Tricin IOĂ亡 Minotiandurs

NATIONAL ADVISORY COMMITMRT FOR ARRONAUTICS

$$
\text { No. } 847
$$

STRHSSES IN RTINFORCING RINGS DUB TO AXIAL FOROHS
 IN CYIINDRICAI AKD CONICAL STRHSSMD SKINS

By F. Drescher and H. Gropler

Luftfahrtforschung
Vol. 14, Lo. 2, Februery 20, 1937
Verlag von R. Oldenbourg, xunchen und Berlin

GATIOKAI ADVISORY OOMMITYTF POR AFHONAOTICS

TMOHNIOAL MTMORANDUK NO. 847

STRESSHS IN RRINHORCING RINGS DUR TO AXIAL FOROHS
IN CYLIMDRICAI AND CONIOAL STRHSSMD SKIMS*
By K. Dreschor and H. Groplor

At the ends of a monocoque fuselage concentrated axial forces in the sirin must genorally be taken up. Such axial forces mut also be taken up in the caso of other mombors whore axial forces from the neighboring strossod skin construction must bo considered. In ordor to tako up theso axial forcos two bulkhoads or reinforcing framos may bo arrangod at the positions whoro the forces are appliod. If ticse bulkheads aro in tho form of rings, bonding momonts aro sot up in thom. In tho prosent papor computationa aro porformod for obtaining the raluo of thoso bending momontge It is assumod that tho strossed skin is cylindrical or conical and thet its cross soction is circular or clifiptical. (Seo in thia connootion, H. Tingner (reforonco 1).)

I. INTRODUCTION

Whon it is roquirod to tako up axial loads in a strossod skin structuro - for oxamplo, a monocoquo fusolage two reinforcing framos aro commonly attached at the positions whore those loads aro to bo takon up. How tho loads and tho rosulting strossos nrc doterminod, is woll known although tho actual carrying out of a comploto computation is quito tedious. This is espocially true where the frames are to be in the form of rings, in which case the computation is statically indeterminate. In order to lighten this task for the practicing designer, the bending moments set up in such reinforcing rings are computed and the results prew sented in the form of charts (figs. 8 to 13).

In order to reduce the scope of the computation only, the following monocoque shapes were considered:

[^0]
Cylindrical and. conical shapes.

Cross section, circular or elliptical (ratio of semiaxes 2/3).

Rings of. constant bending stiffness along their circumferences.

Some of the most usual symmetrical and "antisymmetricall (i.e., one force tensile, the other compressive) loading conditions were considered from which, by superpoposition, different loading conditions could be obtained.

In order to extend the range of applicability of the results, they were presented in such a form as to enable at least an estimate of the stresses to be obtained with stressod skin constructions of othor cross sections. An estimate of this sort should bo sufficient since a knowledge of the accurato values of the moments in the rings is gonorally not requirod.

In order to bo able to make an intelligent application of tho rosults, the gonoral principlos underlying tho computations will bo reviowed below. The computation procedure itsolf, however, will be omitted. Only for the case of the circle will tho formulas used for constructing tho charts bo givon.

II. UNDERLYING PRINCIPLES

Fisure 1 shore a thin-walled sheet-metal tube fixed at its right-hand ond. Let a concentrated force be applied in any direction at the left-hand end. The stress at a great distance array from the point of application of tho forco may be computod from the relations for an infinitely long prismatical boam $2 s$ given in textbooks on the strength of matericls (Inear distribution of axial stresses, etc., fig. l).

Tho stresses set up in the region where the forces aro takon up, depend on the type of construction of the end of tho tubo. In the case of vory thickmalled tubes, tho bending stiffnoss of the shoet metal is considorod surficiont to take up the strosses. Such casos will not bo considerod hore. In tho case of the vory thin-walled monocoquo structures that wo shall consider bolow, wo shall assumo thet tho bonding end twisting strength of the shoot
metal is negligible: Stiffener frames are then required that are strong enough to take up the gtresses acting in their planes, such as, for example, latticenorif or reinm forcing rings that resist bending.

The object of the present paper is to compute the bending stresses for such ring stiffeners; in particular, for the case where axial forces are to bo taken up.

