THCHIT ICAL EPMORANDULS

NAGIONAI ADVISORY GOMMITTET FOR ATHONAUTIOS

```
HO. }86
```

CAICUIATION OF LOAD.DISTRIBUTION IN STIFPHITHD CYLIMDRICAA SHELIS - \#̈. H. \#bner and H. Köllar
 Vorlag von R : Olipnbourg, Munchen und Borlin

Fashington
June 1938

NATIONAT ADVISORY COHKITIET FOR ARRONAOTICS

TTEOMSICAL MEMORANDUK NO. 866

- CAICULATION OF IOAD DISTRIBUTION IH

STIBHTHN世D CYI INDRIOAI SHRILS*

By H. Hbner and H. KÖller

Thin-ralled shells $\begin{aligned} \text { ith } & \text { strong longitudinal and trans- }\end{aligned}$ verse atiffening (for example, stressedagkin fuselages and wings) may, under cortain simplifying assamptions, be treatod as static systems vith finito redundancies. In this roport the underiying basis for this method of treat \rightarrow mont of tho problem is prosentod and a computation procodure for atiffoned cylindrical shells rith curvod sheot. panols indicated. A detailed discuspion of tho force disu tribution duo to applied concontrated forces is givon, and tho discussion illustratod by numerical examples mhich. rem fer to on experimentally detormined circular cylindrical sholl. Tho tost results reported by \mathbb{H}. Schapitz and G. Krûmling in a simultaneougly appearing paper (reference 1), confilm the reliability of tho method proposod.

I. IHTRODUGTION

Tho detormination of the strosa distribution in stressedrskin (or monocoque) wings and fuselages, accorde ing to tho elementary Navier theory for the bending of beams, or the Bredt theory for the torgion of thin-malled hollor bodies, is based on the preliminary assumption that the applied forces correspond to the elementary stress distribution. Large disturbances, which as characteristic additional stresses are superimposed on the elementary atresses, arise on the application of concentrated longio tudinal forces - such, for examplo, as occur at a closed ahell mhere the continuity of the structure'is interruptod by a cutaraf portion. (Seo fig. la.)

Further deviations from the simple stato, of stresa indicated by the abovo theories arise on torsion and bonding

[^0]by transperse forces if the Ioads are applied at the intermediate transuerse walls which are restrained irom dofora nation, or if the dimensions are not uniform along the axis, or if the shell is rigidly attached at tho end (fig. lb). Finaliy, a suall transvorse stiffness of the bulkheads (as, for example, in monocoque fuselages) may, on tho application of arbitrary transverse forces and nonents, effect the elenentary stress distribution.

The computation of the additional stresses due to rew straint against defornation of a transverse section in torsion, has already been treated by several authors (ref. eronce 2). A method of deternining the additional stresses arising. on the application of longitudinal. forces in long, thin-walled, cylindrical shells has been given in a paoor by H. Wagner. and H. Simon (reference 3). Hor shells with strong longitudinal and transvorso stiffening, a sinplified shell model with redundant axial Eroups of forces has bocn proposed in a previous work, in which the forco distribution is detorninod by a statically indeterminato computation. 1 This rethod has beon appliod to the treatm ment of the speciaf case of the 8-stringor cyindinical sholl with double crosessoctional symnetry undor axial load (roforonco 5). In tho prosent peper the underlying principlos aro prosentod in a comprohensive nanner and tho computation is extended to cylindrical shells of arbitrary cross section under bending, tristing, and axial loading. Por the latter case there is investigated, vith the aid of numerical oxamplos, the offect of various stiffeners on the force diatribution. The nethod is further applied to a cylindrical shell whose stress distribution has beon axp perinontelly determined for the caso of axial loading. (Seo roforonco l.) A corresponding computation for the caso of stiffonod flat disks rill appear in a lator mork in connoction rith similar test results.

II. UNDTRRLING•PINCIPLTS OH THE KTTHOD

1. Simplifiod Kodol of the Sholl Structure

Tho cyindirionl sholls consist essentially of the shoot or skin, the longitudinal stiffeners (stringers).

[^1]and the trangverse etiffoners (bulcheads). Tho longitudio nel atiffencrs are assmmed tio bo inside and attached to tho skin, while the tranaverse stiffeners; assumed as parallol, may oither bo attached to the shoot (for examplo, in the neighborhood of the positions of load application) or attached only to the inner sides of the stringers. Tho bulkheads may be in tho form of framenorks or flexurally rigid solid rings. Tho shell oross section is ascumed to be aimply connectod, although the method may be extended to. multiply connected systems. For the sako of simplicity, चe shall restrict ourselves to cylindrical shells since the disturbances of tho elementary stress condition in monocoque fusclages and wings almost alrays extend over individual. small portions, thich mey approximately be considerod as of cylindrical siape.

The transverso stiffening walls ero donoted in the positive x direction by $0,1, \ldots, k, \ldots, n(f i g .2)$. They diride the system into bays, each of which is denoted by the atiffener number on itaright. The atringers are numbered going around the positive diroction from some ini-
 tions lying between the stiffoners (shent or bulkhead porm tions) boing donotod by the hifher stringer number as suba script. All goonotrical and structural nagnitudes in tho sholl rocoivo a double subscript j, k corresponding to thoir position. If tho transvorso section possessos axos of symmotry, then symotrically lying magnitudes aro given tho sano subscripts.

For the computation of the sholls under consideration, tho following simplifiod model is used as a besis. The bulkhoads take up forcos that lie in the bulkhead planes only. The stringers are assumed to be hinge-connected to tho bulkheads. In the cese of atringers that go through and possoss great flexural stiffness of their own, the adm ditional strosses may bo taken into account, as in tho case of framevorks, by the introduction of nodel-point mon monts as additional static rodundancies. In the akin itm solf a pure membrane-trpe of stress digtribution is asaumed.

The most important simplification is in connection: with the stress distribution in therakin and stiffeners. The trcnsverse stiffenerg are, for the noment, asaumed to be attciched to the skin; a generaligation will bo congidered under section III, 4. Normal stresses will then be transmitted by the stiffeners only, so that the sheet panols act as pure tonsion fields. the normal gtiffness of.
the akin is taken into account by the addition of an effective ridth to the stringer sections. Under these assumptions, in each of the gheet panels there is a congtant "shear flow" $2(t=s T)$ to which correspond linear-: ly distributed normal forces in the longitudinal stiffeners within the panels, while the transvorse stiffenor Walls aro stressed by tangential periphoral loads, namely, differoncos of tho shear flown in the longitudinal dirocm tion. This state of stross agroes with the actual state the more closoly the stronger the stiffeners as compared with tho skin. In the noighborhood of points of attache ment and cutwout portions, theso are the rolations which generally exist. Tho roliability of the assumptions made. which had previously beon applied to the computation of statically determinate systems (bending beams) is confirned by tests. The asaumption of constancy of the shear in each of the panels in the longitudinal direction may, in the cese of curved shells, also be justified by the fact that generally the flexural stiffness of the skin. and stringers is snall sompared to that of the transverse stiffness of the bulkheads, so that within no panel can important peripheral stresses aride in tho skin.

This sizplified shell model corresponds to a latticoworl: with redundant transverse frames in mhich the diagonals are roplacod by shoot panols under shear. For ($n-1$) intcrmediate transverso frcmes, each of mhich is q-fold statically indeterminate, the entire syster with n stringers is $[(n-1)(n-3)+(n+1) q]-f o l d$ staticaliy incoo torminato, and there aro furthor additional rodundancies at pointa of attachnont. Tho statically indetorninato computction of the sumplifiod syston givos the forco dism tribution "in the largo" and the stress distribution in the ectual shell design nay then bo estinatod, taking into account tho constructioncl dotails. (Soo tho numorical oxamplo in section $\nabla I, 2$.

2. Principal Panol Systor
 Longitudinal Forces as Static Rodundancios

Tho computation of the statically indoterminate nodol shell procoods along linos oimilar to those developed by the firgt author in provious papers on spaco framerrorks

[^2](roforonce 6) and box beams (roferonce 7). 1 suitablo prinoipal fyetem is obtained if each intermediate bulkhead, in the cose of end restraint also et the ond bulkhead, (m - 3) longitudinal attachmonts of the matringersare - loosenca by the ingortion, for example, of hinges. On account of tho statio rodundancios in the transverse framos, this main gystem is still statically indeterminate although only stresses of the sane transporse stiffeners may be suporimposed.

The redundant longitudinal forces in the resolved (m, B) attachments of the stringers at a tranguerse atiffonor produce in the two neighboring bays (m -3) otress distributions independent of each other. Such in-. dependent atress conditions may also be obtnined in a "principal panel system" in the following minner. 8 时insorting similar transverse stiffoners the bays are complotely separated and betreen then there is introduced at the stringers (m - 3) systems of longitudinal forces under equilibrium \rightarrow systems which we shall denote briefly . by the term "characteristic force groups" (Ifigenkraftgruppen) (fig. 3). These systens then prodice in the neighboring bays ($n-3$) independent stress distributions. If none of the (m - 3) force groups may be represented by a linear combination of the renaining groups. De tinen say that such groups are linearly independent. At each transvorse wall there are (in - 3) linearly independent oharacteristic force groups - for example, those consiating of a concentrated force and its "reaction forces" at three definite stringers not lying in a plane. The linear independence of (in - 3) arbitrarily set-up characteristic force groups may be established by the following orid terion: There is formed the determinant of the (m - 3i) d order in which each row coatains the forces composing a group at ($a-3$) stringers चhere the remaining three strineers do not lie in a plane. The columns then contain the individual forces of the various force groups at some definite stringer. The (m - 3) characteristic force groups fill then be linearly independent if - and only if this determinaintis different from gero.

Fxample: Figure 3 showisthred characteristic force grouper for a 6-atringer theld o. Whe determinant, for examplo, of the individual forces at the three upper stringers $\begin{aligned} & \\ & \text { ill } \text { be }\end{aligned}$
$\dot{3}$
See detailed presentation cited under references 5 and 6.

$$
\begin{gathered}
+1 \quad 0+1 \\
+1-2+1 \\
\pm \frac{y_{0}}{2 y_{1}}-1+\frac{y_{0}}{2 y_{1}}
\end{gathered}=2\left(\frac{y_{0}}{y_{1}}-1\right)
$$

and on account of $\frac{\gamma_{0}}{\gamma_{1}} \neq 1$ io different from zero, so that the force groups are linearly independent.

Such linearly independent force groups at the $\boldsymbol{k}^{\text {th }}$ trongriarse stiffener and denoted by $X_{1, k} ; X_{2, k}, \ldots X_{\mu, k}$, ...: $X_{n-3 ; k}$, are introduced as static redundancies and chosen as uniform in the axial direction -ie., the component forces $F_{j}(\mu)$. of the unit state of $X_{\mu, k}$ are the same for all k's. In this representation of a principal system, it is to be noted that the double transverse walls are identical, so that the stress states in the right bulkhead of the k th bay and in the left bulkhead of the $(k+1)^{\text {th }}$. bay must be superimposed. In the system so chosen the stress states of the redundancies at the kith transverse stiffener are superimposed only by those at the $(k-1)^{\text {th }}$ and $(k+1)^{t h}$ transverse stiffeners at the $k^{\text {th }}$ and $(x+1)^{t h}$ bays, respectively, and by those at the $(k-2)^{t h}$ and $(k+2)^{t h}$ transverse stiffener at the (k- 1)th and $(k+1)^{t h}$ bays. The redundancies at all other bulkheads co not directly affect the redundancies at the $k^{\text {th }}$ bulkhead.

From an arbitrary system of (me) lInearly indem pendent force groups. X_{μ}, it is possible to pass by a transformation.

$$
\begin{gather*}
\bar{X}_{\mu}=c_{\mu, 1} X_{1}+c_{\mu, 2} X_{2}+\ldots+c_{\mu, m-3} X_{m-3} \\
(\mu=1,2, \ldots m m 3) \tag{I}
\end{gather*}
$$

to new linearly independent force groups \bar{X}_{μ}, where the determinant formed from the coefficients $c_{\mu, v}$ must be differont from zero. This arbitrariness in the choice of the static redundancies may be utilized to obtain considerarable simplification in the computation. For arbitrary force groups the statically indeterminate computation
loads, in the case of (n - 1) intermediate transterso walls, to a systom of ($n-1$) ($n-3$) and $n(m-3)$ elasticity equations for froe and restrained end rings, rom spectivaly - the solution of which equetions becoming vory tedious whon n and $m \cdot$ are large. An attempt is theren fore mede to choose the (m - 3) force groups in such a menner that only the uniform groups in the axiel direction affect each other. The elasticity equations then break up into (m - 3) indepondent partial systema, each with ($n \rightarrow 1$) and n equations, respectively, which $\begin{aligned} \\ \text { ith the }\end{aligned}$ principal system chosen, are composed of five nembers each, and in tho case of transverse stifferiers rigid in their plancs, are composed of three members.

The introduction of auch "orthogonal ${ }^{4}$ characteristic force groups is, in the cace of an arbitrary number of stringers. posaible only for a epecial shell form, namely, Where there is cyclical symetry vith regard to the ceometry and the elastic properties of the shell. The component forces $P_{j}(\mu)$ of each of the groups are then to be set proportional to the ordinates of the sine and cosine curves with 2, 3, ... waves over the chell circumference. 5 For $m=12$ these force groups are shown in ilgure 4. (The circular functions with higher wave numbers lead to the sane groups.) With the aid of the orthogonality relations of the circular functions, it may easily be shown that the groups of forces thus formed constitute eystems in equilibrium, and that in their mixcd displacement coefficients (soo section III, 2) the individual contributions from stringers, sheet and transverse stiffoners vanish. They are thorofore orthogonal, as nay'be seen moro simply fron a consideration of the propertion of gymetry, since tro forco groups - of which one is symietrical with respoct to an axis of oymmetry of the syatem and the other antisynmotrical - do not influence onc anothor.

The mutual effect of two such force groups is measurod oy
the soncalled mixed displacement coefficiont which is essentially a sum or integration of products of the corresponding etreses values. The vanishing of guch products is spokon of in mathematics as expressing tho "orthogonality, "for example, of the vectors or functions concernod.

- This procoduro corresponds to the doformation method proposod by Southwoll for the computation of oyclically bymotrical space framenorks (reference 8).

The redundant force groups may be so ordered that with increasing subscript μ more individual groups rhich aro in oquilibrium over a smaller and amaller region of the circumforence may be formed from their component forces; for example, in figure 4, for, the sine and cosine groups for $\mu=2$, equilibrium is possible over the enc tire circumforence only, whereas the groups for $\mu=3$ may oach bo split up into tro suigroups which may be in oquilibriun over only half the circumferenco. According to the principle of St. Vonant, tho regions of influonce of tho groups must decrease with increasing "order" of subscript μ, so that after a certain order thoy may be neglected.

In the case of a shell whose structure deviates only slightly from that corresponding to cyclical symmetry, force groups are formod corresponding to complete cyclical symmotry and the elight mutual effects are neglected. For shells without cyclical symmetry, with only a few stringers and rith sufficient axial symnotry of cross gection, it is atill possible to set up orthogonal forco groupo. An oxample is that shorn in figure 3 for a 6-stringer shell rith crossesectional symmetry with respect to the y and x axes. Also for leनstringer, doubly symmetrical shells, characteristic force groups that have a negligiblo effoct on oach other may, as shown in section V, be set up for tho aost important loading conditions.

It is shorn in the Appendix that for an arbitrary sholl construction, complete orthogonality of tho force groups can be ettained in gencral only if the effect of the deformations of one of the threc shell-structure elon monts is nogloctod-if, for oxamplo, rigid shoet or rigid transvorse stiffoner is assumed. The forco groups may in this case be set uip, under the assumption of oqual panels, with tho aid of "principal axes transformation." This proceduro, hovever, possesses only theoretical valuo. For most practical casos it is possiblo to uso the simplo apm proximate system considered in section T. An elternative is to restrict the computation to a fer panela in the neighborhood of points of diaturbance and solve the elasticity equations for arbitrary force groups according to tho itoration method describod in section III, 3.
3. Decompoaition of Ixternal Leading Principal Substitute Systom

Mo congider the loading cases in which there is a considerablo disturbanco from the elementary state of stress. This will be the case whore concentrated forces are appliod and also tho caso of tristing and traneverso bonding of restrained shells or shells with "stepped dimonsions, " and also the case mhere load is appliod at tho Intormediate bulkheads.

The loading of the shell by concentrated axial forces is cenerally reduced to the application of characteristic force groups. For this purpose there is subtracted from the external loading the forces corresponding to the elementary thoory and there is thus obtained at the transvarse stiffoner at which the load is applied, a force group rifch gives riso in the shell to a state of strese exproseing the differonce betwoon the olemontary and acm tual stress. Fach force group X_{0} acting at a.transxerse gtiffonor maj̈, hoverer, be split up into groups of tho form of the introducod redundancios $X_{1}, X_{2}, \ldots, X_{\text {n }}=3$

$$
\begin{equation*}
x_{0}=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n-3} x_{n-3} \tag{2}
\end{equation*}
$$

since for the componont forces of the groups at (m-3)
stringers, this equation represents a systern of (m-3) ilnoar oquations tith the (m - 3) values c_{1} : c_{2}, \ldots. $c_{\text {na3 }}$ as unknowns. This system has a unique solution since the doterminant formed out of the (m - 3) component forces of the linearly independent redundancies, eccording to tho criterion of section II, 2, is different fron zero. The nanner of this decomposition is indicated in figure 5 for tho caso of a benaling force group composed of four concontrated forces at a leastringor ahell. The charactoristic forco groups Y_{I} and Y_{2} correspond to the com sine groups for $\mu=3$ and $\mu=5$ in figure 4, and are considored more in detail in section ∇.

