would be most convenient to make the transition 
from the lifting line to the lifting surface directly on 
the potential (13). On account of the integration diffi-
culties that arise, however, the transition will be made 
on the velocity components (equation (14)), first for the 
z component since the latter is the most important for 
the computation of the induced drag. 

A strip of the lifting surface of width dx' at a 
distance x' from the leading edge contributes to the 
induced z component .c at the point x, y, z, if the 
point lies within the Mach cone arising from the end. of 
the strip the amount 

'V 0	 'V 

d Z = - d x' f( - ','ri,) = _.2_ a ,' f( - 
71b 

where, according to equation (14) 

f(	 ) =
	 - i)(w -	

(29) 

[2w + (,i - 

-	 If the point x,y, z lies outside the cone, the amount 
contributed is zero. The contributiônsfrom the plane - 
waves starting out from the lifting surface will be sepa-
rately considered. Integration over the wing chord there-
fore gives for the downwash velocity induced by the lifting 
surface

t t_ 

2 ii	 = 'V0 f ' =0 
or Written out in full

[di

f(	 -','r,)d	 ,
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L4ri 
—S 

.&J.	 + 
I Cu

'- rj 

R 
5-

Cl) 

--S 

H 

cv

The upper integration limit	 = . is different' 
according to whether the point lies within the 
Mach cone II arising from the end point of the 
trailing' edge (fig-. 5) or between the latter and. 
cone I arising from the end. point of the leading 
edge. The corresponding limits will be 

-	 = 2t/b = C ' (within cone II)	 1 
=	 - K . I( - 1)2 

+	 (between cones	
(31) 

	

-'	 andli)	 J 
as may be easily seen after same consideration. 
Introd.icing the new variables of Integration' 

U - t)2 — K 2 

and. writing for briefness'-

a1= ( -.l) ^ 

w have
TT2 

2	
- '— 1 /'	 (r	 K2 a 1 2 ) d. 

-	 a12 
;=T1T IT- K 2 ( - 1)2 

.T=T2 

a12 
j	 - K 2	 1 ) 

•T= T 

	

( - 1) 

j;2	

K2(_1)2 
T =

r 

0
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The evaluatio; of the integral gives 

211	 = -
	 -	

2 
[if _t)2_ Ka{( _1)2 + 

0	 .(.n- 1)	 .	 .t= o 

•r.	 -	 ) 2	 2{(	 -	 )2 

- KI arc tan	 . 
L	 - 1)	 . 

Taking account of the different upper integration limits 
according to whether the point considered is within cone II 
or between cones I and. II, equation (31), and. setting for 
briefness

a	 2	 2 
w€ = ( -	 - ic	 - 1) +	 J	 (32) 

there s obtained as the final expression for 

For cone II 

2rr—= 
Y0	 (ffl— 1)2+	 2t.

I;-	 __ - K jarc tan	 - arc tan .
	 3	 (Z3) 

K(r_l) 

Between cones I and II

1—	 . 
2 i-i ._L = ____________ 	 - K arc tan	 (33b) 

''O	 ( - 1)2 + 2	 K ( - 1) 

where

- 1< 
K( -	

<+ 1:- U <arc tan <U 
2	 .2 

From these formulas it follows that 	 on the surface of 

cone I is equal to zero and on account of W = 0 is con-
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tinuous in passing through cone II. On. the common axis of 
cones I and II, there still occurs the same singularIty as 
in the case of the lifting line,. 	 , there becoming in-
finite as hr.	 -	 : 

In order to obtain the total downwash velocity, there 
is still to be .ad.d.ed.to equations (33a) and (33b) the por-
tion contributed by the plane wave. This contribution is 
different from Zero only between the plane waves starting 
from the leading and, trailing edges (fig. 4). According to 
equation (20) 

C	 -	 rv •	 =	 =	 I 
Zwave - -	 rO, C	 - C 1	 -	 34 

The expressions for the two remaining components of 
the induced velocity	 and	 are found by similar in-. 
tegrations. We shall only indicate the results: 
Cone II: 

2iii.	 (T-r) 
(fl - 1) 2 + 

	

cx	 ( -	 - 1)	 -. 1) 2 i - = arc tan	 - arc tan 
"Yo 

Betvieen Cones I and. II: 

C 

2i2=_
- 1) 2 + 

	

x	 .t(ri-i) 
2 i-i	 = - arc tan 

•'Yo 

In the above equations, the arc tan is to be taken -ir/2 
and +rr/2. As may be seen from equations (33) and (35) by 
comparison with equation (14) in passing from the lifting 
line to the lifting :surfac.e,. the difficulty of the infi-
nite velocity at the cone surface has been set aside. The 
singularIty of	 and.	 on the cone axis (infinite as 
1/r) still rmains, however, and prevents the computation' 
of the induced. drag for this lift distrIbut'tn'. '

(35) 

t:2.
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For the d.ownwash distribution in the plane z = 0, 
at 1) the location of. the wing • x < t, and. at 2) behind 
the wing x > t, taking account of the plane wave, there 
is obtained, the following: 

1) For x < t:	
0 

- 

1< I)<O: 20 = - 1 +	 -	 - arc tan _______ 
ry

______	 _______	 (36a) 
23' 

O<I)<+ 1:	 - arc tan 
icy0	 I)	 I) 

where for the arc tan the same values are to be taken as 
in (33) and.. I) is given by equation (].5a). 

2) For x > t: The plane waves do not contribute 
anything but the formulas obtained differ according as the 
region considered is within cone II or between cones I and 
II (fig. 5). 

- (1 -
	

< 1 -	
: 2'z 

	

x	 icy0 

=	 (Ti	 2 -	
- t) 2 I)2 

	

1-TI,	 J	 I 

- 1 (arc tan 11-	 - arc tan	
- t)2	 2

-. 

•0 

1	 0 

2c	
= 1 (l -	 - arc tan /1 - I)2)	 (3Gb) 

TI	 I)	 I)	
0	 $ 

00__	 __	 - -
	 P
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The d.ownwash d.i'st bu ion-for x <t and. for x = 2 t 
computed. by the above equations ié shown in figure 6. 

Purther, We have in the same- manner as for- the lift-
ing- line determined, for the lifting surface the stream-
line field. of the y and. z velocities in a plane at 
right angles to the cone axis. At the 'location of the 
wing (x<'t, fig. 7) there is obtained. outsid.e of the 
cones springing from- the wing tips a constant d.ownwash, 
due to the plane waves, along tho span'. The streamline 
picture within the iLach cone in the outerhaif is similar 
to that of'the lifting. line (fig'. ?); the inner half how-
ever is entirely changed. by the' ad.d.itional downwash ve-
locity from-the plane'wave. 

The streamline picture behind. the wing (x = 2t, fig. 
8) has, outside the Mach cones springing from the wing 
tips, a conBtant d.ownwash velocity d.ueto the plane waves 
in two strips symmetricaL'to the plane •z = 0.. These two 
strips are limited by the plane waves starting out from 
the forward and the trailing edges of the lifting surface. 
Within the Mach cone the streamline picture in the outer 
ring is -the same as for x< t and is changed, only in the 
inner region.	 - 

We shall yet consider briefly the question, what the 
form of the wing.aurface must be that corresponds to the 
assumed. lift distribution. The wing plan form wehave as-
sumed. as rectangular. Angle o'f attack and twist are ob-
tained. ,fromthe consideration that at the wing, i.e., in 
the plane z = 0 in each section parallel to the flow di-
rection, the direction of the- streamlines must be parallel 
to the wing tangent. Let z =z(x, y) be the equation of 
the wing surface and z(O, y) 	 0, i.e., stra 4 ht 1eac1Li 
ei. e. Then we . have	 - 

d. z	 C0(X, y) 

dx 

where c 0 includes tho induced velocities from both the 

plane waves and the edge cones. There is thus obtained 
for the wing surface -	

'.-'	 .'=x	 ..-.-	 - 

z(x, y) =

	 x'=	

cz0(x',y) dxt ..'	 (37-)



N.A.C.A. Technical Memorandum No., 897	 19 

so that a further quadrature is required: to compute the 
form of surface wing. 