I. Reinforcing againat a Transiorse Force

Whore a transvorse force is to be taken up in a thinFalled tube, only a single reinforcing ring lying in the plane of the transverse force is required. The stress distribution up to the reinforcing frame is that correm sponding to the theory of infinitely long thin tubes. The stress in tho ring itself is detormined from the equilibrium botwoen the outer transvorse force and the shoar stressog transmittod from tho sheot metal to the frame and corrosponding to the axial stress diatribution (fig. 2). The formulas for tho bonding strossos occurring with.this typo of loading for the case of tho circular reinforcing ring have boon givon by Profossor Pohl (roforonco 2).

2. Reinforcing againgt an Axial Forco

Thoro an axial forco is to be taken up, two reinforcing framos at a sufficiont distanco from oach other aro requirad at the end of the tubo. Furthermore, it is necesm sary to havo a longitudinal member extanding from the point of application of the axial force to tho second reinforcing ring and uhich may bo rivotod, for examplo, to tho shoot metal (fig. 3, top), To the right of the second ring, the stross distribution is the linoar one corresponding to the infinitely long rod. To obtain the strose at the ond of the tupo, we consider the equilibrium of the portion of the tubo cut off to the right of the second ring (fig. 3 , bolowi). At tho right-hand ond tho oxtornal force is that corrosponding to tho stross distribution of tho infinitely long tubo, and this foroo must bo in oquilibrium with tho oxternal forco acting at the loft-hand ond of the tube. This structuro, consisting of two roinforcing framos, tho longitudinal rod, and tho strossod skin is a statically dotcrminate structure. If tho two framos are considerod as flat disks, thon the spaco onclosod may bo considered ns simply connoctod.

For tho strossod skin tho "shear flow" q, that is, tho shoer stress times tho wall thickness, is constant. along the genorating lino of the tube as may readily bo soon by neglecting tho bending strength of the metal. From this it follows further that tho axial force docreasos linearly along the tuba from the value P at tho lofthand and to moro at the right.

The "shear flow" q may be found from the following considerations of equilibrium: Imagine the cylindrical tho, winch is loaded by the axial force P, cut along some generating line as shown in figure 4. There will then act along the edge A-A a constant shear flow q Those value is to be determined (fig. 4, center). The value of q along any other line $X-X$ (fig. 4, below) is obtained from the equilibrium of the axial forces acting upon the portion $A \bar{X}$ of the tube:

$$
h q=h q_{A}+\int_{0}^{u} p d u+\Sigma p
$$

In order to determino ${ }^{\circ} q_{A}$ we make a cut through the cylindrical shell near tho end ring parallel to the surface of the latter. In this surface (for example, in the riveting betrocn the tube and the ring), the shear flow q is transmitted from the tube to the reinforcing ring. Since it in assumed that there are no external forces actor ing in the ring surface, the forces due to the shear flow q must jo in equilibrium. In particular, the moment M_{q} about an axis perpendicular to the ring area must be zero. From this condition. q_{A} is determined.*

In the particular casio of symmetrical loading of a symmetrical shall this method of computing q_{A} is not noconsary, q_{A} tho being dotorminod from considerations of aymotry. The value of tho shear flow q transmitted from tho tube to tho ring is now known at all positions about the ring circumforonco, and the ring load consists
*Whore is first detorminud the moment $M_{\Delta_{q}}$ due to the inc cremont of the shear $\Delta q=q-q_{A}$. The moment $2 F q_{A}$ due to the increment of shear Δq_{A} must then be equal and opposite to tho moment M_{Δ} (formula of Brede). From this it follows that $q_{A}={ }^{q} M_{\Delta_{q}} / 2 F$ mere H is tho area enclosed $3 y$ the cylindrical shell.

$$
\text { N.A.C.A. Technical Memorandum No. . } 847
$$

of these shear forces held in equilibrium. The second ren inforcing ring, experiences an equal and opposite force.

Figure 5 shows, for example, a circular tube in equilibrium under the action of an axial force at one ond and the corresponding linear stresa distribution at the other end and the shear load transmitted from the tube to the reinforcing ring. If theac rings aro built up in the form of frames, the bending moments occurring in them are obtained from the usual computation for statically indetera. minato framos with a degroo of rodundancy of throo. Theso moments dopond on tho bending strongth along the ring cira cumforenco.

