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BEEAVIOR OF A PLATE STRIP UNDER SHEAR AND COMPRESSIVE
STRRSSES BEYOND THE BUCKLING LIMIT*

By A.  Eromm and K. Marguerre

The present report is an extension of previous theo-
retlcal investigations on the elastlic behavior of a plate
under compression and shear in the region above the oriti-
cal. The main object is the clarification of the behavior
immedlatoly above the buckling limit since no theoretical
expressiong for this range have thus far been found and
slnce experimentally, too, any degree of regularity 1in the
behavior of the plate in the range botwoon the critical
load and about threec to four times the criticel, 1s dis-
cernible only with difficulty. Tho prescnt roport thus
supplements, for oxample, tho experirental invostligations
of Lahde and Wagnor.

Lahde and Wagnor's invostigatlions differ from ours,
however, in the following points: Whereas thoy conslder
the case of clamped-ond conditlon and rigld lateral gtiff-
oning, wo shall consider hinged-end conditlons and tho two
limitlng casos of rigld and vanighingly snall lateral
stiffoning, respectively. (Through interpolation, the inw
termedliato case of elastlc lateral support 1s thus. taken
lnto nccount.) Lakde and Wagner's chart 4 refers to tho
particular case of pure shear, while our figures 2 and 3
rofor.to the more genernl case of combined loading in con-
Pression and shear. There 1ls some deviation in the re-
sults - our computations leading to a somewhat smaller
supporting strength of the sheet than is obtained on tho
baosis of the teat repults of Lahdo and Wagner.

I. INTRODUCTION

T ™ 'fhé brosent paper ls a continuation of two previous
papers on the behavior of plates beyond the buckling linmit,

*u¥erholten eines von Schudb- und Druckkraften boansprichton
Plottonstreifons oberhald der Boulgrenzo." Luftfahit-
forschung, vol. 14, no, 12, Docembor 20, 1937, pp. 627-
639.
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In the first paper (reference 1) there was investigated,
with the ald of the energy method, the behavior immedlate-
ly above the buckling limit under the approximating ag-
sumption that for a small excess of load boyond the buck-
ling load, the waves maintained the same shapes they as-
sumod at the eritical load. Tho invostlgatlion dlffored
essentinlly in the method omployed from those of other
authorsg, in that first the theory of plates with "large"
deflection. was based on consliderations from differentinl
geomotry; ond secondly, in thoe derivation of the equilib-
rium condltions (expressed in terms of the displacements
u, v, w); the principle of virtual displacemonts and tho -
Ritz expression was applied strictly to the normal dig-
Placonont w only (hence not to u and v). The essen-—
tial rosult obtalned was that the apparent stiffness
Bproqg = dp,/d€¢ was roduced to half its value at the in-

stant of buckling (reference 2).

In the second paper (reference 3) there was lnvestie
gated (with the aid of an expression by Ritz for w con-
taining several parameters) the behavior of the plate when
the critlcal polnt was far exceeded., The principal re-
sult obtalned was the simple spproximate formula for the
"effective width"

3/p
by = D 5—:‘ (py > Pgp)

(b = width of sheet, Py = tho stress in the longitudinal
reinforcing members (fig. 1)).

Tho present investigation is a continuation of the
proevious as regards both subject matter and moethod. The
former 1ls extended by the addition of shear loading to the
Pressure loading which alone had been conasidersed up to
tho present ("combined" shoar and compressive stress).

The method 1s extended by taking into account a varlabll-
1ty.in the wave length and, in the presence of shear, the
change in the angle of inclination of the waves (angle «a,
fig. 1) with increasing load beyond the critical. There
are thus obtalned with a far less expenditure of computa-
tlion work (and this is a most importent factor in the comw
Plicated shear problem), results that are only slightly.
impeired as compared with those previously obtained (ref-
erence 3, P. 126) for the case of pure compressive load.
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II. STATEMENT OF THE PROBLEM, CEOICE OF
' INDEPENDENT VARIABLES '

We consider (as in the paper cited under reference 1)
a strlp extending infinitely in the x direction, simply
supported by flexurally riglid longitudinal stiffeners.
The latter may be supported against each other dy cross
ribe which, however, are not to make contact with the .
sheet, so that the buckling waves may be formed undisturded
along . x. Apg shown on figure }, the cross sections of the

stiffeners are denoted by Ii and Fq. regpectively,

the reference cross sections beilng taken as 8 b and s -a,
respectlively, where a 1s the distance between the trans-
verse stlffeners. Denoting by Py eand Py the mean ex-

ternally applled pressures, then there are the following
relations between the latter, the pressures p; and Pq

ii t%e stiffeners, and the mean pressures p, and Dp; 1in
sheet:

P, 2+ F Py 28 * Py Ty (241)
Py = sa +. Ty *

Px = sb + Wy '

The system of longitudinal and transverse stiffener members
18 assumed not to be stiff at the edges so that the (mean)
shear pgtress T 1s taken up only by the sheet. Let the
mean dlsplacement be denoted by Y and the wave incling-
tlon angle by @, the mean compressive strains in the x
and Yy directlion, respectively, by €, and ¢€g, 8o that

the pressures of the longitudinal and transverge members .
ere: )

pl a B € » pq = B €g (2-2)

The problem in its most general form will consist in
deternining the elastic condition of the strip as a fune-
tion of the eight parameters

- - 8,-b, a, .r',,- rq. .Px' -Py- T ' . -(2"3)
If, in placé of theme eight independent variables we intro-

duce nondimensivnal combinations, them s and b * drop |
out as independent parameters since they enter into the
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expressions forathe critical loads only in the form of a
quotient (s/b) . In addition, a and ¥y occur only in

the combination ¥ /sa. Since there still remain five in-
devendent parametegs, we mugt restrict somewhat the gone~
erallity of the investigation,

We -choose as the moast important particular case py =

0 (i,o0., the absence of an external load in the y diroc-
tion) and restrict oursolves as regards the geometrienl
magnltudes a and Tq, to the two limiting cases of very

weak and very strong transverse stiffeners, that 1sas:

F F
e _, T
-1} s_a.

=

in other words, we conslder the two limiting cases:

Pp = 0 and Pq =Ee€eg =0 (2.4)

8o thet as lndependent varlables there remain only the
three magnltudes: .

Fy

pry T, and p; or Dp,

The obJect of our computation 1s the determination of
the two functions:

P, =P, (py» 7)y Y=Y (p, 7T) (245)

in vhich p; (or pl) may be replaced according to (2.1)
by the values p, and Iy/sbd.

III. BASIC EQUATIONS
METHOD OF RITZ AND GALERKIN

The basic equations for the determination of the
changes in the stress and strain condition of the duckled
Plate were derlvod in the three works clted under section
I, and we shall briefly set them down here. For the changes
in thoe coefficients of the linear element there is obtalned
aftor neglecting the square terms in the strain portion of
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the thngential digsplacemonts wu, v and all higher members
in_the: bondlng portion: : ,

Yyy = 2ux + we® = 22 wry, Yag = 2vy + Wy < 22 wyy :
(3.0)
Yia = Uy + vy + wx Wy = 2g Vyy.

