
31176013087839

By P. Cicala

The experimental data that are at present known with regard to the phenomenon of wing flutter permit essentially two classes of vibrations to be distinguished; namely, those for winich it may be stated that the aerodynamic phenomenon follows the ordinary theory of potontial motion, which theory assumes that the point of separation of the flow during the oscillation constantly coincides with the trailing edge of the wing; and vibrations arising from the irregularity in the aerodynamic phenomenon, whose prediction the present state of the theory does not permit. Po the latter class belong those denoted by studer as "detached" vibrations and perhaps also some types of slow oscillation of the ailerom.**

A wing structure, in tine normal range of angle of attack, may, up to a certain velocity, present oscillations of tine second type. When the wing is brought to rather large positive or negative angles of attack, wind tunnel tests show a notable decrease in the critical velocity. In the wind tunnel the phenomenon prescnts itself as a sorious one that would appear to justify the most pessiaistic predictions. For a wing of strong camber free to undergo torsional disolacements only and with sufficiently small friction at the supporting suspension, tests conducted at Turin showed rather low critical velocities independent almost of the stiffness of the elastic suspension system when negative angles of attack of only a few

* "La tooria e l'esperienza nol fenomeno delle viorazioni alari." L'Aerotecnica, vol. 18, no. 4, April 1938, pp. 412-433.
**There might also be distinguished forced vibrations (for example, oscillations of tine plane of the tail due to the disturbed flow from the wing), but no sufficient data on these exist at present.
N.A.C.A. Technical Memorandum No. 887
degrees were attained. The phenomenon, however, should be strongly affected by the Reynolds Number so that from these tests there cannot actually be derived quantitative conclusions applicable to real structures. This aspoct of the phenomenon is at the present time being investigated at the laboratory at Zurich.

The greater part of both the thcoretical and experimental investigations has been directed to the stuty of oscillations of the first type. In the case of plane motion (wing of infinite aspect ratio) the problem has been solved in all its aspects both as regards the aerodynamic phonomenon and as regards the conditions of stability of the system. To cite only a recent irvestigation, Kassnor (reference l) has worked out graphs, by the use of which, for any system of values of tine fundamental parameters, the solution of the problem mat be obtained with sufficient rapidity. When it is desired to consider the case of the finite wing, tre study is considerably complicated, Important investigations have recently been conducted by the Aeronautical ininistrÿ (reference 2). The equations which define the motion of the systom are dorived in a form analogous to that winch is bbtained by tho use of the principle of virtual wori (reference 3), the deformations being expressed by moans of a lincar combination of suitable functions and the stability conditions discussod with the aid of Routh's deterginants.

In all the studies so far developed, more or less arbitrary assumptions are made with regard to the aerodynamic actions. One of the most important of these assumptions is that the forces which are developed at a section of the wing are independent of the state of motion of the adjacent sections. In order to remove such first approximation assumptions, which seriously impair the precision of the methods of computation, there is required a knowledge of the aerodynamic forces and moments at the various sections of the wing corresponding to an assigned state of motion. This problem has tinerefore been analyzed (reference 4) by means of a procedure which is founded on simplificiations analogous to t"ose which, in the study of tine stationary motion of the finite wing (Prandtl vortex filament thoory), lead to the familiar integroifferential equation of tine circulation along the span. The present note gives the reskits of the numerical elaboration of this theory. The coefficients of the aerodynamic forces and moments were determined for a wing of elliptic plan form for the two cases of aspect ratio 6 and 3 , respec.
tively, and expressed in a form.in which these coefficients figure in the equation of work: There.is also indicated an approximate procedure by the use of: which the results may be extendod to values of the aspect ratio and systems of deformation different from those considered in the given computations.

One result that appears from the investigation is that the values of the coefficients of the aerodynamic actions are only slightly influenced by the form of the oscillation. The computation carricd out for one of these. coefficients (that which gives the change in lift produced by the flectional (or flapping) displacement) gave almost identical values for the cases of a deforination law represented by a straight line and a second-degree parabola, respectively. This reult permits a considerable reduction in the labor of conputation required for the applications. Another result of the analysis developed is that the coefficionts, even for wings of normal aspect ratio, have values deviating considerably from those given by the theory of the two-dimensional or plane motion. This could have been predicted by the fact that in the vibrational phenomenon the sections which undergo the greatest displacements are those at the wing tips most sugceptible to the tip effect. It is found tinerefore that the experimental investigations in whicn there tend to be realized the conditions of plane motion are valuable as confirming the theory, but do not furnish quantitatively valid data for the prediction of the critical velocities of actual wings which are of rather low aspect ratios.

Also, in experimental investigations, the aerodynamic side of the problem has not generally been isolated and clarified. Normally the tests are carried out on a model wing in the wind tunnel by dotermining tho. velocity at which the system begins to flutter and the corresponding frequency of the oscillation. Investigations of this kind have been conducted and others are being conducted in almost all principal acrodynamic laboratories. The difficulty which this method of investigation presents is that the results on the model are applicable to the wing if they present the same nondimensional ratios of mass and stiffo ness and the same relative positions of the center of gravity and the elastic axis along the: chord. Thus, in order to realize in the wind tunnel test in a complete manner the conditions under which the effective structure is subjected, it would be necessary that the model and the actual wing present at corresponding sections the same values of
the above nondimensional parameters. On account of the extraordinary oxpansion in the extont of the investigations required in this case and the considerable difficulty cncountered in tinc construction of models minch are to have the same mass relations as the actual wing, it seems more convenient to determine the acrodynamic actions by dircct tests. The coofficients thus experimontally obtained substituted in the equations of stability then permit the determination of the critical velocity and the other choracteristics of the pehnomonon for any system of values of the fundamental para.aters. In addition to being able thus to cover by a sincle series of tosts the range of variation of tho magnitudos which dofino tho pho. nomenon, there is also eliminated the necessity of the construction or models which possess the assigned mass relations. Naturally, in order that the results be applicable, it is necessary that the aerodynamic coefficients be indopendent of the Reynolds Number. If this is not the case, none of the critical velocity deterninations thus far conducted on models would pive results of practical value.