Hor monocoque conical tubes the following may be shown to be true. The bending momonts that ariso in both reinforcing ringe in taking up tho forcos P acting along the gonorating line (fig. 6) aro oqual and opposito in the two rings and have tho samo value as the bending momont for the case of a cylindrical tube of oqual loading P and whoso reinforcing rings are tho samo distance apart and of tho samo shapo, and whose linoar crossesectional dimensions ere oqunl to the goometric moan of the corresponding croas? sectioncl dimensions of the tro rings of the conical tube.*
*The nroof is as follors: Let an axial force be applied in the direction of the genorating line at the left ond of the portion of the conical tube botioon the tro rings (fig. 7). At the other ond, in tho direction of the generating lines, there is a load distribution whose axial components in the same manner as for the cylindrical tube may bo assumed as linear. The conical tube portion is in equilibrium under those forces as may roadily be shomn (all tho forces pass through the cono vortox). If wo now imegino the cixcumferenco of the right roinforcing ring to be divided into a definite number of parts, thon tho axial component of tho forco appliod to each part is independent of the size of the ring. Thus the axial component does not change if the cone is converted into a cylinder. The bending moments in. the rings at the ends of the conical tube portion included between the two rings are now computed in the general form. From this computation the rasult is obtained that these bending momontafor a given form of cross section of tho tube and givon loading (and thus also for given values of tho axicl compononta) are proportional to tho product of tho Iinear dimengions of the tro rings. For a conical tube theso bonding momonts aro thoroforo of tho same magnitudo as for a cylindrical tubo of oqual form of orosa section, oqual longth, and oqual loading whon thoso products are also tho samo, as was to bo provod.

Having thus carried out ments for cyl-indirical tubos, given for the conical tubes.
the computation of the ring mothese moments may at once be

III. RTHULTS

Following the mothod indicated above, the bending moments arising in rings used for reinforcing against longin tudinal forces in conical tubos were computod for several porticular shapes, and the computations enable tho designer to obtain an cstimate of the monents also for other similar shnopa. Tho particular shapes considered rere:

Bulkioad rings of constant bending strength along thoir circumforonco, circular rings, and olliptical rings mitin sominxis ratio 3:2.

1. Notation
b_{1}, lenth of semiaxis of olliptical end ring representing aymmetrical of "antisynmetrical" loading condition. For the circlo b becomes equal to tho radius c.
a1, length of tho other semiarcs of the olliptical ond ring or the radius of the circle.
b_{a}, a_{g}, longths of the corrosponding semiaxis of tho secm ond reinforcing ring.
h, distanco mpart of tho two reinforcing rings.
M_{b}, bonding moment in tho rings. M_{b} is considerod positive rhen the outside fibor of the end ring is under tonsion, and in tho second ring undor pressuro.
v / u, nondimonsional coordinato of the point at each ring wioro tho bonding morent M_{b} acts; V donoting tho longth of arc neasurod. along tho ring circumforence from tho point B on tho axis of symmotry, and u the somicircumferenco of the ring. (Seo skotch, fig. 8.)

Wotation (Cont.)
φ, the angular coordinate corresponding to v / u for the circle.

P, the force applied at the end ring in the direction og tho generatrix. Tensions ere considored as positive.
x / a_{1} nondimonsional coordinates of the point of application of tho force. For the circle and the ellipge both coy / \dot{b}_{1} ordinates are connectod by tho rolation

$$
\frac{x^{a}}{a^{B}}+\frac{y^{a}}{b^{2}}=1
$$

φ_{0}, in the cisce of the circid tho. angular distence of tho point of application of tho force from the axis of oymmetry or antisymmotry.
m, m^{\prime}, the moment coefficient corresponding to the moment H_{b} of the symmotrical forcos P_{0}.
in. the cxtornal moment about the axis b_{1} due to the antisymmotric forces P.
n. n^{1}, tho momont coefficient corresponding to tho moment of tho nonsymmotric forcos P at tho end ring.
2. Hesults for Symmotrical Loading

Tho symmotrical load chosen consisted of two equally large tonsilo forces P. As a particular caso, the two forcos P coincide to produco a single forco of magnitude 2P。

