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TORSION AND BUCKLING OF OPEN SECTIONS*

By Herbert Wagner

Open section members are made of rolled or drawn sheet
metal and do nat, like the closed or tubular sections, en-
close any area. Open sections are applied a great deal in
metal constructions because they canm so easily be joined
to one another or to other plates; in addition, they are
accessible at all positions and so lend themselves to easy
maintenance and repair,

s cJeles

In contrast to closed sections, however, open sections
possess very small torsional rigidity. Thus it is known
that the torsional rigidity of an open member whose cross
section 1s not prevented from warping, is only as great as
that of the flat metal strip from which it i1s made. 1If,
however, warping of the section when the member 1s twisted
is prevented, for example, at one end of the section (at
least for a relatively short member), then longitudinal
stresses arise which offer a considerabdble resistance to
torsion, The computations of this effect of the longitu-~
dinal stresses on the torsional rigidity have already been
carried out for certain types of sections, especially I
beams.** In this paper we shall discuss the general prin-
ciples for open sections of any shape.

*"Vepdyrehung und Knickung von offenen Profilen." From

the asgh Anniversary Number of the Technische KHochschule,
Danzig, 1904-1929, pp. 329-343, This work appears 1in some-
what more extended form in the Zeltschrift fur Flugtechnik
und ¥Motorluft schiffahrt, where also are given the results
of tests conducted by the aviation branch of the Danzig
Technical High School, N

**The work of C. Weber, Zeitschrift fur angewandte Mathe-
matik und Mechanik, 1926, on the same subject, came to my
attention after I had completed my paper. With respect to
the fundamental assumptions, the work of C, Weber agrees
with mine except that in my work the effect of the varia-
tion i1n the longitudinal stresses 1s more accurately taken
into account. (Part Cypqp. equation 6b, Cpg 1n equation
6.) The work of H, Reissner, Zeitschrift fur Flugtechnik
und Motorluftschiffahrt, 19235, p., 384 (reference 1), in
which the bending accompanying torsion is treated for elosed
sections, particularly box-shaped sections, should also be
mentioned.,
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Open sectiong are usually so designed that they are
not subject to any torsional stresses. 3But cven where they
are applied as compression members, such soctions often
give way by twisting or tilting long before the Eulerian
buckling load or the yield point is reached, Particularly
do the compression members used in airplane structures
whose ratio of load to length of member (reference 2) 1is
in general small and which are therefore made with very
thin walls, have a tendency to twist. In what follows
this torsion will be computed and on the basis of the re-
sults obtained it will be possible to obtain a proper de-
sign of section in each case *

The torsion of dbuckling members for the case where
they are centrally loaded, lsads to a problem in pure sta-
b1l1ty and 1s similar to that of the bending of stressed
beams.

PURE TORSION

Notation

E, G, modulus of elasticity (kg/cm2)

X, coordinate in direction of axis of member (cm).
P, _angle of twist of member.
M, external torsional moment (kg cm).

GJp, torsional rigidity of section when warping of sec-
tion 1s not prevented (kg cm?®).

Mg, torsional moment due to torsional rigidity of sec-
tion (kg cm).

T torsional stress corresponding to torsional rigidity
(shearing stress) (kg/cm2).

Cva- resistance to combined bending and twisting of see-
tlon (cn®).

*For contrally loaded angles, this twisting has already
becen investigated by P. Bryan. Sce, for example, Rudolf
Mayer (reference 3).
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Mpa, ‘torsio alnmoment of cross section due to combined
bending and twisting (kg cm).

€pa° Opa* Tova: longitudinal strain, longitudinal stress,

and shearing stress due to combined bending and
twisting.

The remaining notatioh is indicated on the diagrams,

If a member, the warping of whose cross scction is
not prevented, 1s twisted, there arise in the cross sec-
tion shear stresses Tp, which may be computed with the

a1d of the usual torsion theory for every shape of cross
gection. The twisting moment due to these shear stresses
1s of magnitude Mp = @' G Jp where @' = d¢/dx and is

in this case equal to tne external twisting moment M. It
1s assumed here that the shape of eross section of the mem-
ber and the twisting moment M and therefore also the an-
gle of twist per unit length ! 1s constant along the
length of the member. 1In this case there arise no longi-
tudinal stresses in the member. Furthermore, no shear
stresses occur in the surface that is midway between the
two outer surfaces of the open section ("middle surface")
and also 1n the planes lying at right angles to this sur-
face (the "normal planes").* (See fig. 1.) Sections,

the strength of whose walls compared to the developed
length of the cross section, is so small that the following
statements on the cross-sectional twisting and the distri-
bution of the longitudinal stresses apply with sufficient
accuracy, we define as "open sections.”