The stresses O, T 1n the mlddle plano of the plate
are glven by: '

_ _ wefy o wyl

b (3.1)

T =@ (“y + ve + W:-Wy)

The expression for the storod-up strain energy in a strip
of plate of length 1 is:

1/2 b/na
A = %E f ‘/ {]-::, [(o, + Ey)a ~ 2 (1+v) (F,0y ~ ?B)J
-1/2 -b/2
b oy [0 = 2010 (weg wyy = w1} ax a7 (3.2)

The threoe equlilibrium conditions are obtalned accord-
ing to the principle of virtual displacemente from tho min-
imum conditlon:

B(A-I-V)no

If we consider the displacements at the edges as given (so
that the edges are kept fixed during the variation), the
variation of the potentlal V of the external forces van-
ighes (the external forces perform no virtual work on the
displacements 8u, 8v, 8w vanighing at the edges), and
there renaing:?
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1/2 b/2 _
8A = Es f {i]i- [ (6 8(Tx~v Ty) + Ty 8(Gy=v Tx)
-l/2 -bv/2
=57 a 1 1
+ 2(1+v) T8T) + i-a(:—-v‘? 5 [5 wxxa + 2 wn_a + wxy.

+ v (W, L wxya)]} dx dy
1/2 v/2

ff{%[5x6y1+'6ysvy+?(6u.y+svx)

=1/2 =b/2

+ Ty Wy 8 Wy + Oy Wy 8 Wy + T (wy 8 Wy + wy 8 wy)]

—————gT Wy, & Wy + W + 2wy, 8 W
12(?:_1,9) xx Xx Xy Xy

vy 8 Vyy

+ v (w 8 w + w 8

- vy 8 Yxx ~ 2wxy 8 wxy)]} dx dy =

x

By intogration by parts there is obtalned (taking into ac-
count the ond conditions (su, 8v, 6w =0 for y =% 1b/2,
g§u, 8v, 8w periodic in x) in the usual manner:

1/2 b/2

6.A=-s / f{<%%+-aa_.i'>(6u+wxmﬂ

~l1/2 -b/2 © a7 " 35
T Y .
+ (ax+ By) (sv + L2 8w)

- — E s® .
+ <Gx Vex * Oy Wyy + 2T Vey 12(1-v’7 A A w) 6w} dx dy
/2
4 | 2 8% ( y dx] 0 (3.3)
[12‘1“’ T Bl e T
-1/2

The aporoxinate method for the solution of the differentilal
equilidbrium equations involved in (3%.3) 1s the following:
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The ‘two oquations for the equilibrium of the forces in the
plate mirip, namely: )

30y OT 3T doy 0 (3.4)
55t EmtE O '

are satisfied exactly by the assumed stress function:

6":=¢w,_o'y=¢x:,_'r=..'@xy

There is then obtained from the elasticity equation (3.1),
by elimination of the displacements u and v, as a first
equation for the relation between the stress function O
and the normal displacement w, the equation:

AA®aE (wpy® = wyy wyy) (3.5)

As a second equatiorn, there i1s obtained from (3.3) the
equilibrium condition for the forces at right angles to
the plane of the plates

E g®

EETE:;IT AAw~ Pyy Wxx - - J— Wy * 2°xy wey = O (3.6)

This condition 1g satisfled only approximately. For
the normal displacement w, we set up a plausidle expres-—
slon containing the froe parameters Ty, and inatead of

requiring that 84, that is, that the expression:
1/2 »/f2

ff {(°yy Yxx * °zx Yyy = Pxy xy

-l/2 ~p/2 __E8® s
15?3:5?7 i) Bw} dx dy

shall vanlsh for every variation 8w (which would lead to
the nonlinear differontial equation (3.6)), we require, the
vanishing of 84 only on variatlon of the free values

N33 that 1s, in place of the differential equation (3.6),

we have the equations:

?r::‘?uo (i

(Ritz method).

1, 2, 3 ...). (3.7)
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In the partlcular case that the parameters TNy in
the Rltz expression for w enter linearly:

w =23 Tli Wi- . (3.8)

(and that each of the functions w; satlisfies the above
glven boundary and periodicilty conditions!) equations (3.7),

ow
on sccount of =W m be put 1n the form:

/2 bv/2
d/p L/p {(¢77 vyy * Oxx Yyy ~ Dyy Wxy
-l/2 -b/2 E 82
/2 " Te(vm 08 ') "i} = &
*[—-E-—--s-3 (Woo=v w__) (wyg) dx] =0 (39 )
12(1-v%) yy~© Vxzx’ Wiy = e}
_1/2 y=¢b/2

The method of using, in place of the minlimum conditlons
(3e7), a system of equations:

1/2 v/2
f f {(0y wex + Opp wyy = 20,5 Wiy
-1/2 -p/2 E g8 '
. —mAAw)wi}dxdy=o (3-99)

1s known as the method of Galerkin (reference 4). If the
functions w are so chosen that the boundary integral in
(3.91) vanishes, the method 1s identical with that of Ritz.
The two methods then differ only in the order 1n which the
operatlons of lntegration with respect to x and y and
differentlatlion with respect to T3 eare taken.

It is possible, naturally, in the general case wherse
the parameters T3 1In the expression for w do not occur
linearly (Rayleigh method), to transform the minimum con-
ditions (3.$§ in guch a manner that equations of the type
(3,9) aro obtained. The greater ease in integration work
in which this method may possibly result (particularly in
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the caso of a multiparameter expression), is genorally off-
set by the requirement of taking into account all the bound~
S ary integrals (that enter Intd the integration dy parts)
and corrying along more terms in which a functlon of the
limits of integration in the parameters “i mast be teken

into account. In the following investigation therefore the
two forms (5.7) and (3.9) for the minimum requirements,
willl be used slde by side, depending on which appears most
degirable for purposes of practical computation.

IV. DETERMINATION OF THE STRESS FUNOTION &

For the normal displacement w, we assume the oxpres-
sion:

w = f cos :E cog = (x - m §) (4.0)

and conslider the amplitude f, the wave longth 1, and
the value m = cot o« as the free parameters (Nj) 1in

equations (3.7).

Expression (4.0) (the only one that leads to useful
results with "finite" amount of computation) satisfies the
boundary condition w = O, but not, however, (for m # 0)
the condition of exact hinge support. The fact that, in
splte of this, it does enable an approximate determination
of the actual relations occurring in hinged support (as
showa by the deviations of the critical shear stress comw
puted by the aid of 1t by 6 percent of tho exact wvalue),
is explained by the fact that the work of the end moments
for the deflectiong Ty of the platel wvanishes, not for

each polnt but on tho average, over a porliod. That such a
typo of ond condlition (altcrnately positive and negative
clanping coofficlont) connot physically bo realized, natur-—
ally impalrs the veluo of the conclugslons drawn ag to the
bending stresses in the nelghborhood of the edges. Am far
as tho prodlction of thoe over-nll gupporting strength of
the pleto 1s concerned, howover, the effoct of this indo-
tormlnancy is of subordinate importance.

Tho computation proper, wilth the corresponding oxton-
slons, prococeds ontirely in a.similar mannor to that pro-

Ipha boundary integral in (3.3) where in placo of 8wy

thoero 1s written wy. )
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viously given. (See referencoe 3, pp. 122-123.)