For the case considered of constant lift distribution 
there is obtained, for the region outside of the two Mach 
cones at the, wing tips, from equations (37) and (20): 

z(x, y)	 x 

that is, a flat surface with angle of attack 	 . Within 

the Mach cone the surface bends downward more and more. 
strongly as the edge is approached. The edge itself (y = 
b) is bent infinitely downward, i.e., actually the rec-
tangular surface with constant spanwise and chordwise lift 
distribution is not possible. For this reason we 'may 'd,is-
penee with the further computation of the wing-surface 
shape. 

V, TRAPEZOIDAL WING WITH CONSTANT LIFT DISTRIBUTION 

We consider now a trapezoidal wing with constant sur-
face density of the lift Y 0 (fig. 9). If the wing is 

cut away behind (taper angle	 , rig. 9) in such a manner 
that the Mach cone at the tip of the leading edge does not 
overlap the wing (T > a), the induced drag is obviously 
equal to zero and. only the wave drag exists (reference 4). 

'r>a:Wj = 0 

The trapezoidal wing with constant surface density of the 
lift 'Y, Is plane outside the Mach cone and has the angle 

of attack	 where

= 2	 U0 tan a 

The trapezoidal flat surface with constant lift distri'bu-
tion whose cut-away angle T is greater than the Mach 

-- cone angle maybe 1oo1ed. upon a's the'ideal supersonic 	 - 
wing with finite span" siice fr %t the ra'tio of drag to 
lift is no greater than for the w.ngo' infinite span. 

The computation of the induced drag for 1' < a is 
possible in a simple manner from the above results, By a 
lifting element we shall mean a strip of the lifting sur-
face of chord d x and. therefore with circulation y a. x, 

a
'I
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Such. a lifting element. at x 	 0:... generate.s at a lifting 
element of chord d. x' at x = 

d 2	 P ; d x' ,fd ( ox! ) .d y	 (38) 

y=y0x) 

whore. d. c ' denotes the d.ownwash velocity induced by 

the lifting ólement x =0 at . the position x = x'. The 
integration ltml,ts are the surface of the Mach cone aris-
ing from the t.ip. of the wing leading edge and. the side 
edge of the plate. For the d.ownwash.velocity 

(ox') in the plane 	 = 0, we have according to eqiation 

( 14 c)	 .. . . .;
	 ________________ 

d c(0X	 = ?	 112	 a(' - 1)2 d x	 (3g) 

with the aid of which equation (38),becomea	 V 

d 2	 = 0 'Y 2 d x dx' /
	

. 
2rr	 • 

n-1 
or with	 =	 - , according to equation (15a) and 

tan 
8= ___ .	 ....	 (40) 

tana 

as the reduced angle.of . taper

'Ji	 2 
d.2	 __y2dxds / .	 .-_ 

2ir...	 .....j 

V = - .

L Y 02 d x d. x 1 g (8)	 (41)	 -
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The. evaluation of the definite integral gives 

g (6)	 4 -	 log	 - 62	
(4) 

According to equati 
ing element x = 0 
ent of the distance 
ments lying between 
duce the same drag, 
x	 amounts to

o (41) the induced drag from the lift-
at the position x = x' is ind.epend-. 
between the two elements., All ole-

x = 0 and x = x. accordingly pro-
so that the total drag induced at x = 

p. 
d. Wj	 = - - 'V 2 x l d x' g (6) 

2,-i 

The drag for the entire wing is obtained from the above 
by integrating over x'. between the limits X t = 0 and 

= t and multiplying by two (both ends) 

x'=t 

= - -- v 2 g (6)	
/	

x' d. x' 

-	 P ,2 
t 2 g (e) = -	 r2	 (6)	 .	 (43) 

2,-i	 2,-i 

The minus sign is explained by the fact'that with our 
o1ioice of coordinate system the drag component of a force 
is in the direction of the negative z axis. Formula (43) 
for the induced drag of a trapezoidal wing with constant. 
surface density of the lift is of the same structural form 
that is found for the incompressible flow. For triangular 
lift distribution (lifting line) in the case of incompres-

- -	 sibl.e f1ow,wehave,forexampLe,_	 .	 -	 - - -	 - 

1=_lo2p2 

where	 is the circulation at the wing center. For 

equal total circulation r0 , w	 according to equation 

(43) is independent of 6, i.e., the ratio of the tangent 

I
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of the angle- i to.the tangent of the Mach angle (equa-
tion (40)). In passing to the rectangular wing, 8 	 > 0, 
the induced. drag according to equations (42) and. (43) be-
comes logarithmically infinite; in agreement with our re-
suits of the previous section. 

Actually, we are not interested, so much in the value 
of the induced drag alone as in the sum of the induced and. 
wave drags. For the wave drag, according to equation (21)• 
we have

wave	 P ? 'o Cz 

where F = b t i - t tan
	

the area of the wing 

=	 ry0 

Zwave - 2tan a 

hence	 = -	 10 
ave	 2	 tan a 

For the lift we have, on account of	 = 2	 u0 tan a: 

	

A = P ' u0 F = 2 p u02 '	 tan a	 (45) 

0. r.

A	
Ca =	 tan a	 (46) 

-.	 u02P	 : 

For the wave rag we obatn from.. ()	 :-

Wwave = 2 P 1' UO2	
2 tan a 

Wwave = Wwave 
=	 2 tan a :.
	

(47) 

and for the induced drag from equation (43) 

C..
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W i =	 t2 4	 UO2 tan2 - a g () 
2

1 4 t	 tan2 a g () 
________ = cw i = - 

U O 2 F	 TT	
b (i_ t tan 

7) 

2	
g (8) 

c 1 =	 tan' a - -=	 (48) 

ttana 
where X = -	 is the "reduced asoect ratio" of the 

b 
wing. For the total drag there is thus obtained from (47) 
and. (48) 

(cw)wave + md =	 tan a {i + . g 
•TT1-GX 

c 2	 ) .g (8) 
(cw)wave + ind• =
	 a	

1 + -
	 }	

(49) 

4 tana	 TT1-

It follows therefore from the. above that for supersonic 
speed the wave plus induced drag, like the induced drag 
in the incompressible flow case is proportional to the 
square of the lift. Equation (49) is analogous to the 

well-known formula ' c 	 =	 - 4. of the elliptic lift 
ii b 

distribution for the incompressible flow. The essential 
difference lies in the fact that for the supersonic flow 
the drag parabola for small aspect ratios t/b is to a 
first approximation Independent of the aspect ratio. The 
manner in which the drag increases with increasing reduced	 - 

aspect ratio 3\ =
	 tan a and. decreasing 8 is shown in 

b 

/ Ca2 
figure 10 where	 cI	 is plotted against ) for 

/4 tan a 

various values of e. Our formulas are valid only for
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x< , i.e., for the case tn which the Mach cones do not 

overlap on the wing. 

