TTI CHITIOAS MTHMORAHDUMS

HATIOITAL ADTISORY COMKITMFE FOR ARROHAUTICS

LIBRARY copy

JUN 241963
HO. 870

BHEATIOR OF A PLAMH STRIP UTODR SHMAR AHD COMPRTISSIVE SMRTSSES BKYOMD THE BUCKIIITG LIMIT

By A. Kromm and K. Marguerre

Iuftfahrtforschung

- Tol. 14, Wo. 12, Docemper 20, 1937

Terlag von R. Oldenbourg, Munchen und Berlin

MATIONAL ADVISORY COMEITMETH FOR AFRONAOTIOS

THOHIIOAS MEMORANDUM NO．870

BRHAVIOR OF A PLATH STRIP UMDHR SHEAR AND COMPRESSIVE
STRRSSRS BFYOND THR BUCKLIMG IIMIT中
By A．Kromm and K ．Marguerro

The present report is an extension of previous theo－ retical inveatigations on the elastic behavior of a plate under compression and shear in the region above the oriti－ cal．The main object is the clarification of the behavior immediatoly above the buckilng limit gince no theoretical expressiong for this range have thus far been found and since experimentally，too，any degree of regularity in the boharior of the plate in the range botwoon the critical load and about threo to four times the critical，is dis－ cerniblo only with difficulty．Tho prosont roport thus supplements，for example，the experimental invostigations of Iahdo and Hagnar．

Lahdo and Tagnoris invostigations diffor from ours， hovorer，in tho following points：Whereas thoy considor the caso of clampod－ond condition and rigid lateral stiffa oning，$⿴ 囗 ⿰ 丿 ㇄$ limiting casos of rigid and vanishingly small latoral stiffoning，respectively．（Through interpolation，the inw termadiato case of elastic lateral support is thus．taken Into account．）Lahde and Hagner＇s．chart 4 refers to tho particular caso of pure ghear，while our figures 2 and 3 rofor．to the more general case of combined loading in con－ pression and shear．There is some deviation in the re－ sults－our computations leading to a somenhat smaller supporting strength of the shoet than is obtained on tho basis of the tost rogulta of Lahdo and Fagner．

I．INTRODUOTION

Ihë proisent paper is a continuation of two previous papors pin the beharior of plates beyond the buckling limit．

[^0]In the first paper (reference 1) there mas investigated, with the aid of the energy method, the behavior immediateIf above the buckilng limit under the approximating assumption that for a small oxcess of load boyond the brack \rightarrow ling load, the waves maintained the same shapes they agsumod at the critical load. Tho invostigation difforod essentinlly in the method omployed from those of other authors, in that firat the theory of plates rith "large" deflection. Was based on considerations from differential geomotry; cnd socondly, in tho derivation of tho equilibrium conditions (expressed in terms of the displacementa u, ∇, ∇); the principle of virtual displacemonts and tho. Ritz expression was applied strictly to the normal displaconent only (hence not to u and v). The essential rosult obtained wes that the apparent stiffness $H_{r o d}=d p_{i} / d \in$ Fas roduced to half its value at the instant of buckling (reference 2).

In the second paper (reference 3) there wes investigated (with the aid of an expression by Ritz for w containing several parameters) the behavior of the plate when the critical point was far exceodod. The principal rom sult obtained was the simple approximate formula for the "effective vidth"

$$
b_{m}=b \sqrt[3]{\frac{p_{G I}}{p_{q}}}
$$

$$
\left(p_{\eta}>p_{c r}\right)
$$

(b = width of sheet, $P_{q}=$ tho stress in the longitudinal reinforcing members (fig. l)).

Tho present investigation is a continuation of the provious as regards both subject matter and mothod. The former is extended by the addition of shear loading to the pressure loading which alone had been considored up to tho present ("combined" shoar and compressive stress). The method is extended by taking into account a variability. in the rave length and, in the presence of shear, the change in the angle of inclination of the waves (angle a, fig. 1) with increasing load beyond the critical. There are thus obtained with a far less expenditure of computaa tion work (and this is a most important factor in the complicated shear problem), results that are only slightly impaired as compared with those prefiously obtained (reference 3, p. 126) for the case of pure compressive load.

$$
\text { H.A.C.A. Technical Memorandum Fo. . } 870
$$

II. STATEMeNT OF THE PROBLEM, CHOLON OF

INDMPHEDENT VARIABLES

We consider (as in the paper cited under reference, I) a strip extending infinitely in the x direction, simply supported by flexurally rigid longitudinal stiffeners. The latter may be supported against each. other by cross ribs which, however, are not to make contact with the sheet.g so that the buckling waves may be formed undisturbed along. $x_{\text {. }}$ As shown on figure 7 , the cross sections of the stiffeners are denoted by F_{q} and F_{q}, respectively, . the reference. cross sections being taken as s b and. a. a, respectively, where a is the distance between the transverse stiffeners. Denoting by p_{x} and p_{y} the mean externally applied pressures, then there are the following relations between the latter, the pressures p_{q} and p_{q} in the stiffeners, and the mean pressures p_{1} and $p_{s} q_{i n}$ sheet:

$$
\begin{equation*}
p_{x}=\frac{p_{1} s b+p_{q} \mathbb{F}_{q}}{s b+F_{q}}, p_{y}=\frac{p_{p} s a+p_{q} F_{q}}{s a+\cdot \mathbb{F}_{q}} \tag{2.1}
\end{equation*}
$$

The system of longitudinal and transverse stiffener members is assumed not to be stiff at the edges so that the (mean) shear stress T is taken up only' by the sheet. Let the mean displacement be denoted by Y and the ware inclineion angle by \dot{a}, the mean compressive strains in the x and y direction, respectively, by ϵ_{2} and ϵ_{a}, so that the pressures of the longitudinal and trans verge members. are:

$$
\begin{equation*}
\boldsymbol{p}_{q}=\boldsymbol{R} \epsilon_{2}, \quad p_{q}=\boldsymbol{H} \epsilon_{a} \tag{2.2}
\end{equation*}
$$

The problem in its most general form will consist in determining the elastic condition of the strip as a faneion of the eight parameters

$$
\ldots \ldots, \quad \cdots, a, \mathbb{F}_{q}, F_{q}, P_{x}, p_{y}, T \text { (2.3) }
$$

If, in place of these eight independent variables we introduce nondimensional combinations, then s and b drop out as independent parameters since they enter into the
expressions for the critical loads only in the form of a quotient $(s / b)^{a}$. In addition, a and F_{q} occur only. in the combination P_{q} / sa. Since there still remain firo independent parameters, we must restrict somewhat the generality of the investigation.

We.choose as the most important particular case $p_{y}=$ 0 (i.o., the absence of an external load in the y diroction) and restrict oursolves as regards the geometrical magnitudes a and F_{q}, to the tro limiting cases of very reak and very strong transverse stiffeners, that is:

$$
\frac{\Psi_{q}}{B Q}=0, \quad \frac{P_{q}}{B Q}=\infty
$$

In other porda, we congider the tro limiting cases:

$$
\begin{equation*}
p_{\mathrm{a}}=0 \quad \text { and } \quad p_{q}=\mathbf{t} \epsilon_{\mathbf{R}}=0 \tag{2.4}
\end{equation*}
$$

so thet as independent variables there remain only the three magnitudes:

$$
\frac{F_{l}}{s b}, \quad T \text {, and } p_{l} \text { or } p_{1}
$$

The object of our computation is the determination of the tro functions:

$$
\begin{equation*}
p_{1}=p_{1}\left(p_{\imath}, T\right), \quad \gamma=\gamma\left(p_{\imath}, T\right) \tag{2.5}
\end{equation*}
$$

in rifch p_{1} (or p_{q}) may be replaced according to (2.1) by the values P_{x} and $\mathrm{F}_{\mathrm{q}} / \mathrm{sb}$.

III. BASIC RQUATIONS

MgTHOD OF RITZ AND GALRREIN

The basic equations for the determination of the chenges in the stress and strain condition of the buckled plate were derivod in the three rorks ofted under section. I, and in the coefficiente of the innear element there is obtained aftor negiecting the square terms in the strain portion of
the tangential displacemonts u, ∇ and all higher members in the: bonding portion:..

The stresses $\bar{\sigma}, \bar{T}$ in the middle plano of the plate are given by:

$$
\left.\begin{array}{c}
\bar{\sigma}_{x}-v \bar{\sigma}_{y}=\mathbb{M}\left(u_{x}+\frac{W_{x}^{a}}{2}\right), \bar{\sigma}_{y}-v \bar{\sigma}_{x}=m\left(\nabla_{y}+\frac{\bar{w}_{y}^{2}}{2}\right) \\
\bar{T}=\sigma\left(u_{y}+\nabla_{x}+w_{y} W_{y}\right)
\end{array}\right\}(3,1)
$$

The expression for the storod-up strain energy in a strip of plate of length l is:

$$
\begin{aligned}
A & =\frac{\text { Ha }}{2} \int_{-2 / 2}^{l / 2} \int_{-b / 2}^{b / 2}\left\{\frac{1}{\pi^{a}}\left[\left(\bar{\sigma}_{x}+\bar{\sigma}_{y}\right)^{a} \rightarrow 2(1+v)\left(\bar{\sigma}_{x} \bar{\sigma}_{y}-\bar{T}^{a}\right)\right]\right. \\
& \left.+\frac{g^{a}}{12\left(1-v^{a}\right)}\left[(\Delta \forall)^{a}-2(1-v)\left(\pi_{x x} \pi_{y y}-w_{x y}\right)\right]\right\} d x \text { dy (3,2)}
\end{aligned}
$$

The throe equilibrium conditions are obtained accord Ing to the principle of virtual displacements from tho minimam condition:

$$
8(\Delta+T)=0
$$

If re consider the displacements at the edges as given (so that the edges are kept fixed during the variation), the variation of the potential V of the external forces vanAshes (the external forces perform no virtual work on the
 there remains:

$$
\begin{aligned}
& 8 A=\mathbb{R}_{\mathrm{g}} \int^{\imath / 2} \int^{b / 2}\left\{\frac { 1 } { \overline { x } ^ { 3 } } \left[\left(\bar{\sigma}_{x} 8\left(\bar{\sigma}_{x^{-} v} \bar{\sigma}_{y}\right)+\bar{\sigma}_{y} \delta\left(\bar{\sigma}_{y^{-v}} \bar{\sigma}_{x}\right)\right.\right.\right. \\
& -7 / 2-b / 2
\end{aligned}
$$

$$
\begin{aligned}
& +2(1+v) \bar{\tau} \delta \bar{T}]+\frac{g^{a}}{12\left(1-v^{a}\right)} \delta\left[\frac{1}{2} W_{x x^{2}}^{a}+\frac{1}{2} \nabla_{y y^{a}}^{a}+w_{x y}^{a}\right. \\
& \left.\left.+v\left(\pi_{x x} w_{y y}-\pi_{x y} x\right)\right]\right\} d x d y \\
& \text { l/2 b/2 }
\end{aligned}
$$

$$
\begin{aligned}
& -7 / 2-b / 2 \\
& \left.+\bar{\sigma}_{x} \nabla_{x} \delta w_{x}+\bar{\sigma}_{y} \boldsymbol{m}_{y} \delta \nabla_{y}+\bar{T}\left(w_{x} \delta \nabla_{y}+\nabla_{y} \delta \nabla_{x}\right)\right] \\
& +\frac{g^{B}}{12\left(1-v^{a}\right)} w_{x x} 8 \nabla_{x x}+\pi_{y y} 8 w_{y y}+2 \nabla_{x y} \delta w_{x y} \\
& \left.\left.+v\left(\pi_{x x} 8 \pi_{y y}+\nabla_{y y} 8 \pi_{x x}-2 \pi_{x y} 8 \pi_{x y}\right)\right]\right\} d x d y=0
\end{aligned}
$$