For the second derivatives of w, there are obtained:

. m® ny i \
Wop = - g £ cos == cos 3 (x = n y)
I L. Ty I -
wyy = (?g f IE——> f cos b cos ) (x n Y)
a
—Er-r—.bi—mfsin;—zsin%(x-my) % (4.1)

a
Iy = Eig— f cos L cog % (x = m y)

b
+ L f gl ny i s - m
1 gln L sin 1 (I v ) )

Equation (3.5) thereforo becomos:

= - _ 2ny __ -
AAOD=E S b {cos + cos (x = m y)}' (4.2)

A particular integrel of this equation 1is:

a8
¢(p) = =~ R ——{—g——(—l—;——a—)g 005'2—' (x = m Y)+l)g- cos El_;'z

If, in place of 1 as parameter, there 1s introduced the
ratlo "of tho strip wilidth b to the "wave separation!

1.8in o (see fig. 1)2

B = .b'——."', so that 12 = —g——la—g—— = —; (1+m ) (4,.3)
1 gin o B” sin B

then °Qp) assumes a somevhat simnler form:

. a !
0P o Lx 2L {L o0g 2T (gn y) + B° cos 2T} (4.2)

For the strosses there are thus obtalned:
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= i 3
o =¢ =IE—
x = 'yy 8 b 1+ m
{2 con Iz 3) + & oos 2T} 4 of2)
7 ¢ g8 %08 77 T ® vy
. -] H 1
Ty = O =B 05 L *
Gy xx B 8 EF-I + n .
> (4.5)
1 on (n)
—_—— cop = (x-m Y)}'+-°
{1+ma . 1' X
Fewd. 5oLl 1
x¥ 8 b° 1 + m®
-{;_JL_' cos Z0 (x=m Y)} - oln)
1l + m 1 xy y,

The integral ¢(h) of the homogeneous equation, A A & = 0,
corresponding to (4.2), which must be made use of for sat-
1sfying the boundary conditions, we put flrst, setting:

.2_;'& = A (4.6)

in the fo;m:

Q(h) = {(A Ay seinh A y+ BcoshA y) cda A x
+# (C ANy cosh Ny + D ginh A y) sin A x}
P b
..;y__z?.xa..fxy (4.7)

The seven constants of integration 4...T are determined

from the requirement that the 1ong1tudinal stiffeners con-
nectod to the strip remain straight; i.e., in addition to

a2 uniform strain, only motions as a whole should be expe-

rienced, or expressed in formulas:?
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v (x, £ b/2) = 3 ¢gb/2 5
(4.8)
u (x, £ b/2) = =€ x* ¥ b2

In order to be abke to write down these two squations,
we nust dotormine the displacements u, v explicltly with
the aid of relation (3.1). We shall write down enly the
flnal results of tho simple but somewhat tedious computa-
tion:

a 2
Bu(x,y) =B nt [ 1/8 g (n2 = V) + 1 + cos EEZ}
163 L1 + m b
2m amx 2ny 2ny
sln — (x = my) - ;- + 2m % ( 5~ + sin — )}

~(p, =vpg)x+2(L+v)Ty
~ 2T [ (1+ V) Ay sinh Ay

+ (2A + B (1 + v)) cosh A 7] sin A x
; em [ (L + V) Nycosh Ay

+ (20 + D (1L + v)) sinh A y] cos A x

a
By (xy) -3 {[-gatezen
v (x.y) 161 { ;% 1+ n®

+mn (1 + cos 3%;) ] sin %E (x = n y)
-5 () ) |
+E[(1 4 008 & (x - my) = (2 4 )] ota 2T}
~ (pg - v P,) ¥
+ %? [A (1 +9v)MNycoshAy

- (A (1 = V) B (L+ V)) sinh A y] cos A x

+ %F [0 (L +V)XNysgaginh Ay

- (6 (1 = v)
“See footnote, p. 12.

D (1 +1v)) cosh A y] sin A x
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Substituting in (4.8) everywhe

correasponding ocondition for y = - b/2
count of the symmetry of “the equations,
.1sfied), and arranging.in.powers of =x

re the value ¥

No. 870 13

b/2 (the -
1s then, on ac-
autonatically sat-

and sinAx,

cos Ay, we obtain the following system of egquations:
2,0
B¢ =,p1-vPa+I%—%g- 3
8. '
EE‘ = Do —Dp1+]181a—$-((%) +m°) > (4.91)3
GY =74+ 0B nlgd
41 /
A (1 + v) %; sinh %P + (2A + B (1 + v)) cosh%? 3
= EB£% g2 md v . mmd
_ 32 (1 + =) 1
A (1 + v) 2%-005h E% -~ (A (l=v) ~ B (1+V)) sinh %F
- B2? + 2+ v 4, Dud
32 B” (1 + ) 1
& (4.95)
0 (1 + v) %? cosh %F + (20 + D (1L + v)) sinh %?
Ef® n® - v nitb
= gin —/—
32 p° (1 + m°) v
c (1:!-1:) "-11'9- sinh "-%’3 - (0 (1=-vY) =D (1-=V)) cosh Eih
2e® 2 + 2+ 00 cog ZME
= T U B : Y
g2 B° (L + m®) AR

/

EWe thus conslder for the nonment, not the forces but the

displacenents at the edges as given 1n advance.

Tho mean

values of the stresses (which enter expression (4.7) as in-
‘tegration constants 'p;pg,T) are- determined in- this manner

as functions of €, .¢g .and Y.

In the final formulas, howe

ovor, thore is nothing to proveﬁt the inverse interpreta-

tion of the functional relation. .
This important system of oquations n
in somewhet sinplor form (3,1) and (4.8

algo be obtalned
by congidering be-

forehand the relation between the mean values of the stresse-

es and ptrains, i.e., by an integration
perlods the sgin-cos: terms drop out.

over the complete
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V. THE HINIHNUM CONDITIONS FOR DETERMINING THE PARAMETERS

f, B, m

. The further procedure in the computation will now be
indicateds After the congtants have been computed from
(4.9), thoy are substituted in (3.2), and from the three
equations (3.7), the parameters f, B, m are computed.
Equations (4,9,) with

Eel =P.L' EEB=Pq
then glve the requlired relations:
P, =P, (py, 7)) T=171(Y, p)

(for p; =0 or Py = 0)s With the ald of the first egua=~

tion (2.1), the longltudinal stiffenor stress p, and tho

mean cheet streas 1 (and hence also the effective con-
tributing width p17p1) and the shear dlsplecement Y

are then gliven for each combination of external loeds p,

and T. It 1s immediately evident that the computation,
which 1g fundamentally simple, is very tedlous 1n practlce.
Tho corputation 1s rendered particularly laborious by the
contribution of the "homogeneous members" (4.7) which must
be token into account if the boundary conditions are to be
strictly satlisfied. It may, however, be observed from
equations (4.95) that in the case of pure compressive load
(m = cot @ = 0), theso terms become extremely small, (See
referonco 1, pp. 92 and 93.) To obtain an idea of thoir
ordor of maognltude also in the presonce of shear strosses,
it 1s convonloent to investigate the opposito liniting case
of purc shoar. Haoking use of the Galorkin formulas %3.99)
(with f oo parameter), thils computation may be carried
out for the critieal point. The results are presented in
the table below. '

(2) (v) (c) (a)