Tho rosulta were prosentod nondimensionally in the form of a moment coofficient corrosponding to the bending momont M_{b} in tho ring. For tho circlo and for tho two ollipsos this coofficiont is plottod as ordinate on tho
figures (8, 9, 10) against tho abscises v/u, at which the bending moment \mathbb{M}_{b} is applied. The equal and oppor site bending moments in the two rings are

$$
\mathbf{u}_{b}=m P \frac{a_{1} b_{a}}{h}=-m P \frac{a_{a} b_{1}}{h}
$$

Tho different m curves apply to tho different points of application of the load P, the value x / a_{1} being chow sen as the parameter of the system. The heavy drawn curves correspond to positive values of y / b_{1} while the lightly dram n curves correspond to negative values. For the circleo tho mathematical relation holds:
$\mathbf{u}_{\mathrm{b}}=\frac{\mathrm{P} \mathrm{a}^{\mathrm{a}}}{\pi} \frac{\mathrm{h}}{\mathrm{h}}\left[\cos \varphi\left\{\frac{5}{2} \cos \varphi_{0}-\left(\pi-\varphi_{0}\right) \sin \varphi_{0}\right\}\right.$

$$
\left.+\varphi \sin \varphi \cos \varphi_{0}-\frac{\varphi^{2}}{2}-\frac{\varphi_{0}^{a}}{2}+\pi \varphi_{0}-\frac{\pi^{a}}{3}+1\right]
$$

applicable to the range $0<\varphi<\varphi_{0}$. For $\varphi>\varphi_{0}$ the res lotion is:
$M_{b}=\frac{P}{\pi} \frac{a^{2}}{h}\left[\cos \varphi\left(\frac{5}{2} \cos \varphi_{0}+\varphi_{0} \sin \varphi_{0}\right)\right.$

$$
\left.-(\pi-\varphi) \sin \varphi \cos \varphi_{0}-\frac{\varphi^{a}}{2}-\frac{\varphi_{0}^{2}}{2}+\pi \varphi-\frac{\pi^{a}}{3}+1\right]
$$

 a cylindrical tube of radius $a_{1}=b_{1}=a_{a}=b_{a}=60 \mathrm{~cm}$ With $h=80 \mathrm{~cm}$. The bending moment in the ring with $2 P=$ $1,000 \mathrm{zg}, \quad P=500 \mathrm{~kg}$ is:

$$
y_{b}=\frac{P a_{1} b_{1}}{h} m
$$

where m has the value given by the curve $\frac{x}{a_{1}}=0$ in $f i g-$ use 8. The maximum bending moment corresponds to the maximus value of m and therefore occurs for the position $\frac{Y}{u}=0$; that is, at the point of application of the force, and amounts to

$$
u_{\mathrm{b}}=500 \times \frac{6}{8} \frac{0^{2}}{0} \times 0.067=1,500 \mathrm{~kg} \mathrm{~cm}
$$

Ir four equal forces P are applied and two of these
symmetrically lying forces are directed opposite to the other trio; then this load represents an external bending moment, for which the ring moment u_{b} is again given by the figure (8). He have, namely,

$$
u_{b}=\frac{\mathrm{P}_{\mathrm{a}_{2} \mathrm{~b}_{1}}^{\mathrm{h}}}{} \Delta_{\mathrm{m}}
$$

Where $\Delta \mathrm{m}$ is the difference in the ordinates of the two III curves, corresponding to the two points of application of the forces.

The formula for the circle for the region $0<\varphi<\varphi_{0}$ is $u_{b}=\frac{P_{-} a^{\mathrm{a}}}{\pi}\left[\cos \varphi\left\{5 \cos \varphi_{0}-\left(\pi-2 \varphi_{0}\right) \sin \varphi_{0}\right\}\right.$

$$
\left.+2 \varphi \sin \varphi \cos \varphi_{0}-\frac{\pi^{8}}{2}+\pi \varphi_{0}\right]
$$

and for $\varphi>\varphi_{0}$
$u_{b}=\frac{P}{\pi} \frac{a^{2}}{h}\left[\cos \varphi\left\{5 \cos \varphi_{0}+2 \varphi_{0} \sin \varphi_{0}\right\}\right.$

$$
\left.-(\pi-2 \varphi) \sin \varphi \cos \varphi_{0}-\frac{\pi^{2}}{2}+\pi \varphi\right]
$$