Fror the external loading, or a portion of it, anothor principal systen than that used for the static redundancies may be used in a atatically indeterninate computation. This "substituto principal. 8 ston" is choson so that its state of etress corresponde as closoly as possible to tho final one - tho statically indeterninate computation then constituting only an added computation; or a substitute principal systor, for which tho computation of the load
coofficionts is as simplo as possible, is taken. Both points of vier, homever, may not in general, be satisfied simultaneously. In applying a bending force group consisting of four concentrated forces (fig. 5) on a restrained shell, the four stringers at rhich the load is applied may, for oxample, serve as the substituto principal systom and the load coefficients are then determined only by Integration ovor the normal stress distributions in theso stringors. The static rodundancios, homover, then assuno large values over the entire shell length. If, howevor, thc bonding force group is reduced, as described, to tho application of characteristic force groups, the static ren dundancies die down to small values in the longitudinal direction. Then the shell is loadod by twisting forces, tho "Bredt tube," and by trangverse bending forces, the "ideal beam," respectively, are chosen as the substitute principal systems. The statically indeterminate computan tion then gives the deviations due to the restraint against deformation, from the olomentary stress condition.

Thoro occur, besides, under these loading conditions, disturbances due to the application at the transverse stiffeners, of forces not corresponding to the elenentary theories. By subtracting the equivalent elementary stress distribution in the transverse stiffener from that actually appliod, there is obtained an equilibrium system of extornal forces rhich deform the transverse stiffeners and thus affect the axial forco aistribution. As a rule, however, the statically indoterninate computation can be disponsod with if the bulkhoads nt which the loads aro appliod are designed sufficiently stiff.
III. PROCETURTH FOR THE STATICAL工Y IKDFTERMINATE COMPUTATION

1. Stress Distribution

The folloring notation is usod for the dimengions of the cylindrical shell under congideration (fig. 2):
a_{k}, length of $k^{\text {th }}$ bay (bulkhead spacing)
b_{j}, ridth of shect panel botwoon $(j-1)^{\text {th }}$ and $j^{\text {th }}$ stringer。

Fisk, cross section of the fth stringer in the $f^{\text {th }}$ bay (stringer section plus effective skin section).

- jook, akin thickness in $k^{t h}$ panel between $(j-1)^{t h}$ and $j^{\text {th }}$ stringer.

For floxurally stiff ring bulkheads with constant cross section along the circumference:
$P_{S, k}$ cross section of $k^{t h}$ bulkhead.
$J_{S, k}$ moment of inertia of $k^{t h}$ bulkhead ring (with rom spoct to radial deflection).
The component forces $P_{j}(\mu)$ at the $j^{t h}$ stringer for the unit state of tho redundancies $X_{\mu, k}$ are equal for all values of k. The remaining symbols are sufficiently cloar from the tort and illustrations.
$A_{s} \mathrm{c}$ result of $X_{\mu, k}=1$, the $k^{t h}$ and $(k+1)^{t h}$ pencils in the princt pal system are strossod. According to the simplified model shool, normal forces arise in tho stringers that decrease linearly to zero (fig. 6):

$$
\begin{equation*}
I_{j, k}(\mu)=\frac{x}{a_{k}} P_{j}(\mu): \quad I_{j}(\mu){ }_{j+1}=\frac{a_{k+1}-x}{a_{k}+1} P_{j}(\mu) \tag{3}
\end{equation*}
$$

(In each panel x is measured from the left bulkhead) and. from

$$
\frac{\partial I_{j, k}}{\partial x}=-\left(t_{j+I_{, k}}-t_{j, k}\right)^{6}
$$

there is obtained for the constant shear flow in tho sheet fields
Tho hoar times thickness (shear flow) is chösen positive in the direction of positive shear stress, hone opposite that in the work cited in roferonco 2. In tho figures the reactions of tho shear flows on tho stiffonors are shown.

$$
\begin{gather*}
t_{j, k}^{(\mu)}=t_{i, k}^{(\mu)}-\frac{1}{a_{k}} \cdot \sum_{i=1}^{j-1} P_{i}^{(\mu)} \\
t_{j, k+1}^{(\mu)}=t_{1, k+1}^{(\mu)}+\frac{1}{a_{k+1}} \sum_{i=1}^{j-1} P_{i}(\mu) \tag{4}
\end{gather*}
$$

In particular cases $t_{1, k}^{(\mu)}$ and $t_{1, k+1}^{(\mu)}$ may be determined from considerations of aymmotry of the system and of the force groups; in general, however, there is required the additional condition that the shear flors at the transo verso stiffeners form a system in equilibrium rhose momont therofore vanishes:

$$
\begin{equation*}
\sum_{j=1}^{m} t_{j, k}(\mu)\left(2 \underline{F}_{j}\right)=0 \text { and } \sum_{j=1}^{m} t_{j, k+1}^{(\mu)}\left(2 \underline{F}_{j}\right)=0 \tag{5}
\end{equation*}
$$

Where F_{j} is the sector of the cross-sectional area from a suitable arigin (for example, center of gravity of shell crose section) to the circumferential portion b_{j}.

Having obtained the shear flows, the otress distribution in the transverse stiffener walls may be determined by considering the reactions of the shear flows as tangential peripheral loads, the stressea in the $(k-1)$ th and $(k+1)^{t h}$ bulkheads being opposite to the stress of the $k^{t h}$ bulkhead from the shears of the $k^{t h}$ and $(k+1)^{t h}$ panels, respectively. (See fig. 6.) Tho stress distribution depends on the cesign of the trensverse stiffener and, with static indeterminancy, required an additional statically indoterminate computation. Framework and solid connections are generally atiff onough, so that the changes in shape in their planes are small compared to the deform mations of the stringers and sheot. The axial force distribution will then be only slightly affected by thom, so that for the statically indeterminato computation they may be assuned as rigid. The flexurally rigid bulkhead rings In monocoque fuselages, howover, are subject to greator deformations which in any particular loading condition must be taken into account. In goneral, they are threefold statically indeterminate, although important simplifications result if axes of symmetry. of the oross section are present. The bulkhead ring computation for several shell shapes ia given in section V.

At the tran terigtic force groups to Which the axial force loading had. been reduced (section II, 3) stress only the first panel of the panel gi stem. The state of stress is correspondingIf given by (3), (4), (5), where it is to be noted that the transverse stiffener 0 is loaded only by the shears of one panel.

In pure torsional loading by moments M_{K} at the $\kappa^{\text {th }}$ bulkhead, the $k^{\text {th }}$ panel is acted upon by a twisting mom mont:

$$
\begin{equation*}
T_{k}=\sum_{K=0}^{k-1} M_{K} \tag{6}
\end{equation*}
$$

resulting, according to the Bredt theory, in a shear flow

$$
\begin{equation*}
t_{k}^{(0)}=-\frac{T_{k}}{2 \underline{F}} \tag{7}
\end{equation*}
$$

In the skin. constant over the circumference and within the panel. The stringers are free from stress, the bulkhead \mathbf{k} is loaded by the difference between the actual applied twisting monent and the uniformly distributed elementary moment.

For transverse force bending the determination of the H substitute state of stress" in the stringers and akin proceed according to the wellaknown formulas of the beam theory under the assumption of the simplified model shell (reference 2). In bending about the z axis, which is passed through the center of gravity of the shell cross section, the axial forces in the $\mathrm{r}^{\text {th }}$ panel are:

$$
\begin{equation*}
L_{j}(0)=\frac{\mathbb{F}_{j, k} y_{j}}{\sum_{i=1}^{m} \mathbb{F}_{i, k} y_{i}^{g}} \bar{B}_{\mathbf{z}} \tag{8}
\end{equation*}
$$

and tho shear flora:

$$
\begin{equation*}
t_{j, k}^{(0)}=t_{I, k}^{(0)}-\frac{\sum_{i=1}^{j-1} F_{i, k} J_{i}}{\sum_{i=1}^{m} F_{i, k} y_{i}^{a}} \bar{Q}_{y} \tag{9}
\end{equation*}
$$

In the above equations \bar{B}_{z} is the bending moment, \bar{Z}_{y} the transvorse force at the corrosponding position, and (0) $t_{1, k}$, when not obtained fron the symetry properties, ia obtained in general fron the condition:

$$
\sum_{i=1}^{n} \frac{t_{i, k}^{(0)}}{s_{i, k} G}=0
$$

for bending without torsion. In the transverse stiffener valls there arises, as in the case of torsion, a strose distribution due to the manner of load application not corresponding to the elenentary theory.

2. Strnin Distribution

From the stress distributions due to $X_{\mu}=1, X_{v}=$ l, there are obtained in the usual way the strain or displacement coefficionts δ_{μ}, v, that 18 , the virtual rork which is done by the force group $X_{\mu}=I$ againgt the displecements due to $X_{V}=1:$

(du = circunferential element of akin,

Tho bulkheads are assumed to be flexuraliy stiff rings in which, as in the case of the beam, the portion of the मork done by the transverse forces, is neglucted. For franemork and solid connections, corresponding Falues are to be formod, the derivation of which will not be gone into since the chenges in shape of such transverso walls are negligible for the static computation.

Te consider first the individual contributions to the Virtual rofl of the stringers, sheet, and bulkheads sega-
 which vary linearly between the end values $P_{0}(\mu), P_{0}^{\text {and }}(v)$ and $P_{a}^{(\mu)}, P_{a}^{(v)}$ is:

$$
\begin{equation*}
\frac{a}{6 H T}\left[P_{0}^{(\mu)}\left(2 P_{0}(v)+P_{a}(v)\right)+P_{Q}(\mu)\left(2 P_{a}(v)+P_{0}^{(v)}\right)\right] \tag{11}
\end{equation*}
$$

The displacement coefficient ${ }^{(H, v}$ (μ^{\prime}) of the stringers of the $k^{t h}$ bay due to $X_{\mu, k}=1$ and $X_{v, k}^{*}=1 \quad$ (or $X_{\mu, k-1}=$ 1 and $X_{v, k-1}=1$):

$$
\begin{equation*}
\nabla_{I, k}(\mu, v)=\frac{a_{k}}{3} \sum_{j=1}^{\pi} \frac{P\{\mu)_{P}(v)}{F_{j, k}} \tag{12}
\end{equation*}
$$

A shoot of dimensions a, b and shear stiffness G contributes the portion due to the constant shear flows $t(\mu)$ and $t^{(v)}$:

$$
\begin{equation*}
\frac{a b}{B} t(\mu) t(v) \tag{13}
\end{equation*}
$$

so that the displacenont coefficient $\mathbf{w}_{B, k}^{(\mu ; v)}$ of tho shot portion of the $k^{t h}$ bay due to $X_{\mu, k}=1$ and $X_{v, k}=1$ (or $X_{\mu, k \rightarrow 1}=1$ and $X_{v, k \infty 1}=1$) $1 \approx:$

$$
\begin{equation*}
\nabla_{B, k}^{(\mu, v)}=a_{k} \sum_{j=1}^{m} \frac{b_{j}}{a_{j, k} G} t_{j, k}^{(j)} t_{j, k}(v) \tag{14}
\end{equation*}
$$

Tho displacement coefficient $\mathbb{w}_{S, k}^{(\mu, v)}$ of the $k^{t h}$ trans. 'verso stiffener of each redundancy $X_{\mu, k}=1$ and $X_{v, k}=1$ Ioadod only by the shears of the $k^{t h}$ bay in the case of floxurally stiff rings frith constant cross section along the circumference, around to

$$
\begin{equation*}
\nabla_{S, k}^{(\mu, v)}=\frac{U F^{Q}}{4 a_{k}^{Q} \text { K } J_{G, k}} \kappa(\mu, v) \tag{15}
\end{equation*}
$$

with

$$
\begin{equation*}
\left(I_{S, k}=\frac{J_{S, k}}{F_{S, k}}\right) \tag{16}
\end{equation*}
$$

There $B_{k}^{(\mu)}, B_{k}^{(V)}$ denote tho bending moments $N_{k}^{(\mu)}, \mathbb{N}_{k}^{(v)}$ the normal forces in the $k^{\text {th }}$ bulkhead ring produced by the shears in tho $k^{\text {th }}$ bay due to $X_{\mu, k}=1$ and $X_{\nu, k}=1$. Tho coefficient $k_{S, k}^{(\mu, v)}$ depends besides on the type and magnitude of the redundancies, only on the geometric shape of tho $k^{\text {th }}$ bullhead, the position of its neutral axis, and the stringer center of gravity. The coefficient varlos little aith the crosemsectional shape and is given in section V for several simple shell shapes. If the $k^{\text {th }}$ bulkhead is loaded only by the shears of the $k^{\text {th }}$ and the $(k+1)^{\text {th }}$ beys or only by the shears of the $(k+1)^{\text {th }}$ bay, the coefficients are, respectively:

$$
\frac{a_{k}}{a_{k+1}} \kappa_{S, k}(\mu, v) \text { and } \frac{a_{k} \mathrm{~s}}{a_{k+1}^{a}} \kappa_{g, k}^{(\mu, v)}
$$

since the shears in the two bays are proportional to $\frac{1}{a_{k}}$ and $\frac{1}{a_{k+1}}$.

From these separate portions tho total displacement coefficients $\delta_{k, k}^{(\mu, v)}$ of the redundancies at the $k^{\text {th }}$ transverse stiffener may be expressed in the form:

$$
\begin{align*}
& \delta_{k, k}^{(\mu, v)}=\left[w_{I, k}^{(\mu, v)}+w_{I, k+1}^{(\mu, v)}\right]+\left[\nabla_{B, k}^{(\mu, v)}+w_{B, k+1}^{(\mu, v)}\right] \\
& \quad+\left[\left(\frac{a_{k-1}}{a_{k}}\right)^{s} w_{S, k-1}(\mu, v)+\left(1+\frac{a_{k}}{a_{k+1}}\right)^{s} w_{S, E}(\mu, v)+\nabla_{S, k+1}^{(\mu, v)}\right] \tag{17a}
\end{align*}
$$

In the longitudinal direction the redundancies $X_{\mu, k}$ at the $k^{\text {th }}$ bulkhead are combined with those of the
$(k-I)^{t h}$ and $(k+1)^{t h}$ bulkheads, respectively,
($x_{v, k-1}$ and $\left.x_{v, k+1}\right)$ through superposition of the stress distributions in the $k^{\text {th }}$ and $(k+I)^{t h}$ bays to form tho
 the force groups at the different transiorso stiffeners are. chosen uniform there hold the spmotrical relations:

$$
{ }_{8}^{(\mu, k-v)}=8_{k, k-1}^{(v, \mu)}=8_{k-1, k}^{(\mu, v)}=8_{k-1, k}^{(v, \mu)}
$$

and those "mixed displacement coefficients" nay bo expressed in.torms of tho π values:

$$
\begin{align*}
& { }_{8}(\mu, v)=\frac{1}{2} \pi_{L_{k, k}, k}^{(\mu, v)}-{ }_{W_{B, k}}^{(\mu, v)} \\
& -\left[\frac{a_{l_{k-1}}}{a_{k}}\left(1+\frac{a_{k-1}}{a_{k}}\right){ }_{\nabla}(\mu, v)+\left(1+\frac{a_{k}}{a_{k+1}}\right){ }_{\square}(\mu, v)\right] \tag{17~b}
\end{align*}
$$

Furthor, by superposition of the atross distributions in the $(k=1)^{t h}$ and $(k+1)^{t h}$ transvorso stiffener thar arise tho mixed displacement coefficionts $\delta(\mu, v)$ and $8_{k, k+2}^{(\mu, v)}$, respectively, for mich corresponding symmetrical relations hold and rich may be expressed in terms of tho "§ values:

$$
\begin{equation*}
{ }_{8}(\mu, v)=\frac{a_{k-1}}{a_{k}} \nabla_{s, k=1}(\mu, v) \tag{17c}
\end{equation*}
$$

In a similar manner are to be determined the coeffim clients of the redundancies by superimposing their unit states upon the stresses due to the external loading. in the bay or substitute principal system according to (10). By the loading of the shell at the end stiffener 0 with the characteristic force groups $X_{1,0}$ X $_{a, 0, \ldots, X_{m-3}, 0}$ of tho form of static redundancies, only the redundancies at tho first and second transverse stiffonoff are affected. The load coefficients $\begin{aligned} & (\mu, v), \\ & 2,0, \\ & (\mu, v)\end{aligned}$ of the redundancies $\mathbf{X}_{\mu, 1}, X_{\mu, 2}$ due to a characteristic force group $X_{v, 0}=I$
are therefore:

$$
\begin{align*}
& { }_{6}{ }_{2,0}^{(\mu, v)}=\frac{a_{1}}{a_{2}} \nabla_{S, 1}^{(\mu, v)} \tag{18}
\end{align*}
$$

shore $\pi_{S, 0}^{(\mu, v)}$ is to be formed from the stresses of the end bullchead 0 by the shears of the first bay due to $\bar{X}_{\mu, 1}=1$ and $X_{v, 1}=1$. For an arbitrary force group X_{0} at the transverse wall 0 , and which according to (2) is split up in the form:

$$
x_{0}=\sum_{v=1}^{m-3} \quad c_{v} X_{v, 0}
$$

the load coofficients of the rodundencies $X_{\mu, i}$ and $X_{\mu, a}$ amount to

$$
\begin{equation*}
\delta_{1,0}^{(\mu)}=\sum_{v=1}^{n-3} c_{v}, \delta_{1,0}^{(\mu, v)} ; \delta_{a, 0}^{(\mu)}=\sum_{v=1}^{m-3} c_{v}, \delta_{8,0}^{(\mu, v)} \tag{19}
\end{equation*}
$$

In pure torsion by the moments M_{k} at the bulkheads and according to the elemontary theory applied distribum tivoly, there follows according to (7) and (I3) for the (μ) load coerficionts $\delta_{k, 0}^{(\mu)}$ of the redundancies $X_{\mu, k}$: $\underset{k, 0}{\delta(\mu)}=-\frac{T_{k}}{2 \underline{F}} \sum_{j=1}^{m} \frac{a_{k} b_{j}}{s_{j, k}} t(\mu)-\frac{T_{k+1}}{2 F} \sum_{j, k}^{m} \frac{a_{k+1} b_{j}}{s_{j, k+1}} \underset{j, k+1}{ }$

If the torsional mononts are not applied distributiven If, according to the elementary theory, there are still to be added the displaconont coefficients due to tho stresses in tho trenstorse walls.