Cose € =0, =0 | p, =0, ¢g=0 | ¢, =0,p,=0|p, =0,Ppy =0
Ohenge from 1 to] 0.912 " 0.867 0.722 0.563
o O T 0.914 0.871 0.741 0.610

Tho upper row shows the decrease in the apparent shear
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modulus 4T/dY at the critical point (see also fig. 9) .
for. the. four.limiting cases of ideally rigid (e;.g = 0)

.and 1deally ylelding (p, o = 0) longitudinal and trang-

verso gtiffoners, respectively, and the lower row gives
tho values taking the homogeneous toerms into account. The
error iag in no case, large. It 1g most notlceable in the
(practically uninteresting) limiting case of vanishingly
small strongth of stlffeners (since only in the absence of
& "moan value" of the support can a boundary effect come
moro into evidence). XBvon in this case, however, it ig
smaller than the error which enters through the assumptlon
of n cortaln edge fixing which lies at the basis of the
asgumed oxpression (4,0). These terms thersfore may safew-
ly bo onitted, particularly in the case of combined shear
and compresslve stress = especiaslly, since such neglect
(as cannot otherwise be with a "relaxation" of the edge
conditions) acts to oppose the error arising from the as-
suned expression (4.0).

If we consider thig fortunate result to be wvalld also
for T > T, then no computation difficulties are offered

in obtaining the three equations for the determination of
the parameters f, 1, m. The Galerkin formula (3.93) can-

not be used, however, since the wave length -1 1is at the
gsamo time the intervel of integration in the expresslon
(3.2) in the x direction, go that equation (3.9) must be
completed by the additional torme mentlonod above. It ig
sinpler first to carry out tho integration in (3.2), nak-
inz use of expression (4.0) and tho rolations (4.5), 1.0.8

8 o8 a
b = B I 1 { n 2 - \
Wl e Ty F Tty (oY)
+ g7 cos Eil - D,
P4
(5.1)
) 78 £8 _ 1 {1 U }- L
s B T Ty (xmmI)yon
8 8
_0 g o £ 1 { m 21 - } + T
::y". 8F1+mrl+mgcoeT(x__my)

/

and then the differentiation taking into account the changes
of the mean values Do Pgs T with the parameters
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Tra-fa"- ﬂ" ]
178001 + a°

a¢a 28pme
p-vm a2 TR G BE)] L e
2(1+u)'r=m['v -"—-,-afé—m—f-g-
45 1 + ™
} ~
thore 1s obtalned:
4 p4 4
L=E s 1‘{ Lt 1 1+ B -
2566 d* (1 + m®)
1 1 |
+F[§P18+%paa"uplpﬂ+(1+U)Ta]
a8 ] 4 a -]
4+ B W [ 1+ p%) + 4 B s’] (5.3)
96 (1 - v2)p* ( ) 1+ m? }
go that:
£ 1+ g r-3
af ) 64 ¥ (1 + o2)° T P3s (p, = v ra)
+ p j?--(;p - V Y+ T —=2 (L +V)T
e 3¢ ‘Pa P77 5
B _88%f _Eiﬂi_]
+
1 - v® 48 b* [ -+ Ba) 1+ n®
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(1+na)_° H gEh £ 1 1+ Bt a
fﬁ 3t %ol ... 16.3°.8% 1 + n® P
1l +
(_?_lg_ pﬂ—EmT
) . |
+ %; [Sl—%,g—l— (1 + m®) + 4n‘] = 0
) 8 2 .8 8
1 4+ m® _4b =% we £ B - 5.4
( m)n°f°aas(sbl 16 b 1 + o° Pa - (5.4)
- n®p -2n'r+32: [(2+8®) (1+n®) + 22®%] =0
2 @ r8 1 4+ p*
(1 + aa____ﬂ____a_ .—L =_E1_T__.£_
n?) naw 2 8% am \bl/ T 16 b B (1+m")
- wl = nd -
+ D, Pg - T + p* 0 )
whoro
P l -~ v° 3b ¢ ( )

i1s tho buckling load of tho strip under pure longitudinal
pressure. The eysten of equations (65.4) may further be
somevhat simplified by proper combination of terms:

pl+‘rm=32:[1+ﬁ“]

B ﬂ——iu l___
¥ 16 1+ n® (1 + m ))

- E: _ a4 w® £8 1 .
o= -l srT i 1,,,;3) g(“)
R L A RREEEE- e

)

P
Through eguations (5.6) the parameters £, B, m are glven
as functions of p,, Py, T and hence by means of (6.2) and
(2,1) the required stress-strain relation may be found.




18 TeAeC.As Tochnlcal Hemorendum.do. 870

In discussing the system of equations (5.6), a direct
golution for B and m 1s not possible; we shall not con-
slder the transverse stress Dps as an independent parame-
ter, ©Dut compute the two limiting cases only:

p, = 0

(perfectly ylelding transverse supports) and

8 p8 aa n2 )
= v -2 T 1+ 5
R A (5.8)

(eg = 0, rigid tranoverse su.pports).4
VI. THE PARTICULAR CASE T = 0

We conglder first the particular case of pure com»res-
give load: T = 0. From the third of equations (5.4), we
must have m = Q0 and the system of the flret two equations
essumeg the slmple form:

a -
1 p* (1 + g%) o £2 1+ p*
+ = = + X
Py ¥ ¥ P 7L T g 16 b° B
(6.1)
* a pa
p, =% (1+ 8%) + B I—L; p®
From tho above there is obtalned for the critical veluo
(with £ = 0):
a
* (1 + B®) p* a
Per =4 T F " F Paer= T 1+ F)
for p =0 (no transverse support):
= = ¥
B = 1, Pop = D (6.2)
For € = 0 (rigid transverse supports), l.e., P, =V P,

(seo (5.8)), we have?

4The socond assumption, which unfortunntely, leads to a
disprovortionately large amount of computation, approaches
very noarly the relations that actually occur in practlco.
(Seo’ oxemplos, section IX.)
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B2 = 1 - 2v, D, = (1 =) p* ~ (6.3)

— R s e L e

in agreement with known results. (See roference 1, p. 94.)

For the relatlon between p,; and P = E €; nbove the
buekling point, we obtain in the case’ Py = 0 by elimina-
tion of £ from the two equations (6.1):

e 8 - _I_’_: 4 _ .
EIG—'bT 2 (B 'l) (6.-)

and from the firest qf equatlons (5.2) o vory simple para~
metriec representation:

]

p, = 7 [p°(p*~1) + 28° + 2]

]
o
p—
wm

(-]
+
mﬂ
+
n
(o

(6.5)

[38%(p*-1) + 28% + 2] %; [38° -~ B2 + 2]

~[%

P

It moy be scen that with inereasing p;, Py there 13 aluoo

an increase in B - 1,e., the waves become shorter in the
longltudingl dirocection. Furthermore, the effective width,
that 1s, the ratio .

P, g% + p® + 2 (6.5)
Pl—3B°-Ba+2 '

decreeses wlth increasing B from the vglue 1l for B =1
and approaches tho value 1/3 ps B —>o.

