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BEHAVIOR OF A PLATm STRIP UNDER SHEAR AND COMPRESSIVE

STBllSSESBEYOHD THE BUCKLII?G LIMIT*
,

By A..Kromm and K. Margudrro

!l!hepresent report ie ~ extension of previous theo-
retical investigations on the elastic behavior of a plate
under compression and shear”in the region above the oritl-
Od w The main ob~ect is the clarification of the behavi~r
immediately above the Inmkling limlt olnoe no theoretical
expressions for this range have thus far been found and
since experimentally, too, any degree of regularity in tho
behavior of the plate in the range botwoon the eritlo-al
load and about threo to four times the critical, in dis-
cernible only with difficulty. Tho prosont report thue
supplements, for example, tho exporlnental investigations
of Lahdo and Wagner,

Lahde and Wagnorla Invostigatlons differ from ours, .
homover, in tho following points: Whereas they considor
the caso of clamped-end condition and rigid lateral stlff-
oning, wo shall consider hinged-end conditions and tfiotwo
limiting casoa of rigid and va,nishingly snail lateral
stlffoning, respeotlvely. [Through Interpolation, the in-
termediatomcase.of elastl~ lateral suppprt is thus.taken
into account. ) Lahde and Wagnerts. chart 4 refers to tho
particular case of pure shear, while our flguros 2 and 3
rofor.to the more general case of combined loading In con-
propsion and shear. There is some deviatton in the re- .
suits - our computations leading to a somewhat smaller
supporting strength of the sheet than Is obtained on tho
basis of the test ropults of Lahdo and Wagner.

I. IHTEODUOTIOI?

.. . . .. .
“.”’~hd”~do’sinitljaper-is a“continuatlon of two-previous

pnpors pn the behavior of plates beyoad the buckling limlt.
.- —.— -

*llVerhclten einos von Sehub- und Druokkra~ton boansprqchton
plnttenstreifons oberhalb dor Boulgrenzo.n Luftfahfit-
forschung, vol. 14, no. 12, Dooombor 20, 1937, pp. 627-
639.

I



2 IT.A. O.A. Tedmical Memorandum Ho. 870

In the first paper (reference 1) there was invest3gated,-
wlth the aid of the energy method, the behavior lmmediate-
17 above the buokllqg limit under the approximating as-
sumption that for a small excess of load beyond the buck-
ling load, the waves maintained the same shapes the~ as-
aumod at the erltloal load. Tho Invostlgatlon dlfforod
essentlnlly in the method employed from those of other
authorp, in that first the theory of plates with “large”
deflection.was based on considerations from differential
geomotry; and secondly, in the derivation of tho equilib-
rlum conditions (expressed in terms of the displacements
u, v, w); the principle of virtual. displaoemonts and tho .
Ritz expression was applied strictly to tho normal dis-
placonent w only (henco not to u ma v). The essen-
tial result obtainod was that the apparent stiffness
‘red = dP1/dC was reduced to half its value at the in-
stant of buckling (reference 2).

In the second paper (reference 3) there was investi-
gated (with the aiclof an expression by Ritz for w con-
taining several parameters] the behavior of the plate when
the critical point wah far exoeedod. The principal re-
sult obtained was the simple approximate formula for the
‘effective width”

(b t=width of sheet, pl = tho streos in the longltudtnal
reinforcing members (fig. l)).

Tho present Investigation IEIa continuation of the
provloug as regards both subjeot matter and method. The
former IS extended by the addition of shear loading to the
pressure loading which alone had been oonsidored up to
tho present (ncombinedN shear and compressive stress).
The method IS extended by t~ing Into account a variabil-
ity-in the wave length and, In the presence of shear, the
ohange in the angle of inclination of the waves (angle a,
fig. 1) -with increasing load beyond the critical. There
are thus obtained with a far less expenditure of oomputa-”
tion work (and this iS a most important faotor in the aom-
pllcated shear problem), results that are only slightly.
ImpaSred as oompared with those previously obtained (ref-
erence 3, p. 126) for the ease of pure compressive load.
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We bonsider (as in the-pap~r Cttkd”uhder referen~e ,1)
a strip extendtn.g infinitely in the x .direotion, simply
supported by flexurally-rigid longitudinal stiffeners.
The lqtter m= be supported against eaoh.other bY cross .
ribs whi.~h, however, are not to make contaot w3th the
sheet., so that the buokl~ng waves may be formed undisturbed
along . x. .&iishown on figure 1, the oross seqtlons of the
stiffeners are denoted by ~t -d ~q, respectively, .“

the reference. cross seotlons being taken as s b and .s.a,
respectively, where a is the dietance between the trans-
feree stiffeners. Denoting by px and P7 the mean ex-
ternally applied pressures, then there are the following
relations between the latter, the pressures p~ and pq
in the stiffeners, and the nean pressures P1 and pa h
sheet :

p~ eb + p
Px = t!!ip ?kea+ph’k (20Z)

sb+Rj Y= sa +.”Fq

The system of longitudinal -d transverse stiffener members
Is assumed not to be staff at the edges so that the (mean)
shear 6tress T Is taken up only’by the sheet. Let the
mean dlsplaoeme~t be denoted by Y and the wave inollna-
tton angle hy &, the mean compressive strains an the x
and y“ dlreotion, respectively, by El and en , eo that
th,epressures of the longitudinal and tr~sver~e members .
are :

P}=JwgPq=ml “(2.2) “

The problem in its most gene~&”&rm will consist In
determining the elaet~~ Cond.ltao’nOf the etrip as a fume- .
tion of the eight parameters

. . ., ,. . . - a,-b, a, F%, Fq, ~, -py,T “ (2.3)

Ifs @ plac.d of:these eight Independent va;iables we ~a*ro-
duce nondtmensibnal combinations, then s and b “drop ~
out &s independent: parameters sinoe they enter info the

. .
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expressions for the oritical loads only In the form of a
quotient (s/b)’. In addition, a and Pq occur only in

the”combination Y /sa.
?

Sinqe there s“tillremain fivo in-
dependent paramete s, we must restrict somewhat the gen-
erality of the investigation.

We-choose as the most important particular case
% =

O (i.e., the absence of an external load In the y direc-
tion) and restrict oursolves as regards the geometrical
magnitudes a and I’q, to”the two limiting cases of very

weak and very strong transverse stiffeners, that 1s:

I’q Fq
— =0,—=ti
sa sa

In other words, we consider the two limiting cases: .

Pa =O~dpq=lha=O (2-4)
.“

so that as Independent
three magnitudes:

w.

variables there remain only the

w
—s T, and p~
Sb or pl

The object of our computation is the determination of
the two functions:

(2,5)

in whloh PI (on PI) may be replaced according to (2.1)
by the values p= aqd l’~/sb.