In tho sane manner in the case of bending by transverso forces, the load coefficients may, with the aid of formulas (11), (13), and (16), bo built up from the indiavidual contributions of stringers, shot, and bulkheads.
3. Plasticity Fquations ond Solution in the General Case

Aftor the computation of the virtial worr coofficienta the magnitudes of the redundencies are determined froll the elasticity equations mhich express the conditions that the deformationa of neighboring bays at the common bulkhead should agree. For arbitrary characteristic force groups as redundancies these equations have the forns

$$
k=1,2, \ldots \ldots, n-1 \text { and } n ; \mu=1,2, \ldots . m=3
$$

Fith the boundary values:
$X_{\mu,-1}=X_{\mu, 0}=0$ and $X_{\mu, n}=X_{\mu, n+1}=0 ;$

$$
\text { and } X_{i, n+1}=X_{\mu, n+2}=0
$$

for a freely deformable end stiffener and end gtiffener rem strained against deformation, respectively.

The sygtem of equations therefore breaks up, as shown in figure 7 , for $n=6$ and in $=5$, into partial syatems of five members each and which are formed in the direction of the principal diagonal from the displacement coeffia cients of uniform longitudinal force groupa, uhile the remaining partial syateme are composed of the mixed displacement coefficients of nonuniform force groupg. If the force groups are orthogonal to one another, these "mixod" partial systema venish. The values of the uniform redundancias in the longitudinal direction are then obtained from independa ent 5-member partial syetems rhich only contain uniform redundancies (principal equations). For the solution of these 5 member olasticity equations - which in the case of rigid transverse stiffener walla are 3-member equationa Thore havo boon devoloped in static structure computations a number of suitable mothods, so that it is not necessc.ry to go into the matter any further. (Seo among othors, the Forks cited. in reference 9.) For regular syatems tho son lutions may bo givon in finito form as has beon dono in seotion IT, for equal panels.

If the redundant force groups are not orthogonal to one another, it is generally possible to obtain the condition that the mixed coefficients of nonuniform groups be small compared to the coefficients of the principal equations. For moro accurate computations these approxia mate solutions are improved step by step by substituting the values in the mixed partial systems and thus obtaining modified load members, for which the princi pol equation e are again solved. This iteration process is most conventiently carriod through in "single steps" - iso., the nor approximate values of a group are used directly to improve tho nowt group. Tho process hon always convorgos for elasticity equations (roforence lo).

After tho determination of the redundancies, the firanal force distribution nay immediately be obtained by superimposing upon the load condition in the principal system the corresponding multiples of tho unit states of the redundancies.

If $P(0)$ ie the force due to tho external loading in the principal system, the force $P_{j, k}$ in tho j th stringer at the $k^{t h}$ bulkhoad-is:

$$
\begin{equation*}
P_{j, k}=P_{j, k}^{(0)}+\sum_{\mu=1}^{\mu-j} P_{j}^{(\mu)} X_{\mu, k} \tag{22}
\end{equation*}
$$

For tho sheer flow $t_{j, k}$ in tho $f^{t h}$ panel of the $k^{t h}$ bay, there is obtained:

$$
\begin{equation*}
t_{j, k}=t(0) \sum_{j, k}^{(-m i s} t_{j=1}(\mu)\left(X_{\mu, k}-X_{\mu, k-1}\right) \tag{23}
\end{equation*}
$$

Where $f(0)$ is the value in tho principal system. Correm spondingly there is found the stress of tho $k^{\text {th }}$ bulkhead from the redundancies $X_{\mu, k \rightarrow 1}, X_{\mu, k}$, and $X_{\mu, k+1}$. The bending moment, for example, in the $k^{t h}$ bulkhoad ring is:

$$
\begin{gather*}
B_{k}=B_{k}^{(0)}+\sum_{\mu=1}^{m-3} B_{k}^{(\mu)}\left[-X_{\mu, k-1}+\left(1+\frac{a_{k}}{a_{k+1}}\right) X_{\mu, k}\right. \\
 \tag{24}\\
\left.-\frac{a_{k}}{a_{k+1}} x_{\mu, k+1}\right]
\end{gather*}
$$

 "Is the value due to-the-shears of the $k^{\text {th }}$ bay as a result of $X_{\mu, r}=1$ 。

4. Bytersion of the Shell lionel

If the transverse stiffeners are not attached to the skin but only fastened to the inner edges of the stringers. as is often the case with monocoque fuselages, the shell model thus far considered cannot be applied without modifin cation. A transfer of the shears in the form of tangent. trial loads to the bullheads is then possible to a limited extent only, on account of the weak attachment. In order to take this effect into account, the limiting condition is considered where no tangential forces at all can be transmitted from the sheet to the transverse stiffeners, so that there is a steady transition of the shear at the stiffeners. A state of equilibrium in the case of variable longitudinal. stresses is possible only through the setting up in the slain of peripheral stresses $\sigma_{i 1}$, which cornrow pond to the variable longitudinal shear stresses. In the case of curved sheet with small bonding etiffines of its own. the radial components of those peripiaerrl stresses must be transmit tod to tho stringers rich. as a result of their flexural stiffness, retransmit these forces to the transverse stiffeners. For the sake of simplicity, lot this radial load of the transverse stiffeners be assumed as continuously distributed over the poriphery as is ap m proximately the case for closely spaced stringers..

Wo consider first tho loading of the $k^{t h}$ bulkhead for arbitrary axial shear distribution (fig. Ba). For the peripheral force $p_{u \sim}=s \sigma_{u}$, there is obtained from the equilibrium equation $\frac{\partial p_{11}}{\partial u}+\frac{\partial t}{\partial x}=0$:

$$
p_{u}=-\int_{u_{0}}^{u} \frac{\partial t}{\partial x} d u
$$

Where u_{0} is a position at which the peripheral stress vanishes. The radial component q per unit of area at a position with radius of curvature r is then (fig. ib) :

$$
q=-\frac{I}{r} p_{u_{1}}=\frac{I}{x} \int_{u_{0}}^{u} \frac{\partial t}{\partial x} d u^{t}
$$

At the transverse stiffeners themselves hinge connection is assumed at the stringers. The radial force B du odor an olonent. du which acts on the transverse stiffener as a "reaction force" may then bo determined from the moment conditions. For the $k^{t h}$ bulkhead, as a result of the shear in the $k^{\text {th }}$ bay (fig. Bc, x is computed from the left bullhead in each bay), there is obtained:

$$
R_{k, k}=\frac{1}{a_{k}} \int_{0}^{a_{k}} x q d x=\frac{1}{a_{k x}} \int_{0}^{a_{k}} x\left[\int_{u_{0}}^{u^{u}} \frac{\partial t}{\partial x} d u\right] d x
$$

Interchanging the order of integration and integrating by parts grith respect to x, there is obtained:
$\left.R_{k, k}=\frac{I}{a_{k} r} \cdot \int_{u_{0}}^{u}\left[a_{k_{k}} t_{(k)}\right)-\int_{0}^{a_{k}} t d x\right] d u=\frac{1}{r} \int_{u_{0}}^{u}\left[t(k)-t_{k}^{*}\right] d u$
Whore ${ }^{t}(\mathrm{k})$. is tho shear flow at the $k^{\text {th }}$ bulkhead and

$$
t_{k} *=\frac{1}{a_{k}} \int_{0}^{a_{k}} t_{d x}
$$

is tho mean value of the shear flow in tho $k^{\text {th }}$ bay. The $k^{\text {th }}$ bulphoad is further loaded by the shears of the $(k+1)^{\text {th }}$ bay. For the radial force $R_{k, k+1}$ at position u, thor is obtained according to a computation similar to tho above:

$$
\begin{align*}
& B_{k, k+1}=\frac{1}{a_{k+1}} \int_{i_{0}^{u}}^{u}\left[\int_{0}^{a_{k+1}}\left(a_{1 c+1}-x\right) \frac{\partial t}{\partial x} \partial x\right] d u= \\
& \left.\frac{I}{x} \int_{u_{0}}^{u}\left[-t_{f k}\right)+t_{j k+1}^{*}\right] d d \tag{26}
\end{align*}
$$

The total radial load of the $k^{\text {th }}$ bulkhead per unit cirm cumforential distance is .therefore:

$$
\begin{equation*}
R_{k c}=R_{k, k}+R_{k, k+1}=\frac{1}{r_{1}} \int_{u_{0}}^{u}\left[t_{k+1}^{*}-t_{k r}^{*}\right] d u . \tag{27}
\end{equation*}
$$

If no tangential loads can be transmitted, tho radial.ioad therefore dopends only on the moan integrated velues of the shears in the neighboring bays.

To compute the system, the "sinple shear field scheme" according to saction II, I, is usod as a starting banis. The longitudinal atiffnesses of skin and atringors are combined and in place of the variable shear in the longitudinal direction, there is taken the mean integral value within each bay and the corresponding linear force distribution in the stringers. In the statically indeterminate computation for the redundant axial force groups, there are neglected at each transverse stiffener wall the dise placenent contributions of the skin due to the peripheral atreases, and their effect is taken into account only through the varied loading of the transvirse atiffeners with radial forces according to (27). There are then obtainod othor displacoment coopficients $\nabla_{S, k}^{(\mu, v)}$ than for the casio of tangential loading. the difforenco dopends, horovor, as will be ghown by an oxample in section ∇, I, only on the excentric position of skin bulkheads. Sinco no abrupt discontinuity of the shear can occur at the traneverso walle, tho computed "gtepped" curvo of tho mean sherr flovs in tho longitudinal direction must be smoothod. out by a continuous curvo in such a nanner that the moan value rithin the bays romains the same. (See fig. Ba.) Sinilarly the stringor forces which are obtained by the statically indeterminate computation: at the transverse stiffonor palls must be joined by a corrosponding continuous aurvo. It is possible, howevor, to consider tho atiffa noss of the bulkheads as distributed over the shell longth through the flexural stiffness of the longitudinal stiffe eners and in the solutiong for tho rodundarcies pass to tho linit of bulkheads.apaced infinitely ciose. Thero is thon obtained directly for tho stringer forcos a continuous axial distribution.. For tho case of loading of a vory long shell composed of oqual panels by means of characterism tic force groups at an end bulkhead, these solutions are given in IV, 2, in the table of formulas 3. From the shear
distribution the peripheral forces in the skin may be deternined as has been done zn the work of k. Schapitz and G. Krunling, cited in reference l, starting from the experis mentally determined lonfitudinal stressos.

IV. SIMPLIFIGATIONS FOR THE CASTI OF RQUAI PANFLS

I. Displacenent Coefficients and Flasticity \#quations

Of the simplifications of the statically indeteminate computetion \quad ith uniforn dimensions over the shell length, the case of goometrically and atructuraly equal panels will' be considered. Systems of steppod dimensions may be apa proximated to the above caso if the panel dinensions in the neighborhood of disturbance positions (cut-outs, doformation rostraints) are usod as a basis for tho computation.

In tho notation the subscript k is dropped; tho equan tions for the stress distributions have the samo forms the π values according to (12), (14), (15), from which the displaconont coefficients are formed being tho sano for sil kig. It is convonient for the computation to broak up $\nabla_{L}(\mu, v)$ and $\nabla_{B}(\mu, v)$ as चoll as $\nabla_{S}(\mu, v)$ in (15) into a coofficiont ${ }_{K}(\mu, v)$ and a factor w rhich depends only on tho system dimensions. In addition, me writos
$w_{J}(\mu, v)=\frac{4}{a \#} \kappa_{L}(\mu, v) \omega_{I^{\prime}} ; w_{B}^{(\mu, v)}=\frac{1}{a H} \kappa_{B}^{(\mu, v)} \omega_{B}$

$$
\begin{equation*}
\nabla_{S}(\mu, v)=\frac{1}{4 a k_{S}(\mu, v) \omega_{S}, ~} \tag{28}
\end{equation*}
$$

with

$$
\begin{equation*}
\omega_{I}=\frac{l}{B} ; \quad \omega_{B}=\frac{U}{G} ; \omega_{S}=\frac{U E^{*}}{E J_{S}} \tag{29}
\end{equation*}
$$

($s^{*}=a$ nean skin thiokness, o.g., $s^{*}=\frac{1}{U} \sum_{j=1}^{m} g_{j} b_{j}$)
Thon, according to (12) and (14):

$$
\begin{align*}
& x_{j}(\mu, v)=\frac{1}{4} \sum_{j=1}^{m} \frac{a^{a}}{N_{j}} p_{j}(\mu) p_{j}(v) \\
& \kappa_{B}(\mu, v)=\sum_{j=1}^{m} \frac{b_{j}}{V} \frac{s^{*}}{B_{j}}\left(a t_{j}(\mu)\right)\left(a_{j}(v)\right) \tag{30}
\end{align*}
$$

For flemurally gif bulkhead rings $k_{S}^{(\mu, v)}$ is obtained from (16) as:
$k_{S}(\mu, v)=\frac{4 a}{U H^{B}}\left[\int_{B}(\mu)_{B}(v) d u_{S}+1_{S}^{8} \quad \delta H_{M}(\mu)(v) d u_{S}\right]$
($t_{j}(\mu)$ and $t_{j}(v)$ are the shear flows in the $k^{t h}$ panel due to $X_{\mu, k}=1$ and $X_{v, k}=1$, respectively; $B_{B}(\mu)$, $M^{(}(\mu)$ and $B^{(v)}, H^{(v)}$ are the bending moment and normal forces in the $k^{\text {th }}$ bulkhead due to these shears.)

Tho redundancies at the $k^{\text {th }}$ bulkhead are similarly combined \quad fth those lying to the right and to the loft:

$$
\delta_{k, k+1}^{(\mu, v)}=\delta_{k, k-1}^{(\mu, v)} ; \quad 8_{k, k+2}^{(\mu, v)}=\delta_{k, k-2}^{(\mu, v)}
$$

According to ($17 \mathrm{a}, \mathrm{b}, \mathrm{c}$), the aisplacoment ooofficionts using the above notation are:
a $\# \delta_{K, k}(\mu, v)=8 K_{I}^{(\mu, v)} \omega_{I}+2 \kappa_{B}^{(\mu, v)} \omega_{B}+\frac{3}{2}{\underset{S}{S}}_{(\mu, v)} \omega_{S}$
a $I \delta_{k, k-1}^{(\mu, v)}=2 K_{I}^{(\mu, v)} \omega_{L}-\kappa_{B}^{(\mu, v)} \omega_{B}-\kappa_{S}^{(\mu, v)} \omega_{S}$
a. $\mathbb{R} \delta_{k, k-2}^{(\mu, v)}$

$$
\begin{equation*}
\frac{1}{4} \kappa_{S}^{(\mu, v)} \omega_{S} \tag{31}
\end{equation*}
$$

Similarly simple expressions are obtained for the load coefficient. In applying the force groups $X_{\mu, 0}=1$ of the form of redundancies at the bulkhead 0 , they may be expressed in terms of the displacoment coefficients of the redundancies since

$$
\begin{equation*}
{ }_{\delta_{I, 0}(\mu, v)}^{\left(\mu, \delta_{k, k-1}^{(\mu, v)}+\frac{(\mu, v)}{k, k-2} ; \delta_{2,0}^{(\mu, v)}=\delta_{k, k-2}^{(\mu, v)} .\right.} \tag{32}
\end{equation*}
$$

if the end bulkheads have the same elasticity as the intere mediate stiffeners. If the ond bulkheads 0 and n, on the contrary, are very atiff compered to the intormediate bulkheads (rigid in the limiting case), then the load coeffir cionts are:

$$
\begin{equation*}
\delta_{1,0}^{(\mu, v)}=\delta_{k, k-1}^{(\mu, v)}+2 \delta_{k, k=2}^{(\mu, v)} ; \quad \delta_{2,0}^{(\mu, v)}=\delta_{k, k \rightarrow 2}^{(\mu, v)} \tag{33}
\end{equation*}
$$

In this case the following displacement coefficients of the redundencies also change:

$$
\begin{equation*}
\delta_{1,1}^{(\mu, v)}=\delta_{n-1, n-1}^{(\mu, v)}=\delta_{k, k}^{(\mu, v)}-\delta_{k, k \rightarrow 2}^{(\mu, v)} \tag{34}
\end{equation*}
$$

The load coefficients for the momont coefficients M_{k} at the bulkheads are according to (20), since $t_{j, k+1}^{(\mu j}=$ $-t_{j, k}^{(\mu)}=-t_{j}^{(\mu)}$:

$$
\begin{equation*}
\delta_{k, 0}(\mu)=\frac{M_{k}}{2 F} \sum_{j=1}^{m} \frac{b_{j}\left(a t_{j}(\mu)\right.}{b_{j} G} \tag{35}
\end{equation*}
$$

With beys of equal dimensions therefore, the load coeffic cients of the redundancies yanish at the unloaded transvorso stiffener walls. The samo holds true for the bonding under trangverse forces.