The particular case is to be noted where $\phi_{0}=\frac{\pi}{2}$, corriespending to a load of two pure bending moments. If the magnitude of both moments is $2 M$, then

$$
u_{b}=\frac{x_{-a}}{\pi h}[3 \cos \varphi+2 \varphi \sin \varphi-\pi]
$$

Trample: 1 bending moment is to be transmitted in an elliptical conical shell $\left(b_{1}=60, a_{1}=40, b_{a}=48\right.$, $a_{a}=32$, and $h=80 \mathrm{~cm}$). Pour forces $P=1,000 \mathrm{~kg}$ act symmetrically with respect to the major axis b of the ellipse. For two of the forces $x=28 \mathrm{~cm}$, and for the other two $x=38.8$, ring .
a) For all of the four forces acting on the same side of the minor axis, the heavy curves $x / a_{1}=0.7$ and $x / a_{1}=0.97$ ard to be considered. The maximum difference in the m values between these two curves, according to figure 9, occurs for $v / u=0.48$ and amounts to 0.047 .

Tho maximum moment is therefore

$$
\mathrm{k}_{\mathrm{b}_{\max }}=0.047 \cdot \frac{1000 \times 40 \times 48}{80}=1130 \mathrm{~cm} \mathrm{k}_{\mathrm{g}}
$$

b) If the two pairs of forces act on different sides of the minor somiaris, the heavily drawn curve ($x / a_{1}=0.7$) and tho lightly drawn curve $\left(x / a_{1}=0.97\right)$, are the ones considered. The maximum difference now obtained for the m valuss for $v / u=0$ is 0.057 . Thus, the maximum moment now is

$$
\mathrm{H}_{3_{\max }}=0.057 \frac{1000 \times 40 \times 48}{80}=1370 \mathrm{~cm} \mathrm{~kg}
$$

3. Results for "Antisymmetrical" Loading

As an antisymetrical loading theron are chosen a ten silo force P and a compressive force of equal magnitude -P, which together oxert an external moment M about tho axis b_{1} 。

Tho results are presented in nondimensional form in terms of a moment coofficient n. This value is computed for the circle and plottod on figure ll as ordinate. The bonding monont in the ring is then

$$
\mathrm{m}_{\mathrm{b}}=\frac{\mathrm{m}_{\mathrm{a}_{1}}}{\mathrm{~h}}
$$

Tho formula for n couple $P, \quad \rightarrow$ valid for the range $0<\varphi<\varphi_{0}$ is
$M_{b}=\frac{P a^{a}}{\pi}\left[\sin \varphi\left\{\frac{5}{2} \sin \varphi_{0}+\left(\pi-\varphi_{0}\right) \cos \varphi_{0}\right\}\right.$.

$$
\left.-\varphi \cos \varphi \sin \varphi_{0}-\varphi\left(\pi-\varphi_{0}\right)\right]
$$

and for $\varphi>\varphi_{0}$
$u_{b}=\frac{p_{\varepsilon^{a}}^{h}}{\pi h^{2}}\left[\sin \varphi\left\{\frac{5}{2} \sin \varphi_{0}-\varphi_{0} \cos \varphi_{0}\right\}\right.$

$$
\left.+(\pi-\varphi) \cos \dot{\varphi} \sin \varphi_{0}-\varphi_{0}(\pi-\varphi)\right]
$$

Hora too there is a limiting case for $\varphi_{0}=0$, correspond m ing.to a pure moment M at tho position $\varphi_{\sigma}=0$. The formola obtainod is

$$
M_{b}=\frac{M a}{2 \pi h}\left[\frac{3}{2} \sin \varphi-(\pi-\varphi)(1-\cos \varphi)\right]
$$

On suporimposing another couple $P, \quad P$ in analogy to the previous case considered, we have for $0<\varphi<\varphi_{0}$ $M_{b}=\frac{P a^{2}}{\pi h}\left[\sin \varphi\left\{5 \sin \varphi_{0}+\left(\pi-2 \varphi_{0}\right) \cos \varphi_{0}\right\}\right.$

$$
\left.-2 \varphi \cos \varphi \sin \varphi_{0}-\pi \varphi\right]
$$

This case corresponds to tho one previously conoidcred, rotatod by $\pi / 2$, and tho formula nay in fact be obtaino from tho other by a transformation of coordinates.