By integration by parts there is obtained (taking into account the and conditions ($\delta u, \delta \nabla, \delta \nabla=0$ for $y= \pm b / 2$, $8 \pi, \delta \pi, \delta \pi$ periodic in x) in the usual manner:

$$
\begin{aligned}
& \delta A=-s \int^{l / 2} \int^{b / 2}\left\{\left(\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \bar{\tau}}{\partial^{*}}\right)\left(8 u+\nabla_{x} 8 w\right)\right. \\
& -7 / 2-b / 2 \\
& +\left(\frac{\partial \bar{T}}{\partial x}+\frac{\partial \bar{\sigma}_{y}}{\partial \bar{y}}\right)\left(\delta \nabla+\dot{\pi}_{y} \delta w\right) \\
& \left.+\left(\bar{\sigma}_{x} \pi_{x x}+\bar{\sigma}_{y} \pi_{y y}+2 T \nabla_{x y}-\frac{\pi s^{2}}{12\left(1 \sim v^{2}\right)} \Delta \Delta v\right) \delta \bar{\psi}\right\} d x d y \\
& \text { l/2 } \\
& +\left[\frac{\pi g^{3}}{12\left(1-v^{2}\right)} \int_{-l / 2}\left(\pi_{y y}-v \nabla_{x x}\right) \delta \pi_{y} d x\right]_{y= \pm b / 2}=0(3.3)
\end{aligned}
$$

The approximate method for the solution of the differential equilibrium equations involve त in (3.3) is the following:

$$
\text { HoA.O.A. Technical Memorandum No. } 870
$$

The trio oquations for the equilibrium of the forces in the plate strip, namely:

$$
\begin{equation*}
\frac{\partial \bar{\sigma}_{x}}{\partial x}+\frac{\partial \bar{T}}{\partial y}=0, \quad \frac{\partial \bar{T}}{\partial x}+\frac{\partial \bar{\sigma}_{y}}{\partial \bar{y}}=0 . \tag{3.4}
\end{equation*}
$$

are satisfied exactly by the assumed stress function:

$$
\bar{\sigma}_{x}=\Phi_{y y}, \bar{\sigma}_{y}=\Phi_{x x} \cdot \bar{\tau}=\dot{-} \Phi_{x y}
$$

There is then obtained from the elasticity equation (3.1), by elimination of the displacements u and σ, as a first equation for the relation between the stress function Φ and the normal displacement $W_{\text {; }}$ the equation

$$
\begin{equation*}
\Delta \Delta \Phi=\mathbb{I}\left(w_{x y}{ }^{2}-w_{x x} \nabla_{y y}\right) \tag{3;5}
\end{equation*}
$$

As a second equation, there is obtained from (3.3) the equilibrium condition for the forces at right angles to the plane of the plate:

$$
\begin{equation*}
\frac{\pi \dot{B}^{a}}{12\left(1-v^{2}\right)} \Delta \Delta \pi-\Phi_{y y} \nabla_{x x}-\Phi_{x x} \nabla_{y y}+2 \Phi_{x y} \nabla_{x y}=0 \tag{3.6}
\end{equation*}
$$

This condition is satisfied only approximately. For the normal displacement π, we set up a plausible expresssion containing the froe parameters η_{1}, and instead of requiring that 8A, that is, that the expression:

$$
\begin{aligned}
& \int_{2 / 2}^{i / b / 2} \int_{-b / 2}^{i / 2}\left\{\left(\Phi_{y y} \pi_{x x}+\Phi_{x x} \nabla_{y y}-a_{x y} w_{x y}\right.\right. \\
& \left.\left.-\frac{\pi g^{a}}{12\left(1-v^{a}\right)} \Delta \Delta \nabla\right) 8 \pi\right\} d x d y
\end{aligned}
$$

$$
-7 / 2-b / 2
$$

shall vanish for every variation 8π (which mould lead to the nonlinear differential equation (3.6)), we require. the vanishing of 8\& only on variation of the free values η_{1}; that is, in place of the differential equation (3.6), we have tho equations:

$$
\begin{equation*}
\frac{\partial A}{\partial \eta_{1}}=0 \quad(1=1,2,3 \ldots) \tag{3.7}
\end{equation*}
$$

(Ritz method).

In the particular case that the parameters η_{1} in the Ritz expression for T enter linearly:

$$
\begin{equation*}
\bar{w}=\Sigma \eta_{i} w_{i} \tag{3.8}
\end{equation*}
$$

(and that each of the functions W_{i} satisfies the above given boundary and periodicity conditions) equations (3.7). on account of $\frac{\partial W_{1}}{\partial \eta_{1}}=W_{1}$, may be put in the form:

The method of using, in place of the minimum conditions (3.7), a system of equations:

$$
\begin{array}{r}
\int_{-i / 2}^{l / 2} \int_{-b / 2}^{b / 2}\left\{\left(\Phi_{y y} \nabla_{x x}+\Phi_{x x} w_{y y}-2 \Phi_{x y} \nabla_{x y}\right.\right. \\
\left.\left.\cdot-\frac{E g^{a}}{12\left(1-v^{8}\right)} \Delta \Delta w\right) \nabla_{i}\right\} d x d y=0 \quad\left(3.9_{B}\right)
\end{array}
$$

Is. known as" the method of Galerkin (reference 4). If the functions f_{i} are so chosen that the boundary integral in (3.9i) vanishes, the method is identical \quad (lith that of Ritz. The two methods then differ only in the order in which the operations of integration with respect to x and y and differentiation $\pi i t h$ respect to η_{i} ere taken.

It is possible, naturally, in the general case there the parameters η_{i} in the expression for w do not occur
 ditions $(3,7)$ in such a manner that equations of the type (3.9) ara obtained. The greater ease in integration work in rich this method may possibly result (particularly in
the case of a multiparameter expression), is genorally offo set by the requirement of taking into account all the boundm ary integrals (that enter into the integration by parta). and carrying along more terms in rhich a function of the limits of integration in the parameters η_{1} muat be taken into account. In the following investigation therefore the two forms (3.7) and (3.9) for the minimam requirementa, Will be used side by side, depending on mhioh appears most desirable for purposes of practical computation.

IV. DETHRMIMATION OF THE STBMSS FUTOTION Φ

For the normal displacement \quad. \quad e assume the oxpression:

$$
\begin{equation*}
\eta=f \cos \frac{\pi y}{b} \cos \frac{\pi}{l}(x-m \pi) \tag{4.0}
\end{equation*}
$$

and conaider the amplitude f, the ware longth l, and the value $m=\cot \alpha$ as the free parameters (η_{i}) in equations (3.7).

Expression (4.0) (the only one that leads to useful results mith "finite" amount of computation) satisfies the boundary condition $\pi=0$, but not, however, (for m $\neq 0$) the condition of exact hinge support. Tho fact that, in spite of this, it does enable an approximate doterminetion of tho actual relations occurring in hinged support (as shown by the deviations of the critical shear stress come puted by the aid of it by 6 percent of the oxact value), is explainod by the fact that the rork of the end moments for the deflections wy of the platel veniahes, not for each point but on tho everage, over a poriod. That such a typo of ond condition (altcrnately positive and negative clanping coofficiont) cannot physically bo realized, naturm ally impairs the valuo of the conclusions drawn as to the bending etressos in the neighborhood of the odges. As far as tho prodiction of tho overall supporting strength of tho pleto is concorned, horovor, tho effoct of this indom torminancy is of aubordinate importance:

Tho computation proper, \quad ith the corresponding oxtonsions, procoods ontirely in a.similar mannor to that pron

[^1]piously given. (See reference 3, pp. 122-123.)
For. the second derivatives of w, there are obtained:
$H_{x X}=-\frac{\pi^{a}}{\frac{\pi}{2}} f \cos \frac{\pi y}{b} \cos \frac{\pi}{l}(x-m y)$
$\nabla_{y y}=-\left(\frac{\pi^{2}}{b}+\frac{\pi^{2} m^{2}}{q^{2}}\right) f \cos \frac{\pi y}{b} \cos \frac{\pi}{q}(x-m y)$
\[

$$
\begin{equation*}
-2 \frac{\pi^{8} \pi}{b} \pi \sin \frac{\pi y}{b} \sin \frac{\pi}{i}(x-m y) \tag{4.1}
\end{equation*}
$$

\]

$W_{x y}=\frac{m \pi^{a}}{q^{3}} \pm \cos \frac{\pi y}{b} \cos \frac{\pi}{q}(x-m y)$

$$
+\frac{\pi^{a}}{2 b} f \sin \frac{\pi y}{b} \sin \frac{\pi}{2}(x \rightarrow m y)
$$

Equation (3.5) therefor becomes:

$$
\begin{equation*}
\Delta \Delta \Phi=-\pi \frac{\pi}{2 l^{3} \pi^{3}}\left\{\cos \frac{2 \pi y}{b}+\cos \frac{2 \pi}{q}(x \rightarrow m y)\right\} \tag{4.2}
\end{equation*}
$$

A particular integral of this equation is:

$$
\Phi(p)=-\pi \frac{f^{a}}{32}\left\{\frac{q^{a}}{b^{2}\left(1+m^{a}\right)^{a}} \cos \frac{2 \pi}{q}(x-m y)+\frac{b^{a}}{q^{a}} \cos \frac{2 \pi y}{b}\right\}
$$