In order' to be able to' predict what the- wing shape 
must be s, that our assumed lift distribution may be pos-
sible, we must first compute, the field, of the induced 
velocities. For this purpose' equation (39) is to be in-
tegrated over the trapezoidal area. The value 

dc	 according to (39) gives the d,own.wash velocity in-

d,uced at the position	 by a lifting element 'V 0 dx 
starting at	 = 0 and ending at 'fl = 1. A lifting ele-
ment which starts at	 = ' and. ends at	 = ' thus 
producos at the position	 , fl,	 = 0 the d.ownwash veloc-
ity

d	 = -	 d	 -	 - 

2 TT	 (	 -	 ') ( r' - 

For the velocity induced by the entire surface there is 
thus obtained 

= - "'	 Al ( -	 - 2 (	 -	
1.' (50) 

°	 2,i.j	
(	 -	 e)(.I - 

In order to evaluate this integral we introduce the new 
integration variables

c tan"	 '	 (51) 

(See fig. 9,) Since the end. points of the lifting elements 
lie on the wing contour there exists the relation 

l-'	 tan	 (52) 

The upper integration limit t' =, in equation (5o) is 
obtained from the condition.	 (See fig. 9.) 

C.



N.A.C.A. Techn.icral.Memorand.um No. 897	 25 

tan q:? =tancx:'	 =1 

The lifting elements whose	 ' is greater than the 
thus determined, give no contribution at the points 	 , 'r, 

= 0.	 'or the lower integration limit. 

	

= 0: 'fl' = 1:	 ,n = 

prom equations (51) and. (52) there is obtained. 

_____ - _____ 

	

-	 -, e 

where e is the abbreviation introduced, in equation (40). 
There is then obtained from equation (50) 

'V	
'	

'V 
() = - ..__2.	 /	 ( , e) (53) 

2ir	 J	 '(' -	 2ii 

t '=* 
In evaluating the above integral the following three cases 
are to be distinguished: 	 - 

1. o<6<;	 2. o<<e;	 3.	 <o<e 

In case 1 the point P() lies within, in cases 2 and. 3 
without the trapezoidal wing. In case 1 the integrand is 
regular over the entire range of integration; in case 2 
it possesses a singularity at 3I = e; and. in case 3, two 
singularities at	 = 0 and. ,' = . In cases 2 and 3 
the principal valueB are tobo taken, namely, 

0 < i < e:	 t=e_	 ty=1 
t2 

- - - -
	

:'} 
(54á) - - - 

e.

--p
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and. 

	

F(13, 6 ) =limt j	 d.	 ' + 

	

E--4	 J	 - 6) 

13 

+ 

.1
	

:d.13' 
=	 : :

	
(54b) 

13 

The integral

V1	
•tS2 

F(13,e) 
=j'	 '(13'6) 

d. 13? 

13 I._. 

may be obtained. by elementary method.s. We set 

= t 13' - 1 

where t is the new integration variable so that (55) be-
comes

t=tl
(1 - t 2 ) 2 dt .	 S 

	

F(13,6)	 /	 - 
t(l ^ t) t2 t - 5 (1.+ t2) 

where	 S 

t =	
= 1 + .j 1 - 13	 (56) 

13 

By breaking up into partial fractions there is obtained. 

(55) 

C.
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(1 - t 2 ) 2	 - -	 2	 - 1 

t(i +t 2 )	 t - 6(1 + t2)	 -:	 1 + t 2	 £ t 

•	
7_1.	

1 
+	 ) 

	

e	 t- t 2	 t - 

where

e 

Performing the integration, there is obtained. 

F(,e) =	 - 2arc tan t	
log t +
	

- 

L	 6	 6 

	

jiog (t - t ) - log (	 - t 1 ) 1 2
I 

For 0 < 6 <	 there is therefore obtained directly 

F(8, 6)	 - 2 arc tan	
- log \1 

2	 6 

J 1 - 62	 (1 +1	
62	 e - 1 ^:-	 \ (7) +	 lo 

•	 6	 6	 ^J1_62) 

while the formation of the principal value according to 
equation (54a,b) gives

C
-	 I
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0 < < 6: 

= - 2 arc tan 'Li - .a_±
2	 £ 

- 2	 ( +l -	 e - i J- E•2 
-	 log - 

8	 6	 6_.l.A/l	 62

57) 
<O< 6:

log (-'Li) 
= - U. - 2 arc tan 41- - 

2	 6 

- 6 2	 fi +/i__6 2 41 6 - 1 ^Ji - 
+	 log-	 ____ 

6	 6	 4i6_i_J_ 82, 

where

- U. < arc tan 'LI < U. 

2	 2 

There is thus found. the d.ownwash d.istributiofl in the entire 
Mach cone springing from y = b/2, x = 0. For	 F(e,6) we 

have 

= ±I:F(±l; 6)	 0 

= O:(6,6) = P(0, e) =	 as. log	 at	 0	 (58) 

On the two rims of the cone (i3 = l) the induced, velocity 
is ,thus zero and on the edge of the trapezoidal wing 

( = 8) and. on the cone axis	 (	 0) it is infinite. 

In figures 11 and. 12 for the particular case 6 = 

(tan a =	 tan	 = _L'	 there is shown the induced 
3 

d.ownwash velocity in a section parallel and perpendicular, 
respectively, to the principal stream direction. 

To the above velocity field of the tip vortices there 
Is still to be added the velocity field. due to the plane 
wave. The latter in the plane z = 0 within the wing area 

is
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1	 •Yo 
C 0 	 =--	 =.- ouo 

wave	 2 tan a. 

and. outside the wing area 

C Z 0 wav e 

Prom the velocity field it is now possible to compute 
the form of the trapezoidal wing surface that has constant 
lift distribution. Outside of the Mach cone we have, ac-
cording to equation (37) 

	

z(x, y) = ..L J/CzOwave (x', y) d x' = -	 x 

	

that is, a f].a.t surface with the angle of attack	 giv-
en by equation (18). The twist of this flat surface within 
the edge region of the trapezoidal area that is overlapped 
by the Mach cone is given by 

	

z(x,	
= 1	

X	

d x' 

x'=(b/2-y)/tan a 

and. according to equation (53).. 

XX	 X1X	 - 

	

z(x,y) = .i_Ic /	 P(', 6) d x' = 1Q /P(', e) a 

	

2i-ru0 j 	 Trj 

x t= (b/2_y)/tan a.	 xt=(b/2-y)/tan a 

	

On account of i =	 there is obtained
x

	

15t=t	 - 

z(x, y =	

( -.	
:''	

d &	 (59) 

tt=1
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Since the function P(, 8) is known from equation (57), 
it is possible from the equation above to compute for a 
given e the profile sections of the surface at various 
distances (b/2 - y) from the edge. The ordinate of the 
obliquely cut-away edge of the trápezotd.al area for b/2 
y < t tanT: 

:'	 z ( xR,. .) =	 (. -	 ) f	 .:';	 d.	 (60) 

The intégrand. becomes infinite for	 = 9 (equation (58)). 
•	 The integral exists, however, and may be evaluated by spe-

cial, computation. There is obtained. 

	

I p (', 8) d.
	 -	

- arc sin 8 -	
+	

1	
- (60a) J	 -	 •	 2 9	 8 '	 6	

• :1 jj - 

(The' evaluation of the integral was performAd. by Dr. F. 
Riegels.) 