A simplo measure for the valuoe which B may assume in

the elastle range 1s given by equation (6.4). If for p*
we put in its valuo from (5.5), there ie obtalned:

8 _ 4 4 _ .
(£/8) = g (B* - 1) (6.7)

or (with v = 0.3):

SWith the nseumption of unchanged wnvo length there i1s ob-
tainod with the nssumed oxpreesion (4.,0), the limiting
value 1/2. The lmprovement 1g therefore considerable and
nlso surprisingly good when compared with the result of
the oxtonded computation.
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‘ -
B=41+ 0,68 (f/s)r = 0.91L/%/8
for lergo values of £/s.

Thoe groatest bonding stross occurs 1ln the center of
the field in tho x direction (direction of the shorter
waves) cond has approximntoly the veluo:

- I 8 md E 7wfe® 3 o f (f)"
a = ——g — = — —_— = - = 1,24 \- * 6e

max =T33 L T s 2 P g o/ Pt (8.8)

Ir Op denotes tho provortionality limit of thc nato—
ricl then' f/s, taking into account bending alone, must
o
remain below 0.90 P—'E 1f the deformation ig still to be
T2
elastic. Replacing in (6.8) f£/e = - g°
v 3(1 - v¥)

imately by B, then G, . * 1.8l B* p* and comparison
wilth (6.56) shows that for large loads above the buckling

limit (Ba << Ba) the maxl mum bendlng stress as a funce
tion of p; and p* may be written in the form:

approx-—

~1
Omgx = Eg 2.42 Py
or also

’ a/x
~ 1 1/3 8/
Onax = 2.2 P* \5‘-:) = 2,2 p*77% pi 00 (6.9)

Thls fornule gives an indication of how high the loading

nay bescarried before permansernt bending deformations nay
arlse,
For the case €5 = 0, the formulas become much loss

simple, and we shall content ourselves wlth referring to
the results shown in figures 3 and 4. It may be seen in
particuler from figure 4, that the effoctivc width curve
(vith shear absent) is ro longer affectod by the behavior
of the transverse stiffoners in the range p.,,/p"I » 2 and

corregpondingly, the roraining conciusions drawn for the
cas® D3 = 0 retaln their wvalidltye.

61ho foronula 1s valid under the assunption ﬂ‘l>> l, that
1s, lerge loads above the critical stress; 1.0., thin-
wallod shoot.,
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VII. THE GENZRAL CASE OF COMBINED SHEAR
AND COMPRESSIVE STRESSES

[
- T em e

We shall now investigate the behavior of the plate un-
der combined shear and compressive stresses (T £ 0, m= 0).
Here, too, we shall give a complete discussion of the more
sinple case p; = 0, bDut for the other limiting case

(eg = 0), we shall write down the regults only.

Fron the second of equations (5.6), writing for brilef~
ness: .

1+ma=1+eota.9=-—;-:-'-'5-—-l-=t (7.0)
a1n* o

there is obtained for p, = 0:

L E = (8- 0) (7.1)

go that

£— — _ . _ BB.
- __1.21-t459 -1 = (for $B%* > 1) 1.21 P (7.2)

Fron (7.1) i1t is evident that at the critical point (f = 0),
quite independently of the shoar and longitudinal pregsure
by which thls point was attalned, the distance between

waves 13 exactly equal to the plate width (B = 1); above
the critical point B > 1.

For the oritical value of T, there is obtalned with
the ald of (7.1) from the third of equationg (5.6)

Ter = 2n P. (703)

independently of the value of the simultanecously- acting .
pressure D, (< p*). A relation between Tgr and p, =

P,p D&Yy be obtalned througk elimination of m from (7,3)
and the third of equations (5.4):

\
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T =

or (Pyp + D*)

. m
l - m®

1 DPer a 8 ( Pcr>
“°=§(1'pT>= Tor = 20% (1 = 3"

If wve denoto by 7™ the critical shear in the absence of

T =,/-2_p"' (n® = %, a = 559)
thoro follows the known rolation:7
T 2 p
(;ﬁ) =1 = ;51: (7.4)

For the relation botween p, and py, T and Y 4in tho

abovo critical range, thore arc obtained the following po-
rancter rolatlions:

P], 1 2 2 )
F=Z(t 8° (p*-1) + 2B -6t+e-?(t-1)) \
p, », t B°
;g R (B* ~ 1) >
1 a 2 2
T JKI[Q+§2)B+4]=_L;1 [s . Ba-'l'—]"g] {
p* 4 B® 4 B
%:21;:’—T—+J—t—itﬂa(ﬁ4-l) ,
— /
= -A%l [(5 + B% & E]'g')(l+V)+2t 8% (g* -1)] J

?Sce referonce 5. In the general case, p,# O, the rela-

tion r&nds'l » 1 D ] S
TY _|L ay b1 ay _Pa 8 )
(p* B [2 (1+87) p* [2 (3+8 p*]’ Pr= vi=2is

which 1s obtained in the simplest way through elimination
of n fron oquations (5.6;) and (5.63)¢ In the corre-
sponding fornula of Wagner there is a typographical orror
which wos also passced on 1n the formula colloctlon of Heck
(Luftfahrtforschung, vol. 12 (1935), p. 215); (p1 instoad
of D3 1in the second brackot).
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In the above system, the directly given external
stress..py .does not enter, being connected with the stress-

es p, and p; according to (2.1) through an additional
intermedlate pgrameter I;/sb. A pimple representation of
the required magnitudes, namely, the effectlive width P1/P1
and nean shear modulus Gy = T/Y as direct functions of
Py and’ T, 1s therefore nqﬁ possible. Since the reln-
tion (2.1) between p, and Py 1e linear, however, a very

simple procedure may be indicated for the determination of
the required relation. On flgure 2 is shown a plot of
p,/p* against py/p* with T/p* as paraneter. In torns
of these coordinates, equation (2.1) 18 a straight line
which 18 most simply determined by its intercepts on the
coordinate axes, the polnt of intersection with the 1y

axls belng p1(°)= Py <l + %%), and wilth the P, axls

¥
p&O) = Dy (1 + ;%). Joining? these two pointe by a straight

line, there nmay be read off at the point of intersectlon
with the p, ~ p; curve for the given valuo of T/p* the

corresponding values'of the mean sheet stress p, and the
etiffener stress py. The effective width p1/py 1s then

obtained by simple division? (See also figs. 5 and 6.)
Fron the polnt of intersection, there is then also found
iomed lately the mean decrease in the shear stiffness with
the aid of the 7T/Y curves of figure 2. At individual
polnts of the P,~Ppy curves there have been indicated the
corresponding., B® and t +values, in order to obtain o
Plcture of the geometrical deformation conditions. (With
the aid of (7.2) there is obtained in a simple manner from

B° and t also the buckling amplitude f£.)

The naximum bending stress may be obtained from the
fornmula:

81f one of these two polnts falls outside the linits of the
chart there will be found no difficulty in the deternina-
tion of this line since the slope of the .angle of inclina-
tion with the negative Py axis is given by T/sb.