If, in place of Z as parameter, there is introduced the ratio of tho strip width b to the "wave separation" l.sin α (see fig. 1):

$$
\beta=\frac{b}{l \sin \alpha} \text {, so that } q^{B}=\frac{b^{a}}{\beta^{a} \sin ^{a} \alpha}=\frac{b^{a}}{\beta^{a}}\left(1+m^{a}\right)
$$

then $\Phi(p)$ assumes a somerrhat simpler form:
$\Phi^{(p)}=-\mathbb{F} \frac{f^{a}}{32} \frac{1}{1+m^{B}}\left\{\frac{1}{\beta^{B}} \cos \frac{2 \pi}{l}(x-m y)+\beta^{a} \cos \frac{2 \pi y}{b}\right\}(4.4)$
For the stresses there are thus obtained:

$$
\begin{align*}
& \bar{\sigma}_{x}=\Phi_{y y}=\pi \frac{\pi^{a}}{8} \frac{f^{a}}{b} \frac{z}{1+m^{g}} \\
& \left\{\frac{m^{\mathrm{g}}}{1+m^{a}} \cos \frac{2 \pi}{2}(x-m y)+\beta^{2} \cos \frac{2 \pi y}{8}\right\}+\Phi_{y y}^{(h)} \\
& \bar{\sigma}_{y}=\Phi_{X X}=\frac{\pi}{8} \frac{\Phi^{a}}{b^{a}} \frac{1}{1+m^{2}} \\
& \left\{\frac{1}{1+m^{g}} \text { cos } \frac{2 \pi}{q}(x-m \quad y)\right\}+\Phi\left(\frac{(h)}{x I}\right. \tag{4;5}\\
& \} \\
& \bar{T}=-\Phi_{X y}=\mathbb{T} \frac{\pi^{a}}{8} \frac{f^{a}}{b^{a}} \frac{1}{1+m^{a}} \\
& \left\{\frac{m}{1+m^{g}} \cos \frac{2 \pi}{l}(x \rightarrow m y)\right\}-\Phi_{x y}^{(h)}
\end{align*}
$$

The integral $\Phi(\mathrm{h})$ of the homogeneous equation, $\Delta \Delta \Phi=0$, corresponding to (4.2), which must be made use of for satisfying the boundary conditions, we put first, setting:

$$
\begin{equation*}
\frac{2 \pi}{2}=\lambda \tag{4.6}
\end{equation*}
$$

in the form:
$\Phi^{(h)}=\{(A \lambda y \sinh \lambda y+B \cosh \lambda y)$ ods λx

$$
\begin{align*}
& +(C \lambda . y \cosh \lambda y+D \sinh \lambda y) \sin \lambda x\} \\
& -\frac{p_{1}}{2} y^{2}-\frac{p_{a}}{2} x^{8}-T x y \tag{4.7}
\end{align*}
$$

The seven constants of integration A., T are determined from the requirement that the longitudinal stiffeners connectod to the strip remain straight; i.e.e, in addition to a uniform strain, only motions as a whole should be expend rienced, or expressed in formulas:

$$
\begin{align*}
& \nabla(x, \pm b / 2)=\mp \varepsilon_{a} b / 2 \tag{4.8}\\
& v(x, \pm b / 2)=-\epsilon_{1} x \pm \gamma b / 2
\end{align*}
$$

In order to be able to write down these two equations, We must dotormine the displacements u, v explicitly with the aid of relation (3.1). We shall mite down only tho final results of tho simple but somewhat tedious computan tron:
$\mathbb{E} u(x, y)=\mathbb{\pi} \frac{\pi f^{a}}{16 \imath}\left\{\left[\frac{1 / \beta^{a}}{1+m^{g}}\left(m^{a}-v\right)+1+\cos \frac{2 \pi y}{b}\right]\right.$

$$
\begin{aligned}
& \left.\sin \frac{2 \pi}{b}(x-m y)-\frac{2 \pi x}{l}+2 m \frac{b}{l}\left(\frac{2 \pi y}{b}+\sin \frac{2 \pi y}{b}\right)\right\} \\
& -\left(p_{1}-v p_{a}\right) x+2(1+v) T y \\
& -
\end{aligned}
$$

$\mathbb{I}(x, y)=\mathbb{I} \frac{\pi f^{a}}{16 \imath}\left\{\left[-\frac{n}{\beta^{a}} \frac{m^{2}+2+v}{1+m^{a}}\right.\right.$

$$
\begin{aligned}
& \left.\quad+m\left(1+\cos \frac{2 \pi y}{l}\right)\right] \sin \frac{2 \pi}{l}(x-m y) \\
& -\frac{2 \pi y}{l}\left(\left(\frac{q}{b}\right)^{a}+n^{a}\right) \\
& + \\
& \frac{l}{b}\left[\left(1+\cos \frac{2 \pi}{l}(x-m y)-\left(n^{2}+v\right)\right] \sin \frac{2 \pi y}{b}\right\} \\
& -\left(p_{a}-v p_{1}\right) y \\
& +
\end{aligned}
$$

Substituting in (4.8) everywhere the value $y=b / 2$ (the. corresponding condition for $y=-b / 2$ is then, on ace count of the symnetry of the equations, autonatically satisfied), and arranging-in porers of x and sin λx, cosiy, we obtain the following syatem of equations:

$$
\begin{aligned}
& T \varepsilon_{1}=p_{2}-v p_{a}+\frac{\pi^{2} f^{8}}{8 q^{8}}
\end{aligned}
$$

$A(1+v) \frac{\pi b}{\eta} \sinh \frac{\pi b}{l}+(2 \Lambda+B(1+v)) \cosh \frac{\pi b}{h}$

$$
=\frac{\underline{2} f^{\mathrm{a}}}{32} \beta^{\mathrm{a}} \frac{\mathrm{~m}^{\mathrm{a}}-U}{\left(1+\dot{m}^{\mathrm{a}}\right)} \cos \frac{\mathrm{mmb}}{l}
$$

$A(1+v) \frac{\pi b}{q} \cosh \frac{\pi b}{l}-(A(1-v)-B(1+v)) \sinh \frac{\pi b}{l}$

$$
=\frac{\pi f^{2}}{32} m \frac{n^{8}+2+v}{\left.\beta^{8} \frac{v}{(1+m}\right)} \sin \frac{m \pi b}{l}
$$

$0(1+v) \frac{\pi b}{q} \cosh \frac{\pi b}{q}+(2 c+D(1+v)) \sinh \frac{\pi b}{q}$

$$
=\frac{\mathbb{F} f^{a}}{32} \frac{m^{a}-v}{\beta^{a}\left(1+m^{g}\right)} \sin \frac{n \pi b}{l}
$$

$c(1+v) \frac{\pi b}{l} \sinh \frac{\pi b}{2}-(0(1-v) \rightarrow D(1-v)) \cosh \frac{\pi b}{l}$

$$
=\frac{\frac{\pi f^{a}}{32}}{32} \frac{m^{a}+2+v}{\beta^{2}\left(1+m^{a}\right)} \cos \frac{n \pi b}{l}
$$

[^2]
$$
f, \beta, m
$$

The further procedure in the computation will nor be indicated. $\langle f t e r$ the constants have been computed from (4.9), thoy are aubstituted in (3.2), and from the three equations (3.7), the parameters f, β, m are computed. Fquations (4.9」)with

$$
\mathbb{H} \epsilon_{3}=p_{\eta}, \quad \mathbb{T} \epsilon_{B}=p_{q}
$$

then give the required rolations:

$$
p_{1}=p_{1}\left(p_{q}, T\right) \quad T=T\left(Y, p_{q}\right)
$$

(for $p_{i}=0$ or $p_{q}=0$). With tho aid of the first oquation (2.1), the longitudinal stiffenor stress p_{q} and tho mean sheet stress p_{1} (and hence also the effective contributing ridth p_{1} / p_{q}) and the shear displacement γ are then given for each combination of external loads p_{x} and T. It is immediately evident that the computation, Which is fundamentally simple, is very tedious in prectice. Tho cocputation is rendered particularly laborious by the contribution of the "homogeneous members" (4.7) which must be talcon into account if tho boundary conditions are to be strictly satisfied. It may, hovever, be observed from equations (4.9, $)$ that in the case of pure compressive load ($m=\cot \alpha=0$), theso terms become extremely small. (Soe referonco $1, p p .92$ and 93.) To obtain an idea of thoir ordor of megnitude also in the presonco of shear strosses, it is convoniont to inrostigato the opposito liniting case of puro shoar. Haking uso of the Galorkin formulas (3.9a) (rith f oo parameter), this computation may be carried out for tlae critical point. The results are presented in the table below.

Cese	$\begin{gathered} (a) \\ \epsilon_{1}=0, \epsilon_{8}=0 \end{gathered}$	$p_{1}=0, \varepsilon_{a}=0$	$\begin{gathered} (c) \\ \varepsilon_{1}=0, p_{a}=0 \end{gathered}$	$\begin{gathered} (d) \\ p_{1}=0, p_{a}=0 \end{gathered}$
Ohango from l to	$\begin{aligned} & 0.912 \\ & 0.914 \end{aligned}$	$\begin{aligned} & 0.867 \\ & 0.871 \end{aligned}$	$\begin{aligned} & 0.722 \\ & 0.741 \end{aligned}$	$\begin{aligned} & 0.563 \\ & 0.610 \end{aligned}$

Tho uppor rov shows the decrease in the apparent shear
modulus dT/dY at the critical point (see also fig. 9) for the four limiting cases of ideally rigid ($\epsilon_{1 .}=0$) and ideally fielding ($p_{1, j}=0$) longitudinal and transm verso stiffoners, respectively, and the lover row gives the values taking the homogeneous torms into account. The error is in no case, large. It is most noticeable in the (practically uninteresting) limiting case of vanishingly small strongth of stiffeners (since only in the absence of a "mocn value" of the support can a boundary effect come moro into evidence). Fivon in this case, hovever, it is smaller than the error which enters through the assumption of a cortain edge firing which lies at the basis of the assumed oxpression (4.0). These terms therefore may safely bo onitted, particularly in the case of combined shear and compreselve stress - especially, since such neglect (as cannot otherwise be with a "relaration" of the edge conditions) acts to oppose the error arising from the as. sumed expression (4.0).

