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STRESSES IllREIMFORCIN(3 RINGS DUE TO AXIAL FOROES

IH OYLIHDXICAL AED COHIOAL S!TRESSED SKINS*

By K. Dresohor and H. (3ropler

At the ende of a monocoque fuselage ooncentratod ax-
ial foroeo In the skin must generally be taken up. such t
axial forcos must also bo taken up in the ease of other
momhors whoro axial forces from the neighboring strossod
skin construction must bo considered. In order to tako up
theso axial forcoa two bulkheads or reinforcing frames may
bo arranged at the positions whoro the foroes are applied.
If t~ose bu].khoads mro in tho form of rings, bonding momonts
aro sot up in thorn. In tho present paper computations aro
porformod for o%taining the valuo of thoso bending momontq.
It is cssumod that tho Stressed sk~n IS cylindrical or con-
ical an~ that its cross sootion IS otrculnr or elliptical.
(Soo in thlg oonnootion, H. lVmgner (reforonoo 1).)

I. INTRODUCTIO19

When it is roquirod to tako up axial loads In a strossod
skin structure - for oxamplo, a monocoquo fuselage - two
reinforcing frames mro commonly attaohod nt tho positions
whore those loads aro to be taken up. How tho loads and tho
rosultlng stresses nro doterminod, is well known although
the actual carrying out of a comploto computation is quito
tedious. This is espocimlly true where the frames are to
be in the form of rings, h which ease the computation is
statically indeterminate. In order to lighten this task
for the practicing designer, the bending moments set up In
such reinforcing rings are computed and the results pre-
sented in the form of charts (figs. 8 to 13).

In order to reduce the scope of the computation only,
the following monoooque shapes were considered:

..——

*“6ber die bei Einleitung vqn L~ngskr~ften In Zylinder- und
Kegelsohalen auftretende Beanspruohung von Ringspanten.
Luftfahrtforschung, vol. 14, no. 2, Tebruary 200 1937s
p~o 63-7~.
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Cylindrical and. cantchl shapes.

Cross eection, circular or elliptical (ratio
of semiaxes 2/3).

Rings of. constant bending stiffness along
their circumferences.

Some of the most usual symmetrical and llantisymmet-
rical” (i.e. , one force tensile, the other compressive)
loadi~g conditions were considered from which, by superpo-
position, different loading conditions could be obtained.

In order to extend the ramge of applicability of the
results, they were presented in such a form as to enable
at least an estimate of the stresses to be obtained with
stresned skin constructions of other cross sections. An
estimate of this sort should bo sufficient since a knowledge
of the accurato values of the moments In the rings Is gon-
orally not required.

. In order to bo able to make an intelligent applica-
tion of the results, the general principles underlying
tho computations will ho reviewed below. The computation
procedure itself, howovor, will be omitted. Only for the
case of tho circle will the formulas used
tho charts be given.

11, UNDERLYIH(3 PRINCIPLES

for constructing

~fg~re 1 shows a t~in.w~lled s~~et.metal tube fixed

at its right-hand end. Let a concentrated force be applied
in.any direction at the left-hand end. - The stress at a
great distance away from the point of application of tho
forco may be computod from the relations for an infinitely
long p~$szmtical beam CI.S given in textbooks on the strength
of n,nterials (linear distrihutlon of axial stresses, etc. ,
fig. 1). ..

Tho stresses set up in the region where the forces
aro taken up, depend on the type of construction of tho
end of tho tube. In the case of very thick-walled tubes,
tho lending stlffnoss of the sheet metal is considered
sufficient to take up the strossos. Such cases will not
bo considered hero. In tho case of the very thin-walled
monocoquo structures that WCI shall consider below, wo shall
assuno thr.t tho bonding end twisting strength of the shoot
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?- ..., -metal Is negllgiblei. Stiffener frames are then required
that are strdng “enough to take up the. stresses acting in
their planes, such as, for example, latticewoi’k or rein-
forcing rings that resist bending.