III. BASIC EQUATIONS

“METHOD OF RITZ AND (3ALERKIN “

The basle equations for the detormlnation of the
changes “in the stress and strain condlt~on of the buckled
plate were derived In the three works &ted under section.
I, and pe shall briefly sot thorndown here. For the changes
in the coefficients of the llnear element there is obtainod
after neglecting the square terms in the strain portion of

..
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the tkmgential dlsplacemonts u, v and all higher members
in_.3h9.:bo.q@5rLgp!?rtlon:,.. ....= . ... ; .-..

VII = - 2% W==, Yaa = 2V7 + ~~a - 2% ~~~*+w# .

}.

(3.0)
‘Y~a=uy+Tx+Wx Wy-2%W~. .

,- .
The stresses 5, T in the mt~dle plane of the plate

are @.ven by:

The exphesalon for the storod~p atraln energy in a ~tr~p
of plate of length t is:

Sa
m-da - a)]} dx dy (3,2)+ ———.

12(1-va)
2(1-V) (Wxx W7Y - w=

The three equilibrium conditions are ohtainod accord-
ing to the principle of virtual displacement from tho min-
imum condition:

8(A+V)=0

If we consider the displacements at the edges as given (so
that the edges are kept fixed during the variation), the
vartation of the potential V of the external forces van-
ishep (the external “fortiesperform no virtual work on the
displaoementa 8u, 8v, 8W vanishing at the edges), and
there renalns:

.

—— — —. . —- - . .
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1/2 b/2

Es r
-;/2

2(1+V)

v (Wx=

—

6X WX6WX+5W y 75W7+7(%8W7+W78 Wx)l

~a
8 W=x + Wy= 8 Wyv + 2W=Y 8 W=r

12(1-V*) ‘=

v (Wxx 8 Wn + Wm 8 Wxx - 2WXY 8 w= )I}axdvo

By integration by parts there is obtained (taking into ac-
count the ond conditions (8u, 8v, 8V = O for y = * b/2,
8tI,8v, SW poriodlc In x) in the usual manner:

+ (i7xT7xx —
E Sa

+ ‘Y ‘n
+ 2T Vxr - –—

)}
~4w8wdxdy

12(1-VT

t/2 .

[

‘EH3
+

f
(Wyy “Vwxx)bwyti 1 = o (3.3)

12(1-ua) y=&b/2
-t/2

The apprmxinate method for the solution of the differential
equilibrium equations involved in (3,3) is the following:
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The “two.equations for the equilibrium of the forces” in the
plate Bttip, namely:. .-

(3.4)

. are sqtlsfied exaetly by the assu,hed stress function:

There Ie then obta~ned from the ela~tieity equation (3til),
by elimination of the displacements U and T, a“sa first
equation for the relation between the stress funoti,on @
and the normal displacement wi the equatiozu

(3:5)

As a second equation, there iS obtained from (3.3) the
equtlibrlum condition for the foroes at right angles to
the plane of the plate:

~ ~a
AAw=4y=wxx-@x=w= +20mwm=0

12 (luv~)
(306)

This condition is Saiisfled only approximately”. ~or
the mormal displacement w, we set up a plausible expres-
sion containing the free parameters n~ , and inmtead of
requlrfng that 8A, that is, that the expression:

E Ba )}~Aw 8W tidy
- 12(1-U*)

,

shall vanish for every variation 8W ~whlch would lead to
the nonllnear differential equation (3.6)), we require,the
vanishing of 8A only ~n variation of the free values
ml: that is, in place of the differential equation (3.6)9

we have tho equations:

(i = 1, 2, 3 ● ..) (3.7)

(Ritz methoit).
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In the”particular case that the parameters al In
the Ritz expression for w enter llnearly:

w=z-fi~wl (3.8)

(ad that eaa of the f%notions Wi satisfies the above
given boundary and periodiclty conditions!) equations (3.7),

on account of ~
ni

=w~, may he put in the form:

[

3! S3
+—

12(1-W f
(Wyy-u w== ) (WfJ b

1
= o (3 91)

-1/2 y=*b/2

The method of using, in place of the minimum conditions
(3~7), a system of equations:

E Ela
)}

AAww~ dxdy=o (3.%)
12(1-@

is.known as..the method of Galerkin (reference 4). If the
functions w

i
are so chosen that the boundary integral in

(3.91) vanis es, the method is identical nith that of Ritz.
The two methods then differ only in the order in which the
operations of integration with respect to x and y and
differentiation with respect to lli are taken.

It is possible, naturally, in the general case where
the parameters Tli in the e~ression for w do not occur
linearly (R leigh method),

7
to transform the minimum con-

ditions (3.’? In ~uch a manner that equations of the type
(3.9) mo obtained. The greater ease In integration work
in wh3ch this method may possibly result (particularly in
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the caso of a multlparameter expression), is generally off-
set by the requirement of taking into account all the bound-

*., -wry ‘ihtbg~als’.(~at’-bibrbr-ll,tti-thelnt6grat50n-%y parts).
mnd carrying along more terms in whloh a function of the
limits of integration In the parameters n~ munt be tdcen

tnto account. In the following investigation therefore the
two formp (3.7) and (3.9) for the min~mum requirementfIs
will be used side by side, depenaing on whioh appears most
doslrablo for purposes of praotioal computation.

For the normal displaoemment
si.on:

w, we assume the oxpres-

(4.0)

and considor the amplitude f, the wave length 1, and
the valuo m = cot a as the free parameters (Vi) In
equations (397).

Expression (4.0) (tho only one that leads to useful
results with “finiteilamount of computation) satisfies the
boundary condition w = O, but not, however, (for m+ O)
the condition of exaot hinge support. The fact that, in
spite of this, it does enable an approximate determination
of tho actual relations occurring in hinged support (as
ehorfnlIythe deviations of the crittoal ehear stress com-
puted by the aid of it by 6 percent of the exact value),
ie explminod by the fact that the work of the end moments
for the deflections

‘Y of the platol vanishes, not for
each point but on tho average, over Q portoa. That such a
typo of ond condttion (altornmtely positive and negative
clanping cooffioi.ont) ounot p~slcally bo realinqa, nat-u-
ally Imp-airs tho Valuo of tho oonclussons arawn as to the
bending stresses in the neighborhood of the edges. As far
as tho proaiotion of tho over-all supporting strength of
tho Plate Is concorned, howovor, the effect of +his 5nao-
tbrdnancy is of subordlante importance: ~. “- -- -. . .

Tho computation proper, with the corresponding oxton-
sions, procooas ontlroly in ~.similar manner to that pro-

.
..—

lTho boundary Integral in (3.3) where In plaoo Of 8W=
thoro ls vritton w=.

