THCHNICAL MKHORANDUYS

WATIOHAL ADVISORY COMIITTRH FOR ARRONADTICS

$$
\text { Ko. } 854
$$

THISTING OF THIN MALIMD COLUHNS PHRFHCTLY RRSTRAINED AT ONF HKD
 By Lucio Lazzarino

L'Aerotecnica
VoI. XVII, No. 10, October 193 ?

> Washington
> sarch 1938

HATIONAL ADVISORY COMMITMET FOR ARHONAUTICS

THCHMIOAL MTHMORANDUK NO. 854

THISTING OF THIN-TALIHD OOLUMNS PRRFTGTLY RRSMRAINED
AT ONE RHND*

By Lucio Lazzarino

SUMMARY

Proceeding from the basic assumptions of the BathoBredt theory on twisting failure of thin-walled columns, the discrepancies most frequently encountered are analyzed. A generalized approximate method is suggested for the dem termination of the disturbances in the stress condition of the column, induced by the constrained mpindeting in one of tho end sections.

INTRODUCTION

The evaluation of the stresses induced by the applin cation of a tristing moment in a structure consisting esm sentially of thin-walled cylindrical tubing and of arbitrary straight section, is generally carried out with the simple and easily applied formulas given in the mellaknomn BathomBrodt approximete theory.

The basic assumptions of this theory are as follows:

1. The rall thickness of the tube is thin enough to render the variations in unit stress along the perpendiculars to the ralls negligible.
2. The shape of the straight section of the tube is preserved during the strain induced by the apo plication of the tinisting moment.
3. The soctions of the tube including those at the end are so restrained as to offer no resistw ance to \#fariplition the displacements of points of the tube in direction of the generating axes of the cylindrical surface boing freely perm mitted.
[^0]Fhile the first two assumptions may be hold to bo confirmod vith sufficiant approximation in the majority of practical cases, the third is far from it - at least ono of tho end sections being joinod to the other much moro rigid structure or othervise restrained in such a may that its \quad rinkling is not permitted. The constrained サrinkling in one of the end sections of the column obviously producos stresses in tho direction of the genorating axos of tho column, the values of which certainly cancol in the froe-ond section.

On structures whose form would introduce considerablo Trinkling, such as those with considerably elongeted secm tions, the previously cited stresses may assume dangerous proportions in certain points, especially if accompanied by stresses due to other concomitant causes (bending, for example).

Hence the importance, in certain cases, attaching to the evaluation - ovion approxinate - of the stresses induced by constrained wrinkling in one of the end sections of the structure. For convenionce of treatment, it is admitted that the stress conditions creatod when applying a torque on a column with one end perfectly restrained, may be considered as the sum of the stress condition as defined by the Batho-Bredt theory and a secondary stress condition, mhich nuilify in the restrained section the wrinkling pertinent to the primary stress condition.

The secondery unit stresses at any section of the column must have zero resultant and zero resultant moment.

Accordijg to the Batho-Bredt approximate theory, unitary parallol tengential stresses oxist in the plane of a gonoric section of the column, normal to the generators, in any part of the median contour of the section, and harm ing the value:

$$
\begin{equation*}
T=\frac{M}{2 S ~} \tag{11}
\end{equation*}
$$

Where fif is the applied torque, S the area enclosed by the median contour of the section, and 8 the wall thickness at the point in question.

It should be noted that the section shape has no effect on the value of T. This, however, does not hold for the displacements of the points of the column induced by that stress condition.

From the Batho-Breat theory, it is also seen that all straight sections of the colurm-wrinkle-equally, and turn, with tho rotation of a rigid body. in relation to each othor.

The coordinates of a point of the column wall are:
The distance z from the plane of one of the end sections which we suppose to be perpendicular to the genorators of the walls;

The length s of the arc of the median contour of the straight section to which the point in question belongs, contained between it and any generator assumed as origin.

