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STRESSES IN REINFORGING RINGS DUE TO AXIAL FORCES

IN CYLINDRICAL AND CONIOCAL STRESSED SEINS*

By K. Dreschoer and H. Gropler

At the ends of a monocoque fuselage concentrated ax-
1al forces in the skin must genorally be taken up. Such
axlal forcos maust also be taken up in the case of other
mombors whore axial forces from the neilghboring strossod
skin constructlion must bo conasldered. In ordoer to take up
thego axlal forcos two bulkhoads or reinforcing framos may
be arrangod at the positions whoro the forces are appliod.
If thcse bdulkheoads aro in tho form of rings, bonding momonts
aro sot up in thom. In thoe prosont papor computatlons are
porformod for obtaining the valuo of thoso bending momentg.
It is essumcd that tho strossed skin is cylindricael or con-
ical and that 1ts cross soction is circulanr or clliptical,
(Seo in this connooction, H. Wagner (reforemco 1).)

I. INTRODUCTION

Whon it is roquired to takoc up axial loads in a strossed
skin structure - for oxample, & monocoquo fusolage =~ two
reinforcing frames are commonly attached at the positlons
whore those loads are to be taken up. How tho loads and the
rosulting stresses arc dotermined, 1s well known although
the actual carrying out of a complete computation is quito
toedious. This 1is espocially true where the frames are to
be in the form of rings, in which case the computation 1ig
statlically indeterminate. In order to lighten this task
for the practicing designer, the bending moments set up in
such relnforecing rings are computed and the results pre-
sented in the form of charts (figs. 8 to 13).

In order to reduce the scope of the computation only,
the followlng monocoque shapes were consildered:?

*1dber dle bei BEinleitung von LAngskreften in Zylinder- und
Kegelschalen auftretende Beanspruchung von Ringspanten.
Luftfahrtforschung, vol, 14, no. 2, February 20, 1937,
op. 63-70,
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Cylindrical and.conical shapes.

Cross section, circular or elliptical (ratio
of semlaxes 2/3).

Rings of. constant bending stiffness along
thelr circumferences.

Some of the most usual symmetrical and "antisymmet-
rical” (i.e., o6ne force tensile, the other compressive)
loadlrg conditlonse were considered from which, by superpo-
proslitlion, different loading conditions could be obtained.

In order to extend the range of applicabllity of the
results, they were presented in such a form as to enable
at least an estimate of the stresses to be obtalned with
stressed skin constructions of other cross sections. An
estimate of thlas sort should be sufflcient since a knowledge
of tke accurate values of the moments 1n the rings is gon-—
crally not requirod.

In order to bo able to make an intelligent applica-
tion of the results, the genoral principles underlyilng
tho computations wlll be revicwed below. The computation
nrocedure itself, howover, will be omitted. Only for the
case of the circle will the formulas used for constructing
the charts be given.

II, UNDERLYIRG PRINCIPLES

Figure 1 shows a thin-wnlled sheet—-metal tube fixed
at its right-hand end. Let a concentrated force be appliled
in .any direction at the left-hand end. ' The stress at a
great distance away from the point of appllcation of the
forco may be computed from the relations for an infinitely
long prismatical beam ~s given in textbooks on the strength
of nntgrials (1inear distribution of axial stresses, stc.,
fig, 1). o

The stresses sset up 1n the region where the forces
aro tokeon up, depend on tho type of construction of the
end of the tube. In the case of vory thick-walled tubes,
the bending stiffnoss of the sheet metnl is considered
sufficlont to take up the stresses. Such casos will not
bo considerod hore. In the case of the very thin-walled
monocoquo structures that wo shall congider below, we shall
asgune thrt tho bonding ~nd twisting strength of the sheot
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metal 1s negligldle.. Stiffener frames are then required
that are strdng enough to take up the stresses acting in
their planes, such as, for example, latticework or rein-
forcing rings that resist bending. .