.—-— -- .—
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viously give~ (See reforenco 3, pp. 122-123. )

R’ormthe secopd derivatives of w, there are obtained:

Equation (3.5) thoroforo beoomos:

AAO= - E ;-~
{
Cos = + Cos

b
~(x-my)

} (4,2)

A partlculc.r integrc.1 of this equation is:

.

If, in placQ of ~ as parameter, there is introduced the
rr.tio ‘of tho atrlp width b to the “wr.veseparation”
~.sin a (see fig. 1):

$
b“——

= L Sin a’
SO that ta =

then O(p)CLssums a somenhat

ba . = f (l-l-ma) (4,3)
pa Sirs

sinpler form:

@d=-ELa 1
{ -# Cos ~ (x-El y) + 13aCos q

}
(4.4)

321+mg

~or tho stresses there aro thus obtained:

. .. . . . .. . I
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.

n~Plz7=+yaE -
8?l+mS

-.,.... .... .

{

~e “- “2Tr’-: ‘ “’.

l+l!l~
c.os~ (x-m y) +.

{
1

— Gos
l+ma

T=.4X7=EEU+---- “
8bl+ma

{
m

~ (x-my)}- Og)Cos —
l+mg

“;

(4;6)

The integral @(h) of the homogeneous equation, ~ A @ = O,
corresponding to (4.2), which must be made use of for sat-
isfying the boundary conditions, we put first, setting:

p=h (4.6)

in the form:

+(C~myaosh~y+D elnhhy)sin~x }

(4.7)

The seven constants of integration A.:.? are determined
from the requirement that the longitudinal stiffeners con-
nectod to the strip remain straight; i.e..,In addition to
a uniform strain, only motions as a whole should he expe-
rienced, or expressed in formulae:

--—— .— . . .. — — -— --- _— -..
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v (x, ~ b/2) = z cab/2 “

u(x, *b/2) =-61x*y b/2 }“ (4.8)2

In order to be ablq to write down these two equatlone,
we nust dotormine the dis laooments u, v expltoitly nith
tho aid of relation (3.1?. We shall nrite down only tho
final results of tho simple but somewhat tedious computa-
tion:

allf
Eu(x,y)=E—

16% {[
*(.W)+I+C OS*]

- (P1 - Vpa)x+2(1+V)Ty

+(2 A+ B(l+v))cosh hy]sin~x

+~[C(l+v)Aycosh Ay

+ (2c + D (1 + v)) sinhh yl.cos A x

( 2ny
)]

+ml+cOs —

.y((~a +&) ‘

~(x -ray)sin —

+% [(l+cos+-i ~Y)-(@+v) ] sin ~}

- (pa -“VP,) Y

+~EA(l+v)Aycosh Ay

-( A(l -v)- B (l+ V)) einhhy] cos~x

+~[o(l+v)~ysinh ~y

- (c (l”-v) -D(l+ u)) cosh ~ y] sin A x
‘See footnote, p. 12.

—
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. . ... . . . ,-.. . . .

Subsfiltuting iri(4.8) e~e&here the value 7 = b/2 (the .
corresponding oondltion for y = - b/2 is then, on ac-
OoUnt of the symmetry of %he “oquatiohs, autonatiaally sat-

..”.-..lsfled), and arranging.in,,powers of x., md e~n~xg
ooOhy, we obtain the following”system of equations;

m wsfaGY=T+Q—
4 Ir

A (l+v)~ sinh~+ (2A+B (l+ V)) cosh~

.
=Efapa ma-v ~o~ ma!

32 (1 + Xia) -

A(l+u)m$ Wb
cosh — -

z
(A (l-V) - B (l+V))

O(l+v)y coeh ~+ (20 + D (1 + V)) sinhw~

C (1+V) ‘~ alnh ‘~ - (0 (l-V) -D (1-V)) cosh ~

.~an EP+2+V

32 BE (1 + m“) ‘0” %

(4.9, 13

(4.9a)

-

‘We thus consider for the nonent , not the forces but the
diaplacomonts at the edgee aa given In advance. Tho me=
values of the stresses (which enter expression (4.7) as in-,. ‘tegrat’ldnconst~t’s” plpE-,T). are.-~e~ermined ia-this manner
aO functions of El ,Ca and Y. In the final formulas, hov-
otror,’there is nothing to prevent the. Inverse interpreta-
tion of the f%ctional miatlon~
Slhls importnnt system of equationa ~

7
also be obtained

in sonowhc.t sinplqroform (3.1) and (4.8 by Oonstderhg be=
forehcand the,relation between the me?n values of the atresfa-
oe and mtralns, ioe,, by an Integration over the complete
periods the sin-cotamterns drop out.

— .—.
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V- THE li13T11.lUMCOIJDITIOI?SrOR DETERMINING T~ PARAMETERS

The further prooedure in the-computation will now be
indicated. After the constants have been computed from
(4.9), they -e substl-tutedin (3.2), and from the three
equations (3.7), the parameters f, ~, m are co~uted.
Equations (4.9,)with

then give the required relations:

. Pl=Pl (Pts T) T=T (y,Pl)

(for pE =Oorpq=O). With the aid of the first oqua-

tioll (2.1), the longitudinal stiffener stress P~ hnd tho
mean ~heet stress

7
i (and hence also the effective jon-

trlbut~ng width p~ p~) and the shear displacement
are then given for each combination of external loads p=

and ‘r. It IS immediately evident that the computation,
which is fundamentally simple, is very tedious in practice.
Tho computation is rendered particularly laborious by the

“homogeneous members”contribution of the (4.7) whloh must
be talceninto account if tho boundary conditions are to be
strictly satisfied. It may, however, be observed from
equations (4.9 ) that in tihocase of pure compressive load
(m = cot a = 0!, theso terms become extremely small. (See
referonco 1, pp. 92 and 93.) To obtain an idea of their
ordor of mngn$tude also in the preaonco of shear strossos~
it Is convenient to investigate the opposito linitin case
of puro shear. Making uso of the Galorkin formulas %.9J
(with f aa parameter), this computation may be carried
out for the critiml point. The recsultsare presented in
the table below.

Oh/xngo from 1 to”I 0.912

I

“ 0;867 I 0m7~2 I 0;563
“II II ~ II 0.914 0.871 0.741 0.610

Tho”uppor row shows the decrease In the apparent shear

..