On the basis of the above considerations there have been undertaken at the Aeronantices Leboratory at Turin direct measurements of the aerodynamic actions on an oscillating winc. Tho tests so far conducted described in the notes of referexces 5 and 6 had as their essential object the examination of the operation of apparatus designed for this measurement and these tests will be repeated and extended so as to cover a groater field of investigation. The values experinentally obtaincd for the aerodynamic coefficients are in good agreement with the theory of oscillatory motion of the wins of finite span and show a clear deviation frou the values obtained by the theory of plane motion. These determinations have permitted a oheck, qiven at the end of the present note, on the measurements carried out at the laboratory on the free oscillation of a model wing with variable stiffness. The agreement between tine computation and experiments is satisfactory. Fowever, various points must bo clarified before being able to proceed with safety to tine applications. Then sufficient data has become available on the aorodynamic actions in the case of a wing with or without aileron and also mith regard to the effects of the Reynolds Number, the iean angle of attack of the oscillation, and the compressibility of the nodium; then the theory of wing vibration will be able to furnish reliable rosults for practical application.

Collection of Principal Symbols
The principal symbols are the following:

$$
\begin{aligned}
& \text { V, the wind velocity } \\
& \Omega \text {, angular frequency } \\
& x \text {, coordinate parallel to } V \\
& \text { I, local chord } \\
& \bar{I}, \text { mean chord (area/span) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { from the center point } \\
& \text { b, wing span } \\
& z=-\frac{b}{2} \cos \xi, \text { coordinate normal to } V \\
& \lambda=\frac{b}{\bar{I}}, \quad \text { aspect ratio } \\
& \omega=\frac{\Omega I}{2 V}, \quad \text { reduced local frequency } \\
& \pi=\frac{2 \bar{L}}{2 V}, \quad \text { reduced mean } f r e q u e n c y \\
& \omega^{\prime}=\frac{i \Omega}{V} \\
& \int_{b}=\int_{-b / a}^{+b / a}
\end{aligned}
$$

Since the motion considered is harmonic, there is adopted the complex notation. All the magnitudes variable with time (displacements, vertical velocities, circulations, and lift and moment coefficients) are measured as deviations from a mean state, the exact knowledge of which is of no interest to the problem. These deviations are simply indicated by means of their complex amplitudes, sup-
pressing the factor $e^{i \Omega t} . \therefore$ The conditions relative to the mean state are studied separately by means of the equations of the stationary motion. The superposition of the effects is permitted because of the linearity of the fundamental equations.

The flectional displacement is denoted by. φ and the torsional displacement (rotation of the profile about the aerodynamic center) by ψ. It is assumed that there exists no phase difference between the displacements of the various sections. In every case it is possible to reduce the problem to these conditions by splitting up the displacements into two components in quadrature with each other and examining separately the two simple motions. The functions φ and ψ may therefore be considered as real.

On account of the linearity of the fundamental relations, the variation of lift produced by the flectional displacement is proportional to the displacement itself. Breaking up the constant of proportionality, which in general is complex, into real and imaginary parts, we write as for the plane motion (reference 5)

$$
\begin{equation*}
c_{p}=\pi\left(a_{1} * c p / L+i a_{2} * \Omega \varphi / V\right) \tag{1a}
\end{equation*}
$$

The nondimensional real coefficients $a_{1} *$ and $a_{2} *$ depend on the ratio $\Omega I / V$ as for the plane motion, on the plan form of the wing and on the law of variation of the displacements. The latter vary along the span as a consequence of the fact that the actions on one section depend also on the state of motion of the contiguous sections.

Analogously, for the variations in lift produced by the torsional motion we write

$$
\begin{equation*}
c_{p}=\pi\left(a_{3} * \dot{\psi}+i a_{4} * I_{\Omega \psi / V}\right) \tag{Ib}
\end{equation*}
$$

and for the moment about the aerodynamic center produced by the flectional and torsional displacements, respectively:

$$
\begin{align*}
& c_{m_{F}}=\pi\left(b_{1} * \varphi / L+i b_{2} * \Omega \varphi / V\right) \tag{1c}\\
& c_{m_{F}}=\pi\left(b_{3} * \psi+i b_{4} * I \Omega \dot{\phi} / V\right) \tag{1d}
\end{align*}
$$

The coefficients which represent the actionsin phase (an*, $a_{3} * b_{1}{ }^{*}$, and $\left.b_{3} *\right)$ contain the inertia effects of the air mass surrounding the wing. This inertia action, Which renains independent of the velocity, is conveniently separated in the computations of the aerodynamic actions. If. the mass characteristics of the wing are determined by a dynamic procedure, the actions are included in the measurement. Making use of the results of the theary of the Wing of infinite aspect ratio (reference 5), we separate the inertia terms (in ω) and write

$$
\begin{align*}
& a_{1}^{*}=a_{1}{ }^{*}+w^{2} \\
& a_{3}^{*}=a_{3}^{1 *}-w^{2} / 4 \\
& b_{1}^{*}=b_{1}^{1 *}+w^{2 / 4} \tag{2}\\
& b_{3}^{*}=b_{3}^{1 *}-3 w^{2 / 32}
\end{align*}
$$

For the practical application, it is of greater interest to know the mean values of the aerodynamic coefficients along the span than the local coefficients and we define the former by the relations.