9For cnother definition c¢f effective wldth in the preasence
of phedr, mees referonce 6.
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&m;x = ——jL—g 8 (%ig + v §E§>

l -v

where § 1g the direction of the maximum, N the direc-~
tion of the minimum curvature of the surface w = w (x,¥).
If wve neglect (as above) thé unimportant second term in the
case of large budrling deformations, there 1is obtalned:

3 = B 8 1
-mﬂx 1 - ”E [} pl

a
The first "principal curvature" éL =-%E§ 1s obtained by
X .

the following consideration. The sum and product of tae
two principal curvatures 1/p and 1/p are, as is

shown in differential geometry (sec, for example, reference
?) invariants and may be givon in teris of the curvatures

w and twist w by

xx' Yyye xy

x -

1 1 1 a
—_— = + W y T =W w - (7 N )
Pl pB xx v P:I. pB x vy

Vxy

Eliminnting 1/p, from these two equatlons, there is ob-
tained for 1/p the quadratlic equation:

) A v L + (wxx Yyy = wxya) =0
whose solution 1g:

: é_ - % {A" = /("xx = ‘-’W)a * 4wxy9}

For the maximum curvature occurring at x =0, y=0
?f t?e entire sheet panel, there is therefore found, using
4,1

e B (oot S ) o gl -

_mef 8 a2 _558
pra {(1+5 ) + V/??+B ) - o

For B>> 1 this exprossion may be conslderably simpli-
fled by expandlng the root:
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s f{anh s 0ot G i)

= £ (1+B°)'(1 - Erf%:;Ej) = (Ba . mgil)

and for the maximum bending stress thero 1s obtalned:

g 7 a md 3 a t-1
“max - 2g/e (6% 4 Fp) =3 o/ (7 4 B2 (7.7)

wgich for m =0, that 18, ¢t = 1° (and particalarly, for
B >> 1) 1s in egreement with (6.8).

"For large loads above the buekling (B* >> 1), £/s o
nay Ze roplaced by 1.21 t B° and, amccording to (7.5) t B
by 3 %%: if we alao negloct i—f—l. as compared to B°
(wvhich ig justifiabdle, particularly for predominating pres-
sure stress), there is obtalned approximately:

4 1
Ooax = 181 B* t p* = 2.42 3% Py (7.8)

With the aid of this relation, which we had previously
found for the particular case T = 0, 1t 1s possible to
obtailn the naximum bending stress also fron flgure 2.

Since (7.8) 1g true for PB* >3 1 (for B =1, f, and hence

elso O ©becomes zero), then (according to our theory) 1t
1s not the bending stress but the stiffener conpressive
stress that determines the strength of the structural part.
It should be obeserved, however, that the secondary buck-
ling (reference 8) in the nelghborhood of the edge thot oc~—
curs at very large loads above the buckling and which 1is
not taken into acocount by our theory may, under certailn
circumstagces. lead to higher bending stressos.

The exceptional case € = 0 of particular interest

in practice (limiting case of rigid transverse stiffeners)
Presents nuch greater difficulties in the computatlion than
the case pg = 0. Since nothing fundamental, however, 1ls

changed in-the discussion, we shall content ourselves with
merely indicating the system of formulas which leads to the
construction of chart 3 similar to chart 2. It is found to




26 TedeC.A, Technical Hemorandun lo. 870

be most convenlent to allow p, to remaln as an intermedlw

ate paraneter, since it is then posslble to make direct
uge of a largo part of the computations carried out for
the case pg = O. (The values givon by equation (7.5) for

Py = 0 are donoted by B, il' . 7)3

E-ai 1 (p*~1) 2tp@ [ (1 + "E') -1] -4y B,
T4 L [t (1 +3) "1] 1w {s8+(s-1) (1 + 1)}

:% - B, + z—% {tsa + (t=1) (1 . 'Eg)}

3% = Bi + 1 £p% (p*-1) + (2%p% - v) E%
P P P
= i;l + % (31-,59 + (t-1) (1 + %) - u)f(v.g)
LI Pa, 1 T 1
o o* (1 + E’)J—

P*
_G_Z_ ?__(_H_‘_’ll v [T T (ta (B4-1) + 3541;5"’)

Y + -E?; (41;53 - 2 (1+D) (1 + E%a)),/t__-—f

2
(55) = 1.46 t® (f*~1) + 5.85 ¢ g_ai )

The rosult of the elimination (possible only graphically)
of the parametors + and 8% 1g given in figurec 3. 43 in
figure 2, there are indicatod at individual polnts the
cerresponding valuos of + and Ba gso that in eacéh caseo

f/s (and honce by (7.7) also &) may be computod. A sin-
ple approximate oxprossion of tho type of (7.8) for the
bonding stresses could not be obtainod this timo.

Flguros 2 and 3 refer to the liniting casos of wvery
woak and voery strong transverse stiffoner menbors, respoc-
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tiveli. In order to obtaln at least an approximation for
eny definite intormediate caso Iq/sa, the following meth-

od ig used, On the charts the iimitiig_éShb}esaive strains
€g (for p, = 0) end stresses 1y, (for €3 = 0) are
shown, The stress py; 48 the mean stress with which the

sheot "adheres" to the longltudinal stiffeners, and the
transvermse gtiffeners must therefore take up a stress Pg =

Pg %ﬁ. If the strain corresponding to this strees ¢ =
q

sa
%% 54 1s now compared with the straln €5 of the longitu-~
g. .
dinal members according to figure 2 (vhich was obtalned
under the assumptiom of no transverse stiffening), an es-
timate may be obtalned as to which of the two linmlting
cases 1s the nore nearly approached and mean values ob-
tained for p,, Py, 7/6Y, etc., computed from the two

charts. How such a mean valuo 1s to be obtained in any
Partlcular case will clearly be indicated dy a computod
exanplo, glven in section IX.

VIII. THE EFFECTIVE WIDTE pl/pl AND THE REDUOQED

SHEAR LODULUS %; FOR THE LIMITIIIG CASE

OF VERY STROUG LONGITUDINAL STIFFEHERS

-Although all the required values for some particular
epplication of our theory may be obtalned from chartg 2
end 3, a few more filgures will be given and explalned in
thls section since thoy aro suited for giving a somewhet
clearer plcture of the genoral behavior of the characterisg-
tic values of the sheet, In all of the figures the astiff-
eneor stress Dy which, 1n the limlting case of very strong

longltudinal monmbers (FL:£> sb), ig oqual to the directly
g€lvon stress Py is takon as the reoference stress. (If

it 18 also desired to obtaln tho numerical velues for tho
case ¥y ~ gb, then it is naturslly possible to use as

reforenge the given load stress p, with the ald of charts
2 and 3,) '

Flpure 4 ghows the variation of the effective width
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with PL/P' ~'in the absence of shear. The difference be-~
tween the limiting cases p, = 0 (continuous curve) and
€ = 0 (thin dotted curve) is very slight except for the

critlcal point 1itself., The presence of 2 definits trans-
verse tenslon p, = - Dp¥, -2p* etcs,, while 1t increases

the critical load, affecto the variation of the effective
width only 1n the lower range.

Fizure 5 shows the variation of the critical valuecs
T and p, for comndblned stress (for the contlnuous curves

seo (7.4); for the dotted curves, see the formulas in
reference 5. with ‘py = ¥ p;). The absclssa is chosen

as the ratio T/PI' There may be observed the very con-
slderable effect of the transverse pressure pg =v p, 1n

the cese of fixed longitudinal gstiffeners (e; = 0);

1s obtainecd from p, by multiplication with (l-v?) =
0.91.