M.A.C.A. Technical Memormdum l?:.8~0 15

modulus d’r/dy at the critical point (see also ‘fig= 9) .
*- . for.thb.fou~.limlting ~asss of ideally -rlg+d (cl.* = 0)

-and ideally yielding (ploa = 0) longitudinal =d tr~s-
verso stif”foners, respectively, and the lower row gives
tho values taking the homogeneous terms into account. The
error is In no case, large. It is most noticeable in the
(practically uninteresting) limiting case of vanishingly
emall strength of stiffeners (since only in the absence of
a ‘moan valuea of the support can a boundary effect come
moro Into eviQenm). ~von In this case, however, it is
smaller than the error whi~ efitersthrough the.aseumptton
of a certain edge fixin

7
which lies at the basis of the

assumed oxpresslon (4.0 . These terms therefore may saf~-
ly ho onitted, particularly in the case of combined shear
and compressive stress - especially, since such neglect
(as cannot.otherwlsq he with a ‘relaxation” of the edge
conditions) acts to o pose the error arising from the as-

7sumed expression (4.0 .

If we consider this fortunate result to be valid also
for T > Tcr then no computation difficulties are offered
in obtaining the three equations for the determination of
the parameters f, L, m. The Galerkin formula (3.93) c--
not be used, however, sln~cethe wave length -~ Is at the
same time the interval of Integration in the ox ression

?(3.2) in the x direction, so that equation (3.9 -must bo
conpleted by the additlogal terms mentlonod above. Itmig
slnpler first to carry out tho Integration in (3.2)9 mak-
ing use of expression (4.0) and tho relations (4.5)* i~o-$

and then the differentiation taking into account the changes
of the mea values p~ s Pa s T with the parameters
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[“ +]2(l+v)T=l! Y fiafa m
a

‘~l+m

thbro Is obtained.: .

A
{

*4f4
=Esbz —

1+B4

266 b4 (1 + ma)a

00

&
af

(5=2)

.

+
[

; PI*+ *Pa* -vplpa+(l+v)T*
1

~a fa *4
+—

96 (1 - Va)b4 [
(1 + f3*)a+ ~

1*!’ } ‘5”3)

that :

+ Pa a:(Pa ~2(l+v)T-vpl)+Taf

+
E—.

1 [
- (l+r)a +4*

- Va 1
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#pl Q.p”
(l+ W”>:*; p+ m——... . -,,-.... 16.-b8-.@! 1 + ma z ,+

17

b (5.4)

(5.5)

is the buckling load of tho strip under puro longitudinal
pressuro. The syston of equations (5.4) may further be
somevhat slmpllfled by proper oomhination of terms:

)
Through equations” (5..6) the parameters f, $, m are glVen ‘
as ~ct~ons of P1 v Pa 0 7 and hence by means of (6.2) and
(2.1) the required stress-strain relation may be foun~.
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In discussing the system of equations (5.6), a direct
solution for P and. m is not posslble;we shall not con-
sider the traneveree etress pa
ter,

ae an Independent parame-
hut oompute the two llmiting oases only:

F*=O

(perfectly yielding transverse supports) and

=8 fa
Pa=uP1-~8b .(

~+pama
l+ms ) (5.8)

(Ca=O, rigid tranoverae eupporte).4

VI. THE PtiTICULAE CASE 7 = ()

we consider first the particular case of pure ”compres-
slve load: T = O. R’romthe third of equations (5.4), we
must have m = O and the system of the first two equatione
assumes tke simple form:

From tho above there iS obtained for the critical veluo
(with f = O):

. ~ (1 + Pa)a
‘cr 4 $“ ‘--+ Pa&= %(l+Ba)

for pa = O (no transverse support):

P 1,= P P* (6.2)
cr =

For Ca = O (rigid transverse supports), i.e. , pa = V p,

(seo (5.8)),we have:

4The “second assumption, which unfortunately, leads to a
disproportionately large amount of computation, approaches
very nearly tho relations that actually occur In practice.
(See”oxnmploo, section IX.)

.- .- . .-—



H.A.C.A. Technical Memorandum.Eo. 870 19

B==1-2v, p.” =(1-u) p* . (6.3)
cr-. -., , . A.-,,..., . .. . . . .. .. .. . . .. . . . . . ..

in agreement with ho~n results. (See roferenco 1, p. 94. )

buek13ng point, W@ obtain in the ~ase” Pa-= o W el~m~n~-
tion of f from the two equations (6.1):

and from the first qf equations (5.2) a very simple para-
metric representation:

P, = ‘; [Pa(r-l) + 2Ba +2]= $[pe+pa+z]

}

(6.5)

pl = + [3Pa(P-1) + 2pa + .2] = q [3P6 -pa +2]

.

It may be seen that with increasing pi, pt there Is alao
an tncrease in ~ - i.e., tho waves become .shorter in the
longitudine.1 direction.
thnt ia, the ratio

P1
=

~

Furthermore, the effective width,

@e+pa+2
(6.6)

iPe - pa+2

decreases with Increasing P from the v lue 1 for B = 1
and approaehos tho value 1/3 as p+-. B

A slmplo measure for tho value which ~ may assume In
tho elastic range IS given by equation (6.4). If for p*
ncIput in tts valuo from (5.5), there is obtmlned:

.

(f/s)a =
4

($4 - 1)
3 (1 - Va)

or (with u = ,0.3):

(6.7)

5Wlth the nasumptian of unchtiged vmv~ length there is ob-
tainod trlth the assumed expression (4.0), the limitlng
value 1/2. The Improvomqnt Is th~rpfore considerable and
nlso surprisingly good when compared with tho result of
the oxtonded computation.



20 “ 11.A.C.A, Tochnicml Memorandum Ho. 870

for lergo values of f/s.

The greatest bonding stress occurs in tho center of
the field in tho x direction (dtrection of the shorter
waveo) cad has approximmtoly the”ve.luo:

If up denotos the proportfonnlity limit of the aato-

rinl tilen-fjs, taking Into account bending alone, must

r

up
remain below 0.90 p if the deformation is still to he

elastlc. Replacing in (6.8) ?/s “ ———-~+.~ Da approx.

imately”3y P, then &max - 1.81 @ P* and comparison

with (6.5) shors that for large loads aho~e the budkllng

limit (Ba<< B“) the mixlmum bending stress as a func-

tion of pl and p* nay be written in the form:

or also

()
PI ala

~max = 2.2 p* — = 2.2 p*l’3 p18/3,p + (6s9)

This $ornula gives an indication of how high the loading
may be6carriod before permeaect %ending deformations nay
arise,

For the case c= = 0, the formulas become much less
simple, and He shall content ourselves with referring to
the results shown in figures 3 and 4. It nay be seen In
particular from fi

Y
re 4, that the offoctivc nidth curve

(nith shear absent is EO longer affected by the behavior
of the transverse stiffeners In tho range P~/P* 32Qna

corrospondlngly, tho ronalning conclusions dravn for tho
CRSO Pa = O retain their validity.———

——7TF:7Z76!Cho fornula is valid under tho assumption
is, large lo~ds above the critical stress: iwo., thin-

nctllod shoot.
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AED COMPRESSIVE STRESSES
—- .,.. .. .... ----J“- . . .,.-----

we shall now investigate the behavior of the plato up-”
der combined shear and oompregsive stresses (7 # 0,.m# O).
Here, too, me shall give a complete dlsOussiOn of the more
slnple case * = 0, but for the other llmiting case
(6s = O), we shall write down the re@.ts only.