$$
\begin{align*}
& a_{1} f_{b} \varphi^{2} d z={ }^{\circ} r_{b} a_{1} * \varphi^{2} d z \\
& a_{2} \stackrel{r}{b} \varphi^{2} I d z=\int_{b} a_{a}^{*} \varphi^{2} L d z \\
& a_{3} f_{b} \wp \psi \operatorname{Ldz}=r_{b} a_{3}{ }^{\prime *} \operatorname{co\psi } \operatorname{Ldz} \\
& a_{4} f_{b} \varphi \psi L^{2} d z=s_{b} a_{4} * \varphi \psi L^{a} d z \\
& b_{1}: f_{b} \varphi \psi L d z=f_{b} b_{1}: * \varphi \psi L d z \tag{3}\\
& \mathrm{~b}_{\mathrm{a}} f_{\mathrm{b}} \varphi \psi \mathrm{~L}^{2} \mathrm{dz}=f_{\mathrm{b}} \mathrm{~b}_{2} * \varphi \psi \mathrm{~L}^{\mathrm{a}_{\mathrm{d} z}} \\
& \ldots b_{3} \cdot \int_{b} \psi^{2} L^{2} d z=r_{b} b_{3} 1 * \psi^{2} L^{2} d z \\
& b_{4} r_{b} \psi^{a} I^{3} d z=r_{b} b_{4} * \psi^{2} I^{3} d z
\end{align*}
$$

It is easy to show that the coefficients : a_{1}, a_{a}, \ldots b_{4} derined by equation (3) satisfy the following condition, namely, that the virtual work which the aerodynamic actions in phase and in quadrature with the flectional or torsional displacements perform against these displacements may be calculated by supposing that the aerodynamic coefficients are constant for the entire span and have the values $a_{1}{ }^{\prime}, \ldots b_{4}$ given by equation (3). A knowledge of these coefficients is therefore sufficient for the discussion of the stability of the wing structure by the method of virtual work (reference 3). It will be understood that the determination of these coefficients requires in each case the complete solution of the problem for the assigned wins plan form and displacenents. Since these characteristics have no great effect on the values of the mean coef. ficients, the solution of the problem for each particular case is not necessary.

THE THEORY OF THE WING OF FINITE ASPRCT RATIO

IN NONSTATIONATY MOTION

The problem of the oscillatory motion of a wing of finite span may be attacked without excessive complication When there are extended to it the simplifications assumed in the study of the stationary motion of the finite wing according to the vortox filament theory.

Lot c (fig. l) be the wing contour in plan form. A vortex element a, which for the wing of infinite aspect ratio extends indefinitely in a direction normal to V, deviates in the case of the finite wing at a certain point and bends in the direction of the stream. In order to pass from the first to the second configuration we add to the vortex a the angle vortex h. If, in the computation of the induced velocity at a point 0 , me substitute for the angle vortex h a parallel one having its vertex in Q at the depth of 0 , we arrive in the case of steady motion at the ordinary theory of the vortex filament. If the motion is not steady, there exist vortices with axis normal to V also in tie wake behind the wing and there thus exist also angie vortices for the finite wing in the wake. The relations given in this note are arrived at if the angle vortices whose vertices fall within the contour of the wing are displaced in the manner described for the steady motion and those of the wake are advanced by the
amount: d (fig. 2)... Which represents the displacenent ascribed to these-at the instant atswhich they leave the wing.

The sides of the angle vortices perpendicular to V serve to eliminate the effect of the prolongation of the lifting vortices: which are cut off by the section through the point 0 and which are considered as extended indefinitely on the two sides. The angle vortices having their vertices at the right of the section are therefore indefinitely extended.toward the right while those with their. . vertices at the left extend indefinitely toward the left.

As has been said the effects of the angle vortices are computed after displacements have been impressed upon them. This is equivalent in each case to the addition of a transverse horseshoe vortex of which the inducing effect is neglected. . (See reference 4.) The theory is therefore approximate inasmuch as an entire system of vortices is neglected. In the case of steady motion, the theory leads to. the integrodifferential equation of Prandtl. Since the latter theory in ordinary cases leads to sufficiently satisfactory results, it may be expected that the extension to nonstationary motion leads to results of some impor, tance. In order to arrive at more accurate results, it is possible, having solved the problem by means of the exprossions given below, to detormine the induced velocities of the neglected vortex system and treat these by the same procedure as the initial velocities and so on successively, using the method of iteration.

In order to consider the effects of the nonstationary state of motion, we shall adopt, as for the plane problem, the method of Birnbaum, which consists in breaking up the total circulation normal to the direction of V into a part that corresponds to the aerodynamic actions (bound circulation) and a part which is shod from the wing in correspondence to the local variations in intensity and is carried along by the stream. (free circulation).

For the case of plane motion, it is known that the vertical (downwash) velocity distribution along the chord of the profile represented by one of the functions

$$
\begin{aligned}
& W_{1}=v\left(\frac{1}{2}+\cos v\right) \\
& W_{n}=V \cos n v \quad(n=2,3 \ldots)
\end{aligned}
$$

corresponds to the distribution of the bound circulation given respectively by the expressions

$$
\begin{aligned}
\Gamma_{1} & =V\left(2 \sin v-\cot \frac{\vartheta}{2}-i \omega \sin v \cos \vartheta-i \omega \sin v\right) \\
& \Gamma_{n}=V\left(2 \sin n v-\frac{i \omega}{n+1} \sin (n+1) \vartheta+\frac{i \omega}{n-1} \sin (n-1) \vartheta\right)
\end{aligned}
$$

It is also known that the total circulation associated with the section corresponding to an arbitrary Γ_{n} is alWays zero, so that there are no free vortices in the wake. These asumptions lead to the conclusion that for the finite wing, if we assume as valid the same simplifications that lie at the basis of the vortex filament theory, the results holding for the plane motion may immediately be extended and it may be stated that, if along the chords of the various wing sections, the vertical velocity distribution is expressed by means of W_{n} or a linear coinbination of them, the distribution of the bound circulation will be represented by the corresponding linear combination of Γ_{n}, as if.each section of the wing worked with an infinite aspect ratio without being influenced by the adjacent sections.