To simplify the writing of the formulas, the unit length is chosen so that the perimeter of the median contour of the section of the column 1 s equal to 2π.

Let T and t represent the components of tho dism placoment of a generic point of tho wall with respect to z and with respect to the tangent to the median contour of tho straight section of the column at the point under consideretion, visualized in the position preceding the application of torque.

Tho relation of genoral character is vorified in each point:

$$
\begin{equation*}
\frac{\partial w}{\partial s}+\frac{\partial t}{\partial z}=\frac{T}{G} \tag{2}
\end{equation*}
$$

Whore G is the nodulus of tangential elasticity of tho matorial. Let θ be tho anglo through which a generic soction has rotated in relation to its initial position under tho effoct of the Batho-Bredt stress condition; further, lot r represent the lengith of the segment containod botweon a generic point of the wall and tho point 0 about rhich the straight soction of the column, to which the considered point bolongs, has rotatod. Lastly, lot a ropresont tho anglo formed by this segment rith the tangent to the riall at tho point in question-

From what has alraady boon said rosarding tho naturo of the strain inducod by tho stross condition, according to the Batho-Bredt theory, follows (fis. l):

$$
\begin{equation*}
\frac{\partial t}{\partial z}=r \sin \alpha \frac{d \theta}{d z} \tag{3}
\end{equation*}
$$

Fhere

$$
\begin{equation*}
\frac{d \theta}{d z}=\frac{\underline{M}}{4 G S^{2}} \int_{0}^{2 \pi} \frac{d s}{\delta} \tag{4}
\end{equation*}
$$

as the cited theory stipulates.
By establishing in the plane of the straight section of the column a system of orthogonal cartesian axes x; y, and z, and assuming as positive direction on the arc s, that which brings axis x on axis y, equation (3) may be rritten in the form:

$$
\begin{equation*}
\frac{\partial t}{\partial z}=\frac{d \theta}{d z}\left[(x-a) \frac{d y}{d s}-(y-b) \frac{d x}{d s}\right] \tag{3a}
\end{equation*}
$$

whore a, b are the coordinates of 0 with respect to the chosen reference.

The coordinates a, b cannot be determined on the basis of the Bathomredt theory, inasmuch as this, as has beon shown, prescinds from the shape of the straight section of the column, upon which a and b depond.

The position of point 0 , about which the section in fact rotates, depends in roality on the limiting conditions which nuat comply with the condition of strain.

Those requirementa of the Batho-Bredt approximate theory are ingufficiont to determine the position of 0 . For difforent positions of 0 , then, we can always obtain the stress condition defined by that theory. From among those, any one may be chosen, imposing on the strain condition wholly arbitrary gupplementery conditions which, however, nust conform to the assumptions upon which the above-nentioned theory is besed. Thereupon also, essentially are based the various attempte made by several authors to detergine the center of twint of columne in torsion patterned efter the Batho Bredt nethod.

Here the supplementary conditions which are to satisfy the principal condition of strain are prescribed by the general congideration of the method adopted for the rep-
resentation of the total stress condition; and b, hown ever, asiume values which nulilify the componente of the resultant bending moment of the secondary stresses acting along the column generators which reflect the end section, tristed under the offect of the Batho-Bredt stress condition, in the plane in which it is restrained.

Substituting the expression supplied by equation (3a) in oquation (2), we havi: .

$$
\begin{equation*}
\frac{d W}{d s}=\frac{T}{G}+\frac{d \theta}{d z}\left[(y \rightarrow b) \frac{d x}{d s}-(x-a) \frac{d y}{d s}\right] \tag{5}
\end{equation*}
$$

Thore $\frac{d}{d s}$ is givon in function of the kinown quantity ${ }^{\tau}$ suppliod by oquation (1), equation (4), and by the conformation of tho straight section of the column an $\frac{d x}{d s}$ and $\frac{d y}{d}$, and fron the coordinates a, b of the still unknown point 0 .