For 6 = 1/3, we'thus'have 

	

1	 F(', 6) 

	

6 = 1/3: /	 - d.	 = - 4.92 
j	 I2 

t=1 

The ordinate of the rear.edge point x = •t, 	 - y = t 'canT 

for 6 = 1/3 , is, thus z = - 1.522	 t.	 (Flat surface 

z = -	 t, twist z = -0.522 0.t.) 

For the special case 6 = 1/3 , (tan a. = T3; tan T =

the profile sections have been computed and are 

given in figure 13. If the, trapezoidal wing were flat 
there would be a drop • f 'the lift toward the' edge down to 
zero. In order that uiJ. lift be 'maintained up to, the 
edge, the wing must be bent 'dàwnward. The twist of the 

C,
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wing directly at the edge is very strong as may be seen 
from the "elevation contour lines" (fig. 14). 

VI. COMPUTATION OF THE LIFT DISTRIBUTION

FOR THE UNTWISTED RECTANGULAR WING 

The examples thus far considered are all inconnec-
tion with the so-called first principal probiOi of the 
airfoil theory where the lift distribution is given and 
it is required to find the drag. and the wing shape. Of 
greater practical importance is the second principal prob-
lem where the wing shape being given it is required to' 
find the lift distribution and. the drag. As in the case 
of the incompressible flow, so also in the case of the 
compressible flow the first problem, which leads only to 
quad.ratures, is considerably more simple than the second, 
which requires the solution of an integral equation. 

In what follows there will now be given an example 
of the second principal problem, namely., the 	 mputation
of the lift distribution for a plane rectangular' wing 
(span = b, chord = t), that is to say, the same problem 
that was first considered by A. Betz '(reference 5) for the 
case of incompressible flow. In the treatment of this 
problem we can utilize to a large extent the results we 
had obtained in the previous section for the trapezoidal 
wing with constant surface density of the lift. We con-
sider a rectangular flat plate which extends from x = 0 
to x = t and. from y = _b/2 to .y = +b./2 and is set at 
the small angle of attack 	 to the undisturbed veloc-



ity u0 (fig. 5). Within the region bounded'by theplane 
waves starting out from the leading and trailing edges and 
the two Mach cones there is the' constant downwash velocity 
due to the plane waves 

-- - - - - - - __czo , -	 rFoUo	 -- - -- - - -	 . (l).	 -	 - 
wave	 2 tan a 

the flat plate overlapped by the, 
there thus exists the constant lift 
the tips y = b/2 the lift must 
0 at y = ±b/2. There is required 
'V = 'V (xy) within the region 

cones. The problem is considerably

Outside the region of 
Mach cones at the tips 
distribution 'Y0 . 'At 
vanish, that is, ry = 

the lift distribution 

overlapped by the Mach 

C-
1
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simplifted. by the circumstance that, as will immediately. 
become apparent, -Y does notdepend. on.the to ind.epend.-
ent variables x, y, but only on one of the variables 

b 

8=

	

	 (51) 
x tan a 

(fig. ii). For the required lift distribution 

= 'V 0	 (62) 

of the rectangular wing there then exist the boundary con-
d.itions	 .	 .	 . 

0: f(8) = 0 1-
>.	 .	 ( 63) 

i = 1: f() = 1. J 

In order- to be able to-set up..the integral equation for 
we. must first compute the field of the d.ownwash ve-

locities w(-) induced by a.rectangular wing with the cir-
culation distribution 'V(-e) in. the plane z = 0. The in-
tegral equation-for Y(8) is then obtained.in the known 
manner from the consideration that for oach position of 
the wing the sum of the effective angle of attack 

--	 -	 ..	 -	 -1	 )	 -
(64) 

2 u0 tan a 

and, the induced angle of attack - w 	 mist-be equal
-: 

to the geometrical angle of attack	 - 

W() =
	 .	 .	 ( 65) 

The velocity field w() . induced by the edge vortices is 
obtained by considering the rectangular wing with the var-
iable lift distribution 'v .(o) -='Yf () as built up by the 
superposition of trapezoid.al•wings with various taper an-
gles each o which wings possesses a constant lift distri-

bution.. Again, let	 = tanT be the "reduced taper anglet' 
tan a 

(equation 40), then the lift d.istfibution 'V = 'Y,f () may
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be obtained by the superposition of trapezoids with angles 
6 and. lift densities 'Y0 f'(6) d. 6. Each of these trape-
zoids produces, according to equation (53) the velocity 
field

ry	 f I (6) 
d. w . (8) = -..	 F (,6) d. 6

2Trtana 

ani. integration over 6 from 6 = 0 to 6 = 1. then 
gives the induced velocity field over the rectangular wing 

(5) = -	 '' O 	 / f'(G) F (,e) d 6	 (86) 
2i-r tanct J

0 

By substituting the above expression for w(i) in equatioii 
(65) , there is finally obtained, taking account of (6l) and 
(64) the required integral equation for f(5)t 

f() + I ] f t () F (,6) d. 6 = 1	 (67) 

to which are ad.d.ed. the boundary conditions (63). This 
integral equation for the lift distribution has the same 
structural formas that for the incompressible flow. It 
differs from the latter, however, by the different core 
p (,6), which is given by equation (57), and for the super-
sonic flow is of a much more complicated form that for the 
incompressible flow. Equation (67) also exhibits the nota-
ble property that neither the aspect ratio of the wing nor 
the Mach number appears explicitly, whereas in the incom-

•	 pressible case the characteristic value of the integral 
equation depends on the aspect ratio. The dependence of 
the lift distribution on the Mach number appears in the 

•	 introduction instead of the geometric angle 	 (fig. 9) 

tan 
the reduced angle	 =	 as the variable. It is neces-

tan a 

sary to solve the integral equation (67) only once to ob-
tain the lift distribution ofthe rectangular-wing for all 
aspect ratios and all Mach nambers.
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The solution' of the integral equation (87) appears 
at first sight..quite difficult, .particularly . on account 
of the complicated structure of the core F(.,&). (See 
equations 56 and 57.) By a simple transformation of 
equation (67) it is possible, however, to simplify the 
problem considerably.* The equation is a nonhomogeneous 
integroiifferential equation for f(). Instead, of it 
we shall consider the equivalent equation for f'(). 
Taking account of the singularity of the core, equation 
(67) may be written 

f() 
+ .{ ] 

f' (6). F(, e) d e ^
	

P(,6)	 e	 1 

Differentiation with respect to t gives 

+	 {ft() p () + / f'(e)L!d e 
IT	 I

ê=i 

- f'(3) F(,) 

+ ]	

ft(s)	 .! d. 

and because	 -	 ,

(- 6) 

according to equation (53): 

•	 f',()	 J	 d 8 = 0	 (68) 

*por this suggestion I ' am indebted to Doctor Lotz and for 
carrying out the numerical solution of the integral equa-
tion to Mr. Pretech. 