If re consider this fortunate result to be valid also for $T>T_{c r}$ then no computation difficulties are offered in obtaining the three equations for the determination of the parameters f, f , m . The Galerkin formula (3.9a) cannot be usod, however, since the wave length l is at the same tine the interval of integration in the expression (3.2) in the x direction, so that equation (3.9) . must bo completed by the additional torms mentionod above. It.is simpler first to carry out tho integration in (3.2), naking use of expression (4.0) and tho relations (4.5), i.0.:

$$
\begin{align*}
& \Phi_{y Y}=m \frac{\pi^{a}}{8} \frac{f^{a}}{b^{a}} \frac{1}{1+m^{a}}\left\{\frac{m^{a}}{1+m^{a}} \text { cos } \frac{2 \pi}{q}(x-m y)\right. \\
& \left.+\beta^{\dot{a}} \cos \frac{2 \pi y}{b}\right\}-p_{1} \tag{5.1}
\end{align*}
$$

$$
\begin{aligned}
& -\Phi_{x y}=\frac{\pi^{8}}{8} \frac{f^{B}}{b^{B}} \frac{1}{I+m^{B}}\left\{\frac{m}{I+m^{B}} \cos \frac{2 \pi}{q}(x-m y)\right\}+\tau
\end{aligned}
$$

and then the differentiation taking into account the changes of the mean values p_{1}, p_{s}, T with the parameters

$$
\begin{align*}
& p_{1}-v p_{a}=\pi\left[\epsilon_{1}-\frac{\pi^{a} \dot{A}^{a}}{8 b^{B}} \frac{\beta^{a}}{I+m^{B}}\right] \\
& p_{a}-v p_{1}=\mathbb{E}\left[\epsilon_{a}-\frac{\Pi^{8} f^{8}}{8 b^{2}}\left(1+\frac{\beta^{2} m^{\dot{B}}}{1+m^{a}}\right)\right] \tag{5,2}\\
& 2(1+v) T=\mathbb{H}\left[\gamma-\frac{\pi^{B} f^{\dot{a}}}{4 b^{B}} \frac{m \beta^{a}}{1+m^{a}}\right]
\end{align*}
$$

thero is obtained:

$$
\begin{align*}
& A=\mathbb{E} \text { s } Z\left\{\frac{\pi^{4} f^{4}}{256 b^{4}} \frac{1+\beta^{4}}{\left(1+m^{a}\right)^{a}}\right. \\
& +\frac{1}{H^{2}}\left[\frac{1}{2} p_{1}^{a}+\frac{1}{2} p_{a}^{a}-v p_{1} p_{a}+(1+v) T^{a}\right] \\
& +\frac{g^{a} f^{a} \pi^{4}}{96} \frac{\left(1-v^{a}\right) b^{4}}{\left.\left.\left(1+\beta^{a}\right)^{a}+4 \frac{m^{a}}{1+m^{a}} \beta^{a}\right]\right\}} \tag{5.3}
\end{align*}
$$

so that:

$$
\begin{aligned}
\frac{\partial}{\partial f}\left(\frac{A}{B b l}\right)= & \mathbb{H} \frac{\pi^{4} f^{3}}{64 b^{4}} \frac{1+\beta^{4}}{\left(1+m^{8}\right)^{q}}+p_{1} \frac{\partial}{\partial f^{f}}\left(p_{1}-v p_{a}\right) \\
& +p_{a} \frac{\partial}{\partial f}\left(p_{a}-v p_{1}\right)+T \frac{\partial}{\partial f^{4}} 2(1+v) T \\
& +\frac{R^{f}}{1-v^{a}} \frac{g^{a} f}{48 b^{4}}\left[\left(1+\beta^{2}\right)^{a}+4 \frac{m^{a} \beta^{a}}{1+n^{a}}\right]
\end{aligned}
$$

and

$$
\begin{align*}
& \left.\left(1+n^{a}\right) \frac{4 b^{a}}{\pi^{2}} \frac{\partial}{f \cdot \beta^{2}} \frac{A}{\partial f}\right) \equiv \frac{\pi^{a} f^{a}}{16 \cdot b^{a}} \frac{1}{\beta^{a}} \frac{1+\beta^{4}}{1+n^{2}}-p_{1} . \\
& -\left(\frac{1+m^{2}}{\beta^{2}}\right) p_{a}-2 m T \\
& +\frac{p^{*}}{4}\left[\frac{\left(1+\beta^{a}\right)^{2}}{\beta^{8}}\left(1+m^{a}\right)+4 m^{a}\right]=0 \\
& \left(1+m^{a}\right) \frac{4 b^{a}}{\pi^{a} f^{B} \beta} \frac{\partial}{\partial \beta}\left(\frac{A}{a b l}\right) \equiv \frac{\pi^{a} f^{a}}{16 b^{a}} \frac{\beta^{a}}{1+m^{a}}-p_{1} \tag{5.4}\\
& -I^{a} p_{a}-2 n T+\frac{p^{*}}{2}\left[\left(1+\beta^{a}\right)\left(1+m^{a}\right)+2 \pi^{a}\right]=0 \\
& \left(1+m^{a}\right)^{a} \frac{4 b^{a}}{m \pi^{a} f^{a} \beta^{a}} \frac{\partial}{\partial m}\left(-\frac{A}{b l}\right) \equiv-\pi \frac{\pi^{a} f^{a}}{16 b^{2}} \frac{\beta}{}^{\frac{1}{a}\left(1+\eta^{a}\right)} \\
& +p_{1}-p_{a}-\frac{1-n^{a}}{m} T+p^{*}=0
\end{align*}
$$

whore

$$
\begin{equation*}
p^{*}=\frac{m}{1-v^{2}} \frac{\pi^{2} g^{a}}{3 b^{2}}=I c^{*} \tag{5.5}
\end{equation*}
$$

Is the buckling load of tho atrip under pure longitudinal pressure. The system of equations (5.4) may further be somerhat simplified by proper combination of terms: $p_{1}+T m=\frac{p^{*}}{2}\left[1+\beta^{2}\right]$

$$
\begin{aligned}
& +\frac{\pi}{1 \Pi^{a} f^{a}} \frac{1}{16 b^{a}} \frac{1}{1+m^{a}}\left(\beta^{a}+\frac{m^{a}}{\beta^{a}\left(1+m^{a}\right)}\right) \\
& p_{B}=\frac{p^{*}}{4}\left[1-\beta^{4}\right]+E \frac{\pi^{2} p^{2}}{16 b^{B}}\left(\frac{1}{1+m^{8}}\right)^{2} . \\
& \frac{T}{m}+p_{a}=\frac{p^{*}}{2}\left[\left(1+\beta^{a}\right)+2\right]-\frac{m^{2} f^{8}}{16 b^{E}} \frac{1}{\beta^{3}\left(1+m^{8}\right)^{a}}
\end{aligned}
$$

Through equations (5.6) the parameters f, β, m are given as functions of p_{1}, p_{2}, T and hence by means of (5.2) and (2.1) the required stressastrain relation may be found.

In discussing the system of equations (5.6), a direct solution for β and. m is not possible; te shell not coneider the transverse stress pa as an independent paramoter, but compute the two limiting cases only:

$$
p_{a}=0
$$

(perfectly yielding transverse supports) and

$$
\begin{gathered}
p_{a}=v p_{1}-\mathbb{I} \frac{\pi^{a} f^{a}}{8 b^{a}}\left(I+\frac{\beta^{a} m^{a}}{1+m^{a}}\right) \\
\left(\varepsilon_{g}=0, \quad \text { rigid tranoverse supports }\right) .4
\end{gathered}
$$

$$
\text { VI. THE PARTICULAR CASE } T=0
$$

Me consider first the particular case of pure compressgive load: $T=0$. From the third of equations (5.4), re must have $m=0$ and the system of the first two equations assumes the simple form:

$$
\left.\begin{array}{rl}
p_{1}+\frac{1}{\beta^{y}} p_{a} & =\frac{p^{*}}{4} \frac{\left(1+\beta^{a}\right)^{a}}{\beta^{a}}+\mathbb{I} \frac{\pi^{a} p^{a}}{16 b^{a}} \frac{1+\beta^{a}}{\beta^{y}} \tag{6.1}\\
p_{1} & =\frac{p^{*}}{2}\left(I+\beta^{a}\right)+\mathbb{I} \frac{\Pi^{a}}{16} \frac{f^{a}}{b^{a}} \beta^{a}
\end{array}\right\}
$$

From tho above there is obtained for the critical value (kith $f=0$):

$$
\underline{p}_{c r}=\frac{p^{*}}{4} \frac{\left(1+\beta^{a}\right)^{a}}{\beta^{a}}-\frac{1}{\beta^{3}} p_{a C r}=\frac{p^{*}}{2}\left(1+\beta^{a}\right)
$$

for $p_{a}=0$ (no transverse support):

$$
\begin{equation*}
\beta=1, \quad p_{c r}=p^{*} \tag{6.2}
\end{equation*}
$$

For $\epsilon_{\mathrm{a}}=0$ (rigid transverse supports), i.e., $p_{a}=v p_{1}$ (see (5.8)), we have
${ }^{4}$ The second as sumption, which unfortunately, leads to a disproportionately large amount of computation, approaches very noarly the relations that actually occur in practice. (See oxemploo, section IX.)

$$
\begin{equation*}
\beta^{a}=1-2 v, \quad p_{c r}=(1-v) p^{*} \tag{6,3}
\end{equation*}
$$

in agreement with known results. (See roference 1, p. 94.)
For the relation between p_{1} and $p_{q}=\mathbb{F} \epsilon_{1}$ above the bucking point, wo obtain in the case $p_{a}=0$ by eliminaion of f from the two equations (6.1):

$$
\begin{equation*}
\mathbb{H} \frac{\pi^{a} f^{B}}{16 b^{\#}}=\frac{p^{*}}{4}\left(\beta^{4}-I\right) \tag{6,-}
\end{equation*}
$$

and from the first of equations (5.2) a rory simple parametric representation:

$$
\begin{align*}
& p_{1}=\frac{p^{*}}{4}\left[\beta^{a}\left(\beta^{4}-1\right)+2 \beta^{a}+2\right]=\frac{p^{*}}{4}\left[\beta^{6}+\beta^{a}+2\right] \\
& p_{q}=\frac{p^{*}}{4}\left[3 \beta^{a}\left(\beta^{4}-1\right)+2 \beta^{a}+2\right]=\frac{p^{*}}{4}\left[3 \beta^{6}-\beta^{a}+2\right] \tag{6.5}
\end{align*}
$$

It may be seen that with increasing p_{1}, p_{f} there is also an increase in β - ie., the waves become shorter in the longitudinal direction. Furthermore, the effective width, that is, the ratio

$$
\begin{equation*}
\frac{p_{1}}{p_{2}}=\frac{\beta^{0}+\beta^{a}+2}{3 \beta^{6}-\beta^{a}+2} \tag{6,6}
\end{equation*}
$$

decreases with increasing β from the $\nabla \underline{E}$ tue 1 for $\beta=1$ and approaches tho value $1 / 3 \mathrm{c}, \mathrm{s} \quad \beta \rightarrow \infty$.