Figures 6 and 7 glve a plot of the ratio P1/P1- for

which the term "effective width" has o simple meaning for
the case T = 0. The abscissa is the ratio PL/Pcr and

the parcneter the ratlo T/pl of the shear to the stiff-
ener precsure, It may be seen that in this case the con-

conpt of "effective width" [bm =D %l] has lost 1tg clear
L

v
meaning cinece p, very soon becomes less than zero, Un-

der the simultaneous action of shear and pressure, the
tenslon component in the longitudinal directlon due to the
shear may become greater than the externally applied con-,
pressive stress, so that the longitudinal gtlffeners must
take up not only the entire external pressure but also the
additlonal pressure arising from the condition of equllldb-
rium with the sheet tension stressos (nogative support of
the skin).

In the casc of pure longitudinal pressure the ratio
Pt/Pl is, as we have seen from figure 4, in the two lim
iting ceces Fq Z: sb only very slightly different. In
the presence of shear, however, the stiffness 1s qulte

consldorably affected by the bshavior of the transverse
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stlffeners. The mechanical explanation 1s the followlng:
In.the..cose of pure compressive stress tho supporting
ebillty of the sheet arlges essontially from its prevonw
tion of tho buckling deformation in the nelghborhood of

the longitudinal menbers and a certain "cushioning" effect
which the transverse flbers exert as a result of the peri-
odlcally changing lateral stresses. These lateral stresses
renain small in the mean (fig. 8). A4s a result of the
shear, howvever, there arise, for static reasons, dlagonal
tension gtreagpes of considerable magnitude ("tension diago-
nals") that are transmitted to the longltudinal stiffeners.
If the latter, due to stif?f tranaverse members, are prac-
tilcally nondisplaceable these diagonal tension stresses re-
sult in a remarkable stiffening of the system agalnst addi-
tional compressive and particularly shear stregses. If,
however, the longltudinel stiffeners are ylelding, then o
dlasonal tonsion field canfot bo set up at all. The angle
of wave inclination becomes vory small and the sheet reslsts
nainly throuzh i1ts bending stiffness. Tho apparontly parc-
doxlcal result that, wilth constant external compressivo
load and ircroasing shear, the ratio T/GY for ¢€g =0

in general increases (goe fig. 3), finds its explanation.
in the stiffening action of the transverso stroeses Py
arlsing from the shear,

Theso relations maoy bo brought out somevhat differont-
ly with the ald of figures 9 and 10. Both figures shovw
the voarlation of the reduced "ingtantaneous" shear nodulus
dt/dY (not the reduced mean shear modulus T/Y) - figure 9
for puro shear stroess, and figure 10 for constant ratlo
k = T/Pl- It nay be seen from figure 9 that d47/dY de-

Pends very ruch on the stiffness of the longltudinal and
transverse stiffeners. OCurve a (rigid struts) shows in
partlicular the decrease toward the limiting value known
fron the tension-fleld theory; curve b 1s for tho case

of no longltudilnal etiffening; and curve ¢, for no trons-
vorse stiffening. From curve d, thero may be obtained
tho order of nagnltude of the resistanco which an ungtiff-
encd sheet exerts against further deformation.

Figure 11 ghows the varlation of the angle é of the
wave lnclination and the principal stress angle o with
T/p*, p;/p' being taken as parameter, for ¢€g = 0. - (The

dot-dash ,curves separate the reglons below and above orit-
ical buckling load.) With predominating shear stress
(particulerly, therefore, for small values of the parane-
ter P1/P') tho angles deviante but little fron one an-
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other; with lncreasing T +the curves show a tendency to
collect in ‘the strip between 40 and 50°, so that with large
loads in excesg of the duckling load due to shear no great
error wlll be made in assuning the approximate value o =
45°, The flgure partially confirns the correctness of the
assunptions of the Wagner tenslon-field theory and at the
sane tine shows in what direction the assuned expresslonas
for the defloctlons should be corrected 1f the conmpressive
load predonminates.

IX. COUPUTED EXAMPLES

Tho use of the charts 2 and 3 will be nade clear with
thoe ald of two exanples.

l, A panel of a plane reinforced plate girder 1s to
tako up such a shear stress tkat Ts = 40 kg/en, and n
longitudinal compressive force Py = 1,500 kg. The dis-
tance botwoeoen the longitudinal stiffenor sections (that i,
the shoot width) is 130 nn, and the dlstance betwoen the
transvorse stiffener frames is 250 nn.

If we conslder a ncan shear stress in tho sheet of
Tg1 = 500 kg/en® as allowable, then for tho wall thiclkness

we nust choose

400

With s = 0.8, b = 130 the reference presgure p* be-
conos$ . -
0.64 L

— a
6900 * 3 x 0.1 - 100 k&/em

p* = 730,000

so that ié==5. If we adnit a compressive stress 1n the

longitudinal gtiffeners P, = 1,200 kg/cm®, then with the

ald of flgure 3, we nay obtaln the required sectlon f%

of the longitudlnal stiffeners. ZFron the latter filgure
there corresponds to p-,,/p"l =12, and T/p* = 5, a sheet

stross p;/P* = 3.35; the equilibrium of tho forces in the
longitudinal direction glves:

Px=pi S'b+p1-i"”
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go that
5, Iz ' ' '
-p - .
“b_ s 1 _ 1440 - 38 _ 4 9o (9.1)
8b o0} 1200
1.0,

Ty = 0,92 8 b = 0.967 om®

¥e asgume that among the stiffener sections there are avail-
ablelO, those of area F; = 1 emP., We then find on inter-

secting the ourve T/p* =6 1n figure 3, with the stralght
llne:

ab Px
P, —=—— + = —=
1 Fl p‘ FI
that 1s,
P p
1.04 = + =k = 15 (9.2)
b o P
The points

p,/p* = 3,22, p,/p* =11.65

py/P* = - 4.25, T/GY = 0,59

(9.3)

The values (9.3) were obtalned from figure 3 that was
computed under the assumption €5 = O, that is, rigild

transverse stiffeners. In general, this assumptiom will
not be far from the_ true condition, but it may neverthe~
less appear desiroble at least to estimate the effect of
ylelding etiffeners. Thig 1s possidble with the ald of

figure 2. Intersecting the curve: T/p* = 5 in figure 2,
with the strailght 1line (9.2), we find:e

P P € T
5% = = 0.5, 5% = 15,5, o# = 147, gy = 0.14 (9.4)

10g¢ shall assume that the computation is on & serles of
shoet panels so that for each panel there ig computed only
one stiffener. If the computation 1s on a eingle panel,
then in all formulas ¥, 1ncludes the sun of both trang-
versc stiffeners. : . '
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Actually the transvorse stiffeners are neither ldeally
rigld nor ylelding but we can, nevertheless, obtaln the
actunl stress and deformation conditlon of the sheet 1f we.
allow an additional oxternal load to act in the transverse
direction. The condition of equilibrium betweoen tho stiff-
ener strese Dqv the mean shoot stress pg, and the ox-~

ternal stress Py is:

oa
o -Pg¥q* P ea % T Tq (9.5)
g Fq + sa 1 + 28
Fq

If tho conditlon €5 = O, that is, vanishing compressive
gtross in the transverse stiffoners (as is assumed in fig.
3) 1g attained, then in ordor to offset the transverse
tensile force of the sheet it is necessary to apply a
streas?

ga/F
(o) = (=p_) = = D, T—L-ﬂ-
III 7111 1 + 28
Fq

If, however, the sheet remains, on the average, free from
stress in the transverse direction (py = 0), +then an ex—

ternal pressure!