The obJject of the present pavper 1s to compute the
bending stresses for such ring stiffeners; in particular,
for the case where axial forces are to be taken up.

l. Relnforcing against a Transverse Force

Where a transvorse force 1s to be taken up in a thin-
walled tube, only a single reinforcing ring lying in the
plane of the transvaerse force 1s required. The stress
distribution up to the reinforcing frame is that corre-
sponding to the theory of infinitely long thin tubes. The
stress in tho ring 1tself is determined from the equilib-
rium botwoen the outer transvorse force and the shear
stresseos transmitteod from tho sheot mctal to the frame and
corresponding to the axial stress distridution (fig. 2).
The formulas for the bonding strossos occurring with this
typo of loading for the case of tho circular reinforcing
ring have beon givon by Profossor Pohl (referonce 2).

2e Reinforcing agalnst an Axial Forco

Whoro an axinl forco 1s to be taken up, two reinforc-—
ing framos at a sufficleont distance from each other are
required at the end of the tubo. HFurthermore, 1t is neces-—
sary to havo a longitudinal member extending from the voint
of application of the axial force to the second relnforclng
ring and which may be rivetod, for example, to tho shoet
metal (fig. 3, top), To the right of the second ring, the
strogs dlstribution i1s the lineoar one corresponding to the
infinltely long rod. To obtain the stress at the ond of
thoe tubo, we consider the equilibrium of the portion of
the tube cut off to the right of thoe second ring (fig. 3,
below). At the right-hand end tho extornal force is ‘that
corrosponding to tho stross distribution of tho infinitely
long tube, and this foree must bo 1n equillibrium with the
ocxternnl forco acting at the left—~hand cnd of the tube.
This structuroe, conslsting of two rolnforcing framos, the
longitudinal rod, and tho strossod skin is a statically
doterminnte structure. If tho two fromos are considerod
as flat digks, thon the spaco onclosed may bo consldered
ng simply connoctod. '
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For tho stressod skin the "shear flow" q, that 1s,
tho shoar ptress times the wall thlckness, 1s constant.
along the gencrating llno of the tube as may readlly bde
soon by noglectlng tho benflng strength of the mstal.

From this it follows furthor that the axlal forco docreases
linoarly clong the tubo from the value P at the loft—
hnnd ond to zoro at the right.

The "shear flow" q may be found from the followlng
considerations of equllibrium: Imaglne the cylindrical
tuve, which 1ig loaded by the axial forece P, cut along
some generating line as shown in figure 4. Thore will
then act nlong the edge A~A & constant shear flow g
vhose valuo is to be determined (figz. 4, center). The
valuo of q along any other line IX-X (fig. 4, below) is
obtoinod from the equllidbrium of the axial foreces acting
upon the portion AX of the tube:

u
g}

hq:hqA+/pdu+ZP

In order to determino oqA we make a cut through the

cylindrical shell near theo end ring parallel to the sur-
faco of the latter. In this surface (for example, in the
riveting betwoen the tube and the ring), the shear flow g
ls transmitted from the tube to the reinforecing ring.
Since 1t is assumed that there are no externdl forces act-—
ing in the ring surface, the forces due to the shear flow
q mnuet ve in equilibdrium. In perticular, the moment M4

nbout an oxls perpendlcular to the ring area must be zero.
From this condition q4 is determined.™

In the particular caso of symmetrical loading of a
symmetrical shell this moethod of computing Qs is not

necegsary, g, thon belng dotermined from considorations

of symmotry. The value of tho shear flow q transmitted
from tho tube to tho ring is now known at all posltions
about the ring circumforonce, and the ring load consiscts

*Thore is first detormincd the moment MA due to the in-

q
cremont of the shear Aq = q - gg. The moment 2F q due
to the ineremont of shear A gy must then be equal and
opposite to tho moment M, (formula of Bredt). From

q
this it follows that gq, = = My /2F where F 1s the area
q

enclosod by the cylindrical shell.
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of these shear forces held in equilibrium. The second re=
inforelng ring, experiences an equal and opposite force,

Flgzure 5 shows, for example, a clrcular tube in equi-
1librium under the action of an axial force at one ond and
the corresponding linear stress dlstribution at the other
end and the shear load transmitted from the tube to the re-
inforeing ring. If theso rings arc bullt up in the form
of frames, the bending moments occurring in them are ob- .
tained from the usual computation for statically 1ndeter-.
minate fraomos with a degreo of redundancy of throe. Theso
moments depond on tho bending strongth along the ring cir-
cumforenco.