Let us considor the roctangular flat plate of thicknoss δ, nor nssumcd to bo constant, obtainod by cutting the colum rall aloing a generating axis and devolopod in plano.

If tho mass forces and tho extcrnal pressures acting on the plenes bounding the plate are everywhere zero, the unit stresses set up in the plate by any oystem of forces, acting in its median plane and however applied along its edges, may be expressed in the following form (reference 1):

$$
\left.\begin{array}{l}
\sigma_{g}^{*}\left(s_{1} z\right)=\frac{\partial^{2} F\left(g_{L} g\right)}{\partial z^{a}} \\
\sigma_{z}^{*}\left(s_{1} z\right)=\frac{\partial^{2} F\left(g_{,} g\right)}{\partial s^{2}} \tag{6}\\
T^{*}\left(s_{1} z\right)=\frac{\partial^{2} F\left(s_{L} g\right)}{\partial s} \partial z
\end{array}\right\}
$$

σ^{*}. σ_{z}^{*} are the normal stresses in direction of axes s and s, and T^{*} is the tangontial stress (aies g, a being disposed parallel to the edges of the plate of length 2π and l, respectively, and corresponding to the devela opment of the modian contour of one of the end sections of
the column and to the section separated along the generatoring axis $s=0$).

If the condition is imposed which must be:.

$$
\left.\begin{array}{lll}
\sigma_{s}^{*} & \left(0, \bar{z} z=\sigma_{s}^{*}\right. & (2 \pi, \bar{z}) \tag{7}\\
\sigma_{z}^{*}(0, \bar{z})=\sigma_{z} & (2 \pi, \bar{z}) \\
T^{*}(0, \bar{z})=T & (2 \pi, \bar{z})
\end{array}\right\}
$$

Where \bar{z} ia any value of z between 0 and V, the functions $\sigma_{\mathrm{B}}^{*}(\mathrm{~s} ; \overline{\mathrm{Z}}), \quad \sigma_{\mathrm{z}}^{*}(\mathrm{~s}, \bar{z}), \mathrm{T}^{*}(\mathrm{~s}, \overline{\bar{z}})$ can be expanded in Fourier series.

Te can, for example, express $\sigma_{z}^{*}(\mathrm{~s}, \bar{z})$ in the form $0 f$

$$
\begin{equation*}
\sigma_{z}^{*}(s, \bar{z})=\Sigma_{n} A_{n}(\bar{z}) \sin n s+B_{n}(\bar{z}) \cos n s \tag{8}
\end{equation*}
$$

where the values of the coefficients $A_{n}(\bar{z})$ end $B_{n}(\bar{z})$ depend on the value \bar{z}. Then the whole plate can be oxpressed ns:

$$
\begin{equation*}
\sigma_{z}^{*}(s, z)=\Sigma_{n} A_{n}(z) \sin n s+B_{n}(z) \cos n s \tag{9}
\end{equation*}
$$

with A_{n}, B_{n} as functions of z.
Tho last expression twice integrated with respect to s gives:

$$
\begin{equation*}
F(s, z)=s \Phi(z)+\psi(z)+\sum_{n}\left(-\frac{A_{n}}{n^{2}} \sin n \theta-\frac{B_{n}}{n^{3}} \cos n s\right) \tag{10}
\end{equation*}
$$

Φ and ψ both being function g of z only.
Substituting this last expression in tho first and third of equation (6),

$$
\left.\begin{array}{c}
\sigma_{s}^{*}=s \Phi^{\prime \prime}+\psi^{\prime \prime}+\Sigma_{n}\left(-\frac{A_{n^{\prime \prime}}}{n^{B}} \sin n_{s}-\frac{B_{n}^{\prime \prime}}{n} \cos n s\right) \tag{11}\\
T^{*}=\Phi^{\prime}+\Sigma_{n}\left(-\frac{A_{n}^{\prime}}{n} \cos n s+\frac{B_{n}^{\prime}}{n} \sin n s\right)
\end{array}\right\}
$$