€
Vi 1+ g2 1+,§.§;L
q

nust be applied in order to produce the compressive strain
€3, Obtalnod from filgure 2, in tho transverse stiffenors.

In the example we obtain with a = 260 non, F, = 1 cn®

(}.e., §i =2 ¢

(0,) = 2.8 p*

(o)

Y111
(p.) = 49 p*
Pylo; P

Actually py = 0, and 1f we meke the approximating assump-

tion trat it 1g permissidle to interpolate linearly then
by "avoraging® we obtaln finally! . '
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T 0.69 X 49 + 0.14 X 2.8

& - R = 0,566
Py _ 3,22 X 49 = 0,5 X 2,8

p* 1.8 = 3.02
Py _ 11,656 X 49 + 16.5 X 2.8 _ .4 .
5& = BT = 11.9

As was to be expected, the wvalues do not deviate much frgon
those taken from figure 3, so that in most cases the in-
terpolatlon may be dispensed wilth,

2« Ap a8 second exanple, we choose o case of pure shear
strosg?

To = 60 kg om, T,y = 7650.kg/cn?
60 that & = 0.8 nn, and with b = 130 nn, we have:
p* = 100 kg/on®

If we tako, as in the first example, W = 1 cm?, we find
at thée »oint of intersection of a straight line of slopo

%‘gg = 0,96 through tho origin, from figure 3, the valuos:

P
5% = = 2,35, %& = 2,45

: ' (9.6)
Pg _ T -
P_" = - 4-65' 'G"v = 0076

and fron filgure 2
P r
L. L1101, %= 11.6
P P
(9.7)

€a T _ .
o = 850; ay = 0.116

Lincar intorpolation gives:

0.76_X 120 + O. 115 X 241 = 0,745

Tﬂ

gv 123

J P

=5 = - 2,67, -k = 2.68

Pl

d
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The conputation thus far was valld for the inner panel
of o series of sheet panels for which the longltudinal
stiffeners nay be considered as remalning straight. In the
cage of the ond panels, 1t will not be found possible evon
whoen tho outslido stiffeners are nade strong, to prevent
the edgos fron bendlng under the effect of tho transverse
strees Og = = Py. In tho sane mannor as tho axlal olas-

ticlty of tho treansveree stiffeners, the effoct of the
bending clasticlty of tho longltudinal stiffonors may bo
approxinateoly detornlned. If woe consldor tho stringer bo-
tween two transverse franos as a bcan clanpod at the two
sldes under constant lateral load, there is obtained for
the mean value of the deflectlons v by the known fornu-
lasg:

a

1 s a®
Vm=3fv°1=Pa 720 B

o

This deflectlion we shall conslider as having been offset by
an external force. If the inner longltudinal stiffeners
are so wveak that the contraction due to v nay be taken
as uniforn in all of the panels, then the gtress to be ap=—
plied is (assuning two equal outor nembers):

Vor Fq
nb/2 Fq + sa

Py = B

In general, however, the inner longltudinal stiffen-
erg wlll not be ideally flexible in bendlng and the inner
panels can teke part only imperfectly in the deformatlon.
It is safe (with redpect to the outer panel) to assume
that the outer panel nust balance the ylelding of the
stlffeners alone. Thore will then be a stress:

0.) =-gpm__Ta _ _ _seat Tq
T'1 'qu+sa._ 8720J'b]'q+sa

which is to be added to the above determined stress (Gy)

IT1I
in order that the condition €3 = 0 in the outer panel

(at least in the nean over the length a) nay be set up.

The rulo accordlng to whigh the linear interpolatlon for
nagnitude ¢ z;, P, . etc.)- between the results Es and

{; from the two charts 1s to be nnde, 1s therefore:
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For an 1nner panel: t = by (pF)II ta (© 7 III

(9.7)
L (Py)II + (0p) 1y SR
ty (o). '+ ¢, (o) -
8
For ap outer panel: ¢ = (py)1l~+ Gilb) I III (9.3)
T I ¥z’
where (0&)111.. with o0g = = py; 18 obtained fron:
( ) 8 a { ' _Ei_Eﬂ_} : (9 9)
7111t T B F + ea 1+ 3% 70 _ .

The nonment of inertla J of the odge bars 1is_ deter-
nined from the condition that the bending stress Opgy = °

—#ﬁ: must not exceed a ‘certain 1limit GT,; . If h/2 do=

notes tho distance of the extreme fibers from the neutral
axis, then

- h max Og g a2 h
J > 2 Ogq1 = Cal 24

If desired this value for J may be substituted in
(9.9), and there 1s then obtained'

(Uy) a8 Fq

0'
1117 "8l B0 B b Ty + 8 &

117! = ()

a relatlon which, with given dimensions a, h, B is Very
convenlent. In our firet numerical example with Gal =

560 kg/om® and h = 5 em, the value of the "bending con-
tribution" becomes 53 kg/cm®, so that it is not negligil-
ble to the same extent as loy)yrge '

X. SUMMARY

The elastic behavior of a simply supported plate strip
under shear and compressive loading above the duckling lim-
1t 1a investigated in the present report. The lnvestiga-
tion of this range was carried out with the aid of the en-
ergy method, The maln results obtained are presented 1in
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F

the form of a chart (fig. 3), ‘the use of vhich for practi-
cal applicatlon purposes 1ls explained with the ald of two
computed examvles. The curves glve the relatlom between
the mean pkin stress p, and the longltudinal stiffener

stress p; (under the assumption that the longitudinal
membors ~re not displaceable in the transverse directlon)
for vorlous values of the shear T. The chart contains,
besidos the reduced "mean® ghear modulus T/Y, the mean
stross 03 = = py, with vhich the shoet acts laterally on
the transvorse gtiffoners and for individual polnts the
geometrical maznitudes B° (b/B = 'wave separation) and

t = I o (¢ = wave inclination). . The reference pres-—
s

sure Dp* 1s takem ss the critical stress for the hinge-

supported sheet under pure axial compression. = i———;g

a .2
Eggg—q Flgure 3 takes account of the practically impor-
tant ronge between the critical loand and the load about
twventy times in excess of the critical. With glven -exter-
nal (shear and compressive) load, 1t 1s possible by its
ald to determine elther the stresses when the cross-sec-
tlonal areas are glven, ar the required cross sections
when the moximum gtressos are prescribed. Flgure 2 gives
the values p,, T/Y, and €5 for various values of tho

shear T for the other limiting case of ylelding trans—
verse stiffenere (p; = 0). It serves (in the manner de-

scribed in section IX) %o take into account the compres-
slve ond shear elasticlty and the bending elasticity of
the longltudlnal stiffeners. In many cases it will be
Posslble for a first approximation to dlspense wlth this
reflnement. Flgures 4 to 11 show the variation of the ef=-
fective wldth p;/py, the reduced "instantaneous" shear
modulus dT/dY and the wave inélination angle «, for

soveral vartlcular loadlng cases,

Irenslatlion by 5. Relss,
Hatlonol Advisory Committee
for Aeronsutics.
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Figs. 8,9,10,11
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