For monocoque conical tubes the followlng may be shown
to be true. The bending momonts that arise in doth rein-
forecing rings in taking up the forces P acting along the
gonoreting line (fig. 6) aro oqual and opposito in the two
rings and have tho samo value as the bending moment for the
cagse of a cylindrical tube of oqual loadlng P and whoso
reinforcing rings are tho samo distance apart and of tho
sano shapo, and whoge llnoar cross~sectional dimenslons
are equal to the goometrlc mean of the correspondlng cross-—
sectional dimensions of the two rings of the conical tube.*

®

The nroof is as follows: Let an axlal force be applied in
the direction of the genorating line at the left ond of the
portion of the conical tube botweon the two rings (fig. 7).
At the other ond, in tho direction of the generating lines,
there 1s & load distribution whose axlial components in the
same manner as for the cylindrical tube may bo assumed as
linear. The conlcal tube portion is in equilibrium under
those forces as may roadily be shown (all tho forces pass
through the conoc vertox)e If we now imagine the circum~
ferenco of the right reinforcing ring to be divided into e
definite number of parts, thon the axial component of tho
forco oppliod to each part 1s independent of the size of

the ring. Thus the axlal component does not change 1f the
cone l1ls converted into a cylinder. The bending moments 1in,
the rings at the ende of the conical tube portion included
between the two rings are now computed 1n the general form.
From thle computation the result is obtained that these
bending momonts for a given form of cross section of tho
tube and given loading (and thus also for given values of
tho axlcl compononts) are proportional to tho product of tho
linear dimonsions of the two rings. TFor a conlcal tube
theso bonding momonts aroe thorofore of tho same magnitudo aos
for o cylindrical tube ~f oqual form of oross section, oqgual
longth, and oqual loading whon those products are also theo
samo, as was to bo provod.
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Having thus. carried out the computatlion of the ring mo-
ments for cylindrlical tubos, these moments may at once be
glven for the conlcal tubes.

III. RESULTS

" Following the mothod indicated above, the bending mo-
ments arlising dn rings used for reinforcing agninst longi-
tudinnl forces in conical tubos were computed for several
particular shapes, and the computations enable tho designer
to ovtaln nan estimate of the mounents also for other similar
gshanea. Theo partlcular shapes consldered were:

Bulkhoad rings of constant bending strength along
thoir clrcumferenceo, circular rings, and clliptical rings
with sominxis ratio 3:2, .

l. Notoation

by, length of seminxis of ellintical end ring represent-
Ing symmetrical of "antisynmmetrical' loading condl-
tion. TFor the circlo b  becomes equal to tho radius

[A Y

ay, leagth of tho other semlaxcs of the elliptical ond
ring or the radius of the circle.

bg., ag, longths of the corresponding semlaxls of the sec-
ond reinforeing ring.

h, distance apart of tho two reinforeling rings.

M,, ©bending nmoment in the rings. M is conslderod posi-
tive when the outside fibor of ?he end ring 1s under
tenglion, nand in tho second ring under pressure.

v/u, rondinonsional coordinate of the polint at each ring
whoro tho bonding moment Mb acts; v dopoting the
longth of arc measurocd slorg tho ‘ring circumference
from tho point B on tho axls of symmotry, and u
the somicircumferenco of the ring. (See skotch, fig.

Be)
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Hotatlon (Cont.)

P, the angular coordinate corresponding to v/u for the
eirecle.