Yron the second of equations (5.6), writing for br2ef-
ness:

l+ma = 1+ cot as => = t (7.0)
sin* cc

there is obtatned for pa = O:

(7.1)

00 that

f.-= 1.21 t~li - 1
s = (for B’ >> 1) 1.21 --in~*’ (7.2)

a

Fron (7.1) it is ovldent that at the critical point (f =0),
quite independently of the shear -d longitudinal pressure
by which this point was attained, the distance between
waves is exactly equal to tho plate vidth (B=l); a%ove
the critical potnt $>1.

For tho critloal value of ?, there is obtained nith
the aid of (7.1) from the third of equations (5.6)

7 cr . zm p* (7.3)

independently of the value of the si~titmeousky- .ae%img-.
pressure PI (<P*). A relatton bettrocm ‘r== and pl &
PCr nay be obtained through elimination of n from (7.3)

and the thtid of equations (5.4):
\

,

.
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m
T -— (Pc,cr=l. ~

+ p*) “

If we denoto by T* the critical shear In the absence of
PI :

~“ .&* (ma =%, a = 55°)

thoro follows the known relation:7

Ta

()
cr 1-

*
T= P*

(7.4)

For the relation between pl and p%, T and Y in tho

abovo critical range, there aro obtained the following pr.-
ramoter rolationa:

(7,5)

7S08 roforonco 5. In the .general case, P*+ 0s the rela-

which is ohtainod in tho simplest way through elimination
of n fron equations (5.61) and (5.63). In the corre-
sponding fornula of Wagner there ic a typographical error
whioh wcs also passed on in thq formula collection of Hock
(Luftfahrtforschung, VO1. 12 (1935), p. 215): (Fl instOad
Of P’ in the second bracket).
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In the above tiyetem,’the dl~eotly given external
,... Stress-..p= ..does,gofie,qtqr,-being conneoted with the strese-

e~ pl and p~ aooording- to.(”2.lj“th~o~h”an ad_ditlQnal
Interhedlate parameter I’@). A simple representation of
the required magnitudes, qamoly, the effeotlve”width pl/P~

and nean shear modulus ~ n T/v as direot funotlons of .

P= and” 7, Is therefore not possible. SSnoe the relm-

tion (2.1) between
..

p~ and PI Is llnear, however, a very
simple procedure ma~ be Indicated for the deterrntnation of
the required relation. On figure 2 is shown a plot of
Pi/P* against P~/P* with T/p* as prbraneterg In terns

of theee coordinates, equatton (2.1) is a etraight line
whi& is most simply determined by Its Snteroopts on the
coordinate axes, the point of IntersectIon with the p%

axis being p%(o)= px (,+ *), and with the PI axts

p~) = p=
(’+ %)= Joiningg theme two points by a straight

Ilne, there nay ho read off at the point of intersection
with the PI - P~ curve for the given valuo of T/p* the

correepondlng valuee’of the mean sheet stress pl and the

etlffener etreee
%“ The effective width pl/p~ is then

obtained by simple divieio~g (See also figs. 5 and 6.)
Fron the point of intersection, there is then also fo~d
Inmed iately the ne~ decrease in the shear stiffness with
the aid of the T/Y curvee of figure 2. At individual
points of the PI”P% curves there have been indicatetl the
correepondlng. p* and t values, in order to obtain a
picture of the

7
eometrical deformation conditions. (With

the aid of (7.2 there is obtained in a simple manner from
Pa and t aleo the huckllng anplitude f.)

The naximum bending stress nay be obtained from the
fornulcb:

81f one of theee two noints falls outside the linita of”the
ohart thero will be f%nd no difficulty in the determina-
tion of this line since the slope of the angle of Inolina-”
tion with the negative p~” axis 2s given By ~jsh. “

‘Eor nnotker definition cf effeotive width in the preoence
of eheti, see “reference 6-0

-.

—m.mmm.—— . ,, , . ——. ——
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i& m
1 - vO

(gg+v$) ‘
where C Is the direction of the-maximum, ~ the direc-
tion of the minimum curvature”of the surface w = .W (X,y).
If we neglect (as above) thb unimportant second term in the
case of large budcling deformations, there ie obtained:

The first “principal curvature”

the following consideration. The oum and.product of the
two principal curvatures 1/pl and l/Pn are , as Is

— —
shorfn.in differential geometry (see, for example, reference
7) invariant and may be glvon in terms of the curvatures
wxxv ‘yy’ and twist ‘wxy ‘by

(706)

Eliminating l/P* from these two equations, there is o11-
tained for l/pi the quadratic equation:

whose solution is:

l’or the maximum curvature occurring at x = O, y = O
of-the entire sheet panel, there is therefor-efound, using
(4.1): ,

1 #f

{- ~ (l+Pa) +~. ,
1( 1+’a-2 1::”}+ 4 +} =

f

-..-.—

=- ~+ {(l+EF) + ‘a(1+~ )a -:$ }

For pa>> 1 this expression m- IJO considerably simpli-

fied by expanding the root: .

I
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tb~=~ {(l+,Pa)+ (l+’B”)(1 -
2$

a

-~? 2D.-.. )}... -.. (WY’ (Mms) --“ .

and for the m~imum bending stress thero Is obtalnod:

8=
: fin

(

ma

) )
3 f/~ (pa + +13a+~=z

P* =
(7.7)

which for I!lao, that is, t = 1“ (and partlazlarly, for
pa >> l.) 1s in agreement with (6.8).

For large loads-above the buckling (B* >> 1), f/a
may be roplacoa by 1.21 t Pa

2 a.
and, aocording to (7.5) t Ps

by
3 p*’

if we also neglect ~, as compared to $a

(which is justifiable, particularly for predominating pres-
sure strese), there is obtained approxlnatel~:

unax = 1,81 ~4 t p* - 2.42 ~ p% (7.8)

With the aid of this relation , which we hatlpreviously
found for the p~rticular case T = O, it is possible to
obtain the naxlmum bending stress also fron figure 2.
Since (7.8) is true for & >S 1 (for B = 1, f, and hence
also e becones zero), then (according to our theory) it
ie not the bending stress but the stiffener conpresslve
stress that determines the strength of the structural part.
It should b~ observed, however, that the seoondary Mzck--
ltng (reference 8) In the neighborhood of the edge that oC-
curs at very large loads aboVe the buckling an~ which is
not tc,kentnto aacount by our theory w~ under certain
circumstances, lead to higher bending stresses.