Example: Lot two equal and oppositely diroctod forcos of 1,000 kilograms och bo applied at the end of a circuslar conical shell $\left(a_{1}=b_{1}=60, a_{B}=b_{2}=50\right.$, and $h=$ 80 cm). Let the angle subtended at the center be 100°. We first compute tho moment H of tho two forces about the axis b_{1}. Wo have:

$$
\begin{aligned}
& x=a_{1} \sin 50^{\circ}=60 \times 0.766=46 \mathrm{~cm} \\
& M=P \times 2 x=1,000 \times 92=92,000 \mathrm{~cm} \mathrm{~kg}
\end{aligned}
$$

The bonding moment in the reinforcing ring, therefore, is:

$$
u_{b}=m \frac{a_{1} a_{a}}{h} n
$$

where for $x / a_{1}=0: 766, n$ is to be obtained from figure 11 by interpolation. The maximum value of n occurs for $\nabla / u=0.23$ and is equal to 0.040. The maximum moment in each ring is, therefore:

$$
\mathrm{K}_{\mathrm{b}}{ }_{\max }=92,000 \times \frac{50 \times 60}{80} \times 0.040=2,520 \mathrm{~cm} \mathbf{k}_{\mathrm{g}}
$$

Erenple: Let four forces be applied at the end of the cylindrical shell $(\hat{H}=60 \mathrm{~cm}, \mathrm{~h}=80 \mathrm{~cm})$ that have a rosultant zero. One pair of oppositely directed forces is appliod at $\varphi_{1}=30^{\circ}$ and possesses the moment $M_{0}=$
$100,000 \mathrm{ca} \mathrm{kg}$. Tho othor oppositely directed pair act at $\varphi_{a}=135^{\circ}$ and oxort an oqual and opposito monent. Wo havo:

$$
\begin{array}{rlrl}
M_{b}=M_{0} \frac{R}{h}\left[\begin{array}{ll}
(n) & -(n) \\
\frac{X}{a} & =0.5 \\
\frac{J}{a} & =0.707
\end{array}\right] \\
& =\text { positivo } & \frac{J}{a}=\text { negativo }
\end{array}
$$

Tho naximun differonce botwoon the values in the brackots occurs, according to figuro ll, for $\varphi=41^{\circ}$ and anounts to $n_{1}-n_{3}=0.087$. Thus

$$
\mathbf{u}_{\mathbf{b}_{\text {max }}}=100,000 \times \frac{60}{80} \times 0.087=6,530 \mathrm{~cm} \mathrm{~kg}
$$

Figure 13 shows tho particular case for two pairs of forces corresponding to a pure moment. This figure is used to particuler advantage when the maximum moment in the ring and not tho point applied, is desired. The graph clearly shows tho larfo oscillations undergone by the maximum stress dopending on the position of the pointe of applicau tion of the forces.
IV. $\# X T H M S I O N$ OF APPLICABILITY OF THF RHSULTS

1. Other Forms of Roinforcing Frames

In order to oxtend the range of applicability of the computations which have beon carriod out for only three particular forms of reinforcing rings, it was attempted to find such nondimonsional valuca for tho abscissa, ordinato, and paranotor of tho point of application of the forces, $-s$ to covor tho curvo familics for all throe forms as far as possiblc. This point of viow lod to the choico of tho verim ables $\quad \rightarrow, n, \nabla / u, x / a$, and y / \bar{b} as givon above. the coma parison mede in figuro l2 of tho symmetrical loading for sovercl points of spplication siows quito good egreement with tho groups of curvos. In particular, if tho comparim son is mado, for dofinito points of epolication, betwoen tho maximum valuos of m for tho ollipse with those for
 percont.