P, the force applied at the end ring in the directlon og
the generatrix. Tenslons are considored as positive.

x/ ay nondimonsional coordinates of the point of appllcation
.t of the force. For the clrcle and the ellipse both co~
¥/b7 ordinates are connected by tho rolation

®o» 1in the case of the clrcid .tho. angular distonce of tao
noint of application of tho force from the axis of
gymnetry or antisymmotry.

m, m'!, the moment coefficient corresbonding to the moment
liy, of the symmctrical forces P,.

i, thec cxtornal moment about the axls D, due to the an-
tioymmotric forces P,

n, n', tho momont coefficlent corresponding to tho momont
M of tho nonsymmetric forces P at tho end ring,

2. Bosults for Symmoetrical Loading

Tho symmetrical load chosen consisted of two equaelly
large tonsllo forées P. A4g a particular casc, the two
forcos P coincide to produco a single force of magnitude
2P,

Tho rosults were proesentod nondlimensionally in the
form of a moment coofficlent corrosponding to the bending
nonent M, in tho ring. TFor tho circlo and for tho two

ollipsos this cocfficlent i1s vlotted as ordinate on tho
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figures (8, 9, 10) against tho abscigsa v/u, at which
the bending moment My 1s applied. The equal and oppo=-

slte bending moments in the two rings are
a, bg ag b,

llb=mP—E—=-mP—h

Tho dlfferent m curves apply to the dlfferent polnts
of application of the load P, the value x/a, being cho-

gen as the varameter of the system. The heavy drawn curves
correspond to positive values of y/b1 while the lightly
drawn curves correspond to negative values. For the cir-
cle the mathematlical relatlon holds:

P

My = E—%— | cos O {5 cos @, - (m - ¢°) sin @o}

L

o2 a
+CPBin@coscpo—%-—-'—g—+-nq)°_.ﬂ3_+l]

applicable to the range 0 < ® < ®,. For o > @, the re-
lation ig: '

2
My = %—%— [cos o) (% cos @, + @, sin ¢o>

2
- (m-p) sin @ cos q%-—%% - E%— + 7T QP - %r + 1]

IL=:I

rennle Let an axial force of 1,000 kilograms act on
a cylindrlcal tube of radius a; = by = 8g = bg = 60 cm
with h = 80 cm., The bending moment in the ring with 2P

1,000 zg, P = 500 kg 1isa:

P a b
My = ——
b h
where m has the value glven by the curve 5% =0 1n fig-

ure 8, The maxlimum bending moment corresponds to the max-
imum value of m and therefore occurs for the position

% = 0; that is, at the noint of anplication of the force,

and amounts to

60°
My = 500 x 80 X 0,067 = 1,500 kg cm

If four equal forces P are applied and two of these
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symmetrically lylng forces are directed opposite to the
other two, then this load represents an external bending
moment, fpr which the ring moment My 1s agaln given by

the figure (8). We have, namely,
b,
. nb=.-T—Am

where A m 1s the difference in the ordinates of the two
m curves, corresponding to the two polnts of application
of the forces. )

The formula for the circle for the region 0 < @ < Po is

q .
My = %—%— [cos P {5 cos @, - (m-=29,) sin wb}

?M%]

+ 29 sin @ cos @,

and for o > P

8
My = E—%— [coa P {5 cos @, + 2%, sin ¢b}

- (m=29) sin ® cos Py =~ EE + w]

2
The particular case 1s to be noted where & = g, corre-

sponding to a load of two pure bending moments. If the
magnitude of both moments is 2M, then

My = %—% [3B cos @+ 29 gin ® - ]

Exanple: A bending moment is to be transmitted ln an
elliptical conleal shell ' (b, = 60, a; = 40, ©bg = 48,

ag = 32, and h = 80 cm). Four forces P = 1,000 xg act
symmetrically with respect to the major axis b of the

ellipse. For two of the forces x = 28 cm, &and for the
other two x = 38.8, ring I.

a) For all of the four forces acting on the same
slde of the minor axils, the heavy curves
' x/a; = 0.7 pnd x/a1 = 0.97 aro to be con-
slderod. The maximum difference in the =
values betwoen these two curves, according to
figure 9, occurs for v/u = 0.48 and amounts
to 0,047,