The exceptional case ~a=O of particular interest
in practice (limiting case of rigid transverse stiffeners)
presents nuch greater difficulties in the computation than
the case Pa = 09 Since nothing fundamental, howe~er, is
changed. in-the dlecusslon, we shall content ourselves with
merely Inaicatlng the system of for~laa which leadsto the
construction of chart 3 similar to chart 2. It Is fO~a to

. .
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be nest convenient to allow pa to remain as an intornedl-

ate par8neter, slnoe it is then posoibIe to make direct
use of a large part of the computations carried out for
the case Pa = o- (!l!hevalues glvo~ by equation (7.5) for

R = O are donotedby ~, fil,~, Y):

(p-l) 2tB~
Pa 1
;7=~—

[t (1 + +) -1- -4V & .

-2t’a -t (1+ +) -1- -l+”{’f’(t”’) (1+ 3)

Y = 2 (l+V)T——.
7

+ &-n (tP* (B4-1) ‘+5P 4tBa)
P*

(
.;+:!z4tpa= 2 (1+”) (1 +

P*
;.))=

fa
() = 1.46 ta
:/ (p-l) + 5.85 ta ~

17.9)

The result of the elimination (possible only graphically)
of the parameters t and pa is given in figuro 3. As in
figure 2, there are indicated at indl~ldual points the

corresponding values of t and Pa, so that in each caso

f/s (-d honco by (7.7) also 5) may bo conPutoQ. A sin-
P1O approximate oxprossion of tho type of (7.8) for tho
bonding streesos could not bo obtainod thi~ time.

Fi~ros 2 and 3 refer to the liniting cases of very
weak and very strong transverse stlffoner monbors, respoc-
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t Ivezy , In ordor to obtain at least an approximation for
---, any.dqfinlte. int-qrmodiato aano Fq/Oa, the following meth-

od is use-do On the charts the limltl~g- co~p-ressive stralris
C* (for * = O) and stresses ~ (for Ea = O) are “

shown ● me stress Pa is the nean #tress with whloh the

sheet “adhoreen to the longitudinal stiffeners, and the
transverse stiffeners must therefore take up a stress pq =

P* $$ If the strain corresponding to this stress Ce =

pa Sa
——
E Eq

Is now compared with the strain Ca of the longitu-

dinal,members aecordlng to figure 2 (which was obtained
under the assumption of no transverse stiffening), an es-
timate nay be obtained as to which of the two linitlng
cases is the more nearly approached ana meam ~alues ob-
tained-for Pl, PI, T/GY, etc., computed from the two

charts. How Such.a me= Valuo IS to be obtained in anY
particular case will clearly be indicatea by a computod “
exanplo, given in section IX.

VIII. THE EW1’ECTIVZ WIDTH ~/pl AITDTHE R3DUOED

SHEM UODULUS
g~
dy I’ORT= 131MIT11TGCASE

OSi’VERY STROlTf3LONGITUDINAL STIFITUWRS

“Although all the requires ~alues for some particular
application of our theory may be obtained from charts 2
and 3, a few more figures nill be given and explained in
this section sinoe they aro suited for giving a somewhet
olearer picture of the general,behavior of the eharactoris-
ttc VQIUOS of the sheet. In all of the figures the sttff-
ener str~ss PZ which, in the limiting case of very strong
longitudinal members (F% >> sb), IS equal to the aireotly
given stress P=, Is taken as tho reference stress. (If

it 1S also desired to obtain tho numerioal values for tho
t3ase % - al), then it is naturally posdble to use as

reforenqe the given load stress p= with the aid of charts
2 ana 3.)

I’i@re 4 Showsmthe variation of the effective width
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with pt/p* in the absenc”e of shear. The difference be-

tween the limiting oases pa = O (continuous arve) ad

c~ = O (thin dotted ourve) Is very slight except for the

critical point itself. The presence-of a definits trans-
verse tension Pa = - p*O -2p*i etc~, while It in.creases
the critical load, affectn the variation of the effective
width only in the lover range.

I’iGure 5 shows the variation of the critical values
‘rand pl for combined stress (for the continuous curves

seo (7.4); for the dotted curves, see the formulas in
reference 5. with ‘~ = v Pi)= The abscissa is chosen

as the ratfo ~lPJ ●
There may be observed the very con-

siderable effect of the transverse pressure pa = v PI in

the case of fixed longitudinal stiffeners (cS = o); ~
~S o~taincd from Pl by multiplication with (1-va) =-.“

0.91.

Figures 6 and 7 give a plot of the ratio P1/PJ s for

which the term “effective width” has Q oimple neanlng for
the case T = O. The abscissa Is the ratio Pt/Pcr and

the parcneter the ratio TlP~ of the shear to the stiff-

ener pre~mzre. It may be seen that in this case the con-

r PI
cept of ‘effeotlve width” bm = b — 1has lost Its clear

L Pz.—
meaning cince ~ very soon becones less than zero. Un-
der the simultaneous action of shear and pressure, the
tension component in the longitudinal direction due to the
shear may bewme greater than the externally applied con--
presslve otress, so that the longitudinal stiffeners must
take up not only the entire external pressure but also the
additional pressure arising fron the condition of equilib-
rium with the sheet tension stresses (nogativo support of
the skin).

In the case of pure lo~gitudinal pressure the ratio
Pi/P~ is, as we have seen from fibwre 4, in the two lim

-
iting caaes >>

Fq << Sb only very slightly different. In

the presence of shear, however”, the stiffness.is quite
considerably affected by the behavior of the transverse
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stiffeners. The mechanical e~lc.natfon is the followings
In,the..c.ase.of pure--cOrnpres8~~0 stress tho supporting
ab113t~. of the sheet arisi’~’-ebsontially‘from its preven-
tion of tho buckling deformation in the ilelghborhood of
the longitudinal members and a certain ‘cushioningn effect
nhida the transverse fibers exert-as a result of the peri-
od~cally changtng lateral .streases. These lateral stresses
remain small tn the nean (fig. 8). As a result of the
shear. however, there arise, for static reasons~ di~on~. .
tension ~tresges of considerable magnitude (Wtension diago-
nals”) that are tr~smitted to the longitudinal stiffeners.
If the latter9 due to stiff tr~svertie nenbers, artiprac-
tically nondisplaceable these diagonal tension stresses.re-
sult In.a remarkable stiffenhg of the system against. addi-
tional compressive ~d parti~larly shear otreqnes. If,
however, the longitudin~ stiffeners are yielding, then a
dia~onc,l.tension field aullnt bo set up at all. The anglo
of rrave inclination becomes very small an~ the sheet resists
nainly through Its bending stiffness. Tho a.pparontlypcma-
doxical result that, with const~t external conpressivo
load and Increasing shear, the ratio T/G? for 6S = O
in general increases (poo f~ga ~), finds Its explanation.
in the stiffening act~on of the transverse stresses pa
arising fron tho shear.