Q
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The above is the equivalent ittegral : equation for f'(.) 
which, however, is now homogeneous. The solution of this 
integral equation for f'(&) . is possible by building up 
f'(&) in n steps and. solving the correspond.ing system 
of linear equations

=0 

	

1 _________ E f' 
2+1 j
	

- 8	

) 

-	

(u = 0, 1 ......u - 1 

(69) 

This is a system of n homogeneous equations for the n 
unknowns	 '(v+)( = 01, .,., n - 1).	 Since, as 
closer investigation shows, f' (0) =	 1' () is suit-
ably chosennot constant but equal to 

ft(t51) = a - b 

There is then obtained. in place of equation (69) a 
nonhomogeneous system of equations of the nth order for 

b 1 
the n unknowns —, —'(2+1) (u = 1 ..., n - 1). The 

further unknown •a is obtained, in the numerical integra-
tion for f(t3) from the condition 

f' 
f(1) = a E	 = 1	 (70) 

u=o	 a 

In carrying out the numerical process there were first 
taken five steps -(1U41 = 0.1; 0.3; 0.5; 0.7; 0.9), then 
ten steps	 ('2V+1 = 0.05; 0.15; ...; 0.95). 	 It was found
that the ten-step approximation gives an improvement over 
the five-step process only in the interval 0 < 8 < 0.2. 
In the third approximation therefore only the interval 
0 <<0.2 was again subdivided. (i5U+i= 0.025; 0.075; 
0.125; 0.175). The values obtained inthis manner for 
f'() and f() are given in table hand the function 
f(o) plotted in figure 15. At 8 = 0 the function
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f (s)- possesses a .singu:Ear-i:ty. s-inc. -' f 	 •there becomes
infinite. The mathematical- nature of. this s:ingularity 
could. not- as yet be determined.,	 ... 

Ye shall now compute the lift, wave drag, .and..induced 
drag as well asthe moment about the transverse axis of 
the rectangular flat surface.	 - 

The lift A 1 of that portion of the surface which 
lies outside the two Mach cones is 

-	 1	 ttana 
= p u0 Y0 b t l - _______ 

b 

while the lift of the two triangular portions overlapped 
by the Mach cones is 

= P u0 t 2 tan a J f d =. p U0 Y0 t 2 tan a K 

where	 .	 - 

	

=	 = 0.684	 ..	 (71> 

The total lift of the rectangular plate is therefore 

A = P u0 qyQ 'o t { 1 - (1 - 

or, according to equation (20)

	

A=2puo2oFtaua{l_(l_K)X}	 (72) 

br the . li	 coefficient there is thus obtained 

-	 Ca =. 4	 tan a.	 - (1	 .	 (73) 

Foi';the.wave d.ragoutsid.e of ' the Mach : cones there is 
obtained simply	 .	 .	 .	 - :.	 . 

-.	 .	
.-	 P	 2	 b t	

.;•-;•	 :t.	 ana 
waveIoAi o	 _t,..'._	

(74) 

tana.	 b
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The wave drag of the two triangular portions overlapped 
by the Mach cones is 

Wwave	 = 2 P 1 'Y	 d. f 

where

c	 =	
. ° 

Zwav e
2tana 2tan 

and.	 . 

d. f = — t2 d. (tan cp)

Table II 

Lift Distribution of the Untwisted. Rectangular Wing 

f(ô) andf'(ö) 

______ ________ ______ _______ 
0.025	 4.49	 0.05	 0.219 
.075	 1.86	 .1	 .312 
.125	 1.39	 .15	 .381 
.175	 1.24	 .2	 .444 
.25	 1.10	 .3	 .554 
.35	 .958	 .4	 .649 

	

850	 ..5	 .734 
.55	 .753	 .6	 . .S10 
.65	 .655	 .7	 .875 
.75	 .546	 .8	 .930 
.85	 .417	 .9	 .971 
.95	 .225	 1.0	 1 

We then have	 -

"=1 
0	 t2	 f.	 p 

WwaveII	
/2d(tanq,)_t22 / ±& 

2tanci.J	 2 

p	 .. 
Wwave ii = — fy2 t2 .X 1	 .	 ( 75) 

2
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where

K = J f 2 (o) d. 

Similarly there is obtained, for the induced drag in. 
the two triangular regions overlapped by the Mach cones 

2 p J Y C Zj d. f 

where from equations (62) an& (65) 

1	 'Yb 

= 2 tan. 
a (1 - 

We then have 

=

:	

Li	 -	 f()3 d 

= t2 'Y2'• (	 K) (76). 

For the total drag 

= Wwav e I + Wwave II + W, 

there is thus obtained. from equations	 (74), (75),	 and.	 (76). 

P .	 bt
l-	 (1-K), 

2	 tanct 

or from equation (20) 

= 2 p u0 2 o2 F tan .a	 -	 (1. - K)	
}	

(77) 

and for the drag coefficient 

tan a	 l -	 (1 - K) ? (8) 

From equations (72) and (77)	 there is obtained between the 
lift and the drag the simple r'elation 

A (79)

C.
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There is thus obtained for the plane surface of 
finite span the same simple result as for the infinitely 
long flat plate, namely, thatthe ratio of the total drag 
for a frictionless flow to the lift is 	 : 1. This may 
also be explained by the fact that in contrast to the in-
compressible flow no suction force arises at the leading 
edge in the supersonic case and the resultant air force 
is therefore at right angles to the plate. 

For the relation between the drag and lift coeffi-
cients, there is obtained finally from equations (73) and 
(78)

C2	 1	 C2	 1 =	 a	 _____________ - a	
.	 (80) 

4 tan a 1 - (1 - K)?%	 4 tan a 1 - 0.316 X 

The above formula has the same structural form as 
formula (49) for the trapezoidal wing with constant lift 

distribution. In figure 10 Cw/ 
Ca	 has been plotted 

/4 tan a 
against the reduced aspect ratio X (dotted curve). It 
may be seen that the rectangular plane wing for the same 
lift has the same drag as the trapezoidal wing with con-
stant lift distribution with the reduced taper angle e = 
tan T = 0.27. . For the reduced aspec.t ratio ). = 0.3 the 
tana 
rectangular plane wing has, for the same lift, about 10 
percent and for = 0.5, 19 percent more drag than the 
ideal trapezoidal wing whose taper angle is greater than 
the Mach angle.	 S	 . 	 - 

With the above results the theoretical polar and 
moment curves for the plane rectangular wing may be given 
for various aspect ratios and. Mach numbers. For the mo-
ment MB about the tranSverse axis in the wing leading 

-edgo,there is obtained- 	 -	 --

= 2 P U0.2 3o tan a b t2{ - 2 (1 • - Z) } 

* It is interesting to note that the constant 1 - K = 1 - 

J'f(t) d t is equal to 1/u within the computational accu-
0	 .	 . 

racy. That this is exactly so has as yet not been shown. 
For this it would be necessary •to know the exact solution 
of the integral equation (67).
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and. for the moment coefficient cm
K.	

u0 bt2 

cmH_	 o tan'ct{._ 

-	
(81) 

- 0.211 

Cm	 Ca 
H ,	 1-0.3l6? 

Through equations (73), (80), and. (81), the polar and.mo-
ment curvee not consld.ering the frictional drag, are com-
pletely d.etermined, In figure 16, the polars are given 

for the aspect ratios	 = 0, ., and.	 and. for the Mach 

numbers	 1.2, 1.5,2.0, and. 3.0. The drag differences 
C 

between wings 11th variouS aspect ratios are considerably 
smaller In the case of the.supersoniq flow than for the 
incompressible flow since in the first case the greatest 
part , of the drag is contributed by the wave resistance, 
which is independent of the aspect ratio. 