The function $\sigma^{*}{ }_{g}(0, \bar{\Sigma})$ must bo periodic with respect to g, "hatovor the value of E, whence equation (II) affonda:

$$
\begin{equation*}
\Phi(z)=H z+K \tag{12}
\end{equation*}
$$

whore H and x are constants.
Function $F(s, z)$ obviously satisfies (Maxwell's) difforontial equation:

$$
\begin{equation*}
\frac{\partial^{4} F}{\partial s^{4}}+\frac{\partial^{4} F^{\prime}}{\partial z^{4}}+2 \frac{-\partial^{i} H}{\partial s^{3} y z^{2}}=0 \tag{13}
\end{equation*}
$$

obtainable from the consideration of tho equilibrium of an element $\mathrm{d}_{\mathrm{s}} \mathrm{dz}$ of the plate.

Substituting the values derived from equation (10) in this last equation affords:

$$
\begin{align*}
& \psi^{I \nabla}(z)+\Sigma_{n}\left[\left(2 A_{n} n-\frac{A^{I T}{ }_{n}}{n^{2}}-n^{2} A_{n}\right) \sin n s+\right. \\
& \left.+\left(2 B_{n} 1-\frac{B^{I \nabla}}{n^{8}}-n^{g} B_{n}\right) \cos n g\right]=0 \tag{14}
\end{align*}
$$

this equation being satisfied for any value of s, should have at the same time for any value of n (whole) and $z:$

$$
\left.\begin{array}{l}
\psi^{I V}=0 \tag{15}\\
A^{I \nabla_{n}-2 n^{a} A_{n} n+n^{4} A_{n}=0} \\
B_{n}^{I \nabla_{n}}-2 n^{a} B_{n} n+n^{4} B_{n}=0
\end{array}\right\}
$$

The general integrals of this differential equation
are:

$$
\left.\begin{array}{l}
\Psi=M z^{z}+N z^{z}+P z+Q \\
A_{n}=\left(\alpha_{n}+\beta_{n} z\right) \operatorname{coshn} n z+\left(\xi_{n}+\eta_{n} z\right) \sinh n z \tag{16}\\
B_{n}=\left(\varphi_{n}+X_{n} z\right) \cosh n z+\left(Y_{n}+\omega_{n} z\right) \sinh n z
\end{array}\right\}
$$

Whero the quantities $M, N, P, Q, \alpha_{n}, \beta_{n}, \xi_{n}, \eta_{n}, \varphi_{n}, X_{n}$; Y_{n}, ω_{n} aro constants and depond upon the limiting condition which must satisfy the stress and strain condition of the plato.

Such conditions are:

$$
\left.\begin{array}{ll}
\begin{array}{l}
\sigma_{z}^{*}(s, 0)=0 \\
T^{*}(s, 0)=0
\end{array} & \text { for } z=0 \\
t^{*}(s, l)=0 & \text { for } z=l \tag{18}\\
w^{*}(s, q)=-w(i) &
\end{array}\right\}
$$

W(s) boing dofinod by oquation (5), excopt that one constant bhich is unimportant need not be detorminod.

From tho firgt condition of equation (17) by virtuo of (9) and (16) follows:

$$
\left.\begin{array}{l}
a_{n}=0 \tag{19}\\
\omega_{n}=0
\end{array}\right\}
$$

and from tho socond, while kooping in mind the socond of equetions (11), (12), (16), and (9):

$$
\left.\begin{array}{rl}
H & =0 \tag{20}\\
\xi_{n} & =-\frac{\beta_{n}}{n} \\
Y_{n} & =-\frac{x_{n}}{n}
\end{array}\right\}
$$