The object of the present paper is to compute the
bending stresses for such ring stiffeners; In particular,
for tho case where ~ial forcee are to ho taken up.

1. Reinforcing against a Transverse Porte

Whoro a trans~~rse force IS to be taken up In a thin-
walled tube, only a single reinforcing ring lying in the
plane of the transverse force Is required. The stress
distribution up to the reinforcing frame is that corre-
sponding to the theory of infinitely long thin tubes. The
stress In tho ring itself iS dotormined from the equilib-
rium hotmoen the outer transverse force and tho shear
stresses transmlttod from tho sheet metal to the frame and
corresponding to the axial Strese distribution (fig. 2).
The formulas for the bonding stroesos oocurring with.thie
typo of loading for the case of tho circular reinforcing
ring havo boon given by Profossor Pohl (roforonco 2).

2. Rolnforcing against an Axial Forco

Whoro an axial forco is to be taken up, two reinforc-
ing frames at Q sufficient distanco from each other are
required at the end of the tube. Furthermore , it is neces-
sary to h~vo ~ longitudinal member extending from the point
of application of the axial force to tho second reinforcing
ring and which may be rivotod, for example, to tho sheet
metal (fig. 3, top), To the right of the second ring, the
stress distribution iS the linear ono corresponding to the
infinitely long rod. To obtain the stress at the ond of
the tu~o, we consider the equilibrium of tho portion of
the tubo cut off to the right of the second ring (fig. z,
beloti). At tho right-hand end the oxtornal force is that
corrospondlng to tho stress distribution of tho infinf~ely
long tulle, and this force must”bo in equilibrium with tho
oxterm.1 forco acting at the loft-hand cnd of the tube,
This structure, consisting of two reinforcing frames, tho
longitudinal rod, ad tho strossod skin is a statically
dotormlnate structure. If tho two frames are considered
aS flat disks, then the spaco onclosod may ho considered
r.s simply connoctod.

.
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For tho strossod skin tho IIshenr flow” q, that iS,
tho shear stress times tho wall thiclmess, is constant.
along the gonorating lino of the tube as may readily be
soon by neglecting tho bending strength of the metal.
From this it follows furthor that the axial forco docreasos
llnocrly along the tubo from the value P at tho loft-
hn.nd ond to zero at the right.

The “shear flow’t q may be found from the following
considerations of equilibrium: Imagine the cylindrical
tube, which is loaded by the axial force P, cut along
some gonorating line as shown In figure 4. Thorq will
then net along the edge A-A a constant shear flow q
whose valuo is to be determined (fig. 4, center), The
valuo of q along any other line X-X (fig. 4, below) is
obtcinod from the equilibrium of the axial forcos acting
upon the portion AX of the tube:

uQ
hq= hqA+

,/
pdu+XP

In order to determino
o
q~ we make a cut through the

cylindrical shell near tho end ring parallel to the sur-
faci of the latter. In this surface (for example, in the
riveting betwocn tho tubo and tho ring), the shear flow q
is transmitted from the tube to the reinforcing ring.
Since it is assumed that there are no externdl forces c.ct-
ing in tho ring eurface, the forces duo to the shear flow
q ]nzst be in equilibrium. In particular, the moment ‘q
about an axis perpendicular to the ring area must be zero.
From this condition. qA is determined.*

In the particular caso of symmetrical loading of a
Symmetrical shell this method of computing qA is not

nocoasary, qA then being dotormlnod from considerations

of aym~otry. The value of tho shear flow q transmitted
from tho tube to tho ring is now known at all posltlons
about the ring clrcumforonco, and the ring load consists
-— ——.———-—— —- ———

*There is first detormincd the moment MA due to the in-
q

Cremont of tho shear Aq = q - qA. The moment 2Y qA duo

to tho incromont of shear A qA must then be equal ead

opposite to tho moment MA (formula of Bredt). From
‘q

this it foilows that qA =m MA /2F where F is tho area
q

cnclosod by the cylindrical shell-



IU.A.C.A. Teehnieal Memorandum Hq. .847 5

of these shear forces held In equilibri~. The second re-
.- Infer.clng ring,qxperie-gceq ~ equal and opposite force.