The plane rectangular wing at supersonlc'flow is one 
with constant center of pressure position, if the fric-
tional drag is disregarded. The position of the center 
of pressure depends only to a slight extent on the re-

ttana 
duced. aspect ratio	 =	 -. For the Infinitely long

b 
wing, the center of pressure lies at the mid.chord. position 
and with decreasing aspect ratio it moves forward. somewhat 
(table III) ' .	 '	 ' 

Table III 

t tan a

b

CmK -'	 1 

Ca	 2

1/2 

0.489	 '0.469 
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Formula (80) for the rectangular.flat plate is the 

analogy to the familiar.. C j . = Cr 2. 1 ./i-i b 2 of the inôom-

prssible flow. Like the latter it enables the recompu-
taion of the drag from one reduced aspect ratio 

t tan a	 .	 t2 tan a2 

	

to another '2 =	 . From equa-

tions (73) and. (80) there is obtained. for the new angle 
of attack and. the drag. 

Ca	 1	 ..	 1 
=	 .-. 

tan a2 (1-0.316) 2)	 tan a1(i-0.3l6?t)
(81a) 

c821	 1	 .	 .	 1 
C w 2 =cw +-1	 tan a2(1-0.3l6).,).	 tan a1(l_0.316?'i)d 

VII. TRAPEZOIDAL LIFT DISTRIBUTION 

a) Lifting Line 

As a further example we now compute the ind.ucea drag 
and. the velocity field. for trapezoidal lift distribution. 
for both the lifting line and. the lifting surface (fig. 
17). Let the lift distribution therefore be given by 

r(') - 1 -
for 'r) 1 T1'< 1 

_____ - 1 -
(82) 

P(r) =r0 for	 -	 + .nl 

where	 = b'/b, according to figure 17. The fild of 

	

--t-he-ind.uced. v-eiocit-ies	 variable lift

distribution may be obtained. in the familiar manner from 
the lift distribution by superposition. On account of 
integration difficulties, however, this computation can 
not directly be madeon the potential but must be carried. 
out separately for the three velocity coDponentS. Prom 
equation . .(14c) we have for the Induced downwash velocity 

	

of a lifting line ending at r =	 with circulation r0:
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•r	 UTI TII){2	 K2[(TI - T$)2 + 2 aj} 

c(r1 t ) =	 2.	 S	 (83) 
rib (	 22)[_;).2J22 

Prom the above there i,a obtained, by superposition 
the d.ownwash vei.ocity c	 for variable circulation I'(TI'): 

c= -	 j c(')	 ci TI 1	 (84) 

	

. '	
'=-

Par the trapezoid.al lift distribution according to 
equation (82) we have therefore if, on account , of symmetry, 
we restrict ourselves to the. half-wing y > .0 

1	
TI1 

c =

	

	 I: c 5 ('fl') ci TI' 
l-• j 

TITI1 

or, acàord.ing to equation 83) 

• bc	
I TI'l. (TI, - 

TII){2_[(TI'-TI)2 
+ 22J}d TI' 

T	 j 
or with 

	

(TI' - n) +	 = ¶
5 

b c	 1/2	 •. Sd	 1/2	 ciT • 

	

F 0 = - - TI1	 TI2 T 
1- TI1 2 .	 2J2 

Perform1n the integration there is obtained for 
points	 , 1, •. •.w1thin:.e•Mach cone at the *tngtip TI = 1 

•	
1	

"-+—log	 (85) 

3. - TI1	 -	 2	 2	 2	 ...,./"
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and. a corresponding expression with reversed sign for the 
Mach cone at 'fl = Ta .. The valtLe of w is. here gienby 
equation (12). In the cone 'fi = ]. ,c >0 so that there 
is upwaéh velocity. In the cone 'fl = fl 1 there is a 
downwash velocity of the same absolute magnitude (c < 0) 

and outside of the two ones c	 0, a result which, j 

also to be expected from reasons of symmetry 8ince, on ac-

dl' 
count of	 = const.,a1.l•separatin.g vortices are of 

the same strength. With 

- 1)	 . p (fl -. n)	 . . = 

there .s obtained for the downwash dietribution in cone I 
and III respectively in the plane z = 0. 

b cz,	 1	 (	 2 1	 i.+	
- 

	

TI -.	 = ± .	 j,—A/l - t + - log -	
.	

(86) 
1 -	 2	

1 - ll - 
On the cone surface according to equations (85) and 

(86) c E 0 and is therefore continuous. in passing 
through the cone. On the cone axis c 	 now bec.omee log-



arithmically infinite, whereas with the rectangular lift 
distribution (horseshoe vortex) c 2 becomes..iñfinite n-
the axis as . r 1. The• logarithmic singula-ity;. of c	 is 

no longer a distirbing factor for the computation of the 
induced drag. 

For the: sake of completeness there will also be given 
the remaining two components of the induced velocity. 
There is found for the cone at 'fi = 1: 

-	
.	 bc	 •1--	 •..	 - 

•	 .	 .	
2 -	 .	 . 

	

.	

.	 (87) 

__ -1

	 .
are tan - 

	

1-•	 •	 -1)	
.•
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and. corresponding expressions with reversed. signs for the 
cone at 'r = fl 1. For the arc tan there is to be taken the 
principal value 0	 arc tan	 u. For the outer cone 

= 1) the arc tan. is zero in; the upper half plane on 
the outer quadrants, of. the cone surface and., equal to +ir.. 
on the inner quadrants. In the wedge-shaped space be-
tween the two cones C1 is constant, being equal to 

	

cO	 '..	 (88)
b-b' 

In passing through the plane 	 = 0 ,	 therefore 

there is. a d.iscontinuous increment in á. by 
1' 

2	 • .The region of the 	 plane limited by the cone 
b-b'	 .	 b	 b' 

axes Ti = T	 and. fl = l.(d.istance	 ) is thus a vor-

tex surfacewith constant circulation density the total circula-
tion 0 which is equal to the circulation r	 of the
bound. vortit in the region of the constant lift. 

A streamlinepicture of the y and z velocity 
componente for a plane x , = constant that intersects both 
cones is drawn in figure 18. Like the streamline 'picture 
for the constant lift distribution (fig. 2) It was oh-
tamed, by computing the field of isoclinès. On the outer 
halves of the cone surfaces c 7 and c	 are equal to 

zero but the directions of •the streamlines c/c	 have a 

value different from zero. In this case, too, not all 
streamlines are closed., part of the streamlines ontering. 
from the undiatur.bed region into the one cone and coming 
out from the other again into the undisturbed region. 

b) Lifting Surface 

In order to compute the 'induced.' drag 'for the trape-
zoid.-sha'ped..lift.d.istrlbutipn,we must,, as iaectIon IV, 
make the transition from the lifting line to the lifting 
surface. A rectangular lifting surface will therefore 
now be assumed. of' span b and extending from x = 0 to 
x = t. The chord.wise' circulation' distribution is assumed. 
to be constant of density nt, while along the span the 
distribution is that given by equation (82). For the com-
putation we may here restrict ourselves to the region be-
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tween the cones springing from the leading and. trailing 
edges of the lifting surface, since only this region en-
ter into the question of the computation of the induced. 
drag. We likewise need. carry out the computation only 
for the cone at r) = 1; for the d.ownwash in cone	 = 
there is obtained the corresponding expression with re-
versed. SlgLJ.. 

For the induced. z component c	 of the lifting sur-
face, there is found., according to equation (85), with 

= 

2= -	 1	 ,)J()2	 a+ 

1- 'fl 1 .1	 -	 ç 
r=o 

+ _1/2	
['log __-
	 +	 - I)2 K2	

d 
1 - fl 1 J	 p -	 - l)2_K2 [•.] 