From the genoral relation:

$$
\begin{equation*}
\frac{\partial t}{\partial s}=\frac{1}{H}\left(\sigma_{s}-\frac{\sigma_{z}}{m}\right) \tag{21}
\end{equation*}
$$

 first condition of oquation (18) ovaluated as bofore from the oxpressions σ_{s}^{*} and σ_{z}^{*} suppliod by oquation (9) and from the first of oquation (ll), we obtain, while alm
N.A.C.A: Technical Momoramdum ,No.-. 854
lowing for (16), (9) and (20):

$$
\left.\begin{array}{l}
N^{\cdots}=-3 M \eta \tag{22}\\
\beta_{n}=B_{n} \eta_{n} \\
X_{n}=B_{n} \omega_{n}
\end{array}\right\}
$$

Hence,

$$
\begin{equation*}
A_{n}=\frac{\frac{2}{m}+\frac{m+1}{m} \eta \tanh n l}{\frac{1-m}{m} \tanh n l-\frac{m+l}{m} l} \tag{23}
\end{equation*}
$$

a quantity easily determined.
Deducing equation (2) with respect to s, and then substituting the second complex derivative of t supplied by means of the derivation relative to s of equation (il), the formula assumes the general character of

$$
\begin{equation*}
\frac{\partial^{2} W}{\partial s^{2}}=\frac{1}{G} \frac{\partial T}{\partial s}-\frac{1}{\mathbb{R}} \frac{\partial \sigma_{\mathrm{g}}}{\partial z}+\frac{1}{\mathbb{F}_{\mathrm{m}}} \frac{\partial \sigma_{\mathrm{z}}}{\partial z} \tag{24}
\end{equation*}
$$

Substituting in this last relation the values obtained for $z=l$, deriving the ratio of z (equation 9), the first part of equation (ll), and the second part of equation (II) with respect to s, and utilizing the conditions imposed by the second of equation (li) the coefficients η_{n}, ω_{n} - and consequently, with equations (20) and (22) the values of the coefficients $\beta_{n}, X_{n}, \xi_{n}$, and Y_{n} can be determined.

Carrying out the operations indicated above and devoloping equation (5) in Pourior series, putting

$$
\begin{array}{r}
\frac{d W(a)}{d s}=\Sigma_{n}\left(\mu_{n}{ }^{\prime}+\mu_{n}^{n} a+\mu_{n}^{\prime \prime \prime} \cdot b\right) \sin n a+ \\
\quad\left(v_{n} \prime+v_{n}^{\prime \prime} a+v_{n}^{\prime \prime \prime} b\right) \cos n a \tag{25}
\end{array}
$$

Fe find:

$$
\left.\begin{array}{l}
\mathbf{n}=0 \\
\eta_{n}=\frac{+\left(v_{n}^{\prime}+v_{n}^{\prime \prime} a+v_{n} \prime \prime \prime b\right)}{m_{n}} \tag{26}\\
x_{n}=\frac{-\left(\mu_{n}^{\prime}+\mu_{n}^{\prime \prime} a+\mu_{n}^{\prime \prime \prime} b\right)}{T_{n}}
\end{array}\right\}
$$

Where
$T_{n}=\frac{1}{\pi}\left[\left(R_{n} \tau \frac{3 m+3}{m}+\frac{5 m+3}{m}\right) \sinh n q+\right.$

$$
\begin{equation*}
\left.+\left(\frac{3 m+3}{m} \eta+\frac{2 R_{n}}{n}\right) \cosh n l\right] \tag{27}
\end{equation*}
$$

It is readily seen that the stress condition in the flat plate thus defined differs very little from the secondary stress condition in the column.

The limiting conditions manifestly coincide, so that they are assigned to the state of stress of the plate rena ative to the stress condition of the column.