The elasticity equations (21) may under these simplia fications be considered as a simultaneous system of (m - 3) linear dirference equations of the fourth order with constant coefficients whose solutions can be obtained mithout too much computation work in simple cases. (See reference 11.) In the case of orthogonal charactoristic force groups (or force groups which affect one enother to a negligible extent), this system breaks up into (m 3) independent differonco equations of the fourth order of the form:

$$
\begin{align*}
{ }^{8_{k, k-2}}{ }^{X_{k-2}} & +\delta_{k, k-1} X_{k-1}+\delta_{k, k} X_{k}+ \\
& +\delta_{k, k+1} X_{k+1}+\delta_{k, k+2} X_{k+2}=-8_{k, 0} \tag{36}
\end{align*}
$$

Where the shorter hotation. $X_{k}, \delta_{k, k}$ etc., has been Writa ten for- $X_{\mu}, \mathbb{K}^{\prime \prime} \cdot 8_{k, k}^{(\mu, \mu)}$.etc. The solutions of these differm once equations must, on account of the incomplotenegs of tho first and last olasticity equations (soo fig. 7) satis. fy cortain boundary conditions.

Tho obtaining of solutions in finite form is possible for a froo bay systom - i.e., for a shell with nonrestrained ond bullchoads. In tho case of an ond bulkhead in ram strainod against doformation, the rodundancios x_{n} at tho fixed ond aro dotorminod, using the froo bay aystom as a statiocily indotorminato principal systom. If in tho froo system $X_{l}^{(0)}$ are the redundnncies due to the external Iond, $X_{k}^{(n)}$ the redundoncies due to $X_{n}=1$, the fincl solutions are of the form:

$$
X_{k}=X_{k}^{(0)}+X_{n} X_{k}^{(n)}
$$

From the last elasticity equation, there then follows:

$$
\begin{equation*}
x_{n}=-\frac{\delta_{n, n-2} x_{n-2}^{(0)}+\delta_{n, n-1} x_{n-1}^{(0)}+\delta_{n, 0}}{\delta_{n, n-2} \frac{x_{n-2}^{(n)}+\delta_{n, n-1} x_{n-1}^{(n)}+\delta_{n, n}}{(n)}} \tag{37}
\end{equation*}
$$

The magnitude of the longitudinal forces at the fixed end restrained against deformation (fig. ib) must be dem termined, for example, by a stotfcaliy indeterminate computction. The redundancies $z_{k}(0)$ are genernlly negligibly small in the case of uniform structure of the closed shell. The redundancios $X_{k}^{(n)}$ aro computod according to tho mothod givon for the application of longitudinal forces. The rodundancica x_{n}. at the restrainod end can then be doterminod according tio (37). Prom a knorlodgo of tho forco distribution on the appilcation of concentrated forcos, tho main doviations fron tho olementary strose conditions can thoroforo bo determinod, and for this reason this loading condition rill be considerod in detail.
2. Solutions in Finite Farm of tho Difforcnca Equations To solve the olasticity equations (36) considered as symmetrical difference equations for uniform force groups: $X_{k-2}+2_{z}^{Y} X_{k=1}+2 \beta \dot{X}_{k}+2^{\gamma} X_{k+1}+X_{k+2}=-T_{k}$

$$
(k=I, 2, \ldots \ldots, n-1)
$$

With $\quad 2 \gamma=\frac{\delta_{k, k-I}}{8_{k, k-2}} ; \quad 2 \beta=\frac{8_{k} k_{k},}{8_{k, k \rightarrow 2}} ; \eta_{k}=\frac{8_{k}, Q}{8_{k, k-2}}$
We start with the general solution of the homogeneous equallion. ($\eta_{k}=0$). An exponential substitution leads to a characteristic equation of the fourth degree. Using hyper \rightarrow bolls and circular functions, respectively, there is ob e trained the following result:

The general solution of the homogeneous equation'is composed of four independent particular solutions whose form depends on the value $\left.D=\frac{2(\hat{\theta}}{\gamma}-\frac{1}{7}\right)$. The case occur ring most in practice, namely, $\quad \gamma<0^{\text {in }} \boldsymbol{i n}$ assumed: for $\gamma>0$, the general solutions are to be multiplied by $(-1)^{k}$

Far $D>1$, the solution of the homogeneous equation 18:
$X_{k}=C_{1} \cosh k \cos k X+C_{2} \cosh k \psi \sin k X$
$+C_{3} \sinh k \Psi \operatorname{coo} k X+C_{4} \sinh k \Psi \sin k X$
The arguments ψ and X satisfy the boundaryjconditions:

$$
\cosh \psi \cos X=\left|\frac{\gamma}{2}\right| ; \sinh \psi \sin X=\left|\frac{\gamma}{2}\right| \sqrt{D-1}
$$

whonco follows:

$$
\begin{aligned}
& \psi=\frac{1}{2} \cosh ^{-1}(A+B) \\
& x=\frac{1}{2}\left(\cos ^{-1}\right)(A-B)
\end{aligned}
$$

ainu archit $\quad \gamma i=-1$

$$
A=\frac{\beta-1}{2}=\frac{D}{4 \gamma^{2}}
$$

$$
\begin{equation*}
B=\sqrt{\left(\frac{\beta+1}{2}\right)^{B}-\gamma^{a}} \tag{42}
\end{equation*}
$$

$$
(A+1)^{2}
$$

(Of the multiple-valued inverse trigonometric functions, only the positive principal values are. taken.)

If $D<1$, then in place of the circular functions, there occur tho corresponding hyperbolic functions:
$x_{k}=C_{1} \cosh k \Psi \cosh k \rho+C_{g} \cosh k \Psi \sinh k \rho$ $+O_{3} \sinh k \psi$ cosh $k P+O_{4}$ sinh $k \Psi \sinh k p$
with
$\cosh \psi \cosh \rho=\left|\frac{Y}{2}\right| ; \sinh \psi \sinh \rho=\left|\frac{Y}{2}\right| \sqrt{1-D}$

$$
\begin{equation*}
\Psi=\frac{1}{2} \cosh ^{-1}(A+B) ; \rho=\frac{1}{2} \cosh ^{-1}(A-B) \tag{8}
\end{equation*}
$$

(4 and B as in (42))
For D alI (double root of tho characteristic equation) X and P, respectively, are equal to zero, and

$$
\psi=\frac{1}{2} \cosh ^{-1}(A+B)=\cosh ^{-1}\left|\frac{Y}{2}\right|
$$

In addition to cosh $k \psi$ and sinh $k \Psi, k \cosh k \psi$ and k sinh le ψ are also solutions, so that the general solus ion of the homogeneous equation is:
$\mathbf{X}_{k}=O_{2} \cosh k \Psi+\sigma_{s} k \cosh k \Psi+\sigma_{3} \sinh k \Psi+$

$$
+C_{i} k \sinh k \psi
$$

Tho complete solution of the differonce equation is then made up of the solution of the homogeneous equation with four arbitrary constants and an arbitrary particular solution of the nonhomogeneous equation. In the case of a system with unrestrained end, the following boundary conditions must, on account of the incompleteness of both the first and last elasticity equations, be satisfied:

$$
\begin{equation*}
X_{-\infty}=0 ; \quad X_{-1}=0 ; \quad X_{n}=0 ; \quad X_{n+1}=0 . \tag{43}
\end{equation*}
$$

There are time obtained four linear equations for the cone stents $C_{1}, C_{a}, C_{3}, C_{4}$ in the general solution, and after these have been computed the solution of the elasticity equations is obtained in finite form.

As un example, we consider the case of constant load coefficients $\eta_{k}=\eta=$ constant, as is the case in lociing the cylindrical shell with constant moments at all tranae vorso stirfonors and wherp thore is no rostraint on the deformation of the ond sections. Hurther, let Y be asm sumod as <0 and $D>1$. A particular solution of tho nonhomogeneous difforonco oquetion is:

$$
X_{k_{k}} *=-\frac{\eta}{2+4 Y+2 \beta}
$$

to mhich must be adied the solution (40). After determining the constants G from tie boundery conditions (43) (this formal computation is onitted), there is obtained the solution:
$X_{k}=X_{k} *-\frac{X_{k}}{N_{k}}[\{\sinh (k+1) \psi \sin (n-k+1) x$

$$
-\sinh k \Psi \sin (n-k) x\}
$$

$$
+\{\sin (k+1) \times \sinh (n-k+1) \psi-\sin k x \sinh (n-k) \psi\}]
$$

Where $\quad \mathrm{IT}^{*}=\sinh (n+1) \psi \sin X+\sin (n+1) X \sinh \psi$
(For $D<I$ the hyperbolic functione are to be substituted everymhere for the circular functions zith the argument p in place. of X, rhile for $D=1$, the functional symbol sin and the argument X.are to be dropped.)

Tho sotting up of a solution of this type is possible for furthor simple loading conditions and it is also possible to toke into account modified dimengions of the end bulkhends by corresponding end conditions. Sinco the gonercl formulas aro not vory explicit, hovover, it is bottor in ony individual ceso to uso a numcricol mothod, or in the caso of efor oquations, to solvo diroctly by the mollm knomn olimination or itoration method. For the limiting casc of rigid bulkhoods, solution formulas havo"bonn sot up for 2 sorios of load conditions in the rory cited under referenco 6.

In applying indepondent force groupe of the form of static rodundancios at the bulkhead 0 , the load cooffi-
 tions may bo detorminod by the boundary conditions and simple solutions in finite form may be obtainod. According to formulas (32), (33), (74), vo must havo

$$
\text { N.A.C.A. Technical Memorandum No. } 866
$$

$$
\begin{equation*}
X_{0}=1 ; \quad X_{-1}=1 ; \quad X_{n}=0 ; \quad X_{n+1}=0 \tag{44}
\end{equation*}
$$

for the case of elastic end bulkheads, and

$$
\begin{equation*}
x_{0}=1 ; x_{-1}+x_{+1}=2 ; x_{n}=0 ; x_{n-1}+x_{n+1}=0 \tag{45}
\end{equation*}
$$

for the case of rigid and bulkheads.
By means of these conditions, the four arbitrary constands 0 in the general solution of the homogeneous equation ara determined. Tho final results are presented. in tho table of formulas 1 . The solutions for all cases may bo oxprosgod in a gonoral form through auriliciry fungo ions g_{k} and tho conditions $X_{0}=1 ; \quad X_{n}=0$ may bo imo modiatoly verified.

In the table of formulas 1 , there are given in addieion the solutions for the limiting case of rigid bulk head walls. The differ once equation then reads:

$$
\begin{equation*}
x_{l_{r-1}}+2 \alpha x_{k}+x_{k+1}=0 \tag{46}
\end{equation*}
$$

With $2 \alpha=\frac{\mathbf{8}_{\underline{k}} k}{8_{k, k}}$ and the end values $X_{0}=1, \quad x_{n}=0$. Tor $|\alpha| \neq 1$, tho equation has the general solution

$$
X_{l c}=(\pm 1)^{k}\left[O_{1} \cosh k \varphi+O_{a} \sinh k \varphi\right]
$$

(upper sign if $a<0$) with the argument

$$
\begin{equation*}
\varphi=\cosh ^{-1}|\alpha| \tag{47}
\end{equation*}
$$

For $|\alpha|=I$ the solution is:

$$
x_{k}=(\pm 1)^{k r}\left[0_{2}+c_{3} k\right]
$$

There are thus obtained for tho above boundary values the solutions:

$$
x_{k}=(\pm I)^{k} \frac{\sinh (n-k)}{\sinh n \varphi} \varphi
$$

and

$$
(\pm 1)^{k}\left(1-\frac{1}{n} k\right)
$$

Form of solution: $X_{k}=(\pm 1)^{*} \frac{g_{k} g_{0}-g_{n-k} g_{n}}{g_{0}^{2}-g_{n}^{2}}$;		upper sign if $\gamma<0$ or $\alpha<0$ lower sign if $\gamma>0$ or $\alpha>0$
Case	Intermediate bulkheads elastic, end bultheads: elastic rigid	
$\begin{gathered} D>1 \\ (A-B<1) \end{gathered}$	$\begin{aligned} g_{k} & =\sin (k+1) \chi \sinh (n+1-k) \psi \\ & \mp \sin k \chi \sinh (n-k) \psi \end{aligned}$	$\begin{aligned} & g_{k}=\sin (k+1) x \sinh (n+1-k) \psi \\ & \bar{F} 2 \sin k x \cdot \sinh h(n-k) \psi+\sin (k-1) \chi \sinh (n-1-k) \psi \end{aligned}$
$\begin{gathered} D=1 \\ (A-B=1) \end{gathered}$	$\begin{aligned} g_{k}= & (k+1) \sinh (n+1-k) \psi \\ & =k \sinh (n-k) \psi \end{aligned}$	$\begin{aligned} & g_{k}=(k+1) \sinh (n+1-k) \psi \\ & =2 k \sinh (n-k) \psi+(k-1) \sinh (n-1-k) \psi \end{aligned}$
$\begin{gathered} D<1 \\ (A-B>1) \end{gathered}$	$\begin{gathered} g_{k}=\sinh h(k+1)_{\rho} \sinh (n+1-k) \psi \\ \mp \sinh k \rho \sinh (n-k) \psi \end{gathered}$	$\begin{aligned} & g_{k}=\sinh (k+1) \rho \cdot \sinh (n+1-k) \psi \\ & \mp 2 \sinh k \rho \sinh (n-k) \psi+\sinh (k-1) \rho \sinh (n-1-k) \psi \end{aligned}$
Limiting case of rigid bulkheads: $g_{h}=\sinh (n-k) \varphi$ for $\|\alpha\| 1+1 ; \quad g_{k}=n-k$ for $\|\alpha\|=1$		

Table I.- Solutions of elasticity equations for applied characteristic force group $X_{0}=1$ for shells of finite lengthe (end bulkheed freely deformable).

Case	Intermediate bulkheads, elastic	astic, end bulkheads: riqid
$A-B<1$	$X_{k}=(\pm 1)^{k} e^{-k \psi}\left[\cos k \chi+\frac{\cos \chi \neq e^{-\psi}}{\sin \chi} \cdot \sin k \chi\right]$	$X_{k}=(\pm 1)^{k} e^{-k \psi}\left[\cos k \chi+\frac{\cosh \psi \cos \chi . \mp 1}{\sinh \psi \sin \chi} \sin k \chi\right]$
$A-B=1$	$X_{k}=(\pm 1)^{k} e^{-k \psi}\left[1+\left(1 \mp e^{-\psi}\right) k\right]$	$X_{k}=(\pm 1)^{*} e^{-k \psi}\left[1+\frac{\cosh \psi \mp 1}{\sin \psi \psi} \cdot k\right]$
$A-B>1$	$X_{k}=(\pm 1)^{k} e^{-k \psi}\left[\cosh k \rho \frac{\cosh \varphi \bar{f} e^{-\psi}}{\sinh \rho} \sinh k \rho\right]$.	
Limiting case of rigid bulkheads $\left(\omega_{s}=0\right): \chi_{k}=(\pm 1)^{k} e^{-k p}$		
Upper sigr if $x_{S} \omega_{s} \geq 2 x_{L} \omega_{L}-x_{B} \omega_{B}$;		Lower sign if $x_{s} \omega_{s}<2 x_{L} \omega_{L}-x_{B} \omega_{B}$
Constants.$\begin{aligned} A & =\frac{8 x_{L} \omega_{L}+2 x_{B} \omega_{B}+x_{S} \omega_{S}}{x_{S} \omega_{S}} \\ \cdots-B & =\frac{4}{x_{S} \omega_{S}} \sqrt{3 x_{L} \omega_{L}\left(x_{L} \omega_{L}+x_{B} \omega_{B}+x_{S} \omega_{S}\right)}- \\ \|\alpha\| & =\left\|\frac{x_{B} \omega_{B}+4 x_{L} \omega_{L}}{x_{B} \omega_{B}-2 x_{L} \omega_{L}}\right\| \end{aligned}$$\begin{aligned} \psi & =\frac{1}{2} \cdot \operatorname{arccosh}(A+B) \\ x & =\frac{1}{2} \cdot \arccos (A-B) \\ \rho & =\frac{1}{2} \cdot \operatorname{arccosh}(A-B) \\ \varphi & =\frac{1}{2} \operatorname{arccosh}\|\alpha\| \end{aligned}$		

Table II- Solutions of laticity equations for applied characteristic
force group $x_{0}=1$ for infinitely long shells.