Figure 5 shows, for example, a circular tube in equl-
l~brium under the action of an axial force at one ond and
the corresponding llnear stress distribution at the other
end and the shear load transmitted from the tube to the re-
inforcing ring. If these rings aro built up in the form
of frames, the bending moments occurring In them are ob-
tained from the usual computation for statically lndoter-”..
minnto frarnos with a degroo of redundancy of throo. Theso
moments depend on tho bending strength along the ring clr-
cumforenco.

For monocoque conical tubes the following may be shoyn
to be true. !l?hebending momonts that ariso in both rein-
forcing rings in taking up the forces P acting along the
gonorating line (fig. 6) aro equal and opposlto in the two
rings and have tho samo value as the bending momont for the
case of a cylindrical tube of equal loading P and whoso
reinforcing rings are tho samo distance apart and of tho
snmo shape, and whose llaonr cross-sectional dimensions ,
e.re oqunl to the geometric mom of the corresponding cross-
sectioncl dimensions of tho two rings of the conical tube.*

iT-
— —— ——

The ~roof is as follows: Let an axial force be applied in
the direction of the gonorating line at the left ond of the
portion of the conical tube botweon the two rings (fig. 7).
At the other end, in tho direction of the generating lines,
there is a, load distribution whose axial components in the
same manner as for the cylindrical tube may be assumed as
1inear. The conionl tupo portion IS In equilibrium under
those forces as may roadfly be shown (all tho forces pass
through the oono vertex). If we now imagino the clrcum-
ferenco of the right reinforcing ring to be divided into &
definite number of parts, then tho axial component of tho
forco appllod to each part is independent of the sl%e of
the ring. Thus the axial component does not change if the
cone is converted into a cylinder. The bending moments in.
the rings at the ends of the conical tube port~on Included
between the two rings are now computed In the general form.
From this computation the result iS obtained that these
bending momonts’for a given form of cross seetion of tho
tube and given lomdlng (ad thus also for given values of
tho axial components) aro proportional tO tho product of tho
llnenr dimensions of tho two rings. For “a conical tube
theso bonding momonts Nro thoroforo of tho same magnltudo as
for s cylindrical tubo mf oqunl form of oross section, Oqlld
length, and equal loading mhon those products are also tho
same, as was to bo provod.

I
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Having ~thus. ccirried out the 6omputatlon of the ring no-
ments for cyl-lnclrical tubes, these” moments may at once be
given for the conical tubes.

..

111. RESULTS

“Followtng the mdthod indtcated above, the bending mo-
mentc arising ‘in rings used for reinforcing against longi-
tudinnl forces in conical tubes mere computed for several
particular shapes, an& the computations enable tho designer
to oht~in nn estimate of the mouents O,lSO for other similar
shnpea. Tho particular shapes considered were:

~ulkiioad rings of constant bending strength along
their circumfcronco, circular rings, and elliptical rings
with sominxis ratio 3:2 .?

1. Notation

bl, leng$h of semiaxis of olliptlcal end ring represent-
ing symmetrical of llantisynmetricalll loadfng condi-
tion. For the circlo b “beconos equal to tho radius
i?..

al , length of tho other somiaxcs of the elliptical ond
ring or tho radius of tho circle.

b8s aa, lengths of the correspond.ing semiaxis of tho sec-
ond reinforcing ring.

h, distance apart of tho two reinforcing rings.

‘b o bcn~lng moment in the rings. M
t

is consi.derod posl-
tivo when tho outside fiber of ho end ring is under
tension, nnd in tho second ring under pressure.

v/u, nondinonsional coordinate of the point at each ring
whoro tho bonding momont ‘b acts; v denoting tho

length of arc nensurod. alo~g tho ‘ring circhforenco
from tho point B .on tho axis of symmetry, and u
the somlcircumforenco of the ring. (See sketch, fig.