A simple measure for tho value which β may assume in the eleatic range is given by equation (6.4). If for p^{*} To put in its value from (5.5), there is obtained:

$$
\begin{equation*}
(f / g)^{8}=\frac{4}{3\left(1-v^{8}\right)}\left(\beta^{4}-1\right) \tag{6.7}
\end{equation*}
$$

or (with $v=0.3$):

[^3]$$
\beta=\sqrt[4]{1+0.68(f / \mathrm{s})^{\varepsilon}}=0.91 \sqrt{f / \mathrm{s}}
$$
for largo values of f / s.
Tho groatest bonding stress occurs in tho center of the field in tho x direction (direction of the shorter waves) old has approximatoly the value:
$$
\tilde{\sigma}_{\max }=\frac{-m}{1-v^{g}} \frac{\mathrm{~B}}{2} \frac{\pi^{a}}{q^{B}} f=\frac{\mathrm{E}}{1-v^{a}} \frac{\pi^{B} g^{a}}{3 b^{a}} \frac{3}{2} \beta^{B} \frac{f}{s} \approx 1.24\left(\frac{f}{g}\right)^{a} p^{*} \quad(6.8)
$$

If σ_{p} denotes the proportionality limit of the ratoon rich then f / s, taking into account bending alone, must remain below $0.90 \sqrt{\frac{\sigma_{p}}{p^{*}}}$ if the deformation is still to be elastic. Replacing in (6.8) $f / s=\frac{2}{\sqrt{3\left(1-v^{2}\right)}} \beta^{a}$ approximately ${ }^{\prime} \beta_{y} \beta$, then $\tilde{\sigma}_{\text {max }}=1.81 \beta^{4} p^{*}$ and comparison rich (6.5) shore that for large loads above the buckling Imit $\left(\beta^{3} \ll \beta^{6}\right)$ the maxi mum bending stress as a funcm tion of p_{η} and p^{*} may be written in the form:

$$
\tilde{\sigma}_{\text {max }} \approx \frac{I}{\beta^{3}} 2.42 \mathrm{p}
$$

orelso

$$
\begin{equation*}
\tilde{\sigma}_{\text {max }}=2.2 p^{*}\left(\frac{p_{q}}{p^{*}}\right)^{8 / 3}=2.2 p^{* 1 / 3} p_{q}^{8 / 3} \tag{6.9}
\end{equation*}
$$

This formula gives an indication of how high the loading may be carried before permanent bending deformations nay arise. 6

For the case $\epsilon_{a}=0$. the formulas become much loss simple, and re shall content ourselves with referring to the results shown in figures 3 and 4. It may be seen in particular from figure 4, that the offoctive width curve (frith shear absent) is no longer affected by the behavior of the transverse stiffeners in tho range $p_{l} / p^{*} \geqslant 2$ and correspondingly, the roneining conclusions drain for the case $p_{B}=0$ retain their validity.
6 Tho formula. is valid under the assumption $\dot{\beta}^{2} \gg 1$, that is, large loads above the critical stross; io., thinvallod shot.

VII. THE GHNZRRAL CASH OF COITBIMRD SHEAR

AND COMPRESSIVE STRESSES

We shall nov investigate the behavior of the plate under combined shear and compressive stresses ($\mathrm{T} \neq 0$, $\mathrm{m} \neq 0$). Here, too, te shall give a complete discussion of the more simple case $p_{2}=0$, but for the other inditing case ($\varepsilon_{g}=0$), we shall vifite down the results only.

Pron the second of equations (5.6), writing for briefnet:

$$
\begin{equation*}
1+m^{a}=1+\cot \alpha^{a}=\frac{1}{\sin ^{a} \alpha}=t \tag{7.0}
\end{equation*}
$$

there is obtained for $p_{s}=0$:

$$
\begin{equation*}
\frac{\pi}{p^{(}} \frac{\pi^{a}}{4 b^{2}}=t^{a}\left(\beta^{4}-1\right) \tag{7.1}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{f}{B}=1.21+\sqrt{\beta^{4}}-1=\left(\text { for } \beta^{4} \gg 1\right) 1.21 \frac{\beta^{8}}{\beta^{8} n^{8}} \tag{7.2}
\end{equation*}
$$

From (7.1) it is evident that at the critical point ($f=0$), quite independently of the shoer and longitudinal pressure by which this point pas attained, the distance between raves is exactly equal to tine plate width ($\beta=1$); above the critical point $\beta>1$.

For the critical value of T, there is obtained π fth the aid of (7.1) from the third of equation g (5.6)

$$
\begin{equation*}
\tau_{c r}=2 m p^{*} \tag{7.3}
\end{equation*}
$$

independently of the value of the simultaneously acting.. pressure $p_{1}\left(\leq p^{*}\right)$. A relation betreen $T_{c r}$ and $p_{1} \dot{\exists}$ $p_{c r}$ nay be obtained through elimination of m from (7.3) and the third of equations (5.4):

$$
\begin{aligned}
& T_{c r}=\frac{m}{1-m^{B}}\left(p_{c r}+p^{*}\right) \\
& m^{8}=\frac{1}{2}\left(1-\frac{p_{c r}}{p^{*}}\right), \quad T_{c r}^{a}=2 p^{*}\left(1-\frac{p_{c r}}{p^{*}}\right)
\end{aligned}
$$

If we denote by T^{*} the critical shear in the absence of p_{1} :

$$
T^{*}=\sqrt{2 p}{ }^{*} \quad\left(m^{a}=\frac{1}{2}, \alpha \approx 55^{\circ}\right)
$$

thor follows the known relation: ${ }^{7}$

$$
\begin{equation*}
\left(\frac{{ }^{\tau} c r}{\tau^{*}}\right)^{s}=1-\frac{p_{c r}}{p^{*}} \tag{7.4}
\end{equation*}
$$

For the relation botreen p_{1} and p_{q}, T and γ in tho abovo critical range, there arc obtained the following pos remoter relations:

$$
\begin{align*}
& \frac{p_{1}}{p *}=\frac{1}{4}\left(t \beta^{2}\left(\beta^{4}-1\right)+2 \beta^{2}-6 t+8-\frac{2}{\beta^{8}}(t-1)\right) \\
& \frac{p_{i}}{p^{*}}=\frac{p_{1}}{p^{*}}+\frac{t \beta^{2}}{2}\left(\beta^{4}-1\right) \\
& =\frac{1}{4}\left(3 t \beta^{a}\left(\beta^{4}-1\right)+2 \beta^{2}-6 t+8-\frac{2}{\beta^{8}}(t-1)\right) \tag{7.5}\\
& \frac{T}{p^{*}}=\frac{\sqrt{t-1}}{4}\left[\frac{\left(I+\beta^{a}\right)^{2}}{\beta^{a}}+4\right]=\frac{\sqrt{t-1}}{4}\left[6+\beta^{a}+\frac{1}{\beta^{2}}\right] \\
& \frac{\gamma}{\epsilon^{*}}=\frac{2(I+V) T}{p^{*}}+\sqrt{t-I} \pm \beta^{a}\left(\beta^{4}-I\right) \\
& =\frac{\sqrt{t-1}}{2}\left[\left(6+\beta^{B}+\frac{1}{\beta^{y}}\right)(I+v)+2 t \beta^{a}\left(\beta^{4}-I\right)\right] \\
& \text { 7Soe reforonce 5. In the general case, } p_{a} \neq 0 \text {, the relay } \\
& \text { sion rends } \\
& \left(\frac{T}{p^{*}}\right)^{\text {and }}=\left[\frac{1}{2}\left(1+\beta^{a}\right)-\frac{p_{1}}{p^{*}}\right]\left[\frac{1}{2}\left(3+\beta^{a}\right)-\frac{p_{a}}{p^{*}}\right], \beta^{8}=\sqrt{1-4 \frac{p_{3}}{p^{*}}}
\end{align*}
$$

Which is obtainod in tho simplest way through elimination of a from oquations (5.6 $)$ and (5.63). In the corriespending formula of Wagner there is a typographical error which was also passed on in tho formula colloction of Hock (Luftfahrtforschung, vol. 12 (i935), p. 215); (p_{1} instoad of D_{a} in the second bracket).

In the above system; the directiy given external stress... p_{x}..does, not enters being connected with the stresan es p_{1} and p_{q} according to (2.1) through an additional interimediate parameter $\mathbb{F}_{7} / \mathrm{sb}$. 4 simple representation of the required magnitudes, pamely, the effective'width p_{1} / p_{q} and nean shear modulus $G_{m}=T / Y$ as direct functions of p_{x} and. $T, ~ i s$ therefore not posiable. Since the relation (2.1) between p_{1} and p_{q} is linear, hovever, a very aimple procedure may be indicated for the determination of the required relation. On figure 2 is shomn a plot of p_{1} / p^{*} against p_{Z} / p^{*} with T / p^{*} as paraneter. In tarns of these coordinates, equation (2.1) is a straight line which is most aimply doterminod by its intercopts on the coordinate ares, the point of intersection with the $p /$ axis being $p_{l}(0)=p_{x}\left(1+\frac{s b}{F_{\eta}}\right)$, and with the p_{1} axis $p_{2}(0)=p_{x}\left(1+\frac{B_{q}}{s b}\right)$. Joining ${ }^{8}$ these two points by a straight Ining there nay bo read off at the point of intersection rith the $p_{1}-p_{q}$ curve for the given value of T / p^{*} the corresponding values of the mean sheet stress p_{1} and the otiffener strese p_{q}. The effective width p_{1} / p_{l} is then obtained by simple division 9 (See also figs. 5 and 6.) Fron the point of intersection, there is then also found inmed iately the nean decrease in the shear atiffness with the aid of the T / γ curves of figure 2. At individual points of the $p_{1} \rightarrow p_{q}$ curves there have been indicated the corresponding. β^{a} and t valzes, in order to obtain a picture of the geometrical deformation conditions. (Vith the aid of (7,2) there is obtained in a simple manner from β^{2} and t also the buckling anplitude f.)

The maximum bending stress may be obtained from the formula:

[^4]$$
\tilde{\sigma}_{\max }=\frac{\dot{I}}{1-v^{\mathbb{1}}} \frac{\operatorname{B}}{2}\left(\frac{\partial^{a} \pi}{\partial \xi^{\frac{1}{d}}}+v \frac{\partial^{a} w}{\partial \eta^{8}}\right)
$$

Where ξ is the direction of the maximum, η the diracion of the minimum curvature of the surface $\mathbb{F}=\boldsymbol{\pi}(x, y)$. If re neglect (as above) the unimportant second term in the case of large buckling deformations, there is obtained:

$$
\sigma_{\max }=\frac{\mathbb{I}}{1-v^{⿷}} \frac{B}{2} \frac{1}{P_{1}}
$$

The first "principal curvature" $\frac{1}{\rho_{1}}=\frac{\partial^{2}{ }^{n}}{\partial \xi^{g}}$ is obtained by the following consideration. The sum and product of the two principal curvatures $1 / P_{1}$ and $1 / \rho_{2}$ are, as $1 s$ shown in differential geometry (sec, for example, reference 7) inverianto and may be given in terming of the curvatures $\Pi_{X I}, \nabla_{Y y}$, and twist $\nabla_{X y}$ by

$$
\begin{equation*}
\frac{1}{\rho_{1}}+\frac{1}{\rho_{a}}=\nabla_{x x}+\nabla_{y y}, \frac{1}{\rho_{1}} \frac{1}{\rho_{a}}=\sigma_{x x} \nabla_{y y}-w_{x y}{ }^{2} \tag{7.6}
\end{equation*}
$$

Fulminating I / ρ_{s} from these trio equations, there is obtrained for I / ρ_{1} the quadratic equation:

$$
\left(\frac{1}{\rho_{1}}\right)^{2}-\Delta \pi \frac{1}{\rho_{1}}+\left(\pi_{x x} \nabla_{y y}-\nabla_{x y}{ }^{2}\right)=0
$$

"hose solution is:

$$
\frac{1}{\rho_{1}}=\frac{1}{2}\left\{\Delta w-\sqrt{\left(\pi_{x x}-w_{y y}\right)^{a}+4 \pi_{x y}}\right\}
$$

For the maximum curvature occurring at $x=0, \quad y=0$ of the entire sheet panel, there is therefore found, using (4.1): .

$$
\begin{aligned}
\frac{1}{P_{1}} & =-\frac{\pi^{a} f}{2 b^{a}}\left\{\left(1+\beta^{a}\right)+\sqrt{\left(1+\beta^{a}-2 \frac{\beta^{a}}{1+m^{a}}\right)^{a}+4 \frac{m^{a} \beta^{4}}{\left(1+m^{8}\right)^{a}}}\right\}= \\
& =-\frac{\pi^{8} f}{2 b^{a}}\left\{\left(1+\beta^{B}\right)+\sqrt{\left(1+\beta^{a}\right)^{a}-\frac{4 \beta^{a}}{1+m^{a}}}\right\}
\end{aligned}
$$

For $\beta^{a} \gg 1$ this expression may bo considerably simplefled by expanding the root:

$$
\left.\left.\begin{array}{rl}
-\frac{1}{P_{1}} \frac{b^{a}}{\pi^{a}} & =\frac{ \pm}{2}\left\{\left(1+\beta^{a}\right)+\left(1+\beta^{a}\right)\left(1-\frac{2 \beta^{a}}{\left(1+\beta^{a}\right)}\left(1+m^{a}\right)\right.\right.
\end{array}\right)\right\} .
$$

and for the maximum bending stress there is obtained:

$$
\begin{equation*}
\frac{\partial_{\text {max }}}{p^{*}}=\frac{3}{2} f / s\left(\beta^{a}+\frac{m^{a}}{m^{a}+1}\right)=\frac{3}{2} f / s\left(\beta^{a}+\frac{t-1}{t}\right) \tag{7.7}
\end{equation*}
$$

Which for $m=0$, that $18, \quad t=I^{\circ}$ (and partialarly, for $\beta^{a} \gg 1$) $1 s$ in agreement with (6.8).