Case	Intermediate bulkheads elastics end bulkheads: elastic	
$\bar{A}-\bar{B}<0$	$X(x)-e^{-\bar{\psi} x}\left[\cos \bar{\chi} x+\frac{\bar{\psi}}{X} \sin \bar{\chi} x\right]$	$X(x)=e^{-\bar{\psi} x}\left[\cos \bar{\chi} x+\frac{1}{2}\left(\frac{\bar{\psi}}{\bar{\chi}}-\frac{\bar{X}}{\bar{\psi}}\right) \sin \bar{\chi} x\right]$
$\bar{A}-\bar{B}=0$	$X(x)-e^{-\bar{\psi} x}[1+\bar{\psi} x]$	$X(x)=e^{-\bar{\psi} x}\left[1+\frac{1}{2} \bar{\psi} x\right]$
$\bar{A}-\bar{B}>0$	$X(x)=e^{-\bar{\psi} x}\left[\cosh \bar{\rho} x+\frac{\bar{\psi}}{\bar{\rho}} \sinh \bar{\rho} x\right]$	$X(x)=e^{-\bar{\psi} x}\left[\cosh \bar{\rho} x+\frac{1}{2}\left(\frac{\bar{\gamma}}{\bar{\rho}}+\frac{\bar{\rho}}{\bar{\psi}}\right) \sinh \bar{\rho} x\right]$

Constants

$$
\begin{array}{rlrl}
\text { tants } & \bar{A} & =\frac{x_{B} \omega_{B}}{x_{s} \overline{\omega_{s}}} & \bar{\psi} \\
\bar{B} & =\sqrt{\frac{4}{x_{s} \bar{x}_{s}}} & \overline{\bar{A}+\bar{B}} \\
\bar{x}_{L}=\frac{x e_{L}}{a^{2}}, \bar{\omega}_{s}=\frac{u f^{2}}{I_{s}}\left(=a^{2} \omega_{s}\right) & \bar{X}=\sqrt{\bar{B}-\bar{A}} \\
I_{s} & =\frac{1}{a} J_{S} & \bar{\rho} & =\sqrt{\bar{A}-\bar{B}} \\
\hline
\end{array}
$$

XebleIII- Distribution of force group $X(0)=1$ for infinitely long shell with bulkheads lying infinitely close.

TableIV. - Displacement factors for eix-stringer shells of equal bays.

The solution formulas simplify considerably for the
 constant. finlte bulkhead spacing a. The results for this liniting condition are presented in the table of formalas 2. These solutions may be applied to shells of finite lengtha.ereater than their perimeters, without appreciable error, as is shown with the aid of examples in gection. VI, I belov. the solution becomes particalarly simple for the
 values are expressed in terms of the k and ω values corresponding to (ZI), these coefficients need not be fura ther specially determined \rightarrow the constant values of the solution formulas being computed directly from the k and ω values, as indicated in the table of formulas 2. The arguments ψ, X are taken from tables of functiona' Fith the natural numbers as argument. The condition

$$
D \frac{>}{<} 1 \text { and } A-B \frac{<}{>} 1
$$

is equivalent to

$$
12\left(\kappa_{I} \omega_{I}\right)\left(\kappa_{S} \omega_{S}\right) \frac{>}{<}\left(2 \kappa_{I} \omega_{I}-\kappa_{B} \omega_{B}\right)^{2}
$$

and the condition $\gamma \frac{>}{<} 0$, according to winich the gign in the solution formulas is determined becomes, in terms of tho k and w values:

$$
k_{S} \omega_{S}<2 k_{I} \omega_{I}-\kappa_{B} \omega_{B}
$$

For some simple shell shapes the k and ω values are given in table of formulas 4.

A further liniting case of importance is that of infinitely close biulkhead spacing for rhich the total trangverge atiffiness of the system is assumed to remain unchanged. [f the bulkheads, for example, are rings with the bending stiffness $\mathbb{H J}_{S}$, the bonding stiffness ${ }^{\text {FHI }} \mathrm{I}_{\mathrm{S}}=$ $\frac{1}{a} \mathbb{H J S}_{S}$ per unit. length in tho axial direction is to remain constant. The difference equation then goes over into a corresponding differential equation, the independent force group X_{k} becoming a continuous function $X(x)$ of the axial coordinate x measured from the loading side. Again
7For example, the tables of circular and hyperbolio func-
tion of K. Hayashi, or "Hutte, tion of K. Hayashi, or "Hutte," vol. I.

We omit the computational details of passing to the limit and present the final solutions in the table of formulas 3. The case corresponding to $\gamma>0$ drops out, the cases $\overline{\mathrm{L}}-\overline{\mathrm{B}} \stackrel{<}{>} 0$ correspond to $D \frac{>}{<} 1$, the arguments are determined by squarerroot expressions, and in place of the K and w values there enter corresponding K and w values which no longer contain the bulkhead spacing a.

If the shear deformations are neglected ($\kappa_{B} \omega_{B}=0$), then $\bar{\Psi}=\bar{X}$, and the solutions are:

$$
X(x)=e^{-\Psi x}(\cos \bar{\psi}+\sin \Psi x)
$$

for elastic end bulkhead, and

$$
x_{(x)}=e^{-\Psi x} \cos \psi x
$$

for rigid end bulkhead, with

$$
\Psi=\sqrt[4]{\frac{4 \bar{\kappa}_{I}}{\kappa_{S} \bar{\omega}_{S}}}
$$

They have the same form as the function $f_{e}(x)$ for the simple disturbance loads in the work of Wagner and Simon, mentioned in reference 3. The argument values likewise agree for corresponding stress distribution, as may be shown by the example of a box beam of sides b and co and of constant wall thickness s. From the work cited under reference 7 (pp. 76-77), there is obtained for equal panels:

$$
\kappa_{L} \omega_{L} \doteq \frac{2 a^{a}}{B(b+c)} ; \kappa_{S} \omega_{S}=\frac{b^{2} c^{a}(b+c)}{24 a J_{S}}
$$

so that

$$
\bar{\kappa}_{I}=\frac{6}{s(b+c)} ; \quad \kappa_{S} \omega_{S}=\frac{b^{a} c^{a}(b+c)}{24 I_{S}}
$$

We than have:

$$
\bar{\psi}=8 \sqrt{3} \frac{b+c}{\sqrt{b c}} \sqrt[4]{\frac{I_{S}}{\mathrm{~s} \cdot \mathrm{U}^{\delta}}}=13.856\left(\sqrt{\frac{b}{c}}+\frac{1}{\sqrt{\frac{b}{c}}}\right) \sqrt[4]{\frac{I_{S_{.}}}{\mathrm{G} 0^{6}}}
$$

in agreemont with the corresponding ω_{e} value, according to table 2 of reference 3 .

T. CONS IDMRATION OF SMVFRA:I IMPORTANT SYSTHMS

For several simple shell shaves with few stringers and those cross sections are symmetrical about two perpondicular axos, there \quad illl be computed the stresses and dise placement values. The transverse gtiffeners are taken to be ilorurally stiff rings of constant section over the entire circumferonce and with radii of gyration small compared to the diametors. Shells whose cross sections devin ato littlo from the condition of doublo symmetry (mono coque furolagos) may be treated in approximately the same manner as theso simple systems.

> 1. Four-Stringer Sholls

The simplest statically indeterminate shape of shell is the 4-atringer system rith intermediate trangiorge stiffeners. The stringers are assumed not to lie on the axis of symmetry. As redundancies, there are set up at each intermediate transerse stiffener k and at the ond regtraint, a force group X_{k} symmetrical with reapect to the center and denoted briefly as a "convexing force group." The unit state $X_{k}=1$ is showi in figure 9, and the rem actions of the constant shear flows t_{1} and t_{a} on stringers and rings, which for the present are as apmed to be attachod to the skin, are indicated for tine $k^{t h}$ bayo.

In the stringers according to.(3) are set up axial forces which drop off linearly from 1 to 0 , and for the shear flows there is obtained according to (4) and (5):

$$
\begin{align*}
& t_{I_{, k}}=\frac{1}{a_{k}} \frac{\mathbb{P}_{a}}{\underline{F}_{1}+\underline{F}_{a}} ; \quad t_{2, k}=-\frac{1}{a_{k}} \frac{F_{1}}{\underline{F}_{1}+\underline{F}_{a}} \tag{48}\\
& t_{1,1+1}=-\frac{1}{a_{k+1}} \frac{\underline{F}_{1}}{\underline{F}_{1}}+\underline{\underline{F}}_{2} ;{ }_{2, k+1}=\frac{1}{a_{k+1}} \frac{\underline{F}_{1}}{\underline{F}_{1}+\underline{F}_{8}}
\end{align*}
$$

The stresses of the flexurally stiff, threefold state ically indeterminate bulkhead rings (On the computation of bulkhead rings, see among others, reference l2) may in the
case hero constdered of donble symmotry and loading aymmetricol ebout tine center, be obtained Fithout statically indom tormineto computations, since at tho foụr dianotral points on tho axos tho bending monents and the mormal forcos vanish and tino transporse forcos Q_{y} and Q_{z} at these points are obtaincd from tho equilibrium conditions. Lot us. considor tho $k^{t h}$ ring undor tangontinl loaing by tho shears of the $k^{t h}$ oay (fig. $9 b$). Subatituting from (48), we havo:

$$
\left.\begin{array}{l}
Q_{y, k}=\frac{r_{y}}{a_{k}}\left(\frac{y_{1}}{r_{y}}-\frac{\underline{Y}_{a}}{\mathbb{F}_{1}+\mathbb{F}_{a}}\right) \tag{49}\\
Q_{z, k}=-\frac{r_{z}}{Q_{k}}\left(\frac{z_{1}}{r_{z}}-\frac{\mathbb{F}_{1}}{Y_{1}+F_{g}}\right)
\end{array}\right\}
$$

With the aid of the atove equations, the distribution of the bending momonts, and the normal and the transierse forcos ofor the entire ring may roadily be obtainc.l. Tho bonding iomont B_{k}, for oxamplo, nt a point $\Psi_{S, k} \quad \mathbf{z}_{S, k}$ of the noutral axin of the ring soction is:
$\left.\begin{array}{l}B_{k}=Q_{y, k} z_{S, k}-t_{1, k}\left(2 f_{1}\right) \text { in poriphoral range } b_{1} \\ B_{k}=-Q_{k, l} y_{S, k}+t_{f, k}\left(2 f_{a}\right) \text { in poriphoral range } b_{a}\end{array}\right\}(50)$
(Bonding momont positiyo if the extreme outer ring fibers are under prossure.) f_{1} and f_{a} are tho hatchod areas indicatod in figura 9 b . The ring sootion may bo differont for oach buiklead, end hence also the coordinates $\mathcal{J}_{S, k}$, $z_{S, k}$ of the reutral axis. The coordinates Z_{1}, z_{g} of the stringer center of sravity are ansumed constant over the entire ahell.length. The kth billhead is in a aimilar manner loaded by the shecra of the $(k+1)$. k panela it is only necessary to substitute aky for $a_{k x}$.

If the shell cross section is an ollipse: $y=I_{y} \cos \varphi_{2}$
 coordinates of the stringor conters of gravity and the shapo of the noutral exis ainilar to that of the.cireumferenco around tho skin: $y_{S, k}=\lambda_{S, k} r_{y} \cos \varphi ; \quad{ }^{z} S_{S, k}=$.
$\lambda_{S, k} r_{z}$ ain φ^{θ} (where $\lambda_{L}, \lambda_{S, k}$ are absolute numbers less than i), there is obtained, after a short computation for the bending moments:

For a circular cylinder, φ and φ_{1} are the angles subtended at the center (fig. 10), and

$$
r_{Y}=r_{z}=r ; \quad \lambda_{S, k}=\frac{r_{S_{C} K}}{r_{i}} \quad \lambda_{I}=\frac{r_{L}}{\Gamma}
$$

In this case the normal forces H_{k} may readily be obtained:

$$
\left.\begin{array}{l}
\mathbb{N}_{k}=\frac{r_{-}}{a_{k}} \lambda_{I} \cos \varphi_{1} \sin \varphi \text { for } 0 \leq \varphi \leq \varphi_{1} \tag{52}\\
\mathbb{N}_{k}=\frac{r}{a_{k}} \lambda_{I} \sin \varphi_{1} \cos \varphi \text { for } \varphi_{1} \leq \varphi \leq \frac{\pi}{2}
\end{array}\right\}
$$

If the rings are not attached to the skin the same "mean" shear stress distribution of the extended shell model is assumed according to (48), while the rings are loaded by distributed radial forces. According to (27), section III, 4, this loading B_{k} of the $\mathrm{k}^{\text {th }}$ ring port unit distance around the circumference and resulting from the circumferential forces in the $k^{\text {th }}$ and $(k+1)$ th bays due to $\mathbf{X}_{\mathbf{k}}=1,1 \mathrm{I}$:

$$
R_{k}= \begin{cases}-\left(\frac{1}{a_{k}}+\frac{1}{a_{k+1}}\right)\left(1-\frac{2 \varphi_{1}}{\pi}\right) \varphi & \text { for } 0 \leq \varphi \leq \varphi_{1} \\ -\left(\frac{1}{a_{k}}+\frac{1}{a_{k+1}}\right) \frac{2 \varphi_{1}}{\pi}\left(\frac{\pi}{2}-\varphi\right) & \text { for } \varphi_{1} \leq \varphi \leq \frac{\pi}{2}\end{cases}
$$

[^3]In the first and third quadrants, the radial load is therefore compressive wile in the second and fourth quadrants, It is tonsilo. He is spilt up into two parts proportional to $\frac{1}{a_{k}}$ and $\frac{1}{a_{k+1}}$. The bending moments and normal forces in the $k^{t h}$ bulkhead ate to the contribution from the $k^{t h}$ bay are then:
$B_{k}=\frac{r^{2}}{a_{k}}\left[\left(\lambda_{I} \lambda_{S, k} \cos \varphi_{I}\right) \sin \varphi-\lambda_{S, k}\left(1-\frac{2 \varphi_{I}}{\pi}\right) \varphi\right]$
$B_{k}=\frac{x^{2}}{\varepsilon_{\text {IE }}}\left[\left(\lambda_{I} \cdot \lambda_{S, k} \sin \varphi_{1}\right) \cos \varphi-\lambda_{S, k} \frac{2 \varphi_{1}}{\pi}\left(\frac{\pi}{2}-\varphi\right)\right]$
for $\varphi_{1} \leq \varphi \leq \frac{\pi}{2}$

$$
W_{k}=\frac{r}{a_{k}}\left[\left(\lambda_{I} \cos \varphi_{1}\right) \sin \varphi-\left(1-\frac{2 \varphi_{1}}{\pi}\right) \varphi\right]
$$

$$
\text { for } 0 \leq \varphi \leq \varphi_{1}
$$

$$
\mathbb{W}_{k}=\frac{r}{a_{k}}\left[\left(\lambda_{2} \sin \varphi_{1}\right) \cos \varphi-\frac{2 \varphi_{1}}{\pi}\left(\frac{\pi}{2}-\varphi\right)\right]
$$

for $\varphi_{1} \leq \varphi \leq \frac{\pi}{2}$
The bonding moments differ fro the values in the case of tangential loading according to (51) only through the "oxcontricity" $\lambda_{S, k}=\frac{r_{S}, k}{r_{2}}$, occurring as a factor of tho second mentor, and they ara therefore larger since $\lambda_{\mathrm{s}, \mathrm{k}}<1$. The normal forces, however, are considerably smaller, as may bo seen "by comparison with (52).

The displacement coefficients, corresponding to (17a; (is), are made up of the ∇ values, defined in (12), (14), (15) 8 :
$T_{I_{, k}}=\frac{\varepsilon_{k}}{3} \frac{4}{F_{I, k}}$

The value of ${ }^{\prime} K_{S, k}$ according to (16) for the case of cross sections of general shape, may be determined only by numerical integration - for example, by the Simpson rule. For tho circular bulkhead the integrals may be explicitly evaluated. In the case of tangential shear load with tho stresses according to (51) and (52), there io obtained:

$$
\begin{gather*}
\kappa_{S, k}=\lambda_{S, k} \frac{8}{\pi^{4}}\left[\frac{2}{3} \varphi_{1}^{a}\left(\frac{\pi}{2}-\varphi_{1}\right)^{a}+\lambda_{I}^{a}\left(\lambda_{S, k}^{a}+\frac{1_{S}^{a}}{r^{2}} k\right) \frac{\pi}{2}\right. \\
\left\{\varphi_{1} \cos ^{a} \varphi_{1}+\left(\frac{\pi}{2}-\varphi_{1}\right) \sin ^{a} \varphi_{1}-\frac{1}{2} \sin 2 \varphi_{1}\right\} \\
\left.\sim \lambda_{L} \lambda_{S, k}\left\{\pi \sin 2 \varphi_{1}-4 \varphi_{1}\left(\frac{\pi}{2}-\varphi_{1}\right)\right\}\right] \tag{57}
\end{gather*}
$$

With radial loading, however, when the rings are not attached to the skin, we have:

$$
\begin{gather*}
K_{S, l}^{\prime}=\lambda_{S, k} \frac{8}{\pi^{4}}\left(\lambda_{S, k}^{a}+\frac{i_{S, k}^{a}}{I^{3}}\right)\left[\frac{2}{3} \varphi_{1}^{a}\left(\frac{\pi}{2}-\varphi_{1}\right)^{a}\right. \\
+\lambda_{I}^{a} \frac{\pi}{2}\left\{\varphi_{1} \cos ^{a} \varphi_{1}+\left(\frac{\pi}{2}-\varphi_{1}\right) \sin ^{3} \varphi_{1}-\frac{1}{2} \sin 2 \varphi_{1}\right\} \\
\left.-\lambda_{L}\left\{\pi \sin 2 \varphi_{1}-4 \varphi_{1}\left(\frac{\pi}{2}-\varphi_{1}\right)\right\}\right] \tag{58}
\end{gather*}
$$