6.) .“
..

.
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Notation (Cont. )

the angular coordinate corresponding to Vju for the
circle.

the foroe applied at the end ring in the direction o~
the generatrlx. Tensions are coneidored as positive.

x/al nondimensional coordinates of the point of application
1 of the forco. For the circle and the ellipse both co-

Y/tf ordinates are connectod by tho relation

x’ ys
*+—=1--

a I)a

To * in the case of the clrchi.tho. angular distance of tho
point of application of tho force from the axis of
~ymnetry or antieymmotry.

m, m~, the moment coefficient corresponding to the moment
lJ
b of the eymmotrica,l forcos P..

u, tho cxtornal momont about the axis bl due to the mn-
tisymmotric forces P.

n, nt, tho momont coefficient corresponding to tho moment
M of tho nonsymmotrlc forcos P mt tho end ring.

2. Results for Syamotricnl Loading

Tho symmetrical load chosen consisted of two equally
laTgc tonsilo forces P. As a particular oaeo, the two
forcota P coincide to produco a slnglo foroo of magnitudo
2P.

Tho results wore preeentod nondimensionally in the
fern of a moment coofflcient corresponding to the bending
momont ‘b in tho ring. For tho circlo and for tho two

olllpsos this coofficiont ie plottod as ordinate on tho

I
,-, . -, , . , , ., . . . . . . . .. .. . ——
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figures (8, 9, 10) against tho abscissa v/u, at whloh
the bending moment Mb is applied. The equal and oppo-

site bending moments in the two rings are

Mb
al b~ aa bl

=mP
h=

-mP–—
h

Tho different m curves apply to tho different points
of application of the load P, the value x/al being cho-

sen as the parameter of the system. The heavy drawn curves
correspond to positive values of y/bl while the lightly
drawn curves correspond to negative values. For the clr-
C1O tho mathematical relation holde:

applicable to the range O<q<vo. For
latlon is:

q>cpo the re-

&’.’.mlQ: Let an axial foice of 1,000—-—
a cylindrical tube of radius al = bl = ~a

kilograms act on
= b= = 60 cm

with h = 80 cm. The bcndln~ m~ment-in t~e ri~g with 2P =
1,000 kg, P = 500 kg iS: -

—

P al bl m
!l&h

where m has the value given by the curve x = O in fig-
C

ure 8. The naximum bending moment corresponds to the max- “
imum value of m and therefore occurs for the position
l=O; that is,
u at the point of application of the force,

and amounts to

Mb = 500 x :$ X 0.067 = 1,500 kg cm

If four equal forces P are applied and two of these

——, ,, 1 ml ■ I Ilml 111
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a’-. .
symmetrically lying foroes we directed opposite to the
other ‘two,” then this load represents an external tiending
moment, for which the ring moment Mb

.....
is again “given By

the figure (8). We have, namely,

where A m. Is the difference in the ordinates of the two
‘m curves, corresponding to”the two points of application

of the foroes.

The formula for the olrdle for the region Ocq<qo

The particular case is to b~ noted. where ~ = ~, corre-

sponding to a load of two pure bending moments. If the
magnitude of both moments is 2M, then

-uIQ: A bending moment is to be transmitted in an
elliptical conioal shell ‘ (bl = 60, al = 40, ba = 48,

as = 32, and h = 8Q cm). I’our forces P = 1,000 kg act

symmetrically with respect to the major axis b of the
ellipse, Por two of the forces x = 28 em, and for the
other two x = 38..8, ring I.

a) For all of the four rorces acting on the same .
side of the minor axis, the heavy curves

t xj al = 0.7 -a x/al = 0.97 aro to be con-
sidered. “ The maximum difference in the m “
values bqtwoen these two curves, according to
figure 9, occurs for V/U = 0.48 ma amounts
to 0..047.