For large loads above the buckling ($\beta^{4} \gg 1$), f/s may be replaced by $1.21 \mathrm{t} \beta^{0}$ and, according to (7.5) $t \beta^{6}$ by $\frac{4}{3} \frac{p q}{p^{*}}$; if \quad e also negloct $\frac{t-1}{t}$, as compared to β^{a} (Which is justifiable, particularly for predominating presa sure stress), there is obtained approximately:

$$
\begin{equation*}
\delta_{n a x}=1.81 \beta^{4}+p^{*}=2.42 \frac{1}{\beta^{a}} p_{q} \tag{7.8}
\end{equation*}
$$

With the aid of this relation, which we had previously found for the particular case $T=0$, it is possible to obtain the neximun bending stress also frog figure 2. Since (7.8) is true for $\beta^{B} \gg 1$ (for $\beta=1$, f, and hence also $\tilde{\sigma}$ becomes zero), then (according to our theory) it is not the bending stress but the stiffener compressive stress that determines the strength of the structural part. It should be observed, however, that the secondary buckIng (reference 8) in the neighborhood of the edge that occurs at very large loads above the buckling and which is not taken into account by our theory may, under certain circumstances, lead to higher bending stresses

The exceptional case $\epsilon_{a}=0$ of particular interest in practice (limiting case of rigid transverse stiffeners) presents much greater difficulties in the computation than the case $p_{a}=0$. Since nothing fundamental, however, is changed in'the discussion, we shall content ourselves with merely indicating the system of formulas which leads to the construction of chart 3 similar to chart 2. It is found to
be most convenient to allow p_{a} to remain as an intormedia ate parameter, since it is then possible to make direct use of a large part of the computations carried out for the case $p_{g}=0$. (The values givon by equation (7.5) for $p_{2}=0$ are denoted by $\left.\hat{\mathbf{p}}_{\mathcal{1}}, \hat{\mathbf{p}}_{q}, \hat{T}, \hat{\gamma}\right):$

$$
\frac{p_{a}}{p^{*}}=\frac{1}{4} \frac{\left(\beta^{4}-1\right) 2 t \beta^{a}\left[t\left(1+\frac{1}{\beta^{a}}\right)-1\right]-4 v \hat{p}_{1}}{-2 t \beta^{a}\left[t\left(1+\frac{1}{\beta^{a}}\right)-1\right]-1+v\left\{t \beta^{a}+(t-1)\left(1+\frac{2}{\beta^{a}}\right)\right\}}
$$

$\frac{p_{1}}{p^{*}}=\hat{p}_{1}+\frac{p_{a}}{p^{*}}\left\{t \beta^{a}+(t-1)\left(1+\frac{2}{\beta^{2}}\right)\right\}$
$\frac{p_{l}}{p^{*}}=\frac{p_{1}}{p^{*}}+\frac{1}{2} t \beta^{a}\left(\beta^{4}-1\right)+\left(2 t \beta^{2} \rightarrow v\right) \frac{p_{a}}{p^{*}}$

$$
\left.=\hat{p}_{l}+\frac{p_{B}}{p^{*}}\left(3 t \beta^{a}+(t \sim I)\left(1+\frac{2}{\beta^{6}}\right)-v\right)\right\}(7.9)
$$

$\frac{T}{p^{*}}=A-\frac{p_{D}}{p^{*}}\left(1+\frac{1}{\beta^{8}}\right) \sqrt{t-1}$
$\frac{\gamma}{\epsilon^{*}}=\frac{2(1+v) T}{p^{*}}+\sqrt{t-I}\left(t \beta^{a}\left(\beta^{4}-1\right)+\frac{p_{a}}{p^{*}} 4 t \beta^{a}\right)$

$$
\begin{aligned}
& =\hat{\gamma}+\frac{p_{B}}{p^{*}}\left(4 t \beta^{a}-2(1+v)\left(1+\frac{1}{\beta^{\sharp}}\right)\right) \sqrt{t-1} \\
& \left(\frac{f^{\prime}}{s}\right)^{8}=1.46 t^{2}\left(\beta^{4}-1\right)+5.85 t^{a} \frac{p_{B}}{p^{*}}
\end{aligned}
$$

tively. In ordor to obtain at least on approximation for any definite intormodiato caso $\mathrm{F}_{\mathrm{q}} / \mathrm{sa}, \mathrm{the}$ folloving metho od is used. On the charta the ifmiting compressife atrains $\varepsilon_{a}\left(f o r j_{a}=0\right.$) and stresses p_{a} (for $\epsilon_{a}=0$) are shomn. The stress p_{a} is the mean stress with which the sheot "adheres" to the longitudinal gtiffenera, and the trangierse atiffeners must therefore take up a stress $\mathbf{p}_{q}=$ $P_{B} \frac{g_{q}}{H_{q}}$ If the atrain corresponding to this stress $G_{g}=$ $\frac{p_{g}}{\mathbb{F}} \frac{\text { sa }}{P_{q}}$ is nor compared with the atrain ϵ_{g} of the longitudinal members according to figure 2 (rhich was obtained under the assumption of no transverse stiffening), an ostimate may bo obtained as to rhich of the tro liniting cases is the nore nearly approached and mean values ob \rightarrow
 charts. Hon auch a mean valuo is to bo obtained in any particular case rill clearly be indicated by a computod examplo, given in section IX.
VIII. THE RFPMCTITE $\mathbb{T I D T H} \quad p_{1} / p_{q}$ AFID THE RRDUORD SHinar Lodulus $\frac{\mathrm{d} T}{\mathrm{~d}} \overline{\mathrm{Y}}$ FOR THE IIMITIMG CASm

OH VERY STROIGG LOHGIMUDINAI STIFFEGBRS

Although all the required values for some particular application of our theory may be obtained from charts 2 and 3, a fer more figures rill be given and oxplained in this section since thoy aro suited for giring a somerhet clearer picture of the genoral behavior of the charactorign tic valuos of the sheet. In all of the figures the stiffener stress p_{q} rhich, in the limiting case of very strong longitudinal mombers ($F_{q} \gg s i$), is oqual to the directly givon atress P_{I}, i_{s} takon as the reference stress. (If it is also desired to obtain tho numerical values for tho case $J_{\eta}=s b$, thon it is naturally possible to use as reforence the given load atress px fith the aid of charta 2 and 3.)

Figure 4 shows the variation of the effective width
with p_{l} / p^{*}-in the absence of shear. The difference betreen the limiting cases $p_{a}=0$ (continuous curve) and $\epsilon_{a}=0$ (thin dotted curve) is very slight except for the critical point itself. The presence of a definite trangverse tension $p_{a}=-p^{*},-2 p^{*}$, otco, rhile it increases the critical load, affecto the variation of the effective width only in the lower range.

Ficure 5 shows the variation of the critical valuos T and p_{1} for corbined stress (for the continuous curves seo (7.4); for the dotted curves, see the formulas in reference 5. \quad ith $p_{a}=v p_{1}$). The abscissais chosen as the ratio T / p_{q}. There may be observed the very considerable effect of the transverse pressure $p_{B}=v p_{1}$ in the case of fixed longitudinal stiffeners ($\epsilon_{a}=0$); p_{q} is obtaincd from p_{1} by multiplication $\nabla i t h\left(1 \rightarrow v^{a}\right)=$. 0.91.

Figures 6 and 7 givo a plot of the ratio p_{1} / p_{q}, for Which the term "effective width" has a simple meaning for the case $T=0$. The abscissa is the ratio $p_{q} / p_{c r}$ and the parcmeter the ratio T / p_{q} of the shear to the stiffe ener precsure. It may be seen that in this case the concopt of "effective width" $\left[b_{m}=b \frac{p_{1}}{p_{q}}\right]$ has lost its clear meaning since p_{1} very soon becomes less than zero. Under the simultaneous action of shear and pressure, the tension component in the longitudinal direction due to the sherr may become greater than the externally applied conn. preseive stress, so that the longitudinal stiffeners must take up not only the entire external pressure but also the additional pressure arising fron the condition of equilibrium rith the sheet tension stresses (nogativo support of the skin).

In the caso of pure lonsitudinal pressure the ratio p_{1} / p_{η} is, as पe have seon from figure 4 , in the tro lim iting cases $F_{q} \gg<s b$ only very slightly different. In the presence of shear, hovever, the stiffnessis quite considorably effected by the behavior of the transferse
stiffeners. The mechanical explanation is the folloringi In tho.case of pure compressive stress tho supporting ability. of the sheot arisos essontially from its prevontion of tho buckling deformation in the meighborhood of the longitudinal merbers and a certain "cushioning" effect thich the transverse fibers exert.as a result of the perim odically changing lateral stresses. These lateral stresses remain small in the mean (fig. 8). As a result of the shear, horever, there arise, for static reasons, diagonal. tension gtresses of considerable magnitude (rtension diegonals") that are transmitted to the longitudinal stiffeners. If the latter, due to stiff trangverse members, aro practically nondisplaceable these diagonal tension stresses.result in a romarkable stiffening of the system against. additional compressive and particularly shear atrespes. Ifs homerer, the longitudinal stiffeners are yielding, then a diagonal tonsion fiold canfot bo sot up at all. The anglo of rave incilination becomes vory small and the aheot resists mainly throurh its bending stiffnoss. Tho apparontly paradoxical result that, mith constant oxternal compressivo load and incroasing shear, the ratio $T / G Y$ for $\epsilon_{s}=0$ in general increases (soe fige 3), finds its explanatior. in the stiffening action of the transverse strosses p_{a} arising from the shear.