For the practical computation of these coefficients, there may be used the chart in figure ll, giving the aux 1liary functions $K(\varphi, \lambda)$ and $\bar{K}(\varphi, \lambda)^{9}$ through which $*_{S, k}$ and $\kappa_{S, k}^{\prime^{\prime}}$ may be expressed in simple form. The dew pendence on the angle φ_{1} may, with good approximation, be expressed by the following formula:

$$
\begin{equation*}
\kappa_{S, k}\left(\varphi_{1}\right)=\frac{1}{2}\left(1-\cos 4 \varphi_{1}\right) \kappa_{S, k}\left(45^{\circ}\right) \tag{59}
\end{equation*}
$$

Where $\mathrm{K}_{\mathrm{S}, \mathrm{k}, ~ a c c o r d i n g}$ to (57) and (58), respectively, on substituting the numerical values, is:

$$
\begin{align*}
\kappa_{S, k}\left(45^{\circ}\right)=\lambda_{S, k}\left[2.0833+3.6818 \lambda_{I}^{a}\left(\lambda_{S, k}+\frac{i_{S}^{8} k}{r^{8}}\right)\right. \\
\left.-5.5370 \lambda_{I} \lambda_{S, k}\right] 10^{-a} \tag{60}
\end{align*}
$$

g (φ, λ), for example, is the value of KS ,k according to (57) for $\lambda_{I}=\lambda_{S, k}=\lambda$ and. $\frac{i_{S} k}{T}=0$.
for the case of tangential loading, and

$$
\begin{align*}
& \kappa_{S, k}^{\prime}\left(45^{\circ}\right)=\lambda_{S, k}\left(\lambda_{S, k}^{B}+\frac{i_{S}^{a}}{r^{a}}\right)\left[2.0833+3.6818 \lambda_{I}^{a}\right. \\
&\left.-5.5370 \lambda_{I}\right] 10^{-a} \tag{GI}
\end{align*}
$$

for the case of radial loading:
These formulas for tho $K_{S, k}$ values of the circular ring mat be usod approximately for other ring shapes. For the "excontricities" $\lambda_{S, k}$ and λ_{I} mean values ara used; for φ_{1} is substituted the angle rich divides the quadrant in the same ratio as the stringer divides the circumferential quadrants of the actual shell $\quad\left(\varphi_{1}=\right.$ $\frac{\pi}{2} \frac{b_{i}}{b_{1}+b_{2}}$. A numerical example \quad ill mako this approxio mate method clear. For an elliptical ring with ratio of axes 1 a $\frac{2}{a}$ and portions of circumference $b_{2}=b_{a}=$ $\frac{\text { U }}{8}$ the ovaluation of $k \mathrm{~K}_{\mathrm{g}} \mathrm{k}$ according to the Simpson rule, if the contribution of the normal forces is neglected, gives:

$$
\kappa_{S, k}=\left\{\begin{array}{l}
0.000797 \text { for } \lambda_{I}=\lambda_{S, k}=0.95 \\
0.002173 \text { for } \lambda_{I}=\lambda_{S, k}=1
\end{array}\right.
$$

while tho corresponding values for a circular bulkhead with $\varphi_{1}=\frac{\pi}{4}$ arc 0.000808 and 0.002282 . Tho error for this. narrow ollipse thorofore amounts only to about 5 perm cont.

If tho panels have tho sane dimensions axially, tho subscript k is droppod in the formulas and the displacom mont coefficients are then given in the form (3I) with
(s* = mean wall thicknoss)
and k_{S} : according to (57) or (58).

For the case of loading by a "oonvexing" force group . X_{0} at the ond bulkhead 0 , the load cofificients afo forned according to (18) or (32), (33) from the displacement coefficients of the redundancies. In the cars of nom ments H_{k} distributively applied in the elenentary naina ner, the load coofficients from. (6), (20), and (48) are:

2. Six-Stringer Shells

By assuming.adaitional stringers at the diametral points of tie vertical axis, we obtain a 6mstringer shell (fies. 3. and 12). In addition to force group 1 , there are tro otiner types of redundancies, of rhich only the simple symmetrical force group \mathbf{Y}_{k} (denoted in fig. 3 by $X_{3, k}$) is of importance. This force group occurs, for examplo. in bonding about the z axis.

Ficure 12 shows tho unit state $Y_{k}=1$. There is. again a linearly decressing forco distribution in the stringers. On account of the symmetry about the y axis, there follows diroctly from the equilibrium at the stringer $0:$

$$
\begin{equation*}
t_{1, k}=-\frac{1}{2 a_{k}} ; \quad t_{1, k+1}=+\frac{1}{2 \Omega_{k+1}} \tag{64}
\end{equation*}
$$

and further, from (4):

$$
\begin{equation*}
t_{2, k}=+\frac{1}{2 a_{k}}\left(\frac{y_{0}}{y_{1}}-1\right) ; \quad t_{2, k+1}=-\frac{1}{2 a_{k+1}}\left(\frac{y_{0}}{y_{1}}-1\right) \tag{65}
\end{equation*}
$$

The deternination of the bulkhead stress requires in this case a sinple, statically indeterninate computation. For a circular cylindrical sioll with unifora stringer spacing $\left(\varphi_{1}=\frac{\pi}{4}\right)$ and with equal distances of all stringer centers of gravity fron the center, this computation has been cerried out elsemhere. (See reference 5, p. 464.) The bending nonents and the normal forces in the $k^{\text {th }}$ buikhead produced by the shears of the $\mathrm{r}^{\text {th }}$ bay, are:
$B_{l_{c}} \equiv \frac{r^{8}}{2 a_{i c}}\left[\dot{\varphi}-\frac{\pi}{2}\left(\frac{1}{2}-\frac{1}{2} \sqrt{2}\right)-\lambda_{I} \lambda_{s} \because \dot{k}\left(\sin \varphi-\frac{1}{2} \cos \varphi\right)\right]$

$$
\begin{equation*}
\text { for } 0 \leq \varphi \leq \frac{\pi}{4} \tag{66}
\end{equation*}
$$

$B_{k}=\frac{x^{a}}{2 a_{k}}\left[(\sqrt{2}-1)\left(\frac{\pi}{2}-\varphi\right)-\lambda_{I} \lambda_{S, k} \frac{1}{2} \cos \varphi\right]$

$$
\text { for } \quad \frac{\pi}{4} \leq \varphi \leq \frac{\pi}{2}
$$

$\mathbb{N}_{k}=-\frac{x}{2 a_{k}} \lambda_{L}\left(\sin \varphi-\frac{1}{2} \cos \varphi\right) \quad$ for $\quad 0 \leq \varphi \leq \frac{\pi}{4}$
$\mathbb{N}_{k}=-\frac{x}{2 a_{k r}} \lambda_{L} \frac{1}{2} \cos \varphi \quad$ for $\quad \frac{\pi}{4} \leq \varphi \leq \frac{\pi}{2}$
In a oimilar manner may be computed the stress condition of rings not attached to the akin if radial load according to (27) is assumed.

For tho displacement coefficients in the form (17e,b, c), the \square values for stringers and shoot according to (64). (65) are immodiatoly obtained

$$
\begin{align*}
& \nabla_{L, k}=\frac{a_{k}}{3}\left[\frac{2}{F_{1} F_{0, k}}+\left(\frac{Y_{0}}{Y_{1}}\right)^{2} \frac{1}{\sqrt[F]{F_{1, k}}}\right] \tag{68}\\
& W_{B, k}=\frac{1}{a_{k}}\left[\frac{b_{1}}{s_{1, k}}+\left(\frac{Y_{0}}{Y_{1}}-1\right)^{a} \frac{b_{3}}{s_{2, k}}\right] \tag{69}
\end{align*}
$$

Tho value of $K_{s, k}$ in the case of general ginape of cross section must again be determined by a numerical process. For a circular ring and with uniform stringer spacing $\left(\varphi_{2}=\frac{\pi}{4}\right)$, the value of ks, lr may be computed on tho baBis of formulas (66), (67):

$$
\begin{array}{r}
x_{S, k}=\lambda_{S, 1 k}\left[46.2136+57.4391 \lambda_{I}{ }^{8}\left(\lambda_{S, k r}^{s}+\cdot \frac{i_{S, k}^{a}}{r^{a}}\right)\right. \\
\left.-103.0099 \lambda_{L} \lambda_{S, k}\right] 10^{-4} \tag{70}
\end{array}
$$

As in the case of the "convoying" force group, this value may also be used approximately for cross sections Which doviato from the ciralar shape but where the
stringer spacing is about uniform. In loading the bulkheads there are, in comparison with the convexing force group, trice as nany zero positions of the bendigg nonent. The contribution of the rings to the displacenent coefficient thus becones smaller as compared aith the contributiong fron the stringers and shear sheats. The force distribution then depence very little on the stress or the gtiffiess of the transverse stiffenar walls. As the following.numerical exanples show, for shell shapes of sucil dinensions as occur approxinately in nonocoque fuselages, the stetically indeterainate corputation for the simply synnotrical redundancies may be carried out approxizately under the assumption of perfectly rigid transverse stiffeners. Thus there is aroided the inconvenient computation of the bulkhead coefficiente and a corresponding sinplification is gained in the solution of the elasticity equations.

With uniforn dinensions of the baya, the displacenent coefficients are forred out of the k and ω values. For the tro redundancies $X_{k}=1$ and $Y_{k}=1$ these are, for convenience, collected in table of formulas 4. The dism placenent coefficients of the redundancies which occur in torsioll and bending in the case of a 6-stringer shell with doubly sjmisetrical cross section, can then be obtained directly from (31). By substitution of the values in tablos of formules 1 and 2 , there is obtainod the distribution due to a force group X_{0} and Y_{0}, respectively, applied at the end bulkhead.

The same redundant force groups hold also for an 8stringer shell, obtained by adding two additional stringers at the diametral points of the horizontal axis. In addition, there are then obtained two doubly symetrical force groups thich for the loading case considered are without significance, and one force group simply symmetrical about the z-axis which is effective in bending about the y-axis,

3. Shells rith :iore Stringers

For shells with nore stringers with double symotry of cross section, the redundancies must first be so detormined that they have small effect on one another and their values may be deternined rith eufficient accuracy fron the 5-nenber principal equations. In ginple cases this nay bo done stariting fron the corresponding force groups with cyclical symnetry.

As an ezample, we consider a l2-stringer shell with equal panels. The force groups get up according to figure 4, break up into three "antisymmetrical, "two doubly symmotrical, and four simply symmetrical groupa, of which only the antisymmetrical and those simply synnetrical about the ymaxis need be considered for the loading condition investigated (fig. l3a,b).

It is assumed that $b_{2}=b_{4} ; s_{2}=g_{4} ; b_{2}=b_{3}$; $B_{a}=s_{3}$; and $F_{1}=B_{3}$ as, for exanple, ia approximatoly the case $\nabla 1$ th monocioque furelages. If the effect of tho bulkhead defornations - rhich with forco groups of highor order is small comparod to tho offoct of the deformations of tho shoot and stringors - is gogloctod, then on account of the symmetry with respecit to stringer 2 tine antisymmetrical force groups $X_{I, k}$ and $X_{Z, k}$ are ortinogonal to $X_{2, k}$ The unknown forces c and d in $X_{1, k}$ and $X_{3, k}$ are nop so determined that their mixed diaplacement coefficient contributiong fron stringers and sheet separately vanish. Then according to (3I), any effect of different typos of force groups occurs only thrqugh the bulkhead dem fornations, and therefore $\left.W_{I}, 3,3=\nabla_{B}^{2}, 3\right)=0$ According to (12) and (14), these conditions are:

$$
\left.\begin{array}{l}
\frac{2 c d}{F_{1}}+\frac{1}{F_{8}}=0 \tag{71}\\
\frac{b_{B}}{s_{B}}-\frac{b_{1}}{s_{2}}(2 c+1)(2 d-1)=0
\end{array}\right\}
$$

Fron thoso is obtained a quadratic equation for or or the two roots giving, oxcept for a factor, the same force groups $X_{1, k}$ and $X_{3, k}$ but in different order. For the special further case of $b_{2} \Rightarrow b_{a}=b_{3}=b_{4}=\frac{U}{16}$, there is obtained for c and $d:$

$$
\left.\begin{array}{l}
c=\frac{1}{2 F_{a}}\left[\sqrt{F_{a}^{a}+F_{1}^{a}}-\left(F_{a}-F_{1}\right)\right] \\
d=\frac{1}{2 F_{a}^{a}} \cdot\left[\sqrt{F_{a}^{a}+F_{1}^{a}}+\left(F_{a}-F_{1}\right)\right] \tag{72}
\end{array}\right\}
$$

For the tro force groups $Y_{1} k \cdot Y_{2, k}$ eynnetrical abotit the vertical axis (fig. 13 b), there are deternined

In similar manner the unknown forces c and d fron the conditions that the rixed displacenent contributions fron stringers and sheet vanish separately. The effect through the bulkhecd deforiations is then in both cases so anall, as shom by nunerical exanples, that thoir values nay be computed froz the urcombined principal equations.

The displacemont coofficionts fron stringors and skin nay for those force groups bo sinply given by the general formulas (12), (14), (17a,b,c). Thereas with groups of higher order the ascumpiion of rigid bulkhead may in general be considered approxicately true, in the case of the antisycnetrical force group X_{1}, k the bulkhead coefficient aust be taken into account. For ring julkheads this coofficient can be deternined approxinately fron the k_{S} values for the 4-stringer circular cylinder. The force group $X_{1, k}$ is composed of three sinple convexing force groups at stringers $1,2,3$. For these the κ_{S} values are conputed fron the formulas for tine dealar ring bulkhead. On cecount of $b_{1}=b_{4}$ the values for the groups at stringers 1 and 3 are equal to each othor, so that only the tro nagnitudes

$$
n_{S}\left(\varphi_{1}\right) \text { and } k_{S}\left(\varphi_{a}\right) \text { for } \varphi_{1}=\frac{4 b_{1}}{U}, \varphi_{a}=\frac{4\left(b_{1}+b_{a}\right)}{\sigma}
$$

need be talion from (57), (58), or figure ll. We thon have approxinatoly for the k_{s} valuo of the force group $\mathrm{X}_{\mathrm{l}, \mathrm{k}}$:

$$
\begin{equation*}
\kappa_{S} \approx \kappa_{S}\left(\varphi_{a}\right)+3 c^{a} \kappa_{S}\left(\varphi_{1}\right)+4 c \sqrt{\kappa_{S}\left(\varphi_{1}\right) \kappa_{S}\left(\varphi_{a}\right)} \tag{73}
\end{equation*}
$$

The accuracy will be checkod with the aid of an oxame ple. For $\lambda_{S}=0.938, \lambda_{L}=0.9625, \frac{1_{S}}{r} \approx \frac{1}{25}, \quad \varphi_{1}=\frac{\pi}{8}$, $\dot{\varphi}_{a}=\frac{\pi}{4}$, there is obtained from figure li: $\kappa_{S}\left(\varphi_{a}\right)=$ $8.52 \times 10^{-4}, k_{S}\left(\varphi_{1}\right)=4.29 \times 10^{-4}$. Tho approximate formula Gives for $c=0.236: \mathrm{k}_{\mathrm{S}} \approx 14.94 \times 10^{-4}$, while the numerical integretion according to the general fornula (16) givos tho noro accuratc value 15.17×10^{-4}. For practical conputation the error is ingignificant.

For sholla with many stringers and with few axes of symmotry the setting up of forco groups winch are approximatoly orthogonal is vory tedious. A fundenental nethod is givon in the Appendix. By conbining several longitudinal stiffeners into one fictitious stringor, it is gener-
ally possible to obtain the simple shell forms considered and thus a general view of the force, distribution "in the largé" The approximate computation may likewise be res. strictod to small ranges of the systom in tho neighborhood of "disturbanco positiong" (discontinuitios in loading or dimonsions, cutarays, otc.), in mhich caso arbitrary linearly indopondont force groups are chosen as tho statia redundancies and the completo clasticity oquations for these solvod as in soction III, 3 .
VI. HUIMRIOAL HXAMPLHS AND COMPARISON TITH TMST RESULMS

\author{

1. Forco Distribution. in a SixwStringer Shell
}

Hffect of the Various Stiffnosses

Tho offoct of tho various stiffnosses on tho force distribution will bo invostigatod rith tho aid of a simplo examplo of a 6-stringor circular cylindriccil shell of equal bays rith uniforn stringer distribution, and tho rolic.bility of approxinate computations chockod. The bulkhoad rings aro assumod to bo attachod to tho skin.