.

is
. .

, ,. m-i m m- ■ ,, I , — . . .-.-———



..—

10 N*A&CiA. Techn~cal Memorandum Ho. 847

Tho maximum moment is therefore “

Mb = 0.047 ”3000 x 40 x 4Q = 1130 cm kg
max 80

b) If the two pairs of forces act on different sides
of the minor somiaxis, tho heavily drawn curvo

::;:: = 0.7) and tho lightly drawn curve .
= 0.97), are the ones considered. The

maximum difference now ohtainod for the m val-
ues for v~u = o is 0.057. Thu S , the maximum
moment now is

Idb = 0.057 UQLX 40 X4Q = 1370 cm kg
rlnlx 80

3. Results f~r “Antlsymmetrical” Loading

As r.n cmtisymmetrica,l loading thero ore chosen a ten-
silo 2orqo P and a compressive force of equal magnitude
-P, which together oxort cn external momont M about the
axis Ill.

Tho results r.re prosonted In nondimonslonal form in
terms of a moment coefficient n. This value is computed
for the circle cnd plottod on figuro 11 as ordinate. The
bending monont in the ring is then

()<cp<q)o is

ha “
Mb=mh- [

L
sin p

for n couple P, -P valid for the range

{
~ ein qlo + (lT-Qo) Cos ~o

}“

- CpCOSg sin q. - ~ (m-%) 1
..

{~sin q. - q. Cos go
}

+ (fi-~) cos @ sin ~o - ~o (m-@ 1
.

. .
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Hero too there is a limiting e“aee for .cpo= O, corroapond-

rn .-.Ing,to a.pure moment .M nt tho position qa = O. The for-
muln obtninod is

h“

On superimposing another couple P, -P in analogy
to the previous case considered, we have for O<cp<q)o

-2~cosgsingo-m q)1
This case corresponds to tho one previously consid-

ered, rotatod by rr/2, and tho formula nay in fact be oh-
tainod from tho othor by Q trnnsformntion of coordlnntos.

“guLml)lQ: Lot two equal P.nd oppositely dlroctod forcos
of 1,000 kilograms each bo a~plled at the end of a clrou-
lar conical shall” (al = bl = 60, %=% = 50, and h =

so cm). Let the angle subtended at the center be 100°.
We first compute tho momont M of the two forces shout the
axle hi . We have:

x= al sin 506 = 60 x 0.766 = 46 cm

Ii = P x 2X = 1,000 x 92 = 92,000 cm kg

The bonding moment in the reinfor~lng ring, thereforo, is:

“where for xja~ = 0;766, n is to be obtained from figure

11 by int~rpolation. The maximum value of n “oooure for
V/U = 0.23 and is equal to 0.040. The maximum noment In
each rimg is, therefore:

~b;a= = 92,000x 50 60 x 0.040
:0 .

= 2,520 cm kg
.

E~nDle : Let four forces he applied at the end of
the cylindrical shell (R = 60 cn, h = 80 cm) that havo
a rosultmt zero. One pair of oppositely directed foreos
Is applied at Vi = 30° and possessos the moment M. =



I

12 I?.A. C.A. Technical Mondrandum 19u; 847

‘“ 100,000 cn kg. Tho othor oppositely directed pair act at
lp* = 1350 and oxort an equal and opposito monent. Wo

ham :

?++Jog
[ (n)x - (n)=

= 0.5 =0.707 1
a a

z=
a

positivo

Tho naxinun difference hotwoon the values in the brackets
occurs, according to figure 11, for CP = 41° and amounts
to nl - na = 0.087. Thus

Mb = 100,000 x ~ x 0.087 = 6,530 cm kg
max

Figure 13 shows tho particular case for two pairs of
forces corresponding to a pure moment. This figuro is used
to particular advantage when the maximum moment in the ring
and not tho point appllod, is desired. The graph clearly
shows tho largo oscillations undergone by the maximum
stress dopendlng on the position of the points of applica-
tion of tho forcos.

IV. XXTEITSION OF AF’PLACABILITY Or TEE RESULTS

1. Other Forms of Reinforcing Frames

In ordor to oxtond tho range of applicability of the
computations whfch have been carried out for only three
particular forms of reinforcing rings, it was attempted to
find such nondimonslonal valuoII for the abscissa, ordinn.to,
and pcranoter of tho point of application of tho forces, :.s
to cover tho curvo families for all three forms as far as
possfblo. Thic point of VIOW lod to the choico o~h~h~o:~ri-
ables n, n, T/U, x/a, and y/b as glvon above.
parison made In flguro 12 of tho symmetrical loading for
sovcrr.1 points of .-.p~lication chows qulto good agreement
with. tho groups of curves. In partlculnr, if tho compari-
son ia mr.do, for dofinito polats of application, betwoon
tho naximum values of m for tho ollipso with thoso for
tho clrclc, then tho difforonce remounts to - nt most - 20
percent.

I
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Frpm. the above dgreement, the follbwln~ rule may bo
set up for estimating an upper limit fo~ the maximum bend~

-
“flig’motidn%a for “ellipsds witl othor serniaxts ratios and for
other elliptical-shaped frames; for example, those put to-
“gdther. out of four circular arcs: . “.

For the given end frame with semiaxes al and bl,.
the ratios

..
xja~ and y/b= corresponding.to the given

points of load application, are determined. The maximum
value of m or n is taken for the less favorable of
these two ratios from figures 8, 11, or 13 applicable to
circular forms. The maxtmum bending moment for the given
form of reinforcing ring is then approximately

al ba
MbNp~m

,
or

MbNM~.n

The value obtained 1s then multiplied by the larger of

the two values ~~ and~.

E~m~ 1e : Given a cylinder having a cross section simi-
lar to an ellipse with semiaxes a = 45, b = 75, and dis-
tance h = 80 cm. Four forcee, each of 1,000 kilo ramo,

7are npplled at the four points with coordinates x a =
+0.65 imd yjb = +0.8 and produce a pure moment about the
axis b, The coordinate x, y do not satisfy the ellipse
e uation to the value
7

y/b = 0.8, corresponding to a value
Xa= 0,60 Qn the elllpse. According to fi re 13, there

rcorresponds, for the circle, to the value x a = 0.60 a
value n = 0.0043: to X/~ = 0.65 a value n = 0=0039.
The larger value is the one used. Hence, “

Mb
al ba 45 x 75

*P-~n=1,000x- B. x 0.0043 = 181 cm kg

Multiplying by the correction fcctor c b a the final re-
sult becomes

Mb r= 181 ~ = 234 cm kg
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2. Reinforcing Frames. with Vnriable Strength In Bending

For those frames whose strength in bending varies
along tho circumference”, it genercdly will.not be diffi-
cult to estimate the maxi”mum values of the bending moments
on the basis of the above-computod results. If the frame
is l)uilt no as to hnve a constant moment of inertia’and is
reinforced only at the places of maximum bending moments,
then tho strain energy in bending - that 1s, the moan Val:
uo of the momonts squared - decree.ses at the nonreinforoed
portion of the member. It will always be on the safe side
therefore to dimension this nonreinforcod portion In QC- -
cordanco with the maximum momont which would occur at this
portion if tho bending strength were constant all about
tho circumference.

v. SUMMARY

In tr.lclngup the axial forces in monocoque structures,
bending moments ore set up in the reinforcing rings. For
tho cr.so where two roinforclng rings are provided to take
up tho forces, the bending momonts are determined for sov-
ornl loading conditions and plotted on charts, thus removing
tho burden of involved computation from the designer.

Translation by S. Reiss,
I??.tioncl Advisory Ccmmittef3
for Aoronc.utlcs.
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