The series of W_{n} is not complete, however. It is sufficient to think of the case of the rectilinear profile, for which every W_{n} except W_{1} is zero. The bound circulation may therefore be expressed by means of Γ only if the vertical velocity correspond to the rear neutral point (cos $\vartheta=-1 / 2$) always remains zero, as results from the expression W_{1}.

In order to complete the series of Γ_{n}, we consider the bound vortex distribution

$$
\Gamma_{0}=2 \cdot \mathrm{~A}(z)\left(\frac{\mathrm{H}_{1}(3)}{\frac{\mathrm{H}_{1}}{(2)}+i \mathrm{H}_{0}(2)} \cot \frac{\vartheta}{2}+i \omega \sin \vartheta\right)
$$

in which A is a function of z and H the Hankel function of parameter ω. Denoting by K the total circulation associated with the section, we have

$$
K=\pi A L / \mu
$$

where

$$
\mu=\frac{\pi \omega}{2}\left(H_{0}(2)-i H_{i}^{(2)}\right) e^{i \omega}
$$

Since the total circulation associated with the various sections does not remain constant, it will be necessary to consider the wake vortices. With the simplifications previously given, the scheme of figure 2 is arrived at in which is represented the configuration of the system of inducing vortices in the plane of the wing. In computing the velocity at a point 0 , there are to be considered:
a) The bound and free vortices a and l corresponding to the state of motion of the section through 0 , which with the expression assumed for Γ_{1} (see refercnce 7) induce along the chord a constant velocity given by

$$
-\mathrm{A}=-\mu \mathrm{K} / \pi \mathrm{I}
$$

b) The angle vortices m whose vertices lie on the normal to V through O with density of circulation dK/dz. The velocity induced by all of these vortices is

$$
\int_{b}^{d z} \frac{d K}{d-z}
$$

c) Tine angle vortices h external to the wing. In the wake the vertices of these elements are distributed with density

$$
-w^{\prime} e^{-w^{\prime} x} \cdot \frac{d}{d} \frac{x}{z}
$$

The velocity induced by one of these is

$$
\frac{1}{4 \pi}\left(\frac{1}{z-z_{1}}+\frac{1}{x_{1}}-\sqrt{\frac{1}{\left(z-z_{1}\right)^{2}}+\frac{1}{x_{1}^{2}}}\right)
$$

where x_{1} and $z-z_{1}$ give the coordinates of the vertex of h with respect to 0 . We introduce the function

The induced velocity of the vortex system c) is expressed by

$$
-\frac{w^{\prime}}{4 \pi} \int_{b}^{d} F \frac{d K}{d z} d z
$$

Equating the induced velocity of the vortex system to Wo, which the stream should possess on account of its being tangent to the profile, there is obtained the integrodifferential equation, which defines the function K :

$$
\begin{equation*}
-\pi W_{0}=\frac{\mu}{L}-\frac{1}{4} \int_{b}^{\cdot}\left(\frac{1}{z-z_{1}}-\omega^{\prime} F\right) \frac{d E}{d z} \cdot d z \tag{4}
\end{equation*}
$$

If there is therefore given the vertical velocity distribution expressed by means of the series

$$
W(x, z)=W_{0}(z)+W_{1}(z)\left(\frac{1}{2}+\cos v\right)+W_{2}(z) \cos 2 v+\ldots
$$

the total circulation K may be computed by (4) and the bound circulation distribution obtained by, the series

$$
\begin{equation*}
\Gamma=\frac{2 \mu K}{\pi I}\left(\frac{{ }^{(a)}}{H_{1}^{(2)}+i H_{0}(2)} \cot \frac{\vartheta}{2}+i \omega \sin v\right)+W_{1} \Gamma_{1} / V+W_{2} \Gamma_{2} / V+\ldots \tag{5}
\end{equation*}
$$

In the case of a nondeformable section, the summation is reduced to the first two terms.

From the bound circulation, there are calculated the aerodynamic actions bearing in mind that the difference in pressure between the two faces of the section is given by the relation

$$
p=\rho V \Gamma
$$

Denoting the lift by $c_{p} \rho I V^{2} d z$ and the moment of the aerodynamic actions about the aerodynamic center of an elcmentary strip by $c_{x_{F}} \rho \bar{j}^{?} V^{2} d z$ and making use of the expression (5) for Γ, there are found for the coeffi-
cients c_{p} and $c_{m_{F}}$, complex functions of z and of the state of motion of the system, the following expressions:

$$
\begin{align*}
& c_{p} I V=\int_{-L}^{+I} \Gamma d x=K \mu_{1}+i \pi \omega I\left(W_{2}-W_{1}\right) / 4 \tag{6}\\
& c_{m_{F}} I^{2} \ddot{V}=\int_{-L}^{i+I} \Gamma\left(\bar{x}+\frac{I}{4}\right) d \bar{x}=i K I \omega \mu / 8+ \\
& +\pi W_{1} I^{2}\left(1-\frac{i \omega}{4}\right) / 8-\pi W_{2} L^{2}\left(1-\frac{i \omega}{2}\right) / 8-\pi W_{3} I^{2} / 32
\end{align*}
$$

where

$$
\mu_{1}=\left(\frac{H_{1}^{(a)}}{H_{1}^{(2)}+i H_{0}^{(2)}}+\frac{i \omega}{2}\right) \mu
$$

For practical application, it is necessary, first of all, to calculate the function F, which, with

$$
\begin{gathered}
X=\Omega X / V \\
Z=\Omega\left(z-z_{1}\right) / V
\end{gathered}
$$

may be written in the form

$$
F(Z)=\int_{0}^{\infty}\left(\frac{1}{X}+\frac{1}{Z}-\sqrt{\left.\frac{1}{X^{2}}+\frac{1}{Z^{2}}\right) e^{-i} X d X X, d x}\right.
$$