From the above agreement, the folloting rule may bo set up for estimating an uppor limit for the maximum bende Trig momonts for ellipsës with othor semiaxis ratios and for othor olliptical-shaped frames; for example, those put together. out of four circular arcs:
 the ratios x / a_{1} and y / b_{1} corresponding to the given points of load application, are determined. The maximum value of m or n is taken for the less favorable of these tro ratios from figures 8, ll, or 13 applicable to circular forms. The maximum bending moment for the given form of reinforcing ring is then approximately
$0 x$

$$
\mathbf{x}_{b} \approx p \frac{a_{1} b_{a}}{h}, m
$$

$$
u_{b}=m \frac{b_{a}}{h} n
$$

The value obtained is then multiplied by the larger of the two values $\sqrt{a / b}$ and $\sqrt{b / a}$.

Example: Given a cylinder having a crose section similar to an ellipse with semiaxes $a=45, b=75$, and dism tance $h=80 \mathrm{~cm}$. Four forces, each of 1,000 kilograme, are noplied at the four pointa with coordinates $x / a=$ ± 0.65 and $y / b= \pm 0.8$ and produce a pure moment about the axis b, The coordinates x, y do not satisfy the ellipse equation to the velue $y / b=0.8$, corresponding to a value $x / a=0.60$ on the ellipse. According to figure 13, there corresponds, for the circle, to the value $x / a=0.60 \mathrm{a}$ value $n=0.0043$; to $x / a=0.65$ a value $n=0.0039$. The larger value is the one used. Hence:
$M_{b} \dot{\sim} \underset{p}{ } \frac{a_{1} b_{g}}{h} n=1,000 \times \frac{45 \times 75}{80} \times 0.0043=181 \mathrm{~cm} \mathrm{~kg}$ Kultiplying by the correction factor $\sqrt{b / a}$ the final result becomes

$$
u_{b} \approx 181 \sqrt{\frac{75}{45}}=234 \mathrm{~cm} \mathrm{~kg}
$$

2. Reinforcing Frames. with Variable Strength in Bending

For those frames whoge strength in bending varies along tho circumference, it generally will. not be diffin cult to estimate the maximum values of the bonding moments on the basis of the abovencomputod results. If the frame is built so as to have a constant moment of inortiar and is roinforced only at the olaces of maximum bending momenta, thon the strain enorgy in bending - that is, the moan valuo of the momonts squarod - decrosses at the nonreinforced portion of the nember. It will always be on the safe side therefore to dimension this nonreinforcod portion in ac-. cordance with the maximum momont which would occur at this portion if tho bending strength were constant all about tho circumforence.

V. SUHMARY

In toking up the axial forces in monocoque structuros, bending moments are set up in the reinforcing ringe. For tho cobo where two reinforcing ringa are provided to take up tho forces, the bending momenta are doterminod for sovoral loading conditions and plottod on charts, thus romoving tho burdon of involved computation from the designor.

Translation by S. Reiss, Nntional Advisory Committoe for Aoroncutics.

RHFHRENCTS

1. Magncr, Horbert: The Stress Distribution in Sholl BodaIos and Fingo as on Fquilibrium Problom. T.M. No. 317, İ.A.C.A., 1937.
2. Pohl, Professor: Stahlbcu, no. 14, 1931.

Figure 2.- Ring loading due to a transverse
force.

Figure 1.- Stress distribution at a position far removed from the point of application of an arbitrarily directed force.

Figure 3.- Transmission of an axial force in a
cylindrical shell.

Figure 4.- Axial force distribution on cylindrical shell.

Figure 5.- Frame loading of a circular cylindrical shell.

Figure 6.- Taking up of axial forces
in a conical shell.

Figure 7.- Equilibrium of a truncated

Figure 8.- Moment coefficient for symmetrically loaded circular ring.

Figure 9.- Yoment coefficient for symmetrically loaded elliptical ring with semiaxes ratio $a_{1} / b_{1}=2 / 3$.

Figure 10.- Yoment coefficient for symmetrically loaded elliptical ring with semiaxes ratio $a_{1} / b_{1}=3 / 2$

Figure 11.- Moment coefficient for"antilar ring.

Figure 12.- Comparison of moment coefficient (semi-axes ratio $a / b=2 / 3,1 / 1,3 / 2$).

Figure 13.- Maximum moment coefficients for
1 , depending on the moment H_{a} of the load
2, depending on the magnitude of the concentrated force F —————

[^0]: Kegelschalen auftretende Beanspruchung von Ringepanten. Luftfahrtforschung, vol. 14, no. 2, Jebruary 20, 1937, pp. 63-70.