10 N.,A.CiA, Technical Memorandum Nq, 847

The meximum moment is therefore

A Aar 1000 X 40 X% 48 _
My, _ = 0.047 to = 1130 en kg

b) If the two pairs of forces act on different sides
of the minor somiaxis, the heavily drawn curve
(x/a1 = 0.7) and tho lightly drawn curve
(x/a; = 0.97), are the ones considered. The
maximum difforence now obtalnecd for the m val-
ues for v/u =0 is 0.057. Thus, the maximum

monent now 1s

My, = 0,057 1000 x 40 X48 _ 31370 cm ke
nax 80

3. Rogults for "Antisymmetrical' Loading

As ~on antlsymmetrical loading thero are chosen a ten-
sllo forge P and a compressive force of equal magnitude
-P, which togethoer oxert an oxternal momont M adbout the

axle bl'

Tho results nare proscnted in nondimensional form in
termg of o moment coofflcient n. Thls value is computed
for the circle cnd plottod on figure 11 as ordinate. The
bending monont in the ring is then

Mﬂ,l
h

H-b=

Tho formula for a couple P, =P valld for the range
0<op<® Iis
a’ 5 .

M.b = %—%— {sin cp{E sln @, + (n-cpo) cos CPO}
- ® cos ® sin Py = @ (ﬂ-qb)}
and for ®© > @,

-
My = Feo gin @ {% sein ®, - @, cos ¢°}

m h L
+ (m=®) cos P sin @, -~ P, (ﬂ_¢)]
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Horo too there 1s a limiting ease for @, = O, correspond-

.-dng.to a.pure moment M at the position ®; = 0. The for-

mula obtnined isg
My = g;a'—h [g gin @ = (m=9) (l-cos cp)]

On suporimposing another couple P, ~P in analogy
to the previous case considered, we have for 0 < @ < @,

2
My = 11:—%— [ain P {5 sin @, + (m=29,) cos %}

- 2P cos ® sln Py = T ¢]

This casc corresponds to tho one proviously consid-
ored, rotatod by w/2, and the formula nay in fact be ob=
tailncd from thoe othor by o transformatlon of coordinatos.

"Expmple: Lot two equal and oppositely dirocted forcos
of 1,000 kilograms cach be appllied at the end of a circu-
lar conical shell- (a; = by = 60, og = by = 50, and h =
80 cm), Let the angle subtended at the centor be 100°.

We first compute tho moment M of tho two forces about the
axls Dy. Weo have:

X

a8, sin 50° = 60 x 0,766 = 46 cm
M =P x 2x = 1,000 X 92 = 92,000 cn kg
The bonding moment in the reinforcing ring, thereforo, is:

o, bg

H-b=H h

n

 where for x/ai1 = 0:766, n is to be obtained from flgure

11 by intérpolation. The maximum value of n occurs for
v/u = 0.23 and 1s equal to 0.040. The maximum moment in
each ripg las, thereofore: '

Hy, = 92,000x 20 X 60 x 5,040 = 2,520 cm kg
nax . 80 .

Exanple: Let four forces be applied at the end of
the cylindrical shell (R = 60 cm, h = 80 cm) that have
a rogultant zero. One palr of ovpositely directed forcos
1s applliod at @, = 30° and possessos the moment M, =
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"100,000 en kg. The othor oppositely directed paif act at
®Pg = 135° and oxort an equel and opposite moment. We

haveo:

Hb=1{°3—[(n) - 0.5 "(n)

[~

Pld pM
Pid @i
i}

posltlvo negatlvo

Tho naximun differonce botwoon the wvalues in the brackots
occurs, cccording to figure 11, for ¢ = 41° and amounts
to ny - ng = 0.087. Thus

- [:1¢) = 3
My = 100,000 x 2& X 0.087 = 6,530 cn kg

Flgure 13 showsa the partlcular case for two palrs of
forces corresponding to a pure moment. This fligure is ugsed
to particular advantage when the maximum moment 1in the ring
and not the point applied, 1s desired. The graph clearly
shows tho largo osclllatlons undergone dy the maximunm
stress depending on the posltlion of the pointas of applica-
tion of tho forces.