This function is deterinined for possible values of the parameter Z. If Z is negative F is put in (4) with sign changed. This result imnediately follows by considering the configurations of the vortices h to the right and left of the section through point o. Since this function is fundamental for practical applications, it was determined with particular care. For values of the parameter less than 4 , there was made use of the approximate expression

$$
\begin{aligned}
& F(Z)=\sim \int_{0}^{Z} \frac{e^{-i \ddot{X}} d X}{X+Z}\left(1+\frac{X}{2(X+Z)}-\frac{3 X^{3}}{8(X+Z)^{3}}-\frac{1.03 X^{4}}{2(X+Z)^{4}}\right)+ \\
& +\int_{Z}^{:^{m}} \frac{e^{-i X} d X}{X+Z}\left(1+\frac{z}{2(X+Z)}-\frac{3 z^{3}}{8(X+Z)^{3}}-\frac{1.03 z^{4}}{2(X+Z)^{4}}\right) .
\end{aligned}
$$

For values above. 4 , there was ased the expression obtained by integration by parts
$F(Z)=-i / Z+1 / 2 z^{2}-\int_{0}^{\infty} \frac{e^{-i x} d x}{X^{3}}\left[2-Z\left(3 X^{2}+2 Z^{2}\right)\left(X^{2}+Z^{2}\right)^{3 / 2}\right]$
The integral in the second merber was calculated nunerically by extending the integration up to a limit such that tse renainder, which could easily be estimated, renained less than the predeterinined limits of approximation. The values obtained are fivon in table I.

The function μ of the parameter ω, also fundamental for the cormutation, is given by tine graphs of figure 3 in which μ^{\prime} and $\mu^{\prime \prime}$ are respectively the real and inaginary parts of the function.

APPLICATION TO AN ELLIPTIC WING

The theory given above was applied to a wing with elliptic pian form. In this case:

$$
\mathrm{I}=4 \overline{\mathrm{I}} \operatorname{\operatorname {sin}} \sqrt{6} / \pi
$$

We express tie. total circulation by means of the sumnation

$$
\begin{equation*}
K=\pi \bar{I} V E \mathbb{E}_{n} \sin n \xi \tag{7}
\end{equation*}
$$

Where E_{n} is the numerical complex constant.

TABLE I

Z	F	Z	F	
0.0	$\infty-1.571$ i	2.2	$0.113-0.425$	i
. 1.	2.109-1.375i	2.4	. 097 -. 395	i
.2	1.490-1.243 i	2.6	. $083-.369$	i
. 3	1.155-1.146 i	2.8	. $072-.345$	i
. 4	.935-1.060 i	3.0	. 063 - . 324	i
. 5	.778-.937 i	3.2	. $055-.305$	i
. 0	.658-.922 i	3.4	. 048 - . 289	i
.7	. $564-.865$ i	3.6	.043- .274	i
. 8.	. 489 - . 813 i	3.8	. 039 - . 260	i
. 9	. $427-.753 \mathrm{i}$	4.0	. $035-.248$	i
1.0	. $376-.72)^{\text {i }}$	4.2	. $031-.237$	i
1.1	.333-. 689 i	4.4	. 028-. 226	i
1.2	. $297-.654$ i	4.6	.026- . 217	i
1.3	. $255-.624$ i	4.8	$\therefore .024-.208$	i
1.4	. 238 - . 593 i	5.0	. $022-.200$	i
1.5	. $214-.567 \mathrm{i}$	5.2	. O20- . 192	i
1.6	. $194-.540 \mathrm{i}$	5.4	.018-.185	i
1.7	.176-.517 i	5.6	.017-. 179	i
1.8	.150-.490i	5.8	.016- . 172	i
1.9	.146-. 475 i	6.0	.015-.167	i
2.0:	.134-.458 i	co	$1 / 2 z^{2}-i / z$	

Equation (4) now becomes

$$
\begin{aligned}
-W_{0} \sin \zeta / V & =\frac{\pi \mu}{4} \Sigma K_{n} \sin n \xi+\frac{\pi}{2 \lambda} \sum n K_{n} \sin n \xi+ \\
& +i \frac{w}{2} \sin \zeta \int_{b} F a \xi \Sigma n K_{n} \cos n \zeta
\end{aligned}
$$

In the computation, only even terms of the series were retained so as to obtain a velocity zero at the center section without having to add a supplementary equation, there being thus assumed equal and opposite displacements for sections equidistant from the center section. Moreover the state of motion of one half-wing has in our case only a slight effect on tire field of flow about the other half-wing. This is because in the case of vibration the naximum displacements occur at the tip sections, which are therefore far removed or because the induced velocities of the angle vortices in the case of oscillatory motion decrease with distance more rapidly than in the case of steady motion.

Limiting the summation to the terms in K_{2} and K_{4}, there were applied and the values of. W at the sections corresponding to $z=0.7$ and $z=b / 2$, and thus two Iinear equationswere obtained with complex coefficients in the constants K_{2} and K_{4}.

It is convenient to consider the results separately for the various components.

Lift produced by the flectional (flapping) motion.In this case there are constant velocities along each chord. Of the W_{n}, only W_{0} is different from zerorand givon by

$$
W_{0}=i \Omega \varphi
$$

where $\varphi(z)$ is the law which defines the flectional.displacenents along the span.