Theso relations may bo brought.out somewhat”difforont-
lY with tho aid of figures 9 and 10. Both figures ohow
the variation of the reduced Ilinstantaneousllshear noduIus
d7/dy .(got the reduced nean shear nodulus T/Y) - figure 9
for puro shear stress, nnd figure 10 for constant ratio
k = T/pt. It nay be Seen from figure 9 that d~jd~ de-

pends v“qry much on the stiffness of the longitudinal and
transverse stiffeners. Curve a (rigid struts) shovs in
pcmtlmlar the decrease toward tho limiting value known
from the tension-field theory: curve b is for tho case
of no longitudinal stiffening: and curvo c, for no trans-
verse stiffening. From curve d, thero nay bo obtalnod
tho order of magnitude of the restotanco which an uzlstiff-
onod sheet ezertg against further deformation.

Figure 11 shove the variation of the angle & of the
wave inclination and the principal stress angle Z vlth
T/P*n P~/P* being taken as parameter;- for t~ = O. ~(The

dot-dosh,curves separate the regions belon and above crit-
ical buckling load.) With predominating shear stress .
(parttculcrly, therefore, for snail values of the parame-
ter p.l/p*) tho angles deviate but little fron one an-
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other; nith increasing T the curves show a tendency to
collect In the strip between 40 and 50°, so that with large
loa@s in excess of the buckling load due to shear no great
error will be made in assuning the approximate ~alue a =
45°. !l!h~figure partially confirns the correctness of the
assunptiops of the Wagner tension-field theory and at the
sane tine shown in mhat direction the assuned expression
for the deflections should be corrected if the conpressivo
load predominates.

Ix. COMPUTED EXAMPLES

Tho use of the charts 2 and-3 will be nade clear nith
tho ai~ of two exanples.

1. A panel of a plane reinforced plato girder is to
tako up such a shear stress that Ts = 40 kg/en, and a
longitudinal compressive force P= = 1,500 kg. The dis-

tanco botwoen the longitudinal stlffenor sections (that 1s,
the shoot width) Is 130 nn, and the distance betwoon tho
transverse stiffener francs is 250 nn.

If we consider a noan shear stress in tho sheet of

‘al = 500 kg/cna as allowable, then for tho wall thickness

we nust choose

400
s — = 0.8 nm

= 500

Vith S = 0.8, b = 130 the reference pressure P* ~o”
conos:

730,000 - x
l+P* =

3 x 0.91 =
100 kg/cna

SO that ~= 5. If we adnit a compressive stress in the

longitudinal stiffeners pt = 1,200 kg/c@, then with the

aid of figure 3, we nay obtain the required section 71 .

of the longitudinal stiffeners. E’ron the latter figurq
there corresponds”to PI/P* = 12. and ~i~’ = 5* a sheet
strosu Pi/P* = 3.35; the equilibrlun of tho forces in the

longitudinal direction gives:

P= = Pi Sb+lpl
●
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so that ...
,.. -.— .,, . ,..

~ “””’’’-’ --’ --”’-.” ‘“
~% ~b - PI 1440 “ 335 ●

—=—— = 0,92 (9.1)
Sll %= 1200

.

%ge.

We asdume that among the stlffoner seotlone there are avail-
ablelo, those of area 3’~= 1 ems. We then find on inter-

secting the ourve T/p* = 6 in figure 3, with the straight
line :

PI:+ ~
%=r~

that is,
.

The points

P=/P* = 3.22, P#P* yllq65

P*/P* = - 4~25* T/Gy = 0.59
}.

(9.2)

(9.3)

The values (9.3) were obtained from figure 3 that was
. computed under the assumption Ca = O, that 1s, rigid

transverse stiffeners. In general, thfs assumptiozrwill
not be far from the.true condition, but it may neverthe-
less appqar desirable at Ie&st.to estimate the effeot of
yielding stiffeners. Thlq is possible with the aid of
figure 2. Intersecting the OW?W” T/p* = 5 “ in figure 2,
nlth the straight line (9.2), He find: ,

PI
— = - 0.5,

PJ ‘a= 15.6,
P* P*

~ = 147’ a -.:”14 (9.4)

..——

l~e shall assume that the amputation Ie on a series of
sheet panels so that for eaoh panel there.im computed only

‘ one stlffezier, If the computation is on a single panel,
theti in all formulas r~ includes the sun of”both trans-
verse stiffeners
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Actually the transverse stiffeners are neither ideally
rigla nor yielding but we can, nevertheless, obtain the
actual stress ana deformation conaition of the sheet if W“O.
allotian mlditional external load t.oact in the trans~9r@
dirootlon. The cond~tion of equilibria between tho stiff-
ener stress pqs the mean shoot stress Pat aniltho 0x-

ternal stress -Py 1s:

(9.5)

~f tho cond5tion Ca = O, that is, vanishing compresslvo

stress in tho transverse stiffonors (as is assumed in fig.
3) is attainoa, then In oraor to offoet the transverse
tensfle force of the sheet it is necessary to apply a
strens:

(uY)III = (=-PY)III‘- P, !!Z%_

l+~a
q

If, however, the sheet.remains, on the average, free from
stress in the transverse airectlon (Pa =0), then en ex-

ternal pressure:

must be applfed in order to produce the compressive strain
~a, obtalnod from ftgure 2, in tho transverse stiffeners.

In the e ample we obtain mlth a = 250 nn,

(,.% ~ = 2J ~
% = 1 cn~

@y~lll= 298 P* .

Actually py = O, ana if we make the approximating assump-

tion that it is permissible to interpolate linearly then
by “averaging’1we obtain finallyt
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P4P=

3.22 x 49 -.0.5 X 2.8 - ~.02
51.8 “

11,65 X 49 + 16.5 X 2.8 =“1109
6108 .

.

As Rata to-be expeotent, the valuesmdo not deviate mu~ from
those taken from figure 30 so that In most oases the In-”
terpolqtlon m~v be dispensed with.