IY. EXTENSION OF APPLICABILITY OF TEE RESULTS

l. Other Forms of Reinforcinz Frames

In ordor to oxtend the range of anplicablility of the
computations which have beecn carricd out for only three
partlcular forms of reinforcling rings, 1t was attempted to
find such nondimongional valucs for the abscissa, ordinante,
and peranocter of tho polnt of applicatlon of the forces, cos
to covor tho curve familliceg for all three forms as far as
poseiblec. Thig polnt of viow lod to the cholco of tho vori-
ables =, n, v/u, x/a, and y/b as glvon above. Thec com-
parlson nade in filguro 12 of the symmetrical loading for
gsovercl molnts of nprlication schows qulto good agreement
wlth tho groups of curves. In partlculanr, if tho comparie-
son ig nando, for dofinite nolints of epolicatlion, between
tho maximum voluca of m for tho ollipse with those for
the circle, then the dlfforonce amounts to = at most = 20
perconta.



N.A.C.A. Technical Memorandum No. 847 . 13

From the above dgreement, the following rule may bo
set up for estimating an uppor limit for the maximum bend-
'Ing momonts for ellipsde with othor semiaxis ratios and for
other elliptical-shaped frames; for example, those put to-
‘gether out of four circular arcs:

For the given end frame with semlaxes a; and h,,
the ratioe x/a; and y/b, corresponding to the glven
points of load appllication, are determined. The maximum
value of m or =n 1g taken for the less favorable of
these two ratlos from figures 8, 11, or 13 applicabdble to
circular forms. The maximum bending moment for the given
form of reinforcing ring 1g then approximately

a; by
h 1]

m

or

H-b"‘M-Eg-n

The value obtained im then multipllied dy the larger of

the two values ,/a/v and ./b/a.

Expmple: Given a cylinder having a crossg sectlion siml-
lar to an ellipse with gemiaxes & = 45, b = 75, and dig-
tance h = 80 cm. Four forces, each of 1,000 kllograms,
are applied at the four points wlth coordinates x/a =
*0.65 and y/b = #0.8 and produce a pure moment about the
axls b, The coordinates =x, ¥y do not satlsfy the elllpse
equation to the value y/b = 0.8, corresponding to a value
x/a = 0,60 on the ellipse. According to figure 13, there
corresponds, for the circle, to the value =x/a = 0.60 =a

value n = 0.0043; to x/a = 0.65 =& value n 0.0039.
The larger value ls the one used. Hence,
My £ P Elhb" n = 1,000 x 5-5—’;07—5 X 0.004% = 181 cm kg

Multiplying by the correction feoctor +/b/a the final re-~

sult becomes
My = 181 / %g = 234 cm kg
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2. Reinforcing Fraomes with Variable Strength 1in Bending

For those frames whose strength in bendlng variles
along tho clrcumference, 1t generally willl not be diffl-
cult to estimate the maximum values of the bending moments
on the basias of the above—computed results. If the frame
1s built co as to have a constant moment of inertia’and is
roinforced only at the places of maximum bendlng moments,
thcn the strain encrgy in bendlng - that 1s, the mean val-
ue of the momonts squared - decreases at the nonrelnforced
portion of the member. It wlll always be on the gafe side
therefore to dimenslion this nonreinforcod portion in ac-~ -
cordance with the maximum momont whilch would occur at thls
portion if the bendlng strength were constant all about
the clrcumference.

V. SUMMARY

In toking up the axial forces 1n monocoque structuros,
bendling moments are set up in the reinforcing rlngs. For
tho cnso where two reinforcing rings are provided to take
up tho forces, the bending moments are determined for sov-
eral loading conditions and plotted on charts, thus romoving
tho burden of lnvolved computntion from the desligner.

Translation by S. Reilss,
Nntiongl Advisory Committee
for Aoroncutics.
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Figure 2.- Ring loading due

to & transverse
force. .

' Figure 1.~ Stress distribution at &

ﬂ;3%% position far removed from
I \Z the point of application of an arbi-
6 //Z trarily directed force,

4

Figure 3.- Transmission of an
axial force in a
cylindrical shell.

Pigure 4.~ Axial force distribution
on cylindrical shell,

. I
)
’ Figure 5.~ Frame loading of a

_ circular cylindrical
shell, '

Figure 6.- Tsking up of Figure 7.- Equilibrium of a truncated

axial forces conical shell.
in a conical shell,
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Figure 8.~ Moment coefficient for symmetrically

loaded circular ring.
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