Thoso rolations may bo brought out somerhat difforontly rith tho aid of figures 9 and 10. Both figures ghor the variation of the reduced "ingtantaneoug" shear modulus $\mathrm{dT} / \mathrm{dY}$. (not the reduced nean shear nodulus T / Y) figure 9 for puro shoar stross, nnd figure 10 for constant ratio $k=T / P_{q}$. It may be seen from figure 9 that $d T / d Y$ dem pends vigry much on the stiffness of the longitudinal and trangrerse stiffeners. Curve a (rigid struts) shovs in particular the decrease tomard the limiting value known fron the tension-field theory; curve b is for tho case of no longitudinal stiffening; and curvo c, for no transForse stiffening. From curve d, thero may bo obtained tho order of magnitude of tho resiatanco rhich an unstiffonod sheet exerts against.further deformation.

Figure ll ahors the variation of the angle $\dot{\alpha}$ of the
wave inclination and the principal stress angle α oith $T / p^{*}, p_{q} / p^{*}$ being taken as parameter; for $\boldsymbol{c}_{\mathrm{a}}=0$. (The dotodash, curves separate the regions belor and above crita ical buckling load.) Fith predominating shear stress (particulcrly, therefore, for small values of the paranom ter p.f/p) tho angles deviate but little from one an-
other; frith increasing T the curves shove tendency to collect in the strip between 40 and 50°, so that with large loads in excess of the buckling load due to shear no great error rill be made in assuming the approximate value $a=$ 45 . The figure partially confirms the correctness of the assumptions of the Wagner tenaion-field theory and at the sane tine shore in that direction the assumed expressions for the deflections should be corrected if the compressive load predominates.

IX. COMPUTED EXAMPLES

Tho use of the charts 2 and 3 rill be made clear with the aid of two examples.

1. A panel of a plane reinforced plato girder is to take up such a shear stress that $T s=40 \mathrm{~kg} / \mathrm{cn}$, and a longitudinal compressive force $P_{x}=1,500 \mathrm{~kg}$. The aislance betroon the longitudinal stiffener sections (that is, the shoot width) is 130 na , and the distance betroon the transverse stiffener frames is 250 mm .

If re consider a nan shear stress in tho sheet of $T_{a l}=500 \mathrm{~kg} / \mathrm{cm}^{2}$ as allowable, then for tho wall thickness we must choose

$$
s=\frac{400}{500}=0.8 \mathrm{~mm}
$$

With $s=0.8, \quad b=130$ the reference pressure p^{*} bow cones:

$$
p^{*}=730,000 \frac{0.64}{16900} \times \frac{\pi^{8}}{3 \times 0.91}=100 \mathrm{~kg} / \mathrm{cm}^{\mathrm{a}}
$$

so that $\frac{T}{p^{*}}=5$. If we admit a compressive stress in the longitudinal stiffeners $p_{\imath}=1,200 \mathrm{~kg} / \mathrm{cm}^{2}$, then with the aid of figure 3 , we may obtain the required section \bar{F}_{r} of the longitudinal stiffeners. From the latter figure there corresponds to $p_{l} / p^{*}=12$, and $T / p^{*}=5$, a sheet stress $p_{1} / p^{*}=3.35$; the equilibrium of tho forces in the longitudinal direction gives:

$$
P_{x}=p_{i} s b+p_{q} \overline{\bar{n}_{\imath}}
$$

$$
\begin{equation*}
\frac{\bar{F}_{q}}{\mathrm{sb}}=\frac{\frac{P_{x}}{\mathrm{~Gb}}-p_{1}}{P_{q}}=\frac{1440-335}{1200}=0.92 \tag{9.1}
\end{equation*}
$$

ie.

$$
\overline{\bar{x}}_{\imath}=0.92 \mathrm{~g} \mathrm{~b}=0.967 \mathrm{~cm}^{\mathrm{a}}
$$

We as acme that among the stiffener sections there are availablelo, those of area $\mathbb{F}_{l}=1 \mathrm{~cm}^{2}$. We then find on interseating the curve $T / p^{*}=5$ in figure 3, frith the straight inge:

$$
p_{1} \frac{s b}{F_{q}}+p_{q}=\frac{P_{x}}{F_{q}}
$$

that is,

$$
\begin{equation*}
1.04 \frac{p_{1}}{p^{*}}+\frac{p_{2}}{p^{*}}=15 \tag{9.2}
\end{equation*}
$$

The points

$$
\left.\begin{array}{l}
p_{1} / p^{*}=3.22, \quad p_{\imath} / p^{*}=11.65 \\
p_{\Omega} / p^{*}=-4.25, \quad \tau / Q^{*}=0.59
\end{array}\right\}
$$

The values (9.3) mere obtained from figure 3 that was computed under the assumption $\varepsilon_{\varepsilon}=0$, that is, rigid transverse stiffeners. In general, this assumption rill not be far from the true condition, but it may nevertheless appear desirable at least to estimate the effect of yielding stiffeners. This is possible frith the aid of figure 2. Intersecting the curve. $T / p^{*}=5$ in figure 2, faith the straight line (9.2), re find:

$$
\begin{equation*}
\frac{p_{1}}{p^{*}}=-0.5, \quad \frac{p_{p}}{p^{*}}=15.5, \frac{\varepsilon_{2}}{\varepsilon^{4}}=147, \frac{T}{G^{4}}=0.14 \tag{9.4}
\end{equation*}
$$

$\mathrm{IO}_{\text {Te shall assume that the computation is on a series of }}$ sheet panels so that for each panel there. is computed only one stifferier. If the computation is on a single panel, then in all formulas F_{i}. includes the sur of both transom verso stiffeners.

Actually the trangrorge stiffeners are neither ideally rigid nor yielding but we can, nevertheless, obtain the actual stress and deformation condition of the sheet if vo. allot an additional asternal load to act in the transverse direction. the condition of equilibrium betroon tho stiff over stress p_{q}, the mean shoot stress p_{8}, and tho oxtergal stress $p_{y} i s:$

$$
\begin{equation*}
p_{y}=\frac{p_{q} F_{q}+p_{B} s a}{F_{q}+s a}=\frac{p_{q}+p_{B} \frac{q a}{Y_{q}}}{1+\frac{s a}{F_{q}}} \tag{9.5}
\end{equation*}
$$

If tho condition $\varepsilon_{a}=0$, that is, vanishing compressive stross in tho transverse stiffonors (as is assumed in fig. 3) is attained, then in ordor to offset the transverse tensile force of the sheet it is necessary to apply a stress:

$$
\left(\sigma_{y}\right)_{I I I}=\left(-p_{y}\right)_{I I I}=-p_{s} \frac{\Delta a / F_{q}}{i+\frac{s a}{F_{q}}}
$$

If, however, the sheet remains, on the average, free from stress in the transverse direction ($p_{g}=0$), then an exr ternal pressure:

$$
\left(p_{Y}\right)_{I I}=\frac{p_{q}}{1+\frac{B Q}{F_{q}}}=\frac{\epsilon_{g}}{1+\frac{8 Q}{F_{q}}}
$$

must be applied in order to produce the compressive strain $\varepsilon_{a, ~ o b t a i n o d ~ f r o m ~ f i g u r e ~}$, in tho transverse stiffeners.

In the example πe obtain $\pi i t h \quad a=250 \mathrm{ma}, \mathrm{m}_{\mathrm{q}}=1 \mathrm{cn}{ }^{2}$ $\left(1.0 ., \frac{\theta_{i}}{q_{q}}=2\right)$

$$
\begin{aligned}
& \left(\sigma_{Y}\right)_{I I I}=2.8 \mathrm{p}^{*} \\
& \left(p_{Y}\right)_{I I}=49 p^{*}
\end{aligned}
$$

Actually $p_{y}=0$, and if we make the approximating assumption that it is permissible to interpolate linearly then b_{j} "averaging" Te obtain finally:

$$
\begin{aligned}
& \frac{T}{Q_{y}}=\frac{0.59 \times 49+0.14 \times 2.8}{49+2.8}=0.566 \\
& \frac{p_{1}}{p^{6}}=\frac{3.22 \times 49-0.5 \times 2.8}{51.8}=3.02 \\
& \frac{p_{q}}{p^{6}}=\frac{11.65 \times 49+15.5 \times 2.8}{51.8}=11.9
\end{aligned}
$$

As mas to be expected, the values do not deviate much from those taken from figure 3, so that in most cases the ind terpolation may be dispensed with.
2. As a second example, te choose a case of pure shear stress:

$$
T \text { is } \Rightarrow 60 \mathrm{~kg} \text { om, } T_{0 .}=750 \cdot \mathrm{~kg} / \mathrm{cm}^{2}
$$

so that $s=0.8 \mathrm{~mm}$, and with $b=130 \mathrm{~mm}$, we have:

$$
p^{\omega}=100 \mathrm{~kg} / \mathrm{om}^{2}
$$

If me take, as in the first oxamplo, $I_{h}=1 \mathrm{~cm}^{\mathrm{a}}$, me find at tho point of intersection of a straight line of slope $\frac{1.00}{1.04}=0.96$ through tho origin, from figure 3, the values:

$$
\left.\begin{array}{l}
\frac{p_{1}}{p^{*}}=-2.35, \frac{p_{q}}{p^{*}}=2.45 \tag{9.6}\\
\frac{p_{g}}{p^{*}}=-4.65, \\
\frac{T}{G^{\gamma}}=0.76
\end{array}\right\}
$$

and from figure 2

$$
\left.\begin{array}{ll}
\frac{p_{1}}{p^{*}}=-11.1, & \frac{p_{q}}{p^{*}}=11.6 \tag{9.7}\\
\frac{\epsilon_{8}}{\epsilon^{*}}=850 ; & \frac{T}{G \gamma}=0.115
\end{array}\right\}
$$

Invar intorpolation gives:.

$$
\begin{aligned}
& \frac{T}{d \gamma}=\frac{0.76 \times 120+0.115 \times 3.1}{123}=0.745 \\
& \frac{p_{1}}{p^{*}}=-2.57 . \quad \frac{p_{q}}{p^{*}}=2.68
\end{aligned}
$$

The computation thus far was valid for the inner pancl of a series of sheet panels for rhich the longitudinal stiffoners may be considered as renaining straight. In tho case of the end panels, it vill not bo found possible evon Whon tho outsido stiffoners are aade strong, to prevent the edgos fron bending under the effoct of tho transporso atress $\sigma_{a}=-p_{g}$. In tho same aannor as tho axial olase ticity of tho trangvorse stiffoners, the effoct of tho bending clasticity of tho longitudinal stiffonors may bo approxinatoly dotorained. If $\pi \theta$ considor tho stringer bow treen tro transvorse franos as a bcan clampod at the tro sides under conatant lateral load, there is obtained for the mean value of the deflections v by the knorn formum 1as:

$$
\nabla_{m}=\frac{1}{a} \int_{0}^{a} \nabla d x=p_{s} \frac{s a^{4}}{720 \mathrm{EJ}}
$$