Having determined the bound circulation in the manner explained above, it is necessary, for the computation of the mean aerodynamic coefficients, to know the quantity

$$
\begin{equation*}
I_{r o \varphi}=\int_{b} c_{p} \rho I V^{2} \varphi d z \tag{8}
\end{equation*}
$$

The real part of $L_{\text {cop }}$ represents the virtual work by the aerodynamic actions in phase with the motion; the imaginary part gives the work of the components in quadrature.

$$
\begin{align*}
& \text { By (6) and (7), equation (8) becomes } \\
& \left.I_{C p \varphi}=\rho V \int_{b} K \mu_{1} \varphi d z=\pi \rho \bar{L} V^{2} \int \mu_{1} \varphi d z \Sigma K_{n} \sin n\right\} \tag{9}
\end{align*}
$$

By (1a), (2), and (3), equation (8) may also be written $L_{\varphi \varphi \varphi}=\pi \rho V^{2}\left(a_{1} \prime f_{b} \varphi^{2} d z+f_{b} \varphi^{2} \omega^{2} d z+\frac{i a_{2} \Omega}{V} \int_{b} I^{2} \varphi^{2} d z\right)$

Equating expressions (9) and (10) for I oro $^{\text {(}}$, obtained an equation which gives the coefficients a, and a.

The computation was carried out assuming for the flectional displacements tie law

$$
P=\frac{V}{\Omega} \cos \xi\{\cos \xi!
$$

In figure 4 is plotted the variation of the real part of the magnitude $K / \pi \bar{I} V$ along the $\operatorname{span} f o r \lambda=6$ and for the values of \bar{w} indicated on the figure. Figure 5 gives the imasinary part. As may be seen from the curves, the total circulation varies appreciably with the frequoncy of the oscillation.

Iigure 6 shows the distribution of lift produced by the flectional displacemont considored. The curves give only the component in quadrature with the displacements (the ordinates of the curves give the values of the real part of c_{p} / π). The component in phase has not been plotted, since it is of less importance. The reduced frequencies to which the curves refer are indicated on the curves.

The values of the coeficicient as obtained for $\lambda=$ 6 and $\lambda=3$ are plotted in figure 7 as a function of $\bar{\omega}$. This coefficient decreases rather slowly with increase in the reduced frequency, while in the case of plane motion it has a steep slope. The values obtained experimentally, indicated on the figurc by small circles, have the same
general tendency as the tineoretical values but lie somewhat above the latter*. The measurements on this coefficient will be repeated in order to ascertain whether the disasreement does not depend on the friction of the oscillating system.

The coefificient $a_{1}{ }^{\prime}$ is rather small; the curve in figure 7 corresponds to $\lambda=6$. For practical applications, this coefficient nay be neglected and it may be assumed, if the mass of the system is dynamically detormined, that tho lift is in quadrature with the displacoment which gencrates it. Also in the test, the coefficient a_{1} ' came out so sinall that it was not measured.

The computation was also performed assuming a linear law to represent the displacenents; that is, putting

$$
\theta=\frac{V}{\Omega} \cos \xi
$$

The values of the coefficierts obtaincd in this case differ only slightiy froa those of the first case and were not plotted, since the curves would not be distinguishable.

Moments about the aerodynamic center produced br the floctional oscillation.- For the winc of infinite aspoct ratio, tio moment about the aerodynamic center producod by the flectional oscillation has no componcnt in quadrature with the motion which generates it but is reduced to a pire inertia effect $\left(b_{1}=\omega^{2} / 4 ; b_{2}=0\right)$. The result may be neld valid also for the finite wing. The component of the moment in quadrature with the flectional motion is equivalent to a displacenent of the aerodynamic conter by less than 5 percent of tine caord
(or $, \frac{b_{2}}{a_{s}}:<0.05$). The component in phase except for the inertia term is also negligible.

[^0]Lift produced by the torsional oscillation, The focal axis is assumedrectilinear and there are determined the aerodynainic actions corresponding to the torsional oscillations about this axis. In this case

$$
-\|=V \psi(1+i \omega / 2-i \omega \cos v)
$$

and therefore

$$
\begin{gathered}
-W_{0}=V \psi(1+i \omega) \\
W_{1}=i V \psi w
\end{gathered}
$$

All the other W_{n} are zero.
Having determined the bound circulation, there was computed the work of the aerodynanic actions, due to the torsional motion, against the flectional displacements. By equations (lb), (2), and (3), this quantity is

$$
\begin{align*}
I_{\psi O} & =\int_{b} c_{p} \rho I V^{2} p d z \\
& =\pi \rho V^{2}\left(a_{3}, f_{0} \cap \psi I \perp z-\frac{1}{4} J_{b} u^{2} \rho \psi I d z+\right. \\
& \left.+\frac{i a_{4} \Omega}{\psi} f_{b} \text { ¢ } \psi I^{2} d z\right) \tag{11}
\end{align*}
$$

On the other hand, by (b) and (7), this quantity is equal to
$\dot{L}_{\psi C}=\pi \rho \vec{I} V^{2} \delta_{b} \wp \mu_{1} d z \Sigma K_{n} \sin n \xi+\frac{\pi \rho V^{-a}}{4} \delta_{b} \omega^{2} \rho \psi I d z$
Wquating the two, there are obtained $a_{3}{ }^{\prime}$ and a_{4}.
In order to represent the angle of torsion, there is assumed the law

$$
\psi=\cos \xi
$$

Tho values of the coefficient $a_{3}{ }^{\prime}$ for $\lambda=6$ and $\lambda=3$ are shown on the curves of figure 8. The coefficiert varies little with \bar{w}, which fact agrees with the results of the test, indicated on the figure by small circles.

Also the coefficient a_{4} given for. $\lambda \neq 6$ and $\lambda=$ 3 on figure 7 varies slightly, while in the case of plane motion it decreases strongly toward small reduced frequencies. The experinental values indicated on the figure by: small circles are somewhat below the theoretical.