耳 ow consider a distance (or length) of the cylindrical wall of the column of depth dz and length so: (s) denoting the angle of the tangent to the median contour of the straight section of the column at any point of the arc considered and the normal to it at the origin of this arc, the expression of tho equilibrium of displacement according to this last direction of the path of tho previously defined cylindrical wall, and assumedly constant thickness 8:

$$
\begin{equation*}
\sigma_{s}^{*} \delta \cos \in\left(g_{0}\right) d z=\delta \int_{0}^{s} \frac{\partial T^{*}}{\partial z} \cos \in(s) d s d z \tag{28}
\end{equation*}
$$

If, in this relation for σ_{s} and T^{*} the values given in equation (6) for the flat plate are substituted, we will have after dividing both toms by de:

$$
\begin{equation*}
8 \frac{\partial^{2} F}{\partial z^{3}} \cos \epsilon\left(s_{0}\right)=8 \int_{0}^{\theta_{0}} \frac{\partial^{3} F}{\partial S \partial z^{2}} \cos \epsilon(s) d s \tag{29}
\end{equation*}
$$

which, in reality, is idontical with

However; having disregarded in oquation (29) the tirm

$$
\begin{equation*}
\delta \int_{0}^{B} \frac{\partial^{8} F}{\partial z^{2}} \frac{d \epsilon}{d S} \sin \varepsilon d \theta=\int_{0}^{s} \frac{\sigma_{E}^{*} \delta}{\rho(s)} \sin \epsilon d s \tag{31}
\end{equation*}
$$

whero $p(s)$ is the radins of curvature of tho cylindrical wall, tho approximation of equation (29) is so much greater as the moan value of the ratio $8 / \mathrm{P}$ is less.

In practice this ratio is gonorally quito small, hence the orror committed by substituting for the secondary stress condition producod in the column rall as the result of rostrained wrinkling in one of tho end sections, the corrosponding atress condition of the flat plato, is practically negligible.

The atress condition of the colum is given through equations (9), (11), (16), (19), (20), (22), (23), (26), and (27) in function of the known quantity and of the etill unknown coordinates a, b of 0 .

The last values can be determined by evaluating the condition wilch stipulates that the resultant bending mon ment of σ_{z}^{*} acting on the restrained section must be zero.

Taking into consideration the relations (9), (16), (19), (20), (22), and (26), this condition can be expressed in the form:

where

$$
\begin{equation*}
\nabla_{n}(l)=\frac{R_{n} l \cosh n l+\left(l-\frac{R_{n}}{n}\right) \sinh n l}{T_{n}} \tag{33}
\end{equation*}
$$

From equation (32) we can nov deduce the valued a, b of the coordinates of 0 , and so determine the secondary condition of stress of the column.

Summing up, having obtained the values a, b from equation (32), and posting

$$
\left.\begin{array}{l}
\mu_{n}=\frac{\mu_{n}^{\prime}+\mu_{n}^{\prime \prime} a+\mu_{n}^{\prime n} b}{T_{n}} \tag{34}\\
v_{n}=\frac{\eta_{n}^{\prime}+v_{n}^{\prime \prime} a+v_{n}^{\prime \prime \prime} b}{T_{n}}
\end{array}\right\}
$$

the final expressions of the stresses existing in the cole ump can be written as follows:

$$
\begin{align*}
\sigma_{z} & =\sigma_{z}^{*}=\Sigma-\mu_{n}\left[R_{n} z \cosh n z+\left(z-\frac{B_{n}}{n}\right) \sinh n z\right] \cos n g+ \\
& +v_{n}\left[B_{n} z \cosh n z+\left(z-\frac{n_{n}}{n}\right) \sinh n z\right] \sin n s \\
\sigma_{s} & =\sigma_{g}^{*}=\Sigma_{n}-v_{n}\left[\left(\frac{2}{n}+R_{n} z\right) \cosh n z+\right. \\
& \left.+\left(\frac{R_{n}}{n}+z\right) \sinh n z\right] \sin n s+\mu_{n}\left[\left(\frac{z}{n}+R_{n} z\right) \cosh n z+\right. \\
& \left.+\left(\frac{R_{n}}{n}+z\right) \sinh n z\right] \cos n s \\
T & =\frac{\underline{y}}{2 \sin }+T^{*}=\frac{n}{2 S \delta}-\Sigma_{n} v_{n}[z \cosh n z+ \\
& \left.+\left(R_{n} z+\frac{1}{n}\right) \sinh n z\right] \cos n s+\mu_{n}[z \cosh n z+ \\
& \left.+\left(R_{n} z+\frac{1}{n}\right) \sinh n z\right] \sin n s \tag{35}
\end{align*}
$$

Where the quantities μ_{n}, v_{n}, and R_{n} are given in aqualions (34) and (23).