Binensions

$$
\begin{aligned}
& \mathbf{r}=40 \mathrm{~cm} ; \quad r_{S}=37 \mathrm{~cm} ; r_{L}=38.5 \mathrm{~cm} ; a=36 \mathrm{~cm} \\
& J_{0}=3.0 \mathrm{om}^{2} ; \mathrm{J}_{1}=4.5 \mathrm{~cm}^{2} \\
& s_{1}=s_{a}=0.06 \mathrm{~cm} ; J_{S}=3.0 \mathrm{~cm}^{4} ; \frac{i_{S}}{r} \approx \frac{1}{25}
\end{aligned}
$$

Fron table of formulas 4, tho w valuos, wialch are indom pondont of the rodundancios, aro:

$$
w_{I}=0.333 ; w_{B}=1.088 \times 10^{4} ; w_{S}=58.8 \times 10^{6}
$$

Furthor:

$$
\lambda_{S}=\frac{I_{S}}{T}=0.925 ; \lambda_{I}=\frac{r_{I}}{F_{1}}=0.9625
$$

a) Application of a convoxing forco group $X_{0}=1$
(fig. l4).n According to tablo of formulas 4 and figuro lis:

$$
\kappa_{I}=288 ; \kappa_{B}=0.250 ; \kappa_{S}=0.717 \times 10^{-3}
$$

so that, $\kappa_{I} \omega_{L}=0.96 \times 10^{8} ; \kappa_{B} \omega_{B}=27.2 \times 10^{8}$

$$
k_{S} \omega=421.6 \times 10^{2}
$$

Fron theso thore aro obtaincd, according to the fornulas in tablo 2, tho valucs: $A=1.147 ; B=0.341$. Wo theron forp havo tho case $(\Lambda-B)<1$, with tho upper aign. Wa thon hevo:

$$
\Psi=\frac{1}{2} \cosh ^{-1} 1.488=0.476, x=\frac{1}{2}\left(\cos ^{-1}\right) 0.806=0.317
$$

The falling off to zoro of tho convering forco group $X_{0}=$ 1 for an infinitoly long sholl is then obtained for olasa tic and rigid end bulkhoads, ronpoctivoly, from tho oquan tions:

$$
X_{l_{k}}=e^{-0.476 k}(\cos 0.317 k+1.055 \sin 0.317 k)
$$

and

$$
X_{k}=e^{-0.4781 r}(\cos 0.317 \mathrm{lr}+0.390 \text { oin } 0.317 \mathrm{k})
$$

For the liniting oase of porfectly rigid ond bulkhoeds:
$x_{k}=e^{-1-\varphi} w i t h \varphi=\cosh ^{-1} \frac{27.2+3.84}{27.2-1.92}=\cosh ^{-1} 1.227=0.662$
Ficuro 14 shows the numorical voluos of $X_{k r}$ plotted against the sholl length, tio points boing joincd by straight linos. According to the sholl modol usod the forco distribution in ono of the four loadod stringors is shomn. For tho caso of olastic ond bulrheads the valuos of X_{k} aro givon for a 6-bay sholl. Largor doviations fron tho veluos for the infinitely long sholl occur only for snall ond forces, so that sholls whoso longths aro approxinatoly cqual to tho circuaforoncos, may bo computed fron the simplor formulas for tho infinitoly long sholls.

The offoct or the convexing force group rill bo snalla or tho stiffor tho trangverso stiffenors comparot to tho stringora and shoot. If tho stringora, hovovor, aro vory stiff $\left(\kappa_{I} \omega_{I} \approx 0\right)$, thon tho bulkhead effoct vanishos: i.O., rith finite longth sholls the forcos in this caso docroaso linoarly ovor tho ontiro longth.

A furthor liniting caso is that of a shoot rigid in
shear ($\kappa_{B} \omega_{B} s .0$) and the force distribution is shorn in figure 14 (thin line ${ }^{\prime}$). The effect of the shear deformam tiong on the force distribution appears to be greater the stiffer the bulkheads; a great otiffiess in shear gives a more rapid rate of docrease in the forces. The continuous distribution of the for ces computed according to tablo of formulas 3 gives at the transporse atiffenors about the same values as obtainod according to tablo of formulas 2 , and therefore hes not boon spocially indicated.

For the atatically indetorminato computation, it is importint to know the offect of slight variations in the stiffnossos since the computation is mado with estimated cross sections and skin thichoseses. Figuro 15 shows the forco distribution in a long sholl with rigid ond ring whoro tho dimensions of bulkhoads, stringors, and akini hevo beon variod individunlly from the main assumption a). It nay bo soen that tho force digtribution is not vory sonsitive to those changos. Fron cascs c) and d) it may bo concluded that tho total distribution after buckling of tho skin doos not chargo much, since tho offect a duo to the onallcr contribution of tho akin in supporting tho lonsitudinal forcos and tho docroaso in tho shoar stiffnoss approximately offgot oach othor. Upon this force distribution there is still to be auperposed, horever, the states of stress due to the tengion fields thenselves.
b) Application of a synnetrical force group $Y_{0}=1$ (fig. 16). The type of loading shorn in figure la by a bending force eroup may, eccording to section II, 3 be reduced to a simply symetrical force group Y_{0}. Fron table of fornulas 4, 4 fe find:

$$
k_{L}=360, k_{B}=0.1465, k_{S}=1.085 \times 10^{-5}
$$

fron rhich $A=7.50, B=5.77$. Te thus have the case A-B>l with upper sign, and the falling off to zero. for an infinitely long eheil if aderiodic, for example, in the case of elastic end bulkheads, according to the formula:

$$
T_{k}=e^{-2.638 k}(\cosh 0.573 k+1.812 \sinh 0.573 k)
$$

The results of computations for the different limiting caser of bulkhead stiffness are plotted in figure 16 againgt the shell length and the pointe joined by straight lines, the force aistribution in etringer 0 being represented. There is elso shown the limiting case ($\lambda_{I}=\lambda_{S}=0$) for
which $k_{S}=7.35 \times 10^{-5}$. This case may also be interpretm ed \quad ith respect to the original dimensions es a reduction In the bulkhead stiffness by.about 1/7. There has further been computed the force distribution in the limiting case of sheet rigid againgt shear.

Since the force group Y_{0} is of "higher order" (seo II, 2) than tho convoxing group X_{0}, it reduces to zoro ovor a shorter sholl length. The force distribution dopends only on the stiffness of the transvorse stiffoners, particularly if thore is a strong end bulkhead et tho loeding end. The dopendence on the shear stiffness is considn erably groater, however, than in tho case of the convexing force group. As an approximating assumption for simplifying the conputation, it is accordingly permisaible to negn lect the bulkhead deformations ($\kappa_{S} \omega_{S}=0$) in the steticn ally indoterminate computation for the simply symm trical force groups.

2. Computation of a Test Sholl

The conoutation procedure developed will be applied to a circular cylindrical l8-stringer shell, whose states of stress under an appliod bending and convexing force group at 4 stringers, has been dotermincd oxporimentally, as piesonted in detail in a sinultanoously appearing papor by T. Schapitz and G. Krunling. (Soo reforence l.) The description of the shells end the rothod of conducting the tosts may thoreforo here be dispongod with. Wo furthor limit oursolvos to tho computation of the longitudinal strossos in tho stringors bofore buck ling of tho skim. takes plecc, and comparo them vith tho measurad valuos.
a) Application of a bending forco sroup.- Tho nctual arrangonont of the stringors is shown in figuro 17 a for ono quadrant. At stringors [7], [12], [3], [16] ${ }^{10}$, n puro bending momont about tio trangverso axis is applied by four concentratod forces P. T.e consider first tho closod shell without the cutaway portion at tho joading sido and idoalize the syston to a l2-stringor sholl by conbining stringors [10] and [11] into one stringor l of doublo the crosansoctional area. Hor tho skin thickness thoro is assunad a uniform valuo of $s=0.06 \mathrm{~cm}$ and half tho skin

[^4]strip of the noighboring sheot penels is added as offectivo width to oach stringer soction. Thoso effoctivo stringor rections jro shown in figure. ifa. To then havo:
$$
4\left(H_{2} \Psi_{2}^{8}+J_{8} J_{a}^{a}+J_{3} J_{3}^{0}\right)=2.50 \times 10^{4} \mathrm{~cm}
$$
equal nith sufficient approximation to the moment of inerm tia rith respoct to the.transverse axis of tho full shell in tho last bays. Tho applied bonding force group is aplit up as shorn in figuro 5. The component forcos of the force group corresponding to the Ifnear stress distributfor over thc cross soction and having oqual momont are:
$$
P_{1}(0)=0.383 P ; P_{0}(0)=0.389 P ; P_{3}(0)=0.097 \mathrm{P}
$$

As redundancies there occur only the simply symetricai force groups Y_{1}, k and $Y_{2, k}$ indicated in figure 13 b . From the conditions for the vanighing of tho mixed displacen ment cocfficients from stringors nnd shoot there are obtainod the values for tho componont forcos c, d, \bar{c}, \bar{d} ahown in figure l7b (solution of a quadratic oquation). The cherectoristic forco sroup shomn in figuro 5 as the difforonco botroon tho actual and linearly distributed mon mont is combinod from tho rodundant longitudinal forco groups in tho folloving mannor:

$$
\begin{gathered}
\text { Charactoristic forco eroup }=0.431 P\left(Y_{1}, 0=1\right) \\
-0.262 P\left(I_{a}, 0=1\right)
\end{gathered}
$$

Tho manner of decreaso of $Y_{1,0}=1$ and $Y_{a, 0}=1$ is computed untor tho approximating assumption of rigid bulkhocda - mhich asgumption is pormisaible according to tho numoricci ozample previously given. tho bulkhead spacing $1 \mathrm{~s} \quad \mathrm{c}=36 \mathrm{~cm}$ and \quad ith tho valuos dotorminod according to (28) and. (30):

$$
\begin{aligned}
& \kappa_{I} \omega_{I}=2.53 \times 10^{8} ; \kappa_{B} \omega_{B}=32.9 \times 10^{2} \text { for } Y_{I, k}=1 \\
& \kappa_{I} \omega_{I}=2.86 \times 10^{8} ; \kappa_{B} \omega_{B}=12.84 \times 10^{8} \text { for } Y_{2, k}=1
\end{aligned}
$$

there is.obtainod from table of formulas $2:$

$$
Y_{1, k}=e^{-1.001 k} ; Y_{2, k}=0^{-1.808 k}
$$

From these values are obtained the stringer forces due to
the characteristic force group, and by superpoaition rith the above values of $P_{1}^{(0)}, P_{2}^{(0)}, P_{3}^{(0), ~ t h e r e ~ i s ~ o b t a i n e d ~}$ the final force distribution plotted in figure l8.

In order to take into account the effect of the cutaray portion, this incomplete bay is separated from the full shell and a further simply synmetrical force group \bar{Y} is assuned to act as static redundancy at stringers 2 and 3. For the condition $\bar{Y}=0$ there is obtained in the full shell the force distribution previously computed, in. the nain spars of the cutawey portion the constant. force *P. The stress condition $\bar{F}=I$ in the full shell is rea stricted approximately to the first bay. For the deternination of \bar{Y}, the various skin thicknesses must be taken into account. Jurthermore, the skin in the first bays does not contribute to the support of the longitudinal forces in the same degree as was previously assumed in the case of the complete shell. After computinf the displacen ment coefficients according to the general formulas in section III, 2, using the values indicated in figure 18 for the dimensions (bulkheads assumed rigid), there is obteined $\bar{Y}=0.0606 \mathrm{P}$, and fron this the force distribution given in figure 18.

For comparison with the measured stresses the mean stringer stresses must be determined from this force digtribution. Since from bulkhead [d] on the stress distribution obtained is approximately inear (seefig. 18), it is nossible from this position on to use the values for the stringer cross sections given in figgure l7. At tho cutavay portion and at the first bays, the skin contributed only imporfectiy to the support. (See the paper by Schapitz and Krumling, reference 1.) At the cutaway portion the mean cross-gectional areas given in figure 18 apply; at bulkhead [f] in the full shell, wo have approximately: .

$$
F_{1}=1.95 \mathrm{~cm}^{8} ; F_{a}=3.10 \mathrm{~cm}^{9} ; F_{3}=1.30 \mathrm{~cm}^{2}
$$

From these values up to those of figuro 17a at bulko head [a] a linear rate of increase is assumed. In figure 19 are plotted the stresses computed with these cross sections from tho force distribution in figure l8, as Fell as the "values given in figure 7 of tho work by Schapitz and Krumling, the values being divided by an initial stress of 474 kg per cme at the loading side. .The stress distribution is in satisfactory agreement with the stat-
ically indotorminate computation. The assumption of rigid bulkhoads in the computation loads to a more rapid stata of decrease of the longitudinal strosses in the main spars and to a more rapiderate of rise in the intermodiato stringers. Through the combination of stringers [10] and [ll] the deformations of these stringers occurring in tho first bays of the complate sholl aro not taken into account, thus resulting in a.greator strosi in atringor [11] than in etringer [10]. Furthor datails of the stross condition (shears, bulkhoad loading, otc.) are given in the experinontal roport referrod to.
b) Application of convexing force group-- For computing. the force distribution resulting from the applicem tion of a "convexing" forco group at the four rain spars, the tost specinen is idealiged into a l2astringer shell in a different manner. Since the intermediate stringers in tho neifhborhood of the upper and lower diametral points are hardly loaded this computation is restricted to the main spars and the adjacent intermediato stiffenora, and is basod on a somewhat differont circumforentinl spacing, as shown in figure 20a. The offect of the cutaway portion is neglected. For an approximate computation, we consider first a system of equal bays aith skin thickness s = 0.06 cm and a bulfhead moment of inertia $J_{S}=3 \mathrm{~cm}$ (this io approximately the computed value for the section of the bulkhead rings [e] and [f] attached to the skin at the loading side. To the main spars and intermediate stringer bections (nee fig. l7a) there is addod an offective skin atrip of 12 and 14 cm , respoctively, and thero are thus obtained the effective stringer sections shown in figura 20.

Of the throe antisymmetrical characteristic force groups at a l2-stringer shell (fig. l3a), only $X_{1, k}$ and $X_{3, k}$; due to the convexing forco group, Fill be effec$t i v e$. For tho component forcos c and d, thore are dew terminod the valuos indicated in figure zob from the form mular (72) in section $V, 3$. The mixed displacenent coeffin cients duo to atringers and sheet then vanish. For tho applied convexing force group X_{P}, the following relation is true:

$$
X_{P}=0.780 P\left(X_{1,0}=1\right)+0.220 P\left(X_{3,0}=1\right)
$$

The forco distribution duo to $X_{1,0}=1$ and $X_{3,0}=1$ is detormined from independont differonce oquations, as shorn

In the first numerical example. The bulchead coefficient K_{S} for the rodundancy $X_{1, k}$ is already contained in the numerical example for the approrimate formula (73). Figure 21 shows the results for aifferent assumptions. The charactoristic force group $X_{3,0}=1$ decreases more ratidly than $X_{1,0}=1$, since the former is of higher order. It may be determined with sufficient accurecy according to table of formulas 2 under the aseumption of infinitely long shell and rigid transverse stiffoners. For the characteristic force group X_{1}, k these assumptions are no longer admissible; table of formulas l must thereforo bo used and tho offect of the bulkhead doformations taken into account. Thoro was, furthormore, invostigated tho offect of the two rodundancios due to the bulkhead deformations, by computing the mixed displacement coefficionts and solving the complete olesticity equations. This effect is verj small, the redundencies being practically orthogonal.

Sinco the variation of the redundancies $X_{1, k}$ deponde essontially on the bulkhead stiffness, a more accurate corrputation $\begin{aligned} \\ \text { made for the ectual dimensiong "stepped" in }\end{aligned}$ tho longitudinol-direction. The effectivo momont of inertia of tho bulkheads at the sholl attachmont was obw tainod by dofloction moasuroments for tho caso of diamotrically aituateत concentrated forceis:

$$
\begin{array}{llll}
J_{S}=6.5 \mathrm{~cm}^{4} & \text { for bulkhocd }[\theta] & \text { ond }[f] \\
J_{S}=0.0 \mathrm{~cm}^{4} & \text { for bulkhocd }[a] \text { to }[d]
\end{array}
$$

For the bulkheods [0] and [f] attached to the skin, the bulkhead coefíicient undor tho assumption of tangeritial load is:

$$
K_{S}=14.94 \times 10^{-4}
$$

While for bulkheads [a] to [d] under the assumption of radial load (according to fig. 11 and approximate formula (73)):

$$
\kappa_{S}{ }^{\prime}=23.9 \times 10^{-04}
$$

Furthermore, there was taken into account the variable skin thicknesses (0.08 cm in bay $1,0.06 \mathrm{~cm}$ in bays 2 to 4). Uncer these assumptions there are obtained, according
to the general procodure in section III, the values for $X_{\text {I "F" }}$ plotted as-a heavy"inge in figuro. 21. In spite of the reakor. bulkheads at the ond of the sholl thoro is a more rapid rato of decresiso than undor tho asaumption of equal bays. This 1 a due to the essentially smaller stiffness of tize syatem from bays 2 to 4 ae compared with the first bay.

Fith theso more accurate values for X_{1}, k and the approrimete values of $\dot{X}_{3, k}$ for rigid bulkheads, the forco distribution shomn in figuro 22 was computad. For comparison with the oxporimontal results thero wore further den torminod the stresses duo to this force distribution. For this purpose there was asoumed a linear rate of incroaso botroon tho estimatod roducod areas $J_{1}=1.35 \mathrm{~cm}, F_{\mathrm{a}}=$ $3.10 \mathrm{~cm}{ }^{\mathrm{a}}$ at bulkhoad [f] and tho stringer cross soctions from bullrhead [d] on, according to figuro 20. Sinco tho offoct of the cutarigy portion in neglectod, the comparison can only be made with the measured stress values in the main spars cnd in the intermedicte stringore [1i] and [17] (fig. 22). Tho experimentally detorninod otrosses in tho nain spars decroaso socerhat nore rapidly than according to the computation, ospecinlly fron tho socond bay on. Ao a rosult, the conputod shonrs (seofig. 20 of the papor by Schapitz and Kruming) in the first bay aro smaller, and In tho last bays aro groator than tho oxporinentally dow teralnod values. The reason for this lios in the noglocted bonding stiffness of the main spers, ns a result of rhich tho bulkhoads at tho ond of the sholl roceive additioncl strossos in tho sane diroction as those from the shears. Thoso bulkhoeds therofore act still moro weakly than ras assuncd in tho computation, and the roduction is concontratod more strongly on the stiffer first bay. In spito of the nogloct of these factors, the nethod derolopod yiolds sufficiently acourate volues.