Moments about the aerodynamic center due to the torsional oscillation.- The woriz done by the acrodynainic actions produced by the torsional motion against the torsional displacenents from (ld), (2), and (3) is given by tine expression
$L_{\psi \psi}=\pi \rho V^{2}\left(D_{3} \int_{b} \psi^{2} L^{2} d z-\frac{3}{32} \int_{b} \omega^{2} \psi^{2} I^{2} d z+\frac{i b_{4} \Omega}{V} \delta^{r} \psi^{2} I^{3} d z\right)$
and froin (o) and (7) by
$L_{\psi \psi}=\frac{\dot{i}}{8} \pi \rho V^{2}\left(\bar{L} \delta_{0} \psi \psi \mu I a z \sum E_{n} \sin n \xi+f_{b} w\left(1-i \omega / 4 \psi^{2} L^{2} d z\right)\right.$
Tquating these two expressions, there are computed the two coefficients $b_{3}{ }^{\prime}$ and b_{4}. The coefficient $b_{3}{ }^{\prime}$, which for the infinite wing is zero, comes out as a small value for the finite wing. The coefficient b_{4}, which for $\lambda=$ ∞ is equal to 1.8 , has for $\lambda=6$ and $\lambda=3$ the values given by the curves on figures 9 and lo. The experimental results are in good agreenent with the theory.

APPROXIMATE CALCULATION OF TFE COEHIICIENTS

For systems of displacement aifferent from those to Which tine previous curves refor, it is necessary to consider the solution of equation (4). The computation, even if only approxinate, is in every case vory laborious: that of the velocities induced by an assigned system of vortices sufficiently simple for the case of steady motion must, for the nonstationary motion, be carried out by the method of grapiical integration, and is complicated by the presence of points of infinity in the function integrated. We sinall therefore indicate an approximate procedure for the deternination of the coefficients. The justification of the method lies essentially in the agreement of the results with those obtained by using the more exact method indicated above. In the cases considered no practically appreciable difforence was found between tie results obtained by the two methods of computation.

From what has been said, what is to be determined in each case is the work which the aerodynamic forces due to an assigned system of displacoments S perform when certain displacements S' are impressed on the system. The displacements under. consideration may be flectional, torsional, or those of the aileron, the condition required being that the motion of the various sections be in phase: If this condition is not satisfied, it is possible to rem duce to this condition by dividing the motion of the systou into two components in quadrature. The displacements S and S^{\prime} may be represented respectively by the real functions $s(z)$ and $s^{\prime}(z)$. With these functions known, there is first solved the equation

$$
\begin{equation*}
s I=K_{0}-\frac{I}{4} \int_{b} \frac{d K_{0}}{d \cdot z_{1}} \frac{d z_{1}}{z_{1}-z} \tag{13}
\end{equation*}
$$

Phe value of K_{o} obtained by this equation represents the distribution of total.circulation, which under the conditions of steady motion would correspond to a displacenent law given by $s(z)$. The solution of the oquation may be found, for example, by following the procedure given in the paper by Gebelein (Uber die Integralgleichung, etc., reference 8).

If for each section there is computed the effect of the tip vortices, concentrating the circulation increase at the distance $L / 2 \mathrm{k}$ on the two sides of the section, (13) becomes simply

$$
\begin{equation*}
s I=K_{0}^{\prime}(\dot{I}+k) \tag{14}
\end{equation*}
$$

We define the numerical factor k (independent of z) by the condition that the virtual. Work against the displacements s^{\prime} of the lifts corresponding to s, calculated by the use of (l4), have the exact value given by the solution of (13). That is, we write

$$
I_{b} K_{0} s^{\prime} d z=a_{b} K_{0}^{\prime} s^{\prime} d z
$$

from which

$$
k\left(s, s^{\prime}\right)=\frac{\int_{0} s s^{\prime} L d z}{f_{b} K_{0} s^{\prime} d z}-1
$$

Making use of this coefficient k also for the case of oscillatory motion, we: concentrate the increase in total circulation at the same distance from the section as for the case of steady motion and equation (14) then becomes

$$
-\pi \vec{W}_{0} I=K[\mu(\omega)+k-i \omega E(\omega / k)]
$$

In order to compute the mean coefficients of the aerodynamic actiors, we refer to a mean profile of chord E. The total circulation will be given by

$$
K=\frac{-\pi H_{0} \bar{I}}{\mu(\bar{u})+k-i \bar{\omega} \bar{\omega}(\bar{\omega} / k)}
$$

and therefore setting

$$
\begin{gathered}
A=\frac{\mu}{\mu+i-i} \overline{\bar{w} F} \\
I-\lambda^{\prime}-i \lambda^{\prime \prime}=\frac{\mathbb{H}_{1}^{(a)}}{M_{I}^{(2)}+i H_{0}^{(a)}}
\end{gathered}
$$

there mill be obtained from oquations (6)

$$
\frac{1}{\pi} c_{p} V=-\pi_{0} \Lambda\left(1-\lambda^{\prime}-i \lambda^{\prime \prime}+\frac{i \bar{W}}{2}\right)+i \bar{W}\left(\pi_{2}-W_{1}\right) / 4
$$

$$
\begin{equation*}
\frac{8}{\pi} c_{m_{F}} V=i \bar{\omega} \mu \Lambda W_{0}+W_{1}\left(1-\frac{i \bar{w}}{4}\right)-W_{2}\left(1-\frac{i \bar{w}}{2}\right)-W_{3} / 4 \tag{15}
\end{equation*}
$$

Tine functions λ^{\prime} and $\lambda^{\prime \prime}$ are given in table \quad of reference 5. The values of μ are ziver in figure 3,and those of F in table I of the present note. The factor Λ, a function or \bar{W}, and throwis k, of the plan form of the wing and of the displacement laws, tends in the case of infinite aspect ratio ($k=0$), to the value unity and in this case equations (15) furnish equations (I) of the above reference.