So far, the thickness 8 has been assumed constant but by way of approximation the obtained findings may be extended to include the case of. variable 8.

Equations (6) and (13), which are the basis of the treatment, can be derived from the relations expressing the equilibrium of displacement according to s and to z of a plate element δ de $d z$, by substitution for tho elementary stresses acting on each surface $8 \mathrm{de}, 8 \mathrm{dx}$ of tho aloment in question, the corresponding resultants, and that is legitimate if the latter lie in tho median plano of tho plate. It is equivalent to considering σ_{s}^{*}, σ_{z}^{*}, T^{*} es stresses applied to any 1 near element of the surface.

However, if 8 varies so that the resultant of the stresses acting on each element $8 \mathrm{ds}, 8 \mathrm{dz}$ always lies in the median plane of tho plate, and if the effect of the
unit stresses acting perpendicularly to the latter can alm Ways be kept negligible, the oquations for the equilibrium of displacement of plate element ds, dz may still be written in the same form as for the plate of constant thicknesa, and equationa (6) and (13) can be made to retain thoir validity -iit boing, of courso, understood in that caso that $\sigma_{g}^{*}, \sigma_{z}^{*}$, and T^{*} ero stresses acting on oloment δ ds and 8 dz, respect Ively.

HRAMPLTE

Consider a cJlindrical tube having a straight section as in.figure 2; the unit length is chosen so that the perimeter of the section is 2π. The wall thickness δ is constant. The length of the tube is $l=16$.

In the plane of the section a system of orthogonal cartesian axes is established whorein axis x is the tangent to the inedian contour of the section in one of the points where it intersecta the axis of symetry, axis y being coincidont with it (fig. 2).

For evidont reasons of symmetry in points symmetrical rith respect to \bar{y}, the displacomonts and socondary strosses assumo opposito velues. It sufficos thorefore to anaIyzo only the bohavior of oncmhalf of the soction; for oxamplo, that for which $x \geq 0$.

Introducing in oquations (l) and (4), the values relative to the present example, we have:

$$
\begin{aligned}
T & =0.19296 \frac{M}{\delta} \\
\frac{\mathrm{~d} \theta}{\mathrm{~d} \mathrm{Z}} & =0.23395 \frac{\mathrm{M}}{\mathrm{G}}
\end{aligned}
$$

The section being symmetrical, it must be that $a=0$; $\frac{d}{d}$ gupplied by equation (5), may be written:

$$
\frac{d W}{d s}=\frac{d w_{1}}{d s}+b \frac{d W_{b}}{d s}
$$

The appended table I lists the values of $\frac{d W_{1}}{d s} \frac{d W_{a}}{d s}$ along $\nabla i t h$ those of the coordinates x, y of the median
contour and of $\frac{d x}{d s} \frac{d y}{d s}$ rolative to the particular half of the .saction, in function of s. .