2. As Q second example, we &oose a ease of pure shear
atross$

TS = 60 kg om, Tal = 750.kg/cn*

EO that s = ().8nn, and with h = 130 nn, we ham:

P* = 100 kg~oma

If we ta,ko,aS in the first example, q E 1 ~Ba, we find

at thd pbint tifintersection of a straight line of slopo
~ = 0.96 through tho origin, fron figure 3, the values:

P~
p-= - 2.35, ~ = 2.45

1
Pa

.- 4.65, & = 0.76
F-.

)
and fron figure 2

PI ~
— = -11*L, = 11.6
P* P*

c=
= 85(3$ & = 0.115

T J
Linoa,r~ntorpolation g~ves: . . .

0.76 X 120 + 0.115 X- =,.,745
I&= 123 .

(9.6)

(9.7)
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of p series of sheet panels for which the longitudinal
stiffeners nay he considered as renainlng straight. In the
caso of the.end panels, It will not bo found posslblo even
when tho outsido stiffonors are nado strong, to prevent
the odgos fron bending under the effect of tho transvorso
stress u8 = - pa. In tho s~e nannor as tho axial olas-

ticlty of tho transverse stiffeners, the effect of tho
bending elasticity of tho longitudinal stiffonors nay bo
approxinatoly doternined. If we considor tho stringer be-
tween two transverse franos as a bean clanpod at the two
sides under constant lateral load, there is obtained for
the nean value of the deflections T by the known fornu-
las:

a
1

f

s a4
‘m=< v ax= p ——

s 720 E J

o

This deflection we shall consider as having been offset by
an external force. If the inner longitudinal stiffeners
are so weak that the contraction due to w nay be taken
as unlforn in all of the panels, then the stress to be ap-
plled is (assuning two equal outer nenbers):

In general, however, the Inner longitudinal stiffeny
era rlll not he Ideally flexible in bending and the inner
panQls can take part only Imperfectly in the deformation.
It is safe (with re~pect to the outer panel) to assume
that the outer panel nust balance the fielding of the
stiffeners alone. There mill then be a stress:

rq
(o_y)l=. E~F ~qsa= ——_

s a4

- ‘8 720 J b Fq + sa
q

which is to be added to the above determined stress ‘ay‘I1 I
In order that the condition ~a = O in the outer panel “
(at least in the nean over the length a) nay be set up,
The I’U1Oacco ding to which the linear interpolation for

magnitude &P1s ).etc~ between the results e. and

~a from tho two charts is to be nade, is therefore:
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Por an inner panel : ~ =“ga”(P7”)11+ t= (~y)lll
-., .. ...,,,---._A,,

-.(PY)ll + .(.UY)lll , .’. .

where (u7)111t~ .with Ua = - pa is obtained fron:

.

(u )
y 111’

= u~
-{’+ ‘“q}720 J b

36

(9.7)
..

(9. d)

(9.9)

. .

!Chenonent of inertia J of the odgo bars is-detor-
mi.ned.from the Oondition that the bending stress u-.”= .

notes tho distanoe of
axis, then

a certain limit aal . If h/2 io- “

the extreme fibers from the neutrstl

If desired, tldsvalue for J may be substituted in “
(9.9), and there is then obtained:

(CTY)lll,= (UJ1l + Gal _x_ -—k.
30hbl’q+sa

a relation whlohc mith given dimensions a, h, b is Wry
co~nvenient. In our”first numerioal example with za~ =

‘bending con-500 kg/oma andh=6 cm, the value of the
tr~butionll becomes 53 kg/cma, so that it is not negl3gi-
hle tO the same extent as (67)111.

x. SUM164EY . .. .

The elastlo behavior of a Sfrnplysupported pla~e strip
under shear and oo~re~si~e loading above the buckling lim-
it IS inves~igated In the present report. The investiga-
tion of this range was ~arried out with t~ aid of the en-
ergy method. The main results obtained are presented in

f —- - —— — .— —
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the form of a chart (fig. 3), ‘the use of whi~ for prn.ctl-
cal application purposes is e~lalned with the aid of two
computed examples. The curves give the relatio~ betmeen
tho me= Skin stress P1 and the longitudinal stiffonor
stress p% (under the assumption that the longitudinal
members ~.qonot displaceable in tho transverse direction)
for vcrious values of the shear T. The chart contains,
bosi.dos the roducod ‘Imeann shear modulus T/~, the mean
stress as = - Pa, with which the sheet acts laterally on
the transvorso stiffeners and for individual points tho
geometrical magnitudes Ps (b/p =“wave separation) and

t
t.-— (a = wave

slna a
sure p* is taken as

supported sheet under

incllnatton). .The reference pres-

the critlcul stress for the.hinge-

pure axial compression. = ~ -Eva
ma ~a

I’zgure 3 takes account of the practically impor-
-* ““
tant range between the critical load fid the load about
tmenty times in excess of the crlticnl. With given ”e&er-
nal (shear and comprpsstve) load, it is possible by its
ald to determine elthor the stresses when the cross-see-
tional areas are given, @r the required cross sections
when the mcximum stresses are presoribod. Figure 2 gives
tho vclues PI, T/Y, and ~a for various values of tho

shear ‘f for the other limiting case of yielding trahs-.
Terse stiffeners (pa = O). It serves (in the manner de-

scribed in section IX) to take into account the compres-
sive c.nrlshear elasticity and the bending elasticity of
the longitudinal stiffeners. In many cases it will be .
possible for a first approximation to dispense with this
refinement. Figures 4 to 11 show the variation of the ef-
fective width P1/P~. the reduce~ ‘instantaneous” shear
modulus liT/dv cmd the nave inbllnation angle a, for
several particular loading cases.

Translation by S. Reiss,
Uationd. Advisory Comnittee
for AeroncuticB.
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// Fi.mxre3.- Relation between the sheet stress D. and the
~
PIIP* lo%ltudinai stiffenerstres8p, in the prese~be of shear

r.-Dotted ourves give shear iodulus r/Z and transverse
sheet stress pZ as functionsof pland~ . Transversecontraction
62 = o.
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Figure9.- Reduced ~
“instantaneous” I&

shearmodulasd7/dYfor Gdy

pure chearstressfor”the
four limitingcases ~fl “\

@ c,==c,=O,b)P,=c, =O, C) s,= Pz=O, d) P,= P:=~,
\p] .4>

i’z JPS* qz
J<Pz-oh ‘..

7* = f-i p*=,E ~,~ “
\

,--- ---

Figure10.-d7/dY&w a fuuction
of the excessstress

beyondthe criticalfor varioas
valuesof k = -r/pz●

Figure 11.- Vave inclination
anglea and

principalstressdirectionZ
as functionsOf-randp,

(E2 = o). “

.



i

.’.

‘,

.:’.
>.

,-..

.$’y’c.. ...,,.

.

..:.,.,
.,