We observe that the value of k does not vary much on changing the system of displacements. For an elliptic wing of $\lambda=6$, there is obtained:

$$
\text { For } \quad s=s^{\prime}=\cos \xi \quad k=0.67
$$

and for $\left.s=s^{\prime}=\cos \xi \mid \cos \right\} \mid k=0.70$
The application of the nethod indicated to the case of flectional torsional oscillations is immediate. If only the first harmonic is considered, the laws of variation of the flectional and torsional displacements are not very difforent. For the paraneters $k(\varphi, 0), k(\psi, 0), k(c, \psi)$, and is (ψ, ψ), there will be surficiently close values. Using a mean value of these, it will then be possible to determine the coefficients by means of the relations

$$
\begin{gathered}
a+2 i \bar{w} a_{2}=-2 i \bar{w} \Lambda\left(1-\lambda^{\prime}-i \lambda^{\prime \prime}+i \bar{w} / 2\right) \\
a_{3}+2 i \bar{w} a_{4}=\Lambda(1+i \bar{w})\left(1-\lambda^{\prime}-i \lambda^{\prime \prime}+i \bar{w} / 2\right) \\
b_{1}+2 i \bar{w} b_{2}=\Lambda \bar{w}^{2} / 4 \\
b_{3}+2 i \bar{w} b_{4}=i \bar{w}(1+i \bar{w}) \Lambda / 8+i \bar{w}(1+i w / 4) / 8
\end{gathered}
$$

Which are readily deduced from equations (15). The extension to systems with ailerons also is simple.

GEECK OF TAE FREE OSCIILATION TESTS

From the measurements carried out, the mean values of the aerodynamic coefficients were derived and with these a check was obtained on the free oscillation tests conducted at the Aeronautical Laboratory at Turin (reference 9). For the computation, there has been assumed

$$
\begin{aligned}
-a_{a} & =a_{3}=0.55 \\
a_{4} & =0.38 \\
b_{4} & =0.1 \\
a_{1}=b_{1} & =b_{2}=b_{3}=0
\end{aligned}
$$

The values of tho other parameters of the structure are given in reference 3. Tne critical volocities are plotted in figure ll as.a function of the ratio of flexural stiffness R_{f} to torsional stiffness R_{t}. The experimental values are indicated by the black circles. On the same figure are also plotted the values of the ratio of the frequency of oscillation corresponding to the critical velocity to that of the pure torsion. The experimental values are in good agreenent with the theoretical.

Te denote by A the complex amplitude of the flectional displacement at the tip section of the nodel, by B tine amplitude of tine torsional oscillation and put $A / B I=$ $f+i q ; f$ thus representing the component in phase and q the component in quadrature of the flectional motion With respect to the torsional. The curves obtained for tiese magnitudes are given in figuro l2 as functions of the same paraneter $R_{f} / I^{2} R_{t}$. If account is taken of the difficulty of such measurements, complicated by the fact that actually the condition of steady oscillations cannot be realized, it may be stated that the agreement of these valUes with the tieory may be considered as satisfactory. It is mecessary also to observe that the two series of tests, namely, those of the freo vibration and those of the aerodynanic actions were carried out on entirely different profile sections.

On the basis of tine results obtained, it may be stated that it is pernissiblo, for an approximate calculation of the critical volocity, to apply the coefficicnts thus dotorminod.

Translation by S. Reiss, National Advisory Committee for Aeronautics.

REFERENCES

1. Kassner, R., and Fingado, H.: Das ebene Froblem der Flügelschwingung. Luftfahrtforschung, vol. 13, no. 11, Nov. 1936, pp. 374-387.
2. Direzione Generale Costruzioni ed Approvvigionamenti del Ministero dell'Aeronautica: Indagini sułle vibrazioni dei velivoli. IlAerotecnica, vol. XVII, no. 8-9, Aue.-Sept. 1937, pp. 721-735.
3. Cicala, P.: Le oscillaziori flesso-torsionali di un'ala in corrente uniforme. I'Aerotecnica, vol. lo, no. ll, $\operatorname{Nov} .1936, \mathrm{pp} .785-801$.
4. Cicala, F.: Sul moto non stazionario di un'ala di allungamento finito. Rendiconti dell'Accademia ł七i Lincei, vol. 25, ser. Sa, no. 3-4, Aug. 1937, pp. 97-102.
5. Cicala, P.: Ricercho sperimentali sulle azioni aeroJinamiche sopra l'ala oscillante. L'Aerotecnica, vol. 17, no. 5, May 1937, pp. 405-414.
6. Cicala, F.: Ricerche sperimentali sulle azioni aerodinamiche sopra liala oscillante. II Serie. I'Aerotecnica, vol. l7, no. 12, Dec. 1937, pp. 1043-1045.
7. Cicala, F.: Le azioni aerołinamiche sul profilo oscillarte. 士'Aerotecnica, vol. 16, no. 8-9, Aug.Sept. 1936, pp. 652-065.
8. Gebelein, H.: ت̈ber die Integralgleichung der Prandtlscher Tragflügoltheorie. Ingenieur-Archiv, vol. 7, no. 5, oct. 1936, pp. 297-325.
9. Cicala, P.: Ricerche sperimentali sulle vibrazioni flesso-torsionali di un modello dala con rigidezze variabili. Atti della Reale Accademia dell Scienze di Torino, 1935-36, vol. 71.

Figure 1

Figs. 3,4

Figure 3.

Figure 4.

Figure 8

Figure 11.

Figure 12

[^0]: * In regard to the comparison or the residts of the tests conducted at Iurin, it is recessary to observe that a cause of uncertainty exists in the fact that the aspect ratio of the model under the test conditions employod is not easy to define. The tests were conducted in a free jet tunnel of rather small dimensions and the effect of tae jet boundary was rather difficult to estimate. The presence of a plane at the base of the model for the purpose of masking the understructure complicates the phenoaenon.