Further conclusions as to the state of etress need not hero be considered as these rill be found in the rorle of Schapitz and Krumping, already reforrod to. Tho offoct of modifiod toat conditions nay bo roughly oatimated from the investigations in the first numerical example. In particular; tio tests confirm.the conclusion drarn from figure 15, that the forco distribution as a whole undergoos only a slight chango aftor buckiling of tho skin.

VI.I. SUMMARY..

Longitudinally and transversely stiffened shells are, under tho asaumption of constant shear flow (shear times thicknoss) in each of the shest panels, treated as systems with finite static redundancies. The procedure of the atatically indeterminato computation is given for cylina drically shaped shells under conditions of loading by concentrated forces, noments, and transterse forces. As static redundancies longitudinal force groups are introduced at the intermediate transverse stiffeners and restraints betroon the bays, theso force groups being so chosen that only groups of the sare kind affect each othor longitudi:nally \rightarrow as a result of which the olasticity equations break up into indepondent 5 momber partial systeme. The manner of sotting up of these "orthogonal" characteristic force groups is givon for several simple shell shapos. Such force groups are in general posibble only for a sufficiently large number of axes of symmetry, but othorwise only_ if tho mutual offect through. the doformationg of tho transverse ralls or the shear sheots or also of the stringors is negloctod. (Soo VIII, Appondix.) It is shomn, $\begin{aligned} & \text { ith }\end{aligned}$ the aid of oxamplos, that noglecting of the transvorso stiffonor deformations is admissible for the setting up of orthogonal force groups. The further result is obtainod that the trensverso stiffoner deformations are of inpora tanco only for tho distribution of the force groups mhich aro in equilibrium over tho entire sholl circumference (for oxample, antisymotrical force groups in torsion). For force groups of "higher" ordor - such, for examplo, as occur in bending - the transvorse walls nay be assumed as rigid.

In tho case of equal bays, tho elasticity oquations are solvablo in finito form. For the loading of the sholl by concontratod forces, these solutions aro given in tam bles of formulas. Sinilarly, thore havo beon colloctod in one tablo, tho displacement coefficients for 6mstringer shells of fqual bays. With tho aid of those tablos tho most important disturbences from the olomontary forco disu tribution, such as occur on application of concontrated forces at cutaway portions, may bo approximately determ mined for tho usual sholl shapes..

The practical computation procedure is clarified $\pi+t h$ the aid of a simple numerical example, and the offect of tho stiffnesses on the force distribution, investigatod.

Further, there is computed according to the proceduro prou posed, the stringer stresses in a test shell rith axial forcea apolied at four pönts and trio atresees compared rith the oxperimentally determined values. Satiafactory agregmont is obteinod betroen the computed and measurod valuos. The same procodure, using the corresponding dien placoment coefficiente, may be appliod to othor multistringer systems (multispar frame vings, airship hulls).

VIII. APPMrDII

Orthogonal Porce Groupa for Cylindrical Sholls

rith Arbitrary Croas Soctions

Tho sotting up of uniform orthogonal characteristic force groups for shells of equal bays aith arbitrary nonsymietricci croos section and many stringers, rill bo moro closely investigatod. If, in tho mixod diaplacemont coefficionts of the forco groups at tho same tranaverse stiffenors., the contributions from the stringers, sheot, and bulkhoads vanish soparately, thon according to (3I) all. mixod displaconent coofficionts of force groups of differ ont kinds aro equal to sero and convorsely. It is thoroforo sufificient, for tho sotting up of orthogonal groups, to considor a gystem of tro bays and at the intermodiato tranevorso stiffener, to doternine the rodundancies X_{1}, $X_{8}, \ldots . x_{\text {n-3 }}$ in such n mannor that all mixod displacou mont contributions $\delta_{\mu, v}^{(I)}, \delta_{\mu, v}^{(B)}$, and $\delta_{\mu, v}^{(S)}$ vanish. Thore aro $3\left(-n^{3}\right)=\frac{3}{2}(m-3)(m-4)$ differont portions of this kind.

Starting from arbitrary linoarly indepondent force groups $\overline{\bar{Z}}_{1}, \bar{X}_{8} \ldots . \bar{X}_{r n-3}$ and forming from thoso by a lineer trangformation mith doterminant difforent from zoro, tho requirod force groups X_{1},, $x_{\text {n-3 }}$:

$$
\begin{equation*}
\bar{x}_{\mu}=\sum_{v=1}^{n-3} q_{\mu, v} X_{v},(\mu=1,2, \ldots, \ldots \sim 3) \tag{74}
\end{equation*}
$$

thore aro only $(n-3)^{\text {a }}-(n-3)=(n-3)(n-4)$ ossontial constants c_{μ}, v crailable since oach multiplo of a forco group may be choson as a unit stato. The $\frac{3}{2}(\mathrm{a}-3)$ ($n-4$) oquations of oondition for tho vanishing of
 satisfiod. In spocial casos - as, for examplo, with cyclic synnotry - thoso oquations may bo independont of ono anothor, so that the froo valuod of tho above transforman tion ero sufficiont. In gonoral, howovor, tho oquations are indepondent, and the orthogonality condition of the forcc groups cannot be obtained for arbitrary nonsymietrical cross soctions.

If the offect or ono of tho throe stiffinessos of stringors, shoot, or bulkheads on tho coupling of tho differcnt rodundancios is nogloctod, thon tho ($n-3$) (n - 4) osscntinl valuos c_{μ}, v of tho transformation aro suffin ciont for satisfying tho ronaining $2\binom{n-3}{2}=(n-3)(n-4)$
conditiong. In tho rork of Tagnor and Sinon (reference 3), the offect of the shoar stiffnoss is not takon into account, so thet tho dotormination of orthogonal independent atross groupa is possiblo as cherectoriatic solutions of a linocr intcescal cquation rith symcotrical nuclous. As is shomn by tho numorical examplos for stiffoned sholls, the offect of tho bullhoad derormetiong on tho force groups of highor order is small, so that it is convonient to noglect the. offoct of tho bulkheads $-1.0 .$, to doternino the forcc grouna X_{μ}. in such a mannor that tho sixod coofficionta $\delta_{1}(L)$ end $\delta^{(}(B)$ $\delta_{\mu, v}^{(I)}$ cad $\delta_{\mu, v}^{(B)}$ vinish. The strain onorgy of tho systor conjosod of tro panols min be exprossod in terns of tho rodundencios $\bar{X}_{1}, \ldots, \bar{X}_{\text {rio3 }}$ rith the corrosponding dien placomont coofficients $\bar{\delta}_{\mu}, v$. The quadratic portion in \bar{X} congists, on noglecting the bulkhoad defornations, of tho tro positivo dofinito quadratic forns:
 the unit statos of the roduntancios \bar{X}. According to a theoron on quadratic forms (roferonco 14), thero thon ala ways exists a linear transformation:

$$
\begin{equation*}
\bar{X}_{\mu}=\sum_{v=1}^{n-3} c_{v_{j} \mu} x_{v}\left(\mu=1,2, \ldots \ldots, v^{\circ}-3\right) \tag{1}
\end{equation*}
$$

by which $H^{(L)}$ and $H^{(B)}$ aro trangformod into oxpross
sions with purely quadratic terms:

The coefficients ${ }^{\boldsymbol{F}}, \boldsymbol{0}, \mu$ of the transformation are the. (m - 3) particular solutions of the homogeneous system of equations:

Whose determinant, set equal to zero (an equation of the $(m-3)^{d}$ degroo), has the charactoristic numbers ρ_{μ}
($\mu=1,2, \ldots, m \ldots 3$) as roots. If tho transformation

$$
x_{\mu}=\sum_{v=1}^{m-3} c_{\mu, v} \bar{x}_{v}
$$

Is nor applied to tho unit state of tho force groups, tho mixed displacoment coofficionts from stringers and shoot for the fico groups X vanish, since for $\boldsymbol{8}_{\mu, v}$, To have tho transformation:

$$
\begin{equation*}
\delta_{\mu, v}=\sum_{p, q=1}^{m-3} \delta_{p, q}{ }^{c_{\mu, p}}{ }^{c} v_{v, q} \tag{77}
\end{equation*}
$$

and for $H^{(L)}$ wo have, after substituting from (74i) and - (77) :
$\therefore \quad H^{(L)}=\frac{1}{2} p_{p, q} \bar{B}_{p, q}^{(L)}\left(\sum_{\mu} c_{\mu, p} x_{\mu}\right)\left(\sum_{v} c_{v, q} x_{v}\right)=$

$$
\begin{aligned}
& =\frac{1}{2} \mu_{v} \Sigma_{v} X_{\mu} X_{v}\left[p_{p, q} \overline{8}_{p, q}^{(\dot{I})} c_{\mu, p} \dot{c}_{v, q}\right] \\
& =\frac{1}{2}{ }_{\mu, v}{ }^{8}{ }_{\mu, v}^{(L)} X_{\mu} X_{v}=\frac{I}{2} \sum_{\mu} a_{\mu}^{(L)} X_{\mu}{ }^{8}
\end{aligned}
$$

so that,

$$
\begin{aligned}
& \quad{ }_{8}^{(L)}(L, v . \\
& \text { Similarly, for } d_{\mu, v}^{(L)} \text { for } \mu=v, \delta_{\mu ; v}^{(L)}=0 \text { for } \mu \neq v
\end{aligned}
$$

Tho dotormination of orthogonal characteristic finco tions by noglocting one of tho throe essontial stiffnesses with rospoct to thoir mutuaf coupling offocts is thua roduced to the problen of the sinultaneous transformation of two positive dofinite quadratic forns into expressions with only squaro torns. In tho caso of n stringers, this requiros the complete solution of a characteristic oquation of the $(r-3)^{d}$ degroe and tho computation of the corresponding particular solutions of the Iinear honom gonoous system of equations (76). These algebraic opera ations for a finito numbor of variables correspond to tho solution of tho linear nonogeneous integral equation in tho rork of Hagner and Simon.

Translation by S. Heisa, National Adrisory Committee for Aeroncutice.

RHPHRETNCES

 onod Circular Cylindrical Shell. T.M. No. 864, N.A.C.A., 1938.
 Practice. T.If. No. 838, N.A.C.A., 1937.
3. Wagner, H., and Simon, H. : Uber die Krafteinleitung in dunnrandige Zylinderschalen. Luftfahrtforschung, vol. 13, 1936, pp. 293-208.
4. Heck, O. S.: 豇ber die Berechnung versteifter Scheiben und Schalen. Jahrbuch der deutschen Luftf.. Horscigg, 1937, I, pp. 442-45I.
5. Tbrer, H., and Köller, H.: Über die Finleitung von Langskraften in verateifte Zylinderschalen. Johrbuch der deutschen Luftf. \rightarrow Forschg., 1937, I, pp. 464-473.
6. Ebner, H.: Zur Berechnung räumlicher Fachwerke im Flugzeugbau. DVI Roport l38; Luftfahrtforschung, vol. 5, 1929, pp. 31-74; and DVL Yearbook, 1929. pp. 371-414. (Continued on p. 61.)

6 (cont.)
Hbner, H.: Die Berechnung rogelmässiger•vielfach statisch unbostimmter Requfachwerke mit Hilfo von Differonzengloichungen. DVJ Report 235; DVL Yoarm book, 1931, pp. 246-288.
7. सbner, H. : Torsional Stresser in Box Beams with Cross Soctions Partially Restrained againat Marping. T.15. No. 744, N.A.C.A., 1934.
8. Southroll, $\mathrm{R}_{\text {. }}$. . and Oren, J, B. B. J On the Calculam tion of Stresses in Braced Framerorks. R. \& IE. No. 1575, British A.R.C., 1935.
9. Hertwig, Milller-Breslau, and Pirlet: Fisenbau, volse 1,7 , and 8.

Thalau-Teichmann: Aufgaben aus der Flugzeugstatik, Berlin, 1933.

Bayer, K.: Die Statik im Eisenbetonbau, 2. Aufl., Berlịn, $1933, p$. 230 ff.
 der Gleichungsauflösung. Z.f.a.k.M., vol. 9. 1929. pp. 58-77.
11. Funk, P.: Die linearen Differenzengleichungen und ihre Anwendung in der Theorie der Baukonstruktionen. Berlin, 1920.

Bleich, Fe, and Melan, Tis Die gevöhnlichen und partiellen Differenzengleichungen der Baustatik. Borlin, 1927.
12. Pohl, K.: Berechnung der Ringvergteifungon dünnvondicer Hohlgylinder. Stahlbau (supplement to Baurtechnik), 1931, pp. 157-163.

Lundquist, Fugene F., and Burke, Nalter F.: General Fquations for the Stress Analysis of Rings. T.R. Ho. 509, N.A.C.A., 1934.

Drescher, T., and Gropler, H.: Stresses in Reinforcing Ringa Due to Axial Forces in Cylindrical and Conical Stressed Skin. T.M. Ho. 847, N.A.C.A., 1938.

62 IT.A.C.A. Technical Memorandum No. B66
13. Grüning, M.: Die Statik des ebenen Tragterks. Berlin, 1935, pp. 157~160.
14. Courant-Hilbert: Mothodon der mathematischon Physik, 2. Aufl., Berlin, 1931, pp. 32, 33.

ENE:

b. Concentrated distorting forces.

Force group $X_{3, k}$
Figure 3.- Force groups for six-etringer shell.
N.A.C.L. Technical Memorandum No. 866

Figs. 4,5,6,8

Figure 4.- Force groups for le-etringer
Figure 4.- Force groups for 12-etringer
shell with cyclic symetry.

Bending force group $=$ linearly distributed group + characteristic force

$$
\begin{aligned}
& P_{1}^{(0)}=P \frac{F_{1} y_{1} y_{2}}{F_{1} y_{2}^{2}+F_{2} y_{2}^{2}+F_{1} y_{2}^{2}} \\
& P_{2}^{(0)}=P \frac{F_{3} y_{2}^{2}}{F_{1} y_{2}^{2}+F_{3} y_{2}^{2}+F_{3} y_{2}^{2}} \\
& P_{3}^{(0)}=P \frac{F_{3}^{2} y_{1} y_{s} y_{2}^{2}+F_{2} y_{2}^{2}+F_{v} y_{3}^{2}}{2}
\end{aligned}
$$

Simply-symmetrical redundencies Figure 5.- Example of the splitting concentrated forces.

$x_{\mu}, k=1$

Figure 6.- Stress
distribution
in principal bay
aystem due to $X_{u, k}=1$.

Figure 7.- Scheme for elasticity equations for $n=6$ and $m=5$.

Figure 11.- Determination of bulkhead coefficientirs,k for the applied convexing force group $\mathrm{X}_{\mathbf{k}}=1$,
for tangential loading (bulkhead)

$$
\ddot{k}_{S, k}^{\prime}=\left[\lambda_{S, k}^{2}+\left(\frac{i_{S, k} k}{I}\right)^{a}\right] \frac{\lambda_{S_{2} k}}{\sqrt{\lambda_{I}}} K\left(\varphi_{1}, \sqrt{\left.\lambda_{L}\right)}\right.
$$

for radial bulkhead loading

Figure 9.- Stress condition due to applied convexing
Figure 9.-
Stress condition
force group $X_{k}=1$.

a, Symmetrical with respect to center.

$\vec{c}=\frac{c y_{y}-y_{2}}{y_{3}} ; \vec{d}-\frac{d y_{s}-y_{s}}{y_{t}}$
b. Simply symmetrical

Figure 13.- Charecteristic force groups for 12-stringer shell with doubly-symmetrical cross section.

Figure 10.- $\begin{aligned} & \text { Section of a } \\ & \text { circular }\end{aligned}$ cylindrical shell.

Figure 12.- Strese condition due to simply-symetrical characteristic force group $Y_{k}=1$.

Bulkhead number k

Pigure 14.- Palling off of applied convexing force group $X_{0}=1$ over shell length.

Bulkhead number k
Figure 15.- Iffect of the various stiffnesses on the distribution of the applied force group $X_{0}=1$.

Figure 16.- Falling off of eimplyBymetrical characteristic force group $Y_{0}=1$ over shell length.

b, Effective redundant force Eroups
Figure 17.- Bending force groups applied to the

Figure 18.- Force distribution in the simplified shell due to the bending force group

a, Simplified shell shape

Figure 22.- Force distribution and comparison of computed and measured stringer stresses due to convexing force group.

人

$x_{3, k}=1$
b, Effective force groups
Figure 20.- Convexing force group applied to the test shell.
rce groups

[^0]: *"Zur Berechnung des-Kraftyorlaufes in verstoiften zyline derschalen." Luftfahrtforschung, vol. 14, no. 12,
 Docembor 20. 1937. pp. 607-626.

[^1]: $1_{\text {Tho }}$ sane aimplifications for the computation of stiffened shells are given by $0 . S$. Heck in his paper (reference 4). His procedure, illustrated by examplos, differs essentially from the one here presontod in the choico of the static redundanciese

[^2]: ${ }^{2}$ The torin "Sohubflusge, " tringlated as "shoar flow, ${ }^{\prime \prime}$ is usod consistontly in Gorman papors to denoto.shear strose timos sl-in thicknoss. (Translator)

[^3]: $8_{\text {This }}$ assumption holds true approximately for constant ring section, since the neutral axis is displaced inward for strong curvature. (See reference 13.)

[^4]: $10_{\text {Tho }}$ stringor and bulkhąd notations takon from the papor by \mathbb{E}. Schapitz and G. Krưnling aro donotod by brackots.