1=0 

w ii ore

=	 — K	 -l) + 

according to equation (31). With the new Integration var-
iables	 -	 = *, the above equation becomes 

az 
2 rr -

,Yo

____	 _* Js2 - K2[( - 1)] 
=	 .1 

1 - 'r1 j	 - K22 

1/2	 -	 ____________ 

-	 / 
'log •( * + Jj* 2 - PC 2 [ . . . . ]) d. * 

1 - 'fl, 

1/2 

+	 / log 

1 - 

where

(s -.	 2 -. K2 [. . . . J)	 r
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i	 ITh	 )2^8	 ..	 . 

The.three integrals are evaluated. asol1ows: 

Setting	 K	 =r, we have for 

.1/2	 K2( - 1)2 

...	
i_'rj 

• 	

. { - 

K	 - 1)'arc tan 
1 : _ fl .	 .	 •.	 i) 

3. 

with -.

(fl - i) +	 = 

and.

1* +./j* 2_K 2a i = 

there is obtained. for J2 

1	 1	 78T2 - K2 a12 
J	 -	 /	 logTd.1 

-	 8	
• 	

- 	

2 

Aftera brief intermediate computation we have 

= - 
.1/2	

.KE(1	
,)2 + 8 3 1og (Ji -	

+ 

•	 -	 iog ( ^i;- + 

and similarly 

J3 =	 1/2 :{(l .)2 + 2) log	
)2 + 2) 

1	
-



N.A.C.A. Technical Memorandum No. 897	 47 

By adding we obtain 

22=	 1 
'' o	 -	 tc('r - 1) 

	

1	 +A1}	
(89) + - log 

2 

A corresponding expression with opposite sign is obtained 
for the cone 'fl =	 The arc tan in equation (89) lies 

within the range	 arc tan ^ + U as follows from the 
2	 .2 

fact that	 must be symmetrical in (r - 1) since the 
same holds for c 5 according to equation (85). 

The induced. z component thus found for the rectangu-
lar lifting surface with trapezoidal lift distribution 
has the same singularities as the corresponding formula 
(85) for the lifting line. On the cone surface 

and on the cone axis logarithmically infinite. For the 
downwash distribution at the location of the wing in the 
plane	 0, there is obtained 

czo 
2 ii	 = ±	

.n1 t-''--	 +	 arc tan 
.11 -

+ 

1	 1 +/l - 
+ - log . 

_______I =	 g () (90) 

	

l_J1_ 2	 - 

- 1)	 n ) wnere	 =	 for coe I and	 =	 .	 for 

cone III, the upper sign holding for cone I and the lower 
for cone III. Equations (89) and (90) include only the 
downwash velocity induced by the edge vortices. In order 
to obtain the field . ôf the total d.ownwash motion, there is 
still to be added ie induced d.ownwash veldcity due to the 
ld.ne wave. In the wedge-shaped space between the leading 

and forward edges of the wing (fig. 4), this induced veloc-
ity component is



48	 NA.C.A. Technical Memorandum No. 897 

r	 1 -	 1/2 
c 0	 = - - - = - -	 =	 (el) 

wave	 2t	 2	 1_!'I 

For the total'd.ownwash velocity in the plane z = 0, there 
is thus obtained from equations (90) and (9i) 

For cone. I:. .	 - 

- 1 <	
2(1 -	 =	 g 

•	 .•	 •;. 

	

< -i-i:	
=

(92) 
For cone III: 

- 1<	 .0:	
1-	

zo =	
- g	

} 

The downwash distribution .thus computed. is plotted. in 
figure 19.. 

We are now in a positton to compute, for the wing 
with trapeoidal lift distribution, tho induced drag, In 
order to avoid special complications, we shall assume that 
the Mach cone springing from.the leading.ed,ge at 	 =
does not extend beyond the wing tip and, does not overlap 
the region of..d.ropping circulation of the other half-wing. 
The first is identical with the condition that the ccne 
springing from 'fl = 1 does nOt extend. into the region of 
the wing where the circulation is constant. This gives 
for the Mach angle the two'cond,itiona 

b-b'	 .. 
tan	 •	 - and tan a < - 

2t	 t 

The induced drag of one half-wing	 W,	 composed ad-, 

ditively of the drag of half of cone I, W ,

	

	 and the
Ii



N.A.C.A Technical Memorandum ito, 897	 49 

drags of the two half-cones of cone III, W i

	

	 and. 
III' 

(fig. 17). i'''2

	

W = WU1 +	 + W11112	 (93) 

Since in cone I, in the plane	 = 0, there isupwash 
velocity, W 1	 gives a forward thrust which inabsolute 

'1 

value, however, is smaller than the back thrust in cone 
III, since the circulation is greater here. We have 

xt	 y=b/2 

WI1 =	 f d	 :	 zo d.y, ( Yi =	 - x tan a,) 

x=o	 y=y1 

where	 is known from equation (90). We thus have 

2	 =2t/b 
p	 Fb 

	

= ______ - 0
	

/	
2 d	 / r () g () d.	 (94) 

1	 1 -	 8 TT P t	 J	 J 
In cone I for -1 <	 < 0:

_-1. 

and therefore

t=0 

1	 pp2, b2 
W. =- ______ ° (—. 

- __	
_(L -	 8\ Kt: 

For briefness we set

1 

g () d.	 = 

J

g () d	 =13	 (95a) 

I

----
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o•.	
-.	

1•_• 

g (fl d. 
=	

g ()	 K2	 - ( 95b) 

These integrals may be exactly computed.. There is obtained. 

7 

	

K3-----	 2	 (96) 
8	 1.8 

so that finally	 ..	 . - 

- .	
pr2, t 

iT1 = _________ - ° (s —)	 (97) I	 (1 — 'r 1 	 2 it 

The portion Wj111	 is obtainad from equation (9) by 

substituting -g(t) for g() and. taking r = 
that

Wi111 = - !	
.;	 • r	 t	

() 
1	

3l-T.	 IT 

Finally, IT1	 is obtained. by putting in equation (94) 

- --	 1112r = 
r0 (i	

. 

and. substituting -g() for g(). By comparison with 
equations (97) and. (98) this gives 

1!	 =iT	 +1! 
2	 1	 1 

and. therefore

Wi 
.	 Ii 

= 2 Wjiii + 2 IT1 1 = 2 IT1 111 {i +	
} 

-	
...,	 1111
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Substituting the values from (97) arid (98) the induced. 
drag of the entire wing i.s found to •be 

4	 K3	 pF02 t tan a	 -	 1	 3K0 t tan 

	

3 1 -	 b	 1 -	
2 K 3	 b 

If, in place of r01 there is now substituted the.lift A 
of the entire wing

1.+ 
A=Pb r0u0

2 

we have 

	

- 16 K	 1	 A )2ttana 

	

3 TI	 (1	 'r1)(l + 7.l) 2 p 1 u0 

- ______ ____ _______ 

1	 3K2 t tana) 

	

1-'fl 1 2K 3	 b 

-2	 i( A )2ttana 

(i-'fl1)(1+T1)2	
u0b	 b 

-	 .	 !_ t tan 

L	 1-'fl29rr	 b 

Thus the formula has b9en found for the induced drag with 
trapezoidal lift distribution. To this must be added. the 
wave drag. The latter according to equation (26) and 
table I Is