In order to quickly determine the values of the coefficiente $\mu_{n}{ }^{\prime}, \mu_{n}{ }^{\prime \prime}, \mu_{n}{ }^{\prime \prime \prime}, \nu_{n}{ }^{\prime}, \nu_{n}{ }^{\prime \prime}, \nu_{n}{ }^{\prime \prime}$, the method of Runge and Ende (Cr. G. Cassinis, Calcoli numerici grafici neccan!ci. Cap. XIV) is appifed:

Denoting with $S^{\prime}, S^{n \prime} ; D^{\prime}, D^{n}$ the sums and the dififerences of the values of $\frac{d W_{1}}{d s}, \frac{d W_{s}}{d s}$ in points symmetrical with respect to y, we have:

$$
\begin{aligned}
& \frac{1}{8} v_{n}{ }^{\prime \prime \prime}=\sum_{0_{h}}^{\infty} S_{h} \prime \cos n \cdot s_{h} \quad \frac{1}{8} \mu_{n}{ }^{\prime \prime \prime}=\sum_{o}^{\infty} D_{h} \prime \sin n s_{h}
\end{aligned}
$$

$D_{h}{ }^{\prime}=D_{\text {it }} \prime \prime=0$ for any h by reasons of symmetry, and since, ar sien, $a=0$, pe have:

$$
v_{n} \prime \prime=\mu_{n}{ }^{\prime}=\mu_{n} \prime \prime=\mu_{n} " '=0
$$

for any value of n.
The execution of the calculation gives:

$$
\begin{aligned}
& v_{0}{ }^{\prime} \frac{G 8}{\underline{I}}=+0.00233 \ldots . \quad v_{0}{ }^{\prime \prime \prime} \frac{G 8}{\underline{I}}=+0.00088 \ldots . . \\
& v_{1}{ }^{\prime} \frac{G B}{\underline{M}}=+0.17111 \ldots . . \quad v_{1}{ }^{n \prime} \frac{G 8}{\underline{I}}=-0.27625 \ldots . \\
& v_{a}{ }^{\prime} \frac{G 8}{\underline{I}}=+0.07340 \ldots v_{a}{ }^{\prime \prime} \quad \frac{G 8}{\underline{I}}=-0.00878 . \\
& v_{3}^{\prime} \frac{G \delta}{\underline{I}}=-0.02252 \ldots . \quad v_{3}^{\prime \prime \prime} \frac{G 8}{\underline{H}}=+0.05433 . \\
& v_{4}^{\prime} \frac{G \delta}{H}=-0.03663 \ldots . \quad v_{4}{ }^{\prime \prime \prime} \frac{G 8}{\underline{\underline{I}}}=+0.00993 \\
& v_{B}^{\prime} \frac{G_{8}}{\underline{H}}=-0.01159 \ldots . . \quad v_{B}^{\prime \prime \prime} \frac{G_{8}}{M}=-0.01453 .
\end{aligned}
$$

$$
\begin{array}{lll}
v_{B} & \frac{G 8}{M} & =+0.00564 \ldots . .
\end{array} v_{0}^{\prime \prime \prime} \frac{G 8}{\underline{M}}=+0.00089 \ldots . .
$$

The values of the quantities $\mathbb{R}_{n}, \mathbb{T}_{n}$, and ∇_{n} are determined by means of equations (23), (27), and (33), putting $m=3.3$ which, together mith the first part of equation (32), give:

$$
\mathrm{b}=0.620 \mathrm{z}_{1}
$$

Next, by means of equation (35), we obtain the following values of the stresses σ_{z}^{*}, T^{*} for the restrained section ($z=16$): (See table II.)

Wo rish to thank Professor E. Pistolesi for the usoful edvice ho has given during the working-up of this report.

Translation by J. Vanier, Nntional Advisory Committee for Aeronautics.

REFERTNCE

1. Tinoshonko, S.: Theory of Rlasticity. McGraw Hill Book Co., Nev York, 1934.

TABLE I

table II

These are the maximum values verified on the column; stresses σ_{z}^{*} and T^{*} disappear very rapidly from the point of fixation toward the free end.

[^1]

Figure 2.

Pigure 3.

[^0]: * "Sulla. Torsione di Thbi a Paroti Sottili Perfettamente Incastrati ad una Hgtremita." L'Aerotecnica, vol. XVII, no. 10. October 1937, pp..850~861.

[^1]:

