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UM IVERSAL LOGARITHMIC LAW OF VELOCITY DISTRIBUTION
" AS APPLIED TO THE INVESTIGATION OF BOUNDARY
LAYER AND DRAG OF STREAMLINE BODIES
AT LARGE REYNOLDS NUMBER¥*

By G. Gurjienko
INTRODUCTION

Previous investigation devoted to the study of the
turbulent boundary layer and drag of wings and figures of
revolution were based essentially on the assumption of the
power law of velocity distribution in the boundary layer,
the exponent n in the velocity distribution formula

u o= ug (%jl (1)

(where u is the velocity in the boundary layer, Uy =
the velocity at the outer limit of the boundary layer,

v = the ordinate taken normal to the wall, and § = the
thickness of the boundary layer) being taken egual to 1/7.
Using this method the problem of the cylindrical wing was
solved by Miller (reference 1) and that of the airship
body by Millikan (reference 2).

However, as various tunnel tests have shown (see
Wikuradse, reference 2), the form of curve (1) varies with
the Rewvnolds Number in such a manner that to a first ap-
proximation the exponent successively assumes the values
1/8, 1/9, 1/10, etc., as the Reynolds Number increases.

A certain forward step in investigating the effect
of a change in n " with Reynolds Number on the boundary
layer and the drag of figures of revolution was taken in
1932 bv X« Ko Fediaevsky (reference 14) who, making use of

¥*Report Ho. 257, of the Central Aero-Hydrodynamical Insti-
tvute, Moscow, 19326,
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the test data of Nikuradse for smooth tubes, found an ap=-
Proximete relation between the exponent n and the Reynolds
Number formed from the velocity at 1nf1n1ty and the length
of the body (Re = VL/v).

The above-mentioned method possessed, however, two
unavoidable theoretical defects, namely: 1) the computa-
tion, on the basis of Nikuradse's tests, of the relation
n = f(Re) was very approximate and 2) the variation of
n along the body at constant Re was neglected. The
first defect may only be removed by conducting numerous
tedious wind-tunnel tests with figures of revolution, sim-
ilar to the tests of Nikuradse, and these would hardly
give satisfactory results on account of the smallnegs of
the Reynolds Numbers attainable in our wind tunnels. With
regard to taking account of ‘the variation of n along the
length of the body due to the gradual increase in the lo-
cal Reynoldg Number slong the body, we should be confront-
ed with very great mathematical difficulties in the solu-
tion of the boundary-layer equation in attempting to find
and to substitute in it some relation between n and the
Reynolds Humber Ry = igﬁ‘ (2)

With the above considerations in mind, we proceeded
to work out a method for applying to the solution of the
problem of the turbulent Dboundary layer and drag of stream-
line Dbodies, the universal logarithmic law of velocity
distribution theorctically developed by Prandtl (reference
5) and Kdrmdn (reference 6) in 1929-1930. As will appear
below, the universal logarithmic law - by the very prin-
ciple on which it is based =~ avoids both the difficulties
mentioned above and offers, if not a final solution, at

least one that much more closely approaches actual condi-~
tions.

The universal logarithmic formula of Kdrmdn was used,
as giving better agreement with experiment and as being
derived from more rigorous assumptions than the correspond-
ing formula of Nikuradse-Prandtl., As will be shown below,
however, our equations are entirely applicable also to the
case where the Nikuradse-Prandtl velocity distribution for-
nula is taken as a starting point since the difference
will evidence itself only in the change of certain con-
stant coefficients.

In the present paper we shall consider a figure of
revolution, so that the formulas applicable to the more
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sinple cases as, for example, a wing or a flat plate will
follow from our equations as corollaries.

For checking the results of our theory, we made use
0of the data derived from the excellent tests of Freeman on
a 1/40-scale model of the airship "Akron" conducted in the
large HehAoO.A, wind tunnel.

At the time when our work was already completed in
its essentials, we obtained a preliminary report on the
work of Moore (reference 7), in which the problem of a
figure of revolution ig solved by application of the
Nikuradse~Prandtl law. Our equations, however, appear to
be more general in the sense that they are applicable to
various bodies and appear moreover to be exact solutions
of the integral relation of Kidrman which lies at the basis
of the boundary-layer theory, since we are the first - so
far as we know - to take full account of the curvature
of the concentric elements of the boundary layer, i.e.,
theilr various distances from the axis of the body of rev-
olution and to show nunerically that the varlation is
snall and doeg not appreciably affect the final result =
thug rigorously vproving that the curvature may be neg-
lected. In addition we give, in our opinion, a more ra-
tional procedure for the numerical integration of the
equations obtained than does Moore. The greatest differ-
ence, however, between our work and the similar work of
other authors lies in Dbringing to light the large devia-
tions of the results of apolication of the Karman theory
in its original form from the results of experiments. In
the second »art of this paver we have attempted to explain
these discrepancies by subjecting the logarithmic theory
to a general criticism, We have thus succeeded in derive
ing theoretically a sufficiently justifiable method of
rendering the logarithmic theory nore precise, after
which 1% was found to be in excellent agreement with ex-—
perinent.

In the first part we shall derive the fundamental
equation for a body of revolution according to the Kdrmdn
theory in its original form, and in the second part we
shall give all the comparisons of the results of tests
with the modified theory.
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PART 1

1. UNIVERSAL LOGARITHMIC FORMULAS

Before pfoceeding with the problem itself, we shall
briefly review the essentisls of the Xdrmdn theory.

Kédrmén starts out from the following two fundamental
assunptions: 1) Both the turbulent mixing characteristics
(the mean mixing length) and the turbulent friction at a
glven point are coupletely determined by the characteris-
tic nagnitudes of the mean flow at the given voint -~ in
particular, by the derivatives of the mean flow; 2) The
turbulent flow pulsation patterns are sinmilar, i.e., dif-
fer only in the time and distance scales and do not de-
pend on the viscosity.

As the tests of Stanton and the later ones of Fritch
have ghown, the velocity-distribution patterns at pipe secw
tiong having different wall roughness ~ i.e., having a dif-
ferent shear stress at the walls — appear to be entirely
identical provided the difference between the maximum ve-—
locity at the channel axis and the velocity at some other

—
point 1s expressed in terms of w/%g where T, 1s the
shearing stress or skin friction per unit area at the wall
and p is the mass density:

Unex T % _ (E) (3)

r
/-2
P

In the above 2z 1is the distance from the pipe axis at
right angles to the mean flow direction and r i1s the
pipe redius. Thus the expression at the left is a func-
tion only of the coordinates and does not depend on the
vigscosity. This, naturally, is true only for regions not
too near the wall,

The above suggests the existence of ectual mechanical
similitude between turbulent flows having different dynam-
ical boundary conditions (shear at the wall).

If the form of the function f(z/r) in expression
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(3) is found, the problem is easily solved with regard to
the velocity distribution in the pipe, the maximum veloc-
ity Umngys and the pipe resistance.

The most important feature of formula (3) is that it
is true for any sufficiently large Reynolds Number; i.e.,
that the form of the function f(z/r) does not depend on
the Reyaolds Number. For small Reynolds Numbers, where
the effect of the viscosity shows up more strongly, formu-—
la (3) has less validity.

The problem of finding the function f(z/r) was
solved by Kdrmgn (reference 4) by applying the above as-
sumptions. of mechanical similitude of the flow pulsation
patterns and the absence of the effect of viscosity te the
fundamental hydrodynamic equations (reduced to the Helm-
holtz form on the assumption of the existence of a flow
function for the actual velocities). He obtained a new
formula for the mixing length 1: '

where u' and u" are derivatives of the velcclity with
respect to the coordinate at right angles to the mean flow
and X 1s a universal constant. ZEliminating 1 by the
known expression

T ~=p 12 wr? (4)

{which, as Kérmén_has shown, also appears as the result of
the assusption of similitude of the pulsation field) where
T 1s the shearing stress at any peint of the flow, and
assuming T to vary linearly with the distance 2z from
the axis of the pipe; that is, T = T, % 1) X&rman obtains

the fundamental differential equation
k% gy = -2 2 (5)

Upon integrating, with the corresponding choice of

the constants of integration (at 2z = 0 u = Upax and at
z = r u' = »), there is obtained:
1)

This expression is 2 result of the reguirement of dynamic
equilibrium of the cencentric walls of the fluid cylinders
for the establighed mean flew,
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o - u ,

i.es, the form of the function f(z/r) is completely de-
termined.

Introducing, in place of the distance =z from the’
axig of the pipe, the distance y from the wall (z =

°

r -~ y) from (6), we find for the ratio wufup

max
u 1 4T A

m— s L —9[111 <1- /1_Z)+ /1~-ﬂ (61)
U‘max h umax p F I'J

As nay be seen, the ratio u/u is not subject to the

max
rower law. It is interesting to note that as the Reynqldg_
Number increases - that is, with decreasing value of JTO7p,

curve (5!') changes its form, the curves obtained closely
approaching the power law with consecutively decreasing
exponents -~ 1/7, 1/8, 1/9, etc.

The dependence of the velocity profile on the Reynolds
Number is thus already contained in formula (6t). It is
not difficult to show that eguation (6!') has a discontinui-
ty at y = r; that is, on the axis of the pipe - a result
which ig due to the fact that derivatives of u with re-
spect to y Thigher than the second were neglected. The
effect of this is only slight since the break in the smooth-
nesg of the curve (6) at y = r 1s very small. At y = O,
that is, at the wall itself, the function (6) gives infi-
nitely large velocities u of logarithmic order. This is
also explainable theoretically since the entire theory
ceaseg to be true near the wall ag a result of the strong
increase in the effect of the viscogity. The latter re-—
sults in the formation of a thin laminar layer at the wall,
the existence of gsuch a layer having been verified by nu-
merous tests. The thickness of this layer and the veloci-
ty just outside it con only depend on the friction at the
wall, the viscosity, and the fluid density. On the basis
of dimensional considerationg this thickness may be ex-
pressed as

- B e (7)

8
lan
/ To
P
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and the velocity uslam Just outside the layer as

A J/f; (8)
us1am - P

By the use of the -above expressions Kirmdn was able
to derive the law for the registance of a round pipe.
Assuming law (6) to be valid from the outer boundary of
the laninar layer to the center of the pipe, that ig, from
¥y = 8lam to y = r, the value of the velocity at the

pipe axis may be found from expression (6), written for
¥y = 81am*t

, 1 LT / 5 / 5 ]

o lam) lam

kol — - o4 l l —. l ——— N 1 — SR
max uG 1 an X p [— n (\ T T J

Since 61,4m 18 very small Dby comparison with =,

this expression may be simplified by extracting the approx-
imate root

8 8
1 . —iam 4 _lam

N T er

There 1s then obtained.

1 /7, T 2r
Unax = Ys oz J/*g tln ——— = l} (9)
lam X P L 81am

- -2 r
1 /-TO P
- = =2 A

Ynmax K/ P ln " c (10)

where ( includes the constants A, B, etc.

Substituting in expression (2) the Reynolds Number of

U T
the pipe R = ~#§§—~ and the nondimensional frictional
To
coefficient Op = g-———z——, we obtain:
Z P Uingx
X2 - 1n (r/Cp) + O (11)
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where C! = 0 + 1n J?i

This dependence of the resistance coefficient on the
Reynolds HNumber agrees excellently with tests over a wide
range of Reynolds Numbers.

In 1930, Prandtl obtained 2 universal logarithmic law
of velocity distribution somewhat different from the law
discussed above, of Kdrmdn. Prandtl considered the infi-
nite flow about a fixed wall and assumed the mixing length
to be proportional to the distance y from the wall =
i.ee, in place of expression (4), he had

1 =Ky (41)

This gave, after integrating the expression 7T=p I u ,

——— = = In y + ¢

fikuradse, on the basis of hig tests, obtained the
fornmula

U~ Ymax _ . J]‘; 1n = (M)
/To ) ’
P

which nay easily Dbe obtained from the Prandtl formula by
applying it to a pipe, excluding the constant ¢, and
using the condition u = up,y, at y = r. This is the
formulae also used by Moore.

It is intercsting to note that if expression (6") is
applied to the laminar layer at the wall as was done above
with formula (6), we obtain the same expression (10) but
with the consgtart C differently combined out of the un-
known coefficients A, B, etc. Thus the same resistance
law is obtained. The constants C! and X may be de~
termined only experimentally. Up to the present these
constants have been determined by Kdrmdn and Nikuradse en-
tirely by experiments on the dependence of the resistance
of pines on the Reynolds Number R, that i1s, by compar-
ing formula (11) with tests. In doing this it was assumed
that the universal constant K +thus determined is iden-
tical with the constant ¥ that enters into the velocity
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formulas (6) or (6")., In the second part of our work we
shall give special consideration to this problem and show
that actually this is far from being true. For the pres-
ent, we shall pass on to the derivation of the equation.
for the solution of the boundary-layer problem and the
drag of a figure of revolution, using as a basis the ve-
locity and drag-distribution formulas of Kdarman in the
-general form in which he derived them. '

2, DERIVATION OF THE FUNDAMENTAL EQUATION

. In the previous section we considered the laws of
flow and the resistance of a circular pipe ag derived by
Kéarmidn from the theory of mechanical similitude. The solu-
tion of Kérmdn refers to the so-called "internal problem.”
OQur object in this work is to obtain a solution of the
"external problem," 1.e., the case where in place of a
flow enclosed within a cylindrical pipe we have the flow
of an infinite mass of fluid about a body. This body in
our case will be a figure of revolution -~ for example,
the hull of an sairship.2) We shall not distinguish the case
of motion of a body in an undisturbed-medium (airship
flight) from that of a turbulent stream flowing up to a
body fixed in position (aerodynamic tunnel) although these
cases are not equivalent from the point of view of drag.
The drag, as we know, depends chiefly on the character of
the boundary layer which in turn is determined exclusively
by the Reynolds Numbor VL/U computed from the velocity
of the motion (or the velocity of the mean flow at infin-
ity) and some linear dimension of the body. The Reynolds
Number affects both the absolute thickness of the boundary
layer and the position of transition of the layer from the
laminar to the turbulent condition. Since both of these
factors also depend on the degree of turbulence of the
flow in the tunnel, this degree of turbulence may be taken
into account, in the final computation, by a correspond-
ing incrcase in the Reynolds Number. It is true that
since up to the present we possess no method for the guan-
titative determination of the degree of turbulence, we
cannot as yet perform such a aumerical operation. For
this reason, strictly speaking, we may only study the mo-
tion of = body in an undisturbed medium., This is the case
of greatest practical interest.

2)In this work we shall consider only bodies with smooth

surface.
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We shall apply the conclusions .of the pfevious”seqtion
"in their entirety to the external problem. It is therefore
-necegsary to cons1der the Justlflabillty of thls procedure.

The turbulent boundary layer adbout a body situated in
a flow 1s that region 'in which the action .of the turbulent
friction destroys the velocity distribution given dy the
potential flow. We have the same condition also in a cir-
cular pipe. In this case these frictional.forces give the
velocity profile of expression (6!'). Since the latter was
derived on the assumption that the effect of the turbulent
friction shows up throughout the pipe cross section, it
follows that in this case the entire region within the pipe
is a "rolled up" boundary layer whose thickness is equal
to the pipe radius and whose outer '1imit has become & sin-
gle straight line, namely, the axis of the pipe, The ve-
locity at this axis is, according to formula (10), a funce
tion of the frictional intensity at the wall, i.e., a func-
tion of the state of the boundary .layer. In the case of
the external problem thigs velocity Jjust outside the bound-
ary layer will .appear as the boundary condition determined
by .the potential flow outside the boundary layer. This is
where the difference lics between the internal and exter—
nal problems. The velocity just outside the boundary
layer we gshall in what follows denote Dby Ug e

Strictly speaking, we are not quite justified in pass-—
ing directly from the internal flow along the rectilinear
wall of the pipe to the external flow along the curved -
boundary of a wing or figure of revolution. It has been
established by tests that the flow, for example, in diverg-
ing and converging channels is not subject to the loga-
rithmic law. It would »e more rigorous if the transition
to the external problem were made from the latter two
cases., Since, however, we have up to the present, no so-
lution of the problem of turbulent flow in diverging and
converging channels, we are required to make use of the
generally adopted method of transition to the external
problem from straight pipes.

Thus, denoting by &8 the thickness of the boundary
layer, we shall have for the external case ag the ve1001ty
dlstrlbutlon in the boundary layer

v = U ( /1 ﬂ Y
BBl ¢ R 1 1 -~ - 1 - L 12
T K[n 6:‘ (12)

0

P
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where y 1g taken normal to the surface of the body.

Formula (11) g giving the denendence of the frlctlonﬁl
coegfficient on the Reynolds Humber, becones: T

Kv2 - 1n (Ry/Cg) + O (13)
V Cr

where the coefficient Cp is the ratio of the local fric-

tional 1nten51%% to the dynamic velocity Just out31de the
boundary layex

B (14)

and the Reynolds Humber is computed from the velocity just
outside the boundary layer and thc thickness of the laycr:

Ry = —%— (15)

As may be secn, in the case of the external problem
we bring into consideration, in place of the known radius
of the pipe the unknown thickness ‘of the boundary layer
which, as ig shown by both theory and experiment, varies
along the hull., Thus, for a complete solution of the prob-
lem, we must have still another condition that connects
the varigble thickness & of the boundary layer with the
other variables, of which Ug ig considered as given by

the assumption of a potential flow Just outside the bound-
ary layer.

An ndédditional relation of this kind appears to be the
well—krown integral relation of Kirman which we shall now
consider. This relation, derived for two-dimensional,
steady flow assumes, for a figure of revolution, the folw
lowing form:

a .)6 . 5 }5 . aP / b
3 j/ Ewr’pugdy~u6 = j/ 2nr 'pudy = - == errr tdy—2mr Ty

os |
° ° (16)

aThe locnl frictional intensity as we shéll see farther on,
will wvary along the hull of the body.
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where s is the length along the hull of the figure of
revolution, measured from the nose.

r!, radius of a concentrlc element of the surface.
(See fig. 1.)

P, density of the fluid.

vy distance from the surface measured along the
normal,

8, thicknegg of the boundary lay

u and Uy, mean v01001tles within and Jjust outside
the’ layer.

Py, static pregssure at boundary layer.

r, radius of circular section of figure of revo-
lution.

local shearing stress (or skin friction per
unit of area) and the variables have the follow-
ing functional relations among each other:

ug = ug(s); p = n(s); v = r(’s)‘

Expression (18) thus gives the required additional

relation expressing either T, as a function of § and s,

T,(8,8), or & as a function of T, and s, 8§(T1,,8) . and

the problem thus becomes determinate. In eguation (16) the
left-hand side represents the increase por second of the
momcntum of the fluid at an element of boundary layer of
length ds and the right-hand gide gives the sum of the
forces acting on the boundary layer. Thisg relation will

be proved below.

Figure 1 shows a portion of a section of a figure of
revolution (generating line ab) with the boundary layer of
thickness §&. Through voint A on the body, pass a conical
surface nornal to the surface of the body. Let the gener-

ating arc ab receive an increnment ds = AA' and through
point A!' wvass a conical surface A'3' normal to the sur~
face of the body. Through the circle of intersection of

surface A'B! with the outer sur®ace of the boundary layer
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ve poss the "surface of flow®™ al'b?!. We thus obtain an
annular element of & "tube of flow" bounded by the surface

of flow and the body. To thig element we may apply the
"momentum law.,"

Let ug denote the mass of fluid flowing per second
through section AB of the boundary layer by Q and the

morientun associated with this mass by J. These nmagnitudes
are gilven by

f.s
Q = / 2rr tpudy
0
38
2
J =“/r2ﬂr'pu dy
“o
In passing through the element dg, the mass Q and

its momentum J increase by %% ds and %% ds, respec-—

tively; that is, the mass and the nomentum of the fliuid
flowing through section A!B! will be

q + gg as, J + %g as

The increase in the mass gg ds can only be obtained by

s
the entrance of a rass of the potential flow fluid through
portion BBy of the section of the tube of flow. Since
the velocity of this inflow is ug the momentun of the
fluid introduced through the entire section AB: will be

&~

J+u6:g-§‘ds

Our sur’ace of flow was so drawn that the section A!'B!
of the boundary layer is at the same time a section of a
tube of flow. Thus the increase in the nmomentun of the
fluid through an element of the tube of flow will be

.8
37 89 ;. _ 2 [ ]
T+ 55 ds = 7 - ug.§7 ds = 55 L. emr tpudy
-O
8
ds - 1 jz I ?ﬂr'pudy] dsg (a)
6 9s - ]

o]
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This increase of nomentum per second should, accord-
ing to the nomentum law, be equal to the sum of the forces
acting on the elenent of the tube of flow in the direction
of the nonentun vector. If the static pressure at the left

of the elenent is p and that at the right p + %2 ds the
s

force, evidenced by the drop in pressure, will be

5+ 28 ag s+ as
ca

. )
d
— [ <p + —a«g ds) / 2r 'dy—-p / enr 'dy

o o

i

| P

§ + Qﬁ ds
Ss

/)

= - [ g% d/ 2ﬂr'dy} ds

L
0

The minus sign is chogen since a positive pressure gradi-
ent <= corregponds to a force in the opposite direction

to the nomentum vector.

Breaking up the integral thus obtained into ftwo, we
have

386
4 2
. 8 35 ds s
!—' [3 [ _
- | op / 2wr’dy*+22 / 2wr'dy1 ds = - [ég /q2ﬂr’dy} ds
L 38 | 3s | 3 Loe 4 J
° E ° (v)

The second integral vanishes since it is infinitely small
in comparison with the. first. The resultant of the turbu-
lent frictional foerces on the element ds will be

- 2nm r T, ds {e)

Equating expresgsion (a) to the sum of expressions
(b) and (c) and dividing through by ds, we obtain the
integral relation (16) of Kirman.
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(%1}

We have assumed throughout that the static pressure
does not vary along the thickness of the boundary layer.
Actually there exists a certain, though very small, pres-
sure gradient in the boundary layer (see, for example,
reference 12), of which no quantitative account can as yet
be taken. Attempts to determine the normal forces re-
sulting from the pressure gradient normal to the surface
by equating them to the integral of the centrifugal forces
of the vnarticles of fluid noving on a given curvilinear
contour in the boundary layer gave negative results - the
pressure gradient obtained as a result of the centrifugal
forces making up, for example, only half the value that is
actually observed.

Our problen now is to bring equation (18) into rela-
tion with expressions (13) and (14). We shall first trans-—
form expression (15). The radius 7! of the concentric
elenent of the boundary layer, according to figure 1, is
egual to

r! = r + y cos €

where € is the angle between the tangent to the generat-
ing line of the body of revolution and its axis. The
guantity y cos € is generally neglected by comparison
with r; that ig, r'" 1s congidered equal to r and the
effect of thig simplification on the final result is not
analyzed. We shall not introduce this simplification in
order that we may have the posgsibility of determining the
effect of neglecting ¥ cos 6 on the final result. Sub-
stituting in expression (16) the value of r!', dividing
by 2w p and transferring to the left-hand side the nom-
bers containing cos €, we obtain:

8 B 8 8
- A D Jmarel [ 2 avens 2 [ epst -
55 / T dy-ug 53 / rud3~+as cos € ? yay-ug 35 / cps buydy=
0

» .

o 0 o
i/ O
2 / (r+y cos ¢ ) d&y-r =

J

0

= -1
P

Qo
w |t

Taking r and cos 6 outside the integral signs as belng
indepeéndeant ¢f y and performing all -the possible differ-
entiations and integrations, we havse: '
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.}5 8 & 38
r 2 W dy + or ? a 2 udy - u ar udy +
55 [ o v 55 [y -y 55 [eay - wg 5p [y
kS ° 0 S
s /0 3 0 3 9
+ = 2 ydy + __EQE_Q 2 vdy-ug cos O —— ./ uydy -
cos © asn/,u Ty as ./ W yeT-ts as | yey
o 0 0
8
d cos 6 -1 3dp 1 2 > To
hnd TN e s e =g i e — e ——— 17
ug - ﬁ/nuydy 5 54 <r84-2 8% cos @ * - (17)

0

To the region outside the boundary layer we nmay apply
the Bernoulli theorem and thus express the pressure gra-
dient eatering into the expression on the right-hand side
in terms of the velocity just outside the boundary layer.
We have:

I~

p ug

p + 28 = constant
2
Differentiating with respect to s, we obtain:
1 dp au5
e — = u6 R
o OJs o8
Grouping the terms in expression (17) and substituting the
2l £ L. Op h
value o ~ Pﬁ‘as s we have:
r 26 28 - T 28 o

3 i e 2 f | o] [0 ]

= / udy- = dy | + == | u® dy-u ud +
rL agv/ y~ug Bsﬁ/ u yJ 33 L y~ug J

0 0 o 0
8 8 8 8
r / {'
o) d 1 3cosh | 2 1

+cosgb| —= Ady-~tg =—— uwydy | + === ! u ydy~-u uydy

561 55 / o vy gaS/YJJ% Sa L‘/ﬂ ydy g/yJ

0o o] o] ¢}

au& 1 2 TO

= Ug ST (r& + 5 5° cos S) - s (18)
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now compute the integrals in expression (18).
: . To .
We shall denote the expression ry by vs. This

expression, which appears as the "dynamic scale" of veloc-
ities in equation (12) and has the dimensions of a veloc-
ity, we e¢hall denote ~ following the suggestion of Profes-
sor L. Go Loltsansky - as the "dynamical velocity.!" We
shall further introduce & new variable =x:

(19)

X = 1 =

l._l
1
o |

noting that a variation in y from O to § corresponds
to a variation in x from O to 1. We. then obtain from
exvression (12) the velocity and its square:

v
u = ug + X [In x + 1 = x]
K (20)

2 ,
o v* 2
uw o= u§3 + 2 08— Mn x - x + 1] + “%g (ln x = x + 1)

9
o
4

*

Te mey now compute all the integrals, bearing in mind that
in agreement with the change in variables (19):

il

2
¥ § - & (1 - x)

asr

&

25 (1 - x) dx

i

Tithout going through all the computations, we shall at once

write down the final result:
N
’ ( 5 v
Udy = 8§ L Us =~ — _f>
N v 8T X
0
20 10 uev 14 v42
2 _ 2 : §V* *
wdy = 8§ <u - 22 0T+
,// & TF X g X%
° (21)
)
1 2 / 23 Vx
uydy = = § VR ™ —— ——
h/ T =3 \"6 " %0 %
0
8 46 2
2 1 .2 L6 ugva 601 vy
wydy = = § <u —_ e
/ Ve =5 5 T 850 K 1800 X°
o )
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In the process of integration we mect with integrals

with respect to =x, and it is useful to write these down:
1
e
1) ,/ ln xdx = [x 1n x - le = = 1
. 0
o
1 ‘ 1
%2 1n x x2 1
2) x ln xdx = | =5 = == = - =
Y L 2 4 4
5 0
1
3 {"’-3 i ..3—11
3) / %% 1n xdx = ;i—“l£~z - Er’ - - i
'ZJ L [ S‘ —IO 9
0
i : Fx4 1n x 21t 1
4 }/XS 1n XdX:I ———————— - = = we e
)_j 5 4 16 | 16
o}
I‘kl
1
5) // 1In®xdx = [x 1n®x - 2% 1n x + EXJG = 2
o
P 2 {x2 1n? x x2 1la =x= x2 b 1
6) x Iln " xdx = - ind o o = -
L 2 2 4 | 4
% _.lo
0
31 - 1
3 2 v Lo} 3 3
7) %2 1% xdx = lzmmig—~§ - =X in x + 2x ] = =
N L 3 9 27 1, a7
o
')l ~ 4 a 1
i x® 1n® : x% 1n x x4 1
8) x3 1n® xdx = ‘x 2_E L el B
. L 4 8 SZJO 32
0

All the above integrals are readily integrated by parts
noting that the limit of the expressions x7 1n™ x, where
n and m are positive integers, igc zero ags x approaches
zero, as may readlly be wnroved by repeated application of
the L1Hogpital rule.

Before substituting the intezrals (21) in expression
(18) we shall eliminate from them &. Uging the expressions
for the friction coefficient O and the Reynolds Number

Rg as given by (14) and (15), we obtain from (13):
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1

. - U, 8 f_—?r

§_2£§_~_~ ln‘( 5 M// 2'0\ + Gt

/2T, v
Pu52

K'll6

Vi

cr

it
et
&)
N
<|
|
<
*
N
+
<

and introducing the coastant C!' wuncer the logarithm sign,

i.0ey substituting ec’; = 05, we obtain on solving the

above equation for &

Kug Kug
v v Vs
§ = ———m—— € S
Ca 2V v
. , v )
where we have gset —-—— = n = consbant

Cp /2

We shall introduce, in analogy to what was done by
Kdrmén for the flat plate, a new variable =z:

X u
2= b
whence
- X Ug
* = T
and 5§ = 2 z_e” (22)
E wug

Denoting the constant numerical values entering into
the expression for the integrals (21) by letters:
5 14 23 601

2 2 A4; =2 =2 B; S22 @ —o2n o= by v tain:
6 F g " 35 T ® Tgop - Pi We obfain
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5
3
/ 2 n ze? ( 2 oAU, Bug? ) n ( )
1w dy = -~ 22 1 - SEE8 4+ 23 = = uze? z-2A + =
:/ v K ug 8 zZ zgﬂ K O
2 .
e .
n ze Au n
!/ udy X ug Ug =) z © (z A)
0o
&L 2 222 2 28
n e Us n
uydy = —=z 2—25— [ug - g — = =25 8 (2% - az)
. 2x®  ug° & .7 g 2K ug
o
8 2 2% Daus? - busd 2
/ WBydy = — ,.,f:.__ (“6 - 580 “g ) = L e2%(32.2a7+D)
J 2K ug? z z 2%
0

The derivatives of these integrals with respect to s will
be:

5

3

5] : n dz g

— s % Eend e ooy - +
S//'udj % a5 © (z A 1)

f}s

) g n dug B) n dz ( B B )
- uwrdy = = —* ez< ~2A + += =2 ugeflz+ -~ -5 -24+1
as,/ v K ds ? Z K ds 0 z z°

: v
&) O n® 1 dug n? dz 1
—— | uydy= -~y T3 —2 2% (zP-az)+ -y —— —= 2% (22-{2a-2)z-8)
3s,/ 2K ug® ds 2K~ ds ug

0

8
2 2
S /1u2vdy = 2 ég e?? [28 - (ca -~ 1) 2z + Db = al

o

On the right-hand side of these equations we may write the
total for the partial derivatives since all the variables
depend only on s.

Substituting all the values obtained into expression
(18), dividing and collecting similar terms, we find:
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B oyyees(BaB, oa) 8zimr oz 8 (B oy, dar U 5 (BLy) .
X 8 \z z° 7 ds K ds ™3 s ds Ny 4
2 dz 1 4dus
- cog B —Eg e®? (( z—2b+a) ~*"P—— — a7 -+
2K L ds 118 ds
2.2
1 d cos ® j » U
+ -~ O 23
cos B ds (az b>j * = A( )

The terms containing cos 8 were grouped together so
as to enable the effect of the term y cos 6 to be more
advantageously studied.

Kz
Let us multiply the equation by the magnitude I- Eag—]
and write the derivatives of Ugs T and cos 6 in the
form:

1 dug 4 1n ug 1l dr d iIn r 1 d cos 6 d 1ln cos ©

Ug ds ds " r ds as cos 6 ds - ds

We then obtain:

o d In r
eZ(Az°-Bg+B) 42 4 07 (pAs2-Bg) S-1B B8 4 oz(4,%.3y) 221 +
ds ds de
2
n cos dz d In u d In cos 6
p— gz egz{(2az—2b+a)~*'+az ———-5 4+ (az-D) : =
2K '(18 r L ds ds ds
3
= E g (24)
n

The above expression also serves as the fundamental differ-
ential equation for finding the relation between 2z and
s, and thus also & = §(s) and 1T, = To(s).

It is useful to introduce in the equation in place of
Ug, 1ts value obtained through the pressure digtribution

on the hull, which value may easily be found experimental-
lys Thig is the simplest method for finding the relation
ug = ugls).

Following K. K. Fediaevsky (reference 14), let us set

2
Ug

7 = f, where V 1is the forward velocity of the body
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or the velocity of the flow at infinity.

2 2
From the Bernoulli eguation p + Egﬁn =D+ Bg"’
where P, 1s the pressure at a great _distance from the
OC‘
body, we obtain after dividing by L§~
2 \
Uy P - P
Sy _ . .21 P (o5)
d 3PV
. L. D = Dy
The variation of ————3 along the hull is easily deter-
gpV

mined cexperimentally.

X

Meking the change indicatcd above, we find:

=

ug = T o In ug = 1n V + 1n J%} ¢ In ug = 4 1n JE

Substituting in equaticon (24) and introducing the
Reynolds Number

VL VL
Re = —b-“ o T
n Cg »/5
whence
VL
I = e
Re Cg ’V,E
we obtain:
Z,, 2 y dz 7/ d In &Ff . g d In r

e " {Az"=Bgt+B) —— + A el @B (AR LT e Sl

A& Z 3 J 3s e?{2Az DZ) ds ( z Z) ds

L cos € z®e2% |- - dz d ln JF
+ - - — | (222=2b+a) —= + az ——Z—— +
PRe K Cp /2 r Jf L ds
3
d 1n cos € Re K° Cz /2
+ (az-b) = - NE (26)
ds N s '
Thig differential equation of the First order with re-

spect to 2z has bsen get up for a figure of revolutidn.

For the more simple case, i.c0., that of the infinite oy1~
indrical wing the OquntIOﬂ ig ceongiderably simplified sin
r then Decomes infinite and the last two terms on the

right-handéd side vanish. Thus, for o wing, we obtain:
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d 4 1n V/F Re K Gz v/2 _

e?(Az®-Bz+3B) ~E-+ez(2Aza—Bz) n V£ = 2 JE . (27)
ds : ds L

where L is the wing chord.é)

For the even more simple case of the flat plate situ-
ated in a flow at zero angle of attack, the second term on
the left-hand side of expression (26) likewise drops out
since there is no pressure gradient along the plate

—

. (—fa”——~ = O). The velocity just outside the boundary

layer wug = V = constant, that is, £ = 1.

Thus, for a plate, we obtain:
3 = )

Re K~ C, .
e?(Az% - Bz + B) %3 = I (28)

where x . is the variable distance from the leading edge
of the plate. Introducing in the above expression the
Reynolds Number Ry computed for any distance x from

the leading edge, 1.e.:

v
R, = X - =

% ” dx 7

we obtain: “
: s, o - dz v Re K* Gy /2
e®(Az® - Bz + B) =

ARy VL
or
eZ(Az® - Bz + B) dz = K Cz +/2d Rx

Integrating the above equation betwesen the limits

Ry, Ry, and 24, 2, we obtain:?
1 P
Ry = Rg = ———~——= (Az® - Bz + B) e? dz
3
K® 0y V2 .
Zo

which gives, after substituting the numerical values of
the coefficients A4 and B and taking the coefficient A
outgide the integral sign: '

-c! -/‘Z

6K° 2 Jz, w1

4)It should be noted that, in contrast to the equation for
the figure of revolution, the wing equation may be applied
for any angles of attack, the latter affecting only the
character of the function /f = f(s).
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i.e., we have obtained the equation for the flat plate in
the form given by Kdrmidn (reference 4).

& INTEGRATION OF THE EQUATIONS OBTAINED

It ie evident from even n superficial glance at the
equations for the figure of revolution and for the wing,
respectively, that they cannot be integrated by any known
methods We have seen that integration 1g possible only .
for the flot plate. We shall therefore resort to a graph-
ical intecgration using the method of successive approxi-
mations,. .

We sct:

e?(Az2~Bz+3) = ®, 3 e? (2425 ~Bz) = ¥, e?(Az%-Bz) = P,

and modify somewhat the expression in brackets in the last
terms on the left-hand side: ‘

a a1 £
(Paz-2b+a) — + az -~———P-J—/£ + (az=b)
ds ds

d 1n cog 6
ds

whence, after grouping the terms, we obtaind

: 1z d 1ln J/f d 1n cos 6 dz d 1ln cos B
E o &2 4 + ) -~ (2b=a) =2 -~
i < is is is ) = (Bb-a) o =b s

or, writing the sum of the derivatives as the derivative
of o gunm:

an éL [2u+1n( /T cos 8)] - éa [z(2b=2) + b 1n cos 8]
8 s

Substituting the above in our expression (26), we obtaint

® az + © .6:_}:.1}_.@ + o ¢ 1ln r + L cos_§
3 8 ds 3 ds " 2Rg K Oz /2 WF r

7

iaz3 gt [2z+1n( /¥ cos )]~z eB% éL [z(2b=a)+ b 1ln cos 8] } =
i s

Re X% Cp 42 ~
= = vEs

Multiplying the equation by ds, integrating between the
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limite s, eand s, and setting

. Rg X° Ca 42

ko= = constant
L
we obbain?
b4 s ) lnvfg In r
/} _ e . /‘
/ ®, dz = k ‘/P JT dg - “/ Py 4 In JE - '/- %, & In r
g S0 1n/ f, Inr,

co+ln(v £ cos 6o )

- v
-2k ./ cos€ ;2622 g [2z+In( /T cos 6)] +
2k 3 raT .

(220+1n(‘/§0 cos B)

z(2b=a)+Db 1ln cos §

s .
+ £ / 08 6 3262%3 [z(2b-a)+b 1n cos 6] (29)
r Jf

Zo(2b-2)+Dd 1n cos €,

where the letters with subscript o denote the initial
valueg of the variables. :

The integration should rigorously start from the point
of transition of the laminar into the turdbulent layer, i.c.,
in accordance with the notation of K. K. Fediaevsky (refer-
ence 13) from s, = t. The position of this point may be
determined using the so-called critical Reynolds Number
Rﬁkré which generally lies within the range:

1,600 £ Rg < 10,000
X .

.. s L s . ; uﬁvsgr
Using this critical Reynolds Huwmber ngr = e

and computing the laminar boundary layer, starting from the
noge, by the laws determined by the two-~term formula for
the velocity distribution (reference 13), it is easy to de-
termine s, = t, which is the lower limit of integration
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of expression (29). If the hypothesis of conservation of
momentum at the transition point is assumed, we should ob-
tain:

6turb = lam

In view of the fact, however, that Rakr oscillates within

a very wide range and depends entirely on the degree of tur-
bulence of the flow, the above operation for finding s,

can be carried out only with great difficulty.

On the other hand, as tests have shown, to neglect the
laminar portion - i.e., to assume that the turbulent layer
begins at the nose itself, has a negligible wffect on the
final result and this is particularly true for full-scale
bodies, for which the relative length of the laminar por-
tion is negligibly small, '

w

c =0 we ghall have at

v Jf- = 03 whence from (22):

Agsuning therefore that
= 0 =
o o

the nose 8 and Ug

<.

Z o ¥
Zy € == sug = O
n

‘that 1s, 2z, = 0. We likewise find:

—— i _
NEo=05 Innfo=-w; r,=0; ln r =-o; 220+1n(//f0 cos€yl= o
The initial value cos 6, depends on the shape of the nose

of the hull, The tangent to the generating line of the
figure of revolution is generally perpendicular to its ax-

is, 1.4, cos €, = O. The integral on the left-hand side
of oguation‘(29) may be integrated. Integrating between
the limits 2z = 0 to 2z = z, we obtain, denoting the in-

tegral by @4,

Z -2

cp4=f¢1dzz/(Aze~Bz+B)ezdz=

yo t,:) |
= e?[Az®~(24+B)z+2(A+B)]-2(4+B) (30)

Substituting the initial values and the integral obtained
into our equation (29), we find
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s 1n¥ f lIn r
3 b
©y =1C// J?ds - j/ Py d h1J§ - J/ ®0,d In r -
“.o :-oo :.oo
2z+1n( /' cos &) z(2b~a)+b 1n cos €

k2 € K2 [ cost
& £os 72 e22d [2z+1n(/ f cos€)] + == [/ ——== zPe?Zd
2k J r JF ek

o Mo
[z(2b~a) + b 1n cos6] (31)

The equation written in the above form is wvery suitable for
performing a numerical integration by the method of suc-
cesslve approximations. The integration procedure we have

proposed and successfully applied in practice will now be
described.

First of all we consider the "gzero approximation?®
z = f(s). This gero approximation may be obtained by conw
structing & = f(s) from the equation of K. XK. Fediaevsky
and solving the transcendental equation:

- . 5 -
co - KU g o Ko 02 /%,

Having the curve z = f(s), the zero approximation,
we plot the functions under the integral signs on the right-
hand gide against the corresponding expressions under the
differential sign and perform the graphical integration up
to the noints corresponding to the chosen values of s and
thus compute the value of o, from formula (31). With

these values of w,, we find the next approximation for =z

and remneat the entire operation -~ the process being contin-
ued until wvalues of =z are obtained that differ very little
from the preceding values. The latter values of z give
the integral curve. Generally nn agreement to the second
decimal place (which is entirely sufficient) is found af-
ter repcating the process threec tc four times.

he integration may also Be performed not with respect
te s Dbutbt with respect to =x, for which purpose there
should then be substituted in expression (31), ds = dx/cosé.
The above integrating procedure has the advantage in that
graphicnl differentiation is entirely dispensed with (ex-—
cept for finding cos 6 = f{(s) in the case where the shape
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of the generating line of the hull is not given analytic-—
ally and where the possible errors have a very small effect
on the final result due to the smallness of the last two
terms in comparison with the preceding terms). This cannot
be sald of the method proposed by Moore who, neglecting

the term y cos 6 in the expression =r!' = r + y cos€ (this
corresponds to the vanishing of the last two terms of equa-
tion (31)) succeceds in combining the integrals

1n /f in r

e
]

3
/ ®, 4 1n /f and /{ ¢, d ln r

- 0 - 0

into one by introducing a certain differential operator
and making it necessary to perform graphical differentia-
tion. In view of the fact that graphical differentiation
is much more difficult than integration, we believe our-
selves justified in saying that our method is superior to
that of Moore. ’

The actual computation was simplified by: 1) deter-
mining the functions ®g, Pz, ctc., mnot from tables but
by making use of functional gcales of such length that %
could be read off to an accuracy of three decimal places
(these scales nre given in the appendix); 2) performing
the graphical integration with the ald of the integraph
manufactured by the Coradi firm of Zurich, and which at
once pernitted the determination of the ordinates of the

integral curve. The actual computation was thus reduced
to a mininun. :

_ The computations carried out usirg the complete equa-
tion (31) showed that the terms 1n(./f cos 6) and b 1n
cos € wunder the differential signs in the last two terms
are very small by comparison with the terms 22z and
(2b -~ a)z so that they may be freely discarded.®) This is
particularly true at large Reynolds Numbers Re, in which
case =z strongly increases. We may then combine the last
two integrals into one:

"This is true except near the nose and the tail where
1n /f cos 6§ approaches - o which fact, however, only
slightly affects the results.
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2z+1n( A/ f cos 6)
(Y

2
all / cosk .
2k L/ r «/?

— o

z{2b-a)+Db 1a cos €

4 LT Q_Q__S___S__
ek, r /T
—
Z
all cos € 5 ;%
S ) »NTE
o)
b
o8
= /.?{ c0s b ez
J ekrJE
0
Here, too, as was do
ience in computation

under the differenti

Technical HMemorandum UNo.

23 2% a [2z+1n( /T cos 6

z262%3[z(2b~a)+b 1n cos

, o . 2 2
, the function " |2z
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ne nreviously, we inftroduce fgr CONVEen-
ZQKEE - 1>
a

L
al siesn., We thus obtain:
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= - <§:_29.§_E_\ dﬂfeaz (?3—~ (l + b—\ <ZB -7
. Ok l\/—%/ L L ~ a./
- & 1A-§\
2(\ a/ Py
- a_cos b a0



30 H.A.C.A. Technical Memorandum No. 842

where we have seib:

P, = e 2 fzs - <1 + b) (zg -z +

PO
S
S

L a
and the initial wvalue:
- I . R
cpso - ,(CPE’)z:o - ( a)
The final equation for the determination of =z = f(s) will
thus be:
8 In JE In r 5

. vﬁ; /‘ . . [ i1 ‘"a cos £ i,

Cp =K .a.d.S b naJf — Cp NP e [ e——— 5
* . ej CPB e/ 3 2kr ’\/:_f:
0 - Co Z00 5

50
The above expression i1s the fundamental working formula in
the most convenient form.

Iaving the relation =z = f(s) the remaining functionsg
of interest to us may readily be found. Thus, according to
(22), the thickness of the boundary layer is expressed by

z re?
& = E zZe - L . 7e (33)
K ug Re. Gy /2 K JF
The shearing stress distribution is found with the aid of
the expression
X u
= 8
Ve =~
whence
o k% V% r (54)
Ty = —————g———
z
The ratio of the shearing stress to the dynamic impact at
infinlty is:
T =2
- 0 o = m.gf (55)
5 p V 7

The coefficient of total frictional drag for the entire
hull ‘based on i1ts volume ig

2x"
Cy = TR E
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where X" is the resultant of the frictional forces, and
U, the volume of the body, is found by integrating the
shearing stress distridbution. Wo have:

SL §L
: o
X" = // To cos 6 2w r ds = 2m P k2v? j/ —E—mg—— d s (26)

where sy is the length of the generating line of the fig-

ure of revolution and thus Cu ig given by
T,
4k /}rf cos & .
o

We preferred to integrate with respect to ¢ rather thaon
with resmect to x as being more convenient since we have
the relation =z = f(s). If we had performed the integra-
tion with respect to x from the very beginning, then 1t
would have been convenient to substitute also in expression
(37) cos 6 ds = dx.

In concluding this first part, we may observe that if
we had nade use of the Nikuradse-Prandtl formula (6") in
place of the Kérmdn formula (12) as the fundamental velocity
digtribution law, the computations all would have come out
the samc except that in place of the coefficicnts:?

A = 5/6; B =14/9; a = 23/60; b = 601/1800
we should have obtained:

At = 1; B' =2; a' = %;

o'
i
Wi
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PART II

1. COMPUTATIONS FROM THE EQUATION DERIVED IN PART I

We decided to apply the computations frotm the equation
derived in Part I to the hull of the airship "Akron" so as
to compare the results with those obtained from the excel-
lent tests for the determination of the boundary-layer
thickness and shearing stress distribution conducted by
Freeman (reference 6) on a 1/40-scale model at a mean
Reynolds Number Re = 15.88 x 10°.

The computation program included the determination of
the boundary~layer thickness, the shearing stress or skin
friction per unit area distribution, and the coefficient
of frictional drag at four Reynolds Numbers:

15.88 x 10%, 79.4 x 10°, 251.0 x 10°, and 684 x 10°

The first number corresponds to the tests of Freeman, and
the others were selected for the purpose of making an easy
comparigon of the results obtained with those given by

K. K+ Fediaevsky (reference 14) who, using the power law
for the velocity distribution in the boundary layer, as-
sumed that to the above Reynolds Numbers there correspond-
ed the expoments 1/7, 1/8, 1/9, and 1/10 in the for-
mula for the velocity distribution, and compared his re-
sults with those given by the tests of Freeman. Thus,
congsidering the logarithmic law as more nearly expressing
the actual velocity distribution than the power law, it
was possible indirectly to check the correctness of the re-
lation n = f(Re) given by K. K. Fediaevsky.

The values of the universal constant X and the num-
ber OCp were taken as X = 0,392 6y = 7.375 which cor-

regpond to the form for the local friection formula

= 3.6 + 4,15 log,  (Rs ./Cf)

. N rd
The constants in the above formula are those of Kdrmdn and
are in very good agreement with experiment.

The relation =z = f(s) was found by solving the funda-
mental equation in the form (32) by the method of success-~
ive approximations, the data of K. X. Fediaevsky being as-
sumed as the first approximation. The operation was con-
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tinuved until the difference in the values of 2z given by
two 'successive approximations differed only in the third
decimal place, this corresponding to an accuracy in the
determination of gz of 0.08 to 0,13 percent. This degree
of accuracy, which may appear as too great, resulted from
the fact that, in the first place, we decided to use great
accuracy for the first calculations so as to have confi-
dence in the results; and secondly, we wigshed to determine
the boundary-layer thickness 6 with the greatest possible
‘precisions The values of § change very sharply with a
slight change in 2z sincé they depend on the very "sensi-
tive" function zeZ (33), Thus the maximum possible er-
rors in the determination of =z give errors in & of 1.3
to 1.1 percent. Generally the required accuracy in the
computation of 2z was obtained after four or five approx=—
imations. The detailed procedure in carrying out the com-
putations (for practical application) is given in a sup-
plement.

2. DISCLOSURE OF DISCREPANCIES IN THE RESULTS OBTAINED

FOR THE THICKNESS OF THE BOUNDARY LAYER

Having obhtained the relation 3z = f(s), we construct-~
ed a diagram 8 = f(s), figure 2 (topmost curve). Expect-
ing to obtain with the logarithmic law much better agree-
ment with experiment than with the power law, we were very
much surprised to obtain large discrepancies. For the en-
tire length of hull the values of & computed by our pres-
ent theory came out approximately 50 percent greater than
the corresponding value computed by the seventh-power law
and the test data, the values of 8 from the seventh-power
law giving good agreement with the test results as stated
by Freeman and as shown in figure 2,

Our greatest surprise was the very large deviation of
results from those obtained on the basis of the seventh-
nower law. It would have been natural to consider what
the computation results would be upon application of the
velocity—-distribution law of Prandtl-Nikuradse?

Since, however, using the above formula would have in-
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volved -2 large amount of computation work and taken up too
much time, we decided to make the comparison of the compu-
tation results for § = f(s) from the Kidrman-Nikuradse
formula and the seventh-power law, respectively, for a flat
plate for which the integrals may be directly evaluated.
There was every reason to expect that the relation between.
the positions of the curves & = f(x) for the flat plate,
according to the different laws, would be of the same char-
acter as obtained for the figure of revolution. For the
flat plate the data chosen were: 1length L = 5,99 m, ve-
locity V = 38.45 m/s, corresponding to a Reynolds Number
Re = 15.88 m/s - that is, data approaching those of the
"Akron'", The computations were conducted according to the
formulas obtained from the fundamental egquation (26) after
integrating, setting r = o and f = 1.

- With the velocity-distribution law of Kérmén,

Z

& 2 K3 02 ’\/é—
,/ w,dz=p,=e? [Az" - (2A+B)z+2(A+B)] -2 (A+B) = ~~—5—*——;Re X
0 A (38)
and with that of Nikuradse-Prandtl:
e 3
X ¢ /2
o' dz=0",=e? [z8-4z+6] - 6 = ~~—E§JLE e x (39)
o
L 7
whence & = ' ze
Re K Cp /2
and from the known formula for &, according to the sev-

enth-nower law (reference 13),

1/5 -1/ 4/8
5§ = 0437L Re x (40)

The values of GO and X were taken to be the same as
for the "Akron',

The results are shown on figure 3. As may be seen,
both logarithmic laws give values of § much larger than
are given by the seventh-power law, the Nikuradse-Prandtl
formula glving results nearer to the seventh-power law.
The attempt to vary the value of Cy; (Moore takes Cp =

10,84) gave no particular results as may be seen from the
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figure. It was thus possible to conclude from the above
that the reason for the. large disagreement in the results
of the present theory with the seventh-power law and hence
also with the test reaultsed was to be looked for in the
theory itself. Very recently we received the work of
Moore (reference 7) where, in his figure 2, which we re-
produce in our figure 4, we sce a further confirmation of
our conclusion., Here the results of the computation of

1/3
8§ for the "W.P.L. long model" at By = Iggl; = 10° (where

U is the volume of the model) according to the theory in

which the Nikuradse-Prandtl formula (6") is applied (de-—
noted by Szg) give the same order of discrepancieg from

the seventh-power law (denoted by &-) as in our case.

The results of Moore (fig. 5) on the "Akron" where we see
a much better agreement with the tests and the seventh-
powver law than was obtained by us, therefore appear all
the more strange. Since the identical theory was applied
to the two models, there should have been obtained a dis-
crepancy of fthe same order and this evidently was not so,
as mnay be seen on comparing figures 4 and 5.

3. EXPLANATION OF THE DISCREPANCIES OBTAINED

Bearing in mind all that was saild above, we decided
to consider somewhat more carefully the reason for the un-
satisfactnry results obtained by our theory. Up to the
presenu we have considered the agreement of the results
with the experiment applying the theory of Kidrmdn in its
original form. We shall now consider the velocity distri-
butlion itgelf. We assumed at first that the velocity disg-
tribution in the boundary layer is computed dy the loga-
rithmic law:

U -~ Us
-——-——-——9-=—iln<1 /1 /1—-—]
/To XL

P

and the local friction by

———— = a + D log (RS af Cf)

6 .
)Kempf (reference 10) has shown that for a flat plate the
seventh~-powver law agrees very well with test results.
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We shall now attempt, using the excellent tests of
Freeman, %to check the correctness of these laws. We have
at our disposal the tables of u/us = f(y) for the vari-

ousg sections of the hull (placed at the end of the feport
of Preeman) and also the experimental curve of sghearing

stress distributién (the curve C = T7,/q, on fig. 8 of

Freemanl!s report). The change-over in the computation
U - Uug

from the values wu/ug to the values ~—2—=~ 1ig easily

/ To
effected thus: p

where 4o = % o Ve

If the formula for the velocity distribution is correct,
then by drawing the test curves, using as coordinates

o ""U.S _9

—————2 and 1n (1 - /_ y )+ /1 - we should obtain
/1o |

~op

a grouping of the points about a straight line passing,.
throuzh the origin of coordinates and having a slope de-
termined by the magnitude of the universal constant X.

We pointed out at the begdinning that the current method of
determining X was Dby tests on the drag. For this reason
the method proposed by us for the determination of K from
the velocity distribution appears to us to be original and,

as we shall see below, leads to results of extreme impor—
tance.

If we consider further the formula for the local fric~
tional intensity distribution as true, then we should ob-
tain a gtraight line on constructing the friction curve
using as coordinates:

1 WJJE
v Cr To

K
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/8 T

1 s /G7) = Sl [0
and og (Rg th> log kU Qo /

and having a slope that determines the coefficient Db and
hence also the same universal constant K.

Figures 6 and 7 show the above curves thus plotied.

The points —————2 do not lie on one straight line but

arrange themselves along some curve showing that law (61)
ig in general not strictly true as, of course, is to be
expected for the regions near the wall (at the right of
the dlagrams) where the viscosity has not been taken into
account and where the curve very appreciably slopes down-
warde In the region, however, sufficiently far removed
from the wall, it apvears possible to draw a straight line
through the voints, which fact shows that in this region
the uwuniversal law is valid.

The result of the computation of the universal coxpstant
from the slope of this straight line led to the value?)
K = 04,214 in placde of the value 0.4 gcnerally assumed.
Considering now, figure 7, where out of a very small number
of test points many dropped out (in the region from 9 to 12
fect from. the rnose, according to Freeman (x/L from 0.4 to
0.6), whore the curve T,/q, = f£(x) takes an improbable

downward slope). Five of the points, however, aline them-
selves sufficiently well on a single straight line, from

whose slope and intercept the valucs a = 3.4, b = 3.77
are obtained, in very good agrecement with the values as-—
sumed by us in the computations, namely: a = 3.6, b =

4,15 and from which the value X = 0,389, which is gen-
crnlly cccepted, is obtained,

Hoving obtained these results from the tesgts on the
"Akxron", it was natural to reconsider the classical tests
of NWikuradse on pipes, in the light of these results those
tests being the only generally accepted source for furn-—
ishing the universal constants. We made use of the data
of tablc VII of Nikuradse on smooth pipes (reference 3).
The plot is given on figure 8. Contrary to what was ex-
pected, in the r egion sufficiently far removed from the

-

The curve corresponding to ¥ = 0,392 1is gliven on the
dizgram, '
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wall and for sufficiently large Reynolds Numbers, the same
smaller value of X, mnamely, X = 0,306, that ig, nmuch
less than what is currently assumed, was again obtained
algo in thig case. From the same test data, dbut applied
to finding the drag coefficient, values of XK were ob-
tained near 0.4 (the corresponding straight velocity-dis-~
tribution lines are shown on fig. 8). We are thus led to
the conclusion that the "universal constant" by no means
appears to be universal., In all casesg of tests on the ve-
locity distribution the constant comes out much legss than
in the tests on the drag.

Besiders the tests of Nikuradse, we have also employed
the data of Hansen (reference 11) on a flat plate. In
this case an unusuvally low value of K = 0.1756 was ob-
tained. ’

It was also of intercst, naturally, to work over the
tests of Freeman, Nikuradse, and Hansen in termsg of 1n S/y,
that is, to check the Nikuradse-Prandtl formula. The
curveg have a form snalogous to those Jjust analyzed, and
the values of the consgtant in the region far removed from
the wall, according to the tests of Freeman, Nikuradse,
and Hensen are, respectively, 0.267, 0,360, and 0O.22.

An excellent explanation of thig phenomenon after 1t was
discloséd, has been furnished by Professor L. Go Loitsansky,
who states that the reason for the consgiderable variation
in ¥ Is the result of neglecting the effect of the vis-
cosity in the theory. Actually, the application of the
theory of similitude gives a logarithmic law only under

the conditions where the effect of wviscogity is negligible.
In those regionsg far removed from the wall, where the effect
of vigcosity is negligible, the pointe follow the logarith-
mic law with sufficient accuracy with corresponding actual
value of X (0.2 - 0,3). Ags the wall is approached, the
effect of the viscosity increases and the points begin to
deviate from the straight line in such a manner that the
derivative

'll-"lla

d —————

Vg B 1
[ / y / v X
i — 1 = =) + 1 - =
d Lln (l 5) y 5:’

decreases continuously (corresponding to a continuous in-
crease in K) and in the regions near the wall the in-
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clination of the curve (as may bé scen on the diagrams)
corresponds to a value of KX z 0.4.

. The latter circumstance is particularly noteworthy.
According to the classical theory of Kdrmin, the friction-
al drag law is obtained from that of the velocity distri-
bution by applying the latter to the conditions on the
boundary of the laminar sublayer (which process, of course,
is formally unjustified since the effect of the viscosity
is still very appreciable) - i.e., to the region where the
value X = 0.4 should be taken. Since the value of K
has, vp to the present, been determined exclusively from
tests on drag, the value always obtained was near 0.4,
i.e,, this value represented conditionsg at the boundary
of the laminar sublayer in the region very near the wall.
This result was likewise obtained by us in figure 7.

There was thus obtained a paradox: The usual method
of the determination of X Dby studying the wvarilation of
the resistance 'of pipes with Reynolds Number gave values
of X for a region for which the logarithmic law, stricte-
ly speaking, was not applicable and the region where the
law was applied -~ that is, at some distance from the wall -
was not assigned the corresponding value of X which, as

we now gce, 1g much less than the generally accepted one.
4, IMPROVEMENT OF THE LOGARITHMIC TEEORY

From all that has been saild above, the following prac-
tical conclusion may be derived. Since we do not at the
present time possess any velocity-distribution law that
takeg inta account the effect of viscosity, we are con-
strained to use the logarithmic law of Kdrman, rendering 1t
more accurate by assuning for the region far removed fron
the wvall a value of X = 0,2, and necar the wall K =z 0.4
We cannot, however, determine definitely just where the
value of K wundercoes a discontinuity (corresponding to a
hypothetical limit where the viscosity ceases to have any
effect) 9/ Moresover, the breaking up of the interval ¥/
from O to 1 into two parts would introduce .comlications in
the computation. We therefore decided that, with very

alt ig interesting that, according to the form of the dis—
tribution of the voints u~u6/v* for the "Akron", a sharp
discontinuity is observed at the value ¥/8 = 0.19 (fig.

6).
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little error, we may arrive at the following compromise:
for the velocity-distridbution formulas to consider for the
whole region K, = 0.214, and for the resistance formula
K = 0.392. There is no doubt that the value KX, is af-

fected also by the not entirely correct procedure in Pa.s s
ing from the internal to the external problem. It 1s guite
possible that for other cases of the external problem dif-
ferent values of KX; would be obtained. The only thing
that may be affirmed with any certainty is, that in every

case K3 will be lesg than XK. Thig igs confirmed in all
three caseg of flow congidered here,

. Having assumed that the reason for the very large de-
viationg in the computed values of § from the test val-
ues 1s the incorrect choice of X in the formula for the
veloclty distribution, we decided to reconsider the theory
on the basis of- -the above compromise assumption that leads
to a choice of two values for K. '

Assuming the value K; = 0.214, we obtain the follow-
ing expressionsg for the integrals

8

5 5 .8 \
] 2 [a 5
udy, / u dy, uydy, / wydy
S S B %

8
Iz v
udy=8 {(ug-4 —i> LN <Z~A j&)
. Kl I{ Kl
S
/q8 UsV 72 X k% 1
u* dy=8{1u 2A + B == usz e |z=24A +B —
0 (41)
e 1 Ve n2 2% 2 K >
uydy = = 8 <u5~a R PR S <7 ~a — z)
| 2 Ki/  2K° ug K3
0
/“6 / 2 a2
2 1.2 AV Vx > n 2z
1ydy==8"{ug =28 —2——+DH —5 )= —
._/ y 2 6 X4 Klz EKE
o
X
(z ~2a —— z+b ——;)
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isee, we finally, after substltutlng § from expressioh
(22), obtained different coefficients in place of A, B,

a, and b, as follows:
AE BK® ak bK?
Ay = By = =5 ay = - 1= TF
Fl Kl Ny Kl
The functions ®,, ®, ©i, P,, and ©g in the funda-
mental equation will then have different coefficients:
Denoting the new functionsg by ©y,0 Do Payo Py, and
Ps, We obtain:
0, =e?(A12%-B,2+B,)=e? (A - 2°-B X 3 ~K§>
-0 ' Kl K, K,
K _=o =
v, =e%(2A,22-B;z)=e% (EA —= z8~B —=x z>
1 \ K, . X,
K2
p, =e?(A;22-B;z)=e2 <2A == 7% =B —5 z>
! K3 K,”
. . %
¢Zl=ez Ay 22~ (24,+By )z+2(A,+B; ) -2(4,+B; )=e? {A T 28~ (42)
L 1

~,

42 "'Ig'

- <2A+B Xy K A+B

X K X
K./ K, 1 "¢ \A+B K )

Ki7 Ky | K,

/1 ¢ D2) /za~z + ~>J

L ay,/

) (e )

for the determina-

r
= 322!23...<
L

The final equation, analogous to (32),

tion of 2z = f(s), applying the law with two values of K,
will be:
;Z /'és 1n ’\//}—‘%_
(\941: /"Oll dZ:I{3 Cg f— B‘]:? // ,\/1—“— dg~ / Cpal d 1n ,\/E -
o o - @ (43)
in v Ps

/ 1

/ a 1n r- La /P gos.8
- V) nr
. 33 2K,C, /2 Re . r /£

CP51(z=o)

m?sl
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where w51(2=o) is the value of @51 at =z = 0 and is.

equal to
1 bK
@5 {g=0) = 5 \ax 1>

Since in the above equation the functions © enter
with different coefficients (in accordance with (42)), it
would appear necessary in solving it, for us to recompute
2ll our functional scales of which we-made use for rapid-
ity of calculation. Thig, in the first place, would have
very much delayed the completion of the work, but what is
more important, would not have been Jjustified since the

value X; = 0.214 has not yet been established as a uni-
vergsal constant, and on changing it the recomputed scales
mgl, ®31’ @41, and wsl would have become useless.

Ve therefore decided to reduce equation (43) to a
form in which it may be used with the original functions @y,

D Day and ¢, as may Dbe done, as we shall see, by inw~
troducing ian it one extra term.

"We find the expressions Py, Dp ©,. » from

"
ps1’ 1

®y+ ©ps ©,, ©,. From (42) and (28) we obtgin:

e X XK
0. =g¢? Az2.B =% 443 ) =B eZ(Ar2-Bz+B)+Az%c Y =2 ~1>] =
Cp l < 1 z K]_\ Kla[ ( (\K J
2 [ 5 (%, ]
= - fepy, + Az eZ, —_— - l>
Ky o ° \k

and gimilarly for the remaining functions:

K2 - ﬂ
S 2 oz (21 .
C’Pal = K13 [‘Pg + 2A gz e < 1/_}
2 &7
X ( . : K, 1
= = + Az® o% (—— - l)!
Pz, Klg LCpcs e K J
The function Py, Wwe define as ©,, 4z, that is:
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)Z Kz ~2 e 2
/ 1
Cp41 = /@11 dz = E"l'é"[ // CP;L: dz+A ('—IE‘ i 1> /ez Z8 dZ} =
n 5

0 °.

V4
x? [ S
= ==z | @, +A (== - 1 e? z2 dz
x,2 L ¢ \x /1/

O

e

To obtain a suitable expression for the graphical integra-
tion, it igs better not to compute the integral on the right-
hand side of the above expression. With regard to the last
member of the equation which takes account of the effect of
the term y cos 6 we decided, instead of replacing Ps,

ty ®g, to compute the scale for g directly (setting
1

K, = 0.214). At some other value of X (for a different

case) this would have a negligible change in the final re-
sults since, as we shall see below, the effect of the last
term of equation (43) is in general very emall.

Let us now substitute all the expressions obtained in

(43) and split the integrals with respect to In JE  and
In r 1into two. We then obtaint

S
3 E)
Kg (Kl \ / o L - -
— +A (= - 1, | e%z® = K3Cp v/ 2 == f dsg =
Kﬁa [m4 " l/,=~ e?yg dz] CQ,/~ = N4 s A
s}

/
o)
1n /T 1n /7
x 2 ‘ g2 X /
- _EE / Ppd 1n JE - ~£§ 2A (—i —#) / e?22d 1n Jf -
K1 A Ky K .t
- = -
in r In r
2 [ 2 /?
it X
- = Pd 1n v - —55 A (—L - l> / e?2z2d4 1n r -
X, Xy X .
- D == OO
{'5951
- La . / cos & dm51
2K, Ca /2 Re o/ r Jf
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Multiplying the entire expression by K,2/K®, rearranging
the terms 2nd combining the integrals of the functions
e?z% into a single integral with a complex differential,
we find:

. , s in +/f In r
. Re [ = , : -
®, =KK,° Gy o2 = / JE ds - J// ©,d 1n Jf - /p v d 1n T +
. ;, ~o o
z+ln rf
e ?
+ A (1-~ 7%) u/’ eZ2z2d(z+ln rf) =
- 0
Ps.
w2t B /n o2 2 ap, (44)
2K GBA/E Re +J T f
Ps5,(z=0)

We have thus obtained an expression that differs from
(32) by one additional integral and has different constants
before the first and last terms on the right-hand side.
The presence of still another integral prolongs the compu-
tation somewhat (by about 1/5) but on the other hand the
new expression, using the same scales of the functions @
pernits computation with any wvalue of K,.

The above method of introducing into the equation an
extra term that takes into aczcount the variation in the
coefficients ¢ 1s of advantage not only when the change
is brought about by the equality of X and X,;, dut in
other cases as well. In particular, as has been pointed
out in Part I, the coefficients may vary as a result of
the application of a different logarithmic formula for the
velocity digtritution. TLet us put

s ©?

Ay' = a=— A B! = B ——g5 B
1 X 1 g K, 2

Proceeding with the functions ¢ as above, we obtain fi-
n2lly:
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/ﬁ 1n J? In r
2 = .
K"K, C 2R -
Py = }Biwa © / S - /[}q% d 1ln./f = Qj/qc%d 1n T
O —Uﬁ — o
z+ln rf

&Kl

A (l - ~—— /i e?2# d(z+ln rf) -

Cp’sl
y P
L bah K €08 6 4o
2 ‘/ = d 53
2K° B ojwf'Re o r Jf

where the change of coefficients in m's mnay likewise be
neglected. '

The above expression is suitable for computation with
our sca 18“ using any coefficients 4 and B. In particu—
lar, if it is desired to use the velocity-distribution
formula:

U o~ g 1 8
_.__.-..__..Q s l n —
Vo X, v
we must take
— _5_ — — O . J‘.é — D -
o = 1 5 = 1.2 B =2 : 5 = 1.286
- 5. REPEATED COMPUTATIONS USING EQUATION (44)

The computations from equation (44) were carried out
for the game Reynolds Numbers:

15.88 x 10° 79,4 x 10° 251 x 10%° 684 x 10°

with and without the last term that takes into account

vy cos €. The method of computation was the same combined
graphic and analytical one, successive approximations in
the values of =z TDbeing taken until a difference in the
third decimal place enly was obtained.

On figure 9 are shown plotted the changed valuesg of
z for different Reynolds Numbers against the ratio X/L
along the "Akron" hull. As may be seen, the effect of
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taking account of the last term with cos é shows up, as
also may be expected, only at the tail itself where the er~
ror in rejecting the term y cosé€ in the expression

r! = r + y cos @
is a maximum as has also been pointed out by K. K. Fediaevsky.

The strange bends in the curves =z = f(x/L) on figure
9 in the region of the stern result from the fact that the
funection =z + 1n rf, with respect to which the integration
in the next to the last term was performed has a wavelike
form in the region of the stern.

Having obtained =z = f(s), we plotted on figure 2 the
changed thicknesses of the boundary layer 8 = f(s) for
Re = 15.88 x 10°. As may be seen, excellent agreement was

obtained with the test results = much better than was given
by the seventh-power law. Particularly noteworthy is the
good agreement in the region of the stern (¢ = 4 - 5 m)
due in large part to the fact that y cosb was taken into
account as may be seen from & comparison of the curves

§ = £(g) with and without the corresponding term account-—
ed for. ‘

A comparison of the shearing stress computed from the
formula:

To __EKaf
1 2 72
> P T
according to the original solution X = 0.392, the "com-
promige! solution with X = 0,392 and X; = 0.205, and

the power law, with the results of the Freeman tests, is
given on figure 10.

We see that our compromise solution gives the best
agreement with experiment. In - the center portion, without
congidering the doubtful bend in Freeman'!s curve, our curve
almost coincides with the test curve. In the tail region it
nay again be observed that taking into account y cos 6
gives a better agreement with experiment. As regards the
very great discrepancy in the nose region, this phenoumenon
is unavoidable. In the first place, due to the fact that
the hull contour curvature, which is considerable near
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the nose,@ was neglected, the theory is not entirely true,
and in the second place (and this is the more important
reason) the accuracy of the experimental determination of
the skin friction, due to the smallness of the boundary
layer, is not very large.

From the results obtained above, we could plot the
drag coefficient against the Reynoldg Number., The value
of the coefficient for each Reynolds Number is obtained by
computing the expression:

4w X2 L [rf | x
Cy = ”“6573“ -z 4 =
Ov .
The results are plotted on figure 11, which shows the test
curves of different models of the "Akron" and also the com~
puted curves of Moore and K. X. Fediaevsky.lm

We are justified in saying that our curve more closely
represents actual conditions than the other theoretical
curves since 1t agrees better with the results of the most
reliable tests conducted on a metal model in the variable
density tunnel. The fornm drag, i.c., the integral of the
.excegs aerodynanic presgsure along the hull was not taken
~into account since, according to repeated calculations

(reference 8), this drag component appears to be very near
zerc. We may thug consider the coefficient 0O as being
that of the total drag.

Figure 11 also shows two points computed by our theory
with X = X3 = 0.392, They lie consgiderably below the .
curve with X = 0.392 and X; = 0.214 ag should be ex~
pected. The curve of Moore lies between the latter curve
and the points. Thigs apparently shows that the velocity
distribution of Nikuradse-Prandtl:

[ To X ¥y
P
Vn introducing the function r = f(s), we introduce not

“the curvature of the contour dut the law of wvariation of

the gsurface at which the friction is developed.

10),., o o _
@no curves arc given as functions of the Reynolds Number
VE]./E

)

based on the volume to the 1/3 power: Ry
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for the condition X = X; = 0,4 corresponds more nearly

to the truth than tho Kidrmdn formula under the same condi~
tions. This is likewise confirmed by the fact that the

. 11~'U.6 5 . ’
rlot of the points ————> against 1n = gives a larger

/ To
Y

value for X, than X1 = 0.,214. Thus Moore, choosing the

Nikuradsc—-Prandtl formula and not taking into account any
differcence between X and X,, committed a smaller error
than we did in our first computations. The curve lying
lowegt is that computed by the method of XK. X. Fedlaevsky
with =n = wvar.

Figure 12 shows a conparison of the variation of the
relative thickness of the boundary layer with distance
along the hull according to the present theory using X =
0,392 and Xy = 0,214, with the conputations of .

K. Is Fediacvsky. Although the curves agree sufficiently-
well for Re = 15,88 x 10%, the agreenment is far less at
the higher Reynolds Numbers. From this it may be conclud-
ed that the relation n = f(Re) proposed by X. X.
Fediaevsky, does not entirely correspond to an approximo-
tion to the logarithmic law. We found by integrating with
respect to the curves & = f(n) and averaging the results
for different sections, a new relation n = f(Re) (fig. 13),
which should more nearly bring the results of the computa—
tions of & by the power law closer to the analogous com-
putationg by the logarithmic law.

In conclusion, we may note that with very considera-
ble accuracy, for more rapid computation of the relation

T S ‘

R CE) and Cy = f(Re), a "mixed" method may be ap-

g L

prlied, computing the boundary-layer thickness by the power
law (using the corrected curve n = f(Re)) and the shear-

ing-stress distribution and drag coefficient by the loga-
rithmic law. For this purpose, having obtained the values
of &, the values of 2 are next computed by solving

equation (22) for =zeZ:
(45)

after which T,/q, and 0, are computed by formulas (35)

and (37). This method of computation gave curve Oy = f(Re)
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lying only slightly above the more accurate curve. For
practical purvoses this method appears entirely accept—
able.

6. CONCLUSIONS

The results of our investigation lead to the follow-
ing conclusions:

a) The logarithmic law of velocity distribution of
Kérmin, applied to a figure of revolution and to a flat
plate with the generally accepted value of X = 0.4, gives
too sharp an increase in the boundary-layer thickness and
too small values for the drag.

b) This is due to the fact that a much gmaller value
of the constant X (¥, = 0.2 - 0.3) corresponds to that
reglon where the logarithmic velocity~distridbution law is
actually applicable (i.e., where the effect of wiscosity
is necgligible),

¢) If the logarithmic law is applied to the region
near the wall where the effect of the viscosity shows up
strongly and where this law, strictly speaking, is not ap-
plicable, an error in principle is made which it is possi-
ble to compensate by taking X = 0.4. :

d) Since a variable K cannot be introduced, it is
proposed that in the formula for the velocity distridbu-
tion & wvalue X, Oe2 - 0,% TDe taken, and in the formula
for the drag, K 0.4.

u

e) TWith the above values assumed for X, excellent

agreenent is obtained with experiment in all respects
(thickness of the layer, shear stress distribution, total
drag)e

f) TFurther light on the significance of X for the
velocity~digtribution law can be obtained only by more ac-
curate tests on plates, wings, and figures of revolution,

g) The method proposed by us of employing two values
of X for the computation by the logarithmic law is of
course a temporary expedicnt to be applied until such time
as a nore accurate law that takes into account the 'effect
of viscosity - i.e., one correct for all regions of the
flow, is substituted for the logarithmic law. Odbtaining
such a law is one of the most urgent of present-day prob-
lems.
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APPENDIX

Some Practical Suggestions with Regard to

(R

the Computation Procedure

For carrying out the computation using the complete
equation (44), we may here present some practical sugges-—
tiong, gained from our exnerience, to those who wigh to
moke use of our method.

(2) Choice of initial condifions.-I%t is best to be-
gin the integration from the end of the laminary portion
of the boundary layer. For determining the transition
roint from the laminary to the turbulent layer, it is nec-
essary to make use of the critical Reynolds Number (based

Wa b
on the boundary-layer thickness) Ry = ~%~ and which lies

within the range 1,600 < Rg < 10,000. From the corre-

VR
sponding value of Rgs» 8 =5 i ig determined; whence
lan Ug
according to the transition hypothesis of Kdrmédn (reference

13), 6turb l.4

8lam'

Afteor this, proceeding to 3z according to formula
(45), the integration is begun, the integrals being taken
from the section chosen and the corresponding initial wvalue
of the fuaction ¢, found.

As may be scen, however, the choice of the critical
Reynolds Number i1s gsubject to a certain degree of indefi-
nitenesse For this reason it is posasible, with very little
error, to take the lower limit of integration at the nose
itself, sctting 2z = 0 at s = 0; that is, consider the
turbulent layer to start at the nose itgelf. Thig proced-
ure will be more nearly Justified the larger the Reynolds
Kumber, Re = VL/u, taken. Here a new difficulty arises,
however. With the initial conditions 2z = 0 when s = O,
the integrals with resmect to 1n ~/f and 1n r must be
evaluated from - o (since when s =0, f =0 and v = 0)
which, of course, cannot be done granhically. However, as
computations have chown, the values of these integrals con-
tribute very little near the nose on account of the "weak-
ness" of the logarithmic infinity. For this reason the



HeA,C.A, Technical Memorandum No., 842 51

lower limits of these integrals may, with very little error,
be token ot any point sufficiently near the nose (for ex—
ample, the point corresponding to 1n JE 2 - %2.0) neglect—
ing the integration up to this point. The integration may
also be begun from any point sufficiently near the nose,
having determincd the variation of & from the nose up to
the point by the method of X. X. Fedicevsky, with n = var.
This is, in fact, the most accurate nmethod of integration
assuning =z = 0 when s = 0.

(b) Choice of the first avproximation.- As a first
approximation, the relation between =z and s obtained
from the boundary distribution by formula (45) according
to the method of K. K. Fediaevsky, may be taken, as was
done by us. It is also possible to take as the first ap-
rroximation the solution of equation (44), neglecting all
the integrals on the right-hand side except the first, i.e.,

L8

v

v, = & K,2 OgJ’éﬁf - JF ds

-
as was done by Moore. Having obtained the value of o,' ,

z! 1sg found by usling the corresvnonding scale.

) Obtaining the succeeding annroximationg.- After
obtaining the relation 2z = f(s) from some one or other
first approxzimation, we find the values of the functions

Ppr Py @51, plot the functions to be integrated against

the corresphoncéing exprecssions under the differential sign,

leCes

Pa

1
It

f(lnwﬁg) ©, £, (In r)
(46)

1l

fy(z+ln rf) and S086 - g (@ )

and integrate the curves graphically between the limits
chosen on the meridian line s. Having obtained the val-
uwes of the integrals, we substitute them in expression
(44), deternine a new value m4" and a new value =z%  and
repeat the operation until ftwo succegsive valucecs of 2z
differ by as 1little as required for the accuracy desired.

In performing the integration outright along the en-
tire length of the meridian, however, the following dif-
ficultics are met with. The functiors 1In J? and 1n r
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gencrally vary sharnly near the nose and tail (VfE—-—>o,
r >0), whereas in the center portion the change is very
small. The o functions, on the contrary, vary nmuch nore
sharply at the center portion than near the nose. For
this reason it is guite impossible to choose for the en-
tire leagth of hull the same scales for plotting (46) that
give more or less the same accuracy in the detcrmination
of -z 1in the diffcerent regions. It ig therefore suggest-
ed t@ t the distance ‘& Dbe Dbroken up into three inter-
valstd and the integration performed for each of these
separately. It may appear that this device would prolong
the computation. The computation, however, will, on the
contrary, be shortened while the accuracy will at the same
time be increased. The shortening of the amount of labor
will be accomplished in the following manner:

Eeving integrated over the first interval and finally
obtained the real value 3, at the end of the interval,

the valuses z“' that were obtained from the first approx-—
imation are corrected in the second interval by multiplying
them by the ratio z,/2z('), that is, by the ratio of the
true value at the end of the first interval to the value

of the first approximation at the same noint. We thus ob-
tain at once for the second interval a better approxima-
tion to the actual curve =z = f(s). Computations have
shown that by such a procedure good values of 2z were 0D-
tained for the second interval after two or three approx-
imations, while for the first interval it was necessary

to take five or six approximations. The same method is. ap-
plied in passing from the second to the third interval.

A better regult may also be obtained in passing from one
interval to another by multiplying the function e? or

¥, corresvonding to =z of the first approximation by the

ratios of the valueg of these functions at the end of the
firest interval,.

To give an idea of how the plot of {(46) looks for the
complete Zraphical integration, we present figures 14, 15,
and 16, showing these plots for the first, second, and
third intervals of the model of the "Akron" at a Reynolds
Number Re = 15.88 x 10° and corresponding to the data of
the last approximation 2z = f(s). The points are numbered

lDWe divided the length of the "Akron" into three portions,
thust the first from x/L = 0 to x/L = 0.1; the second
from x/L = 0.1 to x/L = 0.7; and” the third from x/L =
6.7 to x/L = 1.0.
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according to the numbers of the sections chosen. The
table (D. 56) gives for each of the numbered points the
distance from the nose along the hull and the values of
f, r, and cog 8.

The graphical integration of the curves of a given
type was performed using the integraph of the Coradi firm
of Zurich - an apparatus congtructed on the principle of
Abdank-Abakanovitch and which by following along the
curve, gave the area under the curve between the initial
point and any point on the curve. If the above apparatus
is not available the usual planimeter may be used or the
area found by summing up the squares under the curve.

For convenience in computing by our method, we give in
the appendix the functional scales of o as functions of
Z.

Our scales, however, do give not the functions @,,

P Py @51, but these functions divided dby K = 0.392;
that 1is,

._._?..2___ 3 ....__.cp 3 . @ 4 s and ...__.CP._S.__

0.392 0.392 0,592 0.392

Thus, in using these scales, it is necessary to divide
the terms of the original equation by 0.392.

In conclusion we may observe that, in accordance with
our computations, the term containing cos 6 may be. en-
tirely neglected in the first interval and at the begin-
ning of the second. Only farther along the hull does this
member show any effect, the latter showing up only in the
thickness of the boundary layer and in the distribution of
the shearing stress but having practically no effect on the

integrated drag. If the computations thereéfore are made
merely for the purpose of determining the curve G =
f(Re), the last term may be entirely neglected. We may

also point out that for rapidity of conmputation we may, in
the fourth term on the right-hand side of the last equa-
tion, write:

Az® eZ = P, = Py

i.ee, in the form of a difference in the functions used
in the two preceding terms.

Tranglation by S. Reiss,
National Advisory Connittee
for Aeronauticsg.
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L TABLE I
Inter- Num“t:er - { r

vals po?_;ts (:1) 2]:3. f (n) cos &

0 0 0 0 0 0.6
1 0.08 00,0088 0,247 0.086 0.640
. 2 0.16 | 0.0186 | 0.497 | 0,1168 | 0,685
E & 0,32 0,039 0.870 De216 0,848
4 0.56 00,0753 1,100 0,316 0,941
5 C,72 00,1007 1.160 D.362 0,965
6 1,00 | 0,1465 | 1,195 | 0.420 0,985
7 1,20 0.1798 1,185 0.450 0,993
8 1.6 0.246 1,160 0,489 0,999
. 9 2,0 0.306 1,133 | 0,500 1.000
§ 10 2.4 0,380 1.112 0.503 1,000
. 11 2.8 04446 1110 D504 1,000
12 3a2 0s514 1.115 0.502 1.000
13 3.6 0.580 1.115 0.4 0.999
14 440 0.647 1.117 | 0,470 0.998
15 4,4 0,714 1.120 0436 0,995
16 4.8 0.78C 1.090 0,384 G.989
o 17 5.2 G.895 1.047 C.317 0.980
5 18 5.6 0.9207 0.960 0.230 C.966
19 5.8 0.940 0.890 | 6.179 0.939
20 | 5.88 Ge.952 0.825 0.155 0.848
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Curve corresponis to
1 a=3.4; b=3,77
= K=0.43; £o=8.0
Uf i.

21 Or0
20

19 Za
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3.4 3.6 3.8 4.0 4.2 1g(RgvC¢)

Figure 7.~ Checx of the Karman
relation =k= =a+b lg

VC'E.
(RS'J_E}) from Freeman's data on the
Figure 1. airship model "Akron,
z
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Figure 9.~ Variation of z along the hull of airship
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