- 2(2 + •'i)	 b	 1	 A 

-- -	 -	 wave -	 -	 u -b)- --- -
3(1 + r) 2 t tan a p 

If c	 denotes the coefficient of the wave plus induced

drag then from equations (100) and (101) 

/ c a 2	 4(2^T1)	
2	 1	 14

.(102) = 

	

/4 tan a	 3(l^'fl)2 (1-'ri)(l+'rl)2	 l-'h 911
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The above: formula d.iffers from the corresponding formulas 
for the rectangular flat plate (equation (80)) and. the trape-
zoidal wing with constant lift distribution ( equation (49)) 
in that for small is. the ind.uiced. portion of the drag is 
proportional to %2 whereas for the other two casesit is 
proportional to	 . In figure 20 the coefficiont 

/
is plotted; against the reduced aspect ratio 

14tana 

t tan a. =?s. for various trapezoi&shapes b'/b. It may 

be seen that by far the greatest portion of the drag is 
contributed, by the wave resistance. The portion contrib-
uted, by the induced. drag, within the range of valid,ity of. 
our formulas, amounts to a maximum of 11 percent of the 
wave resistance for 1 =0.5 and. b'/b = 1/2, It is 
therefore smaller than for the rectangular flat: plate where 
for the same aspect ratio it amounts to 19 percent (fig. 
10).

VIII. STJMMART 

Tith the aid. of the expressions givenby L. Prand,tl 
(reference 2) a theory is developed. of the airfoil of ft.-
nite span at supersonic speed.. As in the case of the 
Prand,tl airfoil thoory for the incompressible flow, it is 
a first order approximation theory. The airfoil is first 
replaced by a. "horsoshoevortex" and, the induced velocity 
field. of. the latter computed.. This field. is considerably 
different from that of the incompressible flow. From the 
horseshoe vortex there are obtained. in the familiar mannor 
by superposition more complicated. lifting systems. The 
computation of the. ind,uced. drag, in contrast tO the incom-
pressible case,is for the compressible flowpossible only 
If there is first assumed. a surface vortex d.istribution 
and. secondly a suitable d.ropping off of the lift toward 
the wing.tipa. 

As an example of the "first principal problem" there 
are computed the .ind.uced. drag and the wing surface shape 
for a wing of trapezoidal plan form with constant surface 
density of the lift. The induced. drag, as in the case of 
the Incompressible flow, is found. to be proportional to 
the. square of the lift and, d,epend.s on the Mach number as 
well as on the aspect ratio. In addition to the frictional 
and. induced. drag there Is present in the supersonic case 
also the wave drag, produced. by the sound. waves, which 

C-.
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varies as the induced drag. It is..therefore only the sum 
of the wave and induced d.ragsthat.is of practical inter-
est. 

• As an example of the "second principal problem" there 
iscomputed. the lift distribution and Induced drag for the 
rectangular flat plate (untwisted rectangular wing). Out-
side the two Mach cones springing from the leading edges 
of the wing tips the lift density is constant; within 
these cones the lift drops from the full value at the cone 
rim to the value zero at the lateral wing edge. The into-
gral equation that arises is independent of the aspect 
ratio and. of the Mach number and may be solved. numerically 
by approximate methods. In general for airfoils of normal 
aspect ratios at supersonic flows tbe.greatest portion of 
the total drag is contributed by the wave resistance while 
the induced drag contributes only a small proportional 
part.: 

Finally, there is considered the lifting line with 
trapezoidal lift distribution and the lifting surface of 
rectangular plan form whose lift is constant along the 
chord and trapezoidal along the span. For these cases the 
downwash distribution and. induced drag are computed. 

Translation by S. Reiss, 
National Advisory Committee 
for Aeronautics.
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Figure 5.- Rectangular 
wing as lifting 

surface with constant lift 
distribution.

Figs. 1,2,3,4,5,6 

Wave of raref 1.	 Compression 

1 ----Wave of' 
Compression shock ' rarefaction 

Figure 4.- Plane sound waves 
at a flat plate. 
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'Figure 3 

	

-; . .	 /	 ' . ".'" Lifting line' with 
....'.. '	 constant lift 

	

411	 .	 .. .	 ditrtbution. 

	

•:	 Downwash distrib-

	

__________	
- ution in Mach 

cone. 

Figure 1.- Potential of the 
•	 lifting line. • 

Figure 2.- Lifting line with constant 
lift distribution (horshee 

'vortex). Streamline picture of the 7-
and's- velocities in a plane at right 
angles to the axis of the Mach cone. 

L1•:I.l.tI,i.?L'	 -i 
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Figure 6.- Rectangular wing as lifting 
surface with constant lift 

distribution. Downwash distribution in 
the áing plane. Contino.ou.s curves for 
z< t (at location of wing) dotted curves 
for. x = 2t (behind the ping).
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Figs. 7,8,9,10 
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Figure 7.- Rectangular eting as 
lifting *mrface with 

constant lift distribution. 
Streaniline picture of the y- and s-
velocities in a plane x<t at right 
angles to the axis of the k*ch cone.

Figure 8..- Rectangular wing as 
lifting surface with 

constant lift distribution. 
Streauline picture of the y-. and s-
velocity components in the plane 
x = 3tat right angles to the axis 
of the liach cone. - 

.r.	 .1 

= ILi!'" 
Figure 9.- Trapezoidal wing with 

constant lift 
distribution. 

	

--	 '.	 - '
6 

Figure l0.- Trapezoidal wing:.tth constant lift distribution. 2 

Coefficients of the wave plus induced drag c/4 

as a function of the rethic.4 ftapect ratio0 A = t tend/b for 
various trapesoid shapes .0	 r/ tan.

-	 -	 ----	 --	 - -C-
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Figure 11.- Trapezoidal wing 
lith constant lift 

distribution. Induced downwash 
velocity in section AB (iu 
direction of flow) (tan'r l/-'; 
nctr.V).

.j. 

Figure 12.- Trapezoidal wing 
with constant lift 

distribution. Induced dowuwash 
velocity in section CD (at right 
angles to flow direction) 
(tan r 1/; tan & - 

'7 
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Figs. 11,12,13,14 

-	 -

•	 :..::f 
/-,,,,/

I. •	 Figure 14.-. Tpezotda1 wing 
•	 :	 1	 •	 • with constant lift 

- . .- . . ..	 .-	 distribution. Elevat ton contour 
-	 .	 .-	 • :-.	 -	 lines. (tan = V; tanl	 1tV3). - 

Figure 13.-. Trapezoidal wing 
with constant lift 

distribution. Profile sections. 
(tanc\f; .tan1	 i/1).	 .	 -
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Figure 16.-. Polars of plane 
rectangular wing 

for varioua aspect ratios. 

I, 

1 
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Figure 15.- Rectangular plane 
wing. Lift at 

wing edge. 

Figure 17.- Rectangular surface 
with trapezoidal 

lift distribution. 

Figure 18.- Lifting line with trapezoidal lift distribution. 
Streamline picture of the 7- and a- velocities in 

a plane at right angles to the axis of the Iach.cone. 

C-
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Figure 19.- Rectangular wing as lifting surface with trapezoidal 

lift distribution. Downwash distribution for x<t. 

.1	 _ 
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Figure 20.- Lifting surface with trapezoidal lift distribution. 

Coefficient of wave plus induced drag 	 ass 

function of the "reduced aspect ratio" A for various values of b'/b.

4, 
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