This deflection πe shall consider as having been offeet by an external force. If the inner longitudinal stiffeners are so veak that the contraction due to ∇ nay be taken as uniforn in all of the panels, then the stress to be ap plied is (asauning tro equal outor nenbers):

$$
p_{y}=\mathbb{B} \frac{\nabla_{\square}}{n b / 2} \frac{F_{q}}{F_{q}+s a}
$$

In general, however, the inner longitudinal otiffeners rill not be ideally flexible in bending and the inner panels can take part only imperfoctly in the deformation. It is sefe (rith respect to the outer panel) to asaune that the outer panel aust balance the fielding of the stiffeners alone. Thore will then be a strese:

$$
\left(\sigma_{y}\right)_{I}=-\mathbb{H} \frac{\nabla_{m}}{b} \frac{F_{q}}{\mathbb{F}_{q}+s a}=-p_{a} \frac{s a^{4}}{720 J b} \frac{H_{q}}{F_{q}+s a}
$$

Which is to be added to the above deternined stress (σ_{y}) III in order that the condition $\epsilon_{a}=0$ in the outer panel (at least in the nean over the length a) nay be set up. The rulo according to rhich the Iinear interpolation for magnitude $\xi\left(T, P_{1}, ~ e t c.\right)$. betroen the results ξ_{3} and ξ a from the tro charts is to be made, is therefore:

For an inner panel: $\xi=\frac{\xi_{y} \cdot\left(p_{Y}\right)_{I I}+\xi_{g}\left(\sigma_{\dot{Y}}\right)_{I I I}}{\left(p_{Y}\right)_{I I}+\left(\sigma_{Y}\right)_{I I I}}$
For an outer panel: $\xi=\frac{\xi_{3}\left(p_{y}\right)_{I I}+\xi_{a}\left(\sigma_{y}\right)_{I I I}}{\left(p_{Y}\right)_{I I}+\left(\sigma_{Y}\right)_{I I I}}$
\#here $\left(\sigma_{y}\right)_{\text {III }}{ }^{\prime}$ with $\sigma_{\mathrm{a}}=-\mathrm{p}_{\mathrm{a}}$ is obtained from:

$$
\begin{equation*}
\left(\sigma_{y}\right)_{I I I},=\sigma_{a} \frac{g a}{\mathbb{F}_{q}+6 a}\left\{1+\frac{a^{3} F_{q}}{720 J b}\right\} \tag{9.9}
\end{equation*}
$$

The moment of inertia J of the edge bars is deter mined from the condition that the bending stress $\tilde{\sigma}_{\text {max }}=$. $\frac{\mathbf{K}_{\text {max }}}{\mathbb{T}}$ must not exceed a certain limit $\tilde{\sigma}_{a l}$. If $\mathrm{h} / \mathrm{?}$ dem notes tho distance of the extreme fibers from the neutral axis, then

$$
J \geqslant \frac{h}{2} \frac{M_{\text {max }}}{\tilde{\sigma}_{a l}}=\frac{\sigma_{a}}{\tilde{\sigma}_{a l}} \frac{a^{a} h}{24}
$$

(9.9), and there is then obtained: may be substituted in

$$
\left(\sigma_{Y}\right)_{I I I}=\left(\sigma_{Y}\right)_{I I I}+\bar{\sigma}_{a I} \frac{a^{a}}{30 h b} \frac{F_{q}}{\mathbb{F}_{q}+\mathrm{s} a}
$$

a relation which, frith given dimensions a, h, j is very convenient. In our first numerical example frith $\tilde{\sigma}_{a l}=$ $500 \mathrm{~kg} / \mathrm{cm}^{2}$ and $h=5 \mathrm{~cm}$, the value of the "bending contribution" becomes $53 \mathrm{~kg} / \mathrm{cm}^{2}$, so that it is not negligibile to the same extent as $\left(\sigma_{y}\right)$ III

X. sumiaty

The elastic behavior of a simply supported plate strip under shear and compressive loading above the buckling lime it is investigated in the present report. The investigaion of this range was carried out with the aid of the enorgy method. The main results obtained are presented in
the form of a chart (fig. 3), the use of which for practical application purposes is explained with the aid of tmo computed examples. The curves give the relatior betreen the mean skin stress p_{1} and the longitudinal stiffoner stress p_{q} (under the assumption that the longitudinal membors aro not displaceable in the transverse direction) for vcrious values of the shear T. The chart contains, besidos the reducod "mean" shear modulus T / Y, the menn stross $\sigma_{a}=-p_{a}$, with mhich the shoet acts laterally on the transvorse stiffoners and for individual points the geonetrical masnitudes $\beta^{8} \quad(b / \beta=$ reve separation) and $t=\frac{t}{\sin ^{2} \alpha}(\alpha=$ wave inclination). The reference pregsure p* is takem es the critical stress for the hingesupported sheet under pure axial compression $=\frac{\text { in }}{1 \rightarrow v^{g}}$ $\frac{\pi^{a} g^{8}}{3 b^{2}}$. Figure 3 takes account of the practically important range betreen the critical load and the load about trenty times in excess of the criticnl. Tith given extera nal (shear and compressive) load, it is possible by its aid to determine either the stresses then the crosg-gectional areas are given, or the required cross sections When the meximum stressos are proscribod. Figure 2 givos tho values $p_{1}, T / Y$, and ϵ_{a} for various values of tho shoar T for the othor limiting case of yielding transverge stiffeners ($p_{a}=0$). It serves (in the manner den scribed in section IX) to take into account the compressive and shear elasticity and the bending elasticity of the longitudinal stiffeners. In many cases it vill be possible for a first approximation to diapense rith this refinement. Figures 4 to ll shor the variation of the efm fective width p_{1} / p_{q}, the reducei "instantaneous" shear modulus $d T / d Y$ and the rave inclination angle a, for soveral particular loading cases.

Translation by S. Reiss, IIational Advisory Committee for Aeronautic3.

1. Marguerre, K., and Treffty, R.: Uber die Tragfëhigkoit einos Plattenstreifens. Z.f.a. M. K., vol. 17, 1937, p. 85.
2. Tinoghenko, S. Theory of Rlastic Stability KcGrawn Hill Book Company. Ner York, 1936.

Gredzielaki u. Billerica: Sur la rigidité do la tole flanbée. Sprarozdania (1937) S. 5 (Warsar).
3. Liarguerre, $K_{0}:$ Dite nittragende Breite der gedrunckten Platte. Luftfahrtforschung, vol. 14, 1937, p. 1214 see also Z.f.a. K. K., vol. 16, 1936, p. 353.
4. Galerkin, T.: Stäbe und Platten. Testnik inscheneror (1915) S. 897 (Hussian).
5. Vagner, H.: 界ber Konstruktions- und Berechnungsfragen des Blechbaues. T.G.I. Yearbook, 1920, Dp. 113-115. Schapita, E.: Beitrage zur Theorie dea unvollatändicen Zugfeldes. Luftfehrtforschung, vol: 14, 1937, p. 130 .
6. Lalhde, R., and Tagner, H.: Tegts for tho Determination of the Stress Condition in Tension Fields. T. ${ }^{\text {I }}$. IIO. B09, II.A.C.A., 1936.
7. Slaschke: Differentialgeonetrie. Berlin, 1924, p. 59.
8. Lahde, $\mathcal{H} \cdot$, and Wagner, H. : Versuche zur Frinittlung der nittragenden Breite. Luftfahrtforschung, vol. 12, 1936, p. 214.

Figure 1,-Plate strip under shear end compressive stress.

Figure 5.- The critical valuest. p_{1} as functions of T / P_{l} ($v=0.3$).

Tigure 4.- The effective width p_{1} / p_{2} as a function of the excess load beyond the buckling load (pure compressive stress).

Figure 6.- The effective width p_{1} / p_{l} as a function of $p_{l} / p_{k r}$ ($=T / \tau_{k r}$) for various values of the parameter $k=\tau / p_{l}$, for the case $\mathrm{p}_{\dot{2}}=0$.

Figure 7.- The effective width p_{1} / p_{2} as a function of $p_{l} / p_{k r}$ ($=\tau / \tau_{k r}$) for various values:of the parameter $k=T / p_{l}$. for the case $\epsilon_{2}=0$

Figure 3.- Relation between the sheet atress p_{1} and the longitudinal stiffener stress p_{1} in the presence of shear T. Dotted curves give shear modulus T / γ and transverse sheet stress p_{2} as funotions of p_{1} and τ. Transverse contraction $\epsilon_{2}=0$.

Figure 8
$\leftarrow \longrightarrow$

Figure 9.- Reduced "instantaneous" shear modulue $\alpha \tau / d r$ for pure shear stress for the four limiting cases a) $\varepsilon_{1}=\varepsilon_{2}=0, \quad$ b) $p_{1}=\varepsilon_{2}=0, \quad$ c) $\varepsilon_{1}=p_{2}=0$, d) $p_{1}=p_{2}=0$. $\imath^{*}=\sqrt{2} p^{*}=E \frac{\gamma^{\prime} \overline{2}}{1-y^{2}} \frac{\pi^{2} s^{2}}{3 b^{2}}$.

Figure 10.- d.t/dr as a function of the excess stress beyond the critical for various values of $k=T / p_{l}$.

Figure 11.- Wave inclination angle a and principal stress direction $\bar{\alpha}$ as functions of T and p_{l} $\left(\epsilon_{2}=0\right)$.

[^0]: ＂Verhciten oines von Schub－und Druckerafton boanspruchton Plattonstreifong oberhalb dor Boulgrenzo．＂Luftfahrit－ forschung，vol．14，no．12，Docombor 20，1937，pp．627－ 639 ．

[^1]: Inho boundary integral in (3.3) where in placo of $8 \pi y$ thoro is \quad rititon ${ }^{\prime}$.

[^2]: ${ }^{2}$ We thus consider for the nonent, not the forces but the displacemento at the edges as given in advance. Tho mean values of the stresses (which enter expression (4.7) as integration constants $p_{1} p_{B}, T$) are deternined in this manner as functions of $\varepsilon_{2}, \varepsilon_{a}$ and γ. In the final formules, hopr otor, there is nothing to provent the inverse interpretam tion of the functional relation.
 3 Ihis important system of oquations may also be obtained In somertet sinplor, form (3.1) and (4.8) by congidering beforehand the relation betreen the mean values of the stresen os and strains, f.e., by an integration over the complete periods the sin-cos. teris drop out.

[^3]: 5THith tho assumption of unchanged rave length there is ob w tainod with the assumed expression (4.0), the limiting value $1 / 2$. The improvement is therefore considerable and also surprisingly good when compared pith the result of the extended computation.

[^4]: 8If one of these two pointa falls outside the linits of the chart thero will be found no difficulty in the deterninan tion of this line since the slope of the angle of inclinam tion with the negative p_{q} axis is given by $F f / a b$. $9_{\text {For cother definition cf effeotive width in the predence }}$ of shear, see reference 6.