The coordinate u (peripheral coordinate) measured
along the middle surface of the section and the coordinate
n, measured in the normal planes, give the distance of a
point to the middle surface. We denote by S the shear
center of the cross section (reference 4) and the straight
line which 1s the locus of the shear centers we shall call
the "shear axis.!

*The shear stresses at the ends of the section inthe nor-
mal planes are confined to a small region for thin-walled
section, their effect on our considerations 1s slight also
for the reason that the variation i1in the longitudinal
stresses Opa due to the bending accompanying the torsion
in the direction of these planes (n direction) 1s only of

secondary importance. (Cpg, 1s small compared to Cygys
see equation 6b,)
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We now consider a cross section normal to the shear
axis. As a result of the cross-sectional warping, the
points of this cross section move out of the plane by the
amount ¢ when twisted. The longitudinal fibers which
were straight before the torsion was applied, assume during
the torsion the form of helices whose axis 1s the shear
axis. We project two neighboring longitudinal fibers ly-
ing i1n the middle surface onto a plane which 1s parallel
to the shear axis and normal to the line r Joining the
shear axis with the fibers. The projgection of these fi-
bers forms with the projection of the shear axis the angle
re' (fig. 1). The two points of the fibers which were
originally in the middle surface are now removed from 1t

of

by amounts ¢ and ¢ + Fooy du, respectively. Since there

1s no shearing stress in the strip of surface lying between
the two fibers, we have

2t _ - !
3 sin ar ¢ Ty @

so that the displacement ¢, of any point in the middle

surface is of the amount
u

by = @ J 1y du

This displacement alsa varies along the normal te the
surface n. It may be shown in a similar manner that

g& = r, @, so that at any position wu, n
u n
=ttt @ ([ re dut / orydm)= o (nghwy)= @ v (1)
)

where w denotes the unit increase 1n the warping, that
1s, for o' =1, w, and w, are the two components of

w vwhose meaning and magnitude are clear from the equation.
Since the distance r, of the normal surface from the

shear axis in the second integral is a constant, w, =

rn Ne

We are still free to determine the lower limit of the
first integral, i.e., the longitudinal displacements may
st111l vary by a constant amcunt. This lower limit we
shall now choose so as to make the mean longitudinal dis-—
placement of the section equal to zero, that 1s,
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F P
JEAF =0 or [ wdF =0 (1a)

Since, as is easily seen, the mean value of w, 1is
equal to zero, we have
F U
S wy 8P = / wy s du =0 (1p)
o}

where U denotes the developed length of the cross section,
COMBINED BENDING AND TORSION

If the unit angle of twist @' 1s not constant so
that the torsional moment along the length of the section
1s variadble, and if the longitudinal displacement of the
section 1s prevented (for example, at one end), then, in
addition to the pure shear stresses Tp, we also have
longitudinal stresses Obg and torsional stresses Tbd

due to the comdbined bending and torsion.

We consider again (fig. 2) the two neighboring longi-
tudinal fibers of the middle surface. The strip now ap-
pears bent 1n the projection and the amount of bending 1s
ro As a result of this bending, one fiber of the strip
must stretch more than the other (similarly to the longi-
tudinal fibers of a bent beam), the difference 1in the
strain*) amounting to de€yy = ro" du sin a, so that
004
54 C E¢' ry. The longitudinal stress in the middle sur-

face 1s therefore
u
deu = By f Ty du
The lower limit of the integral we shall later determine,

The stress Opg .also varies in the normal direction
n We obtain similarly

*This equation 1s valid only when variation i1n the shear-
1ing stresses Tyg 1n the x-direction due to d0y4/0x

(see equation 6a) may be neglected, that 1s, for membders
that are not too short, see also following footnote and
references.

O
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55 = B9 ry. so that opan = EY' rpn

Here Opgn, denotes the longitudinal stress at the position

of the normal plane of any section in addition to the mean
longitudinal stress which (on account of the linear varig-
tion of Oygy) 1s equal to the longitudinal stress Opgy

in the middle surface at this position wu. We thus obtain
for the total longitudlnal stress

3
de = Ubd'lI + U-bdn = ECP“ (/ ru du + rn n) (2)

Since there 1s no longitudinal force acting on the
section .

J Opq 4F = 0 (2a)

Comparing equation (2) with equation.(1l) and (1a), We
see that {2b)

Gpg = BY' (wy + wy) = E@" w (21)

The longitudinal stresses Opa should not give a re-

sulting bending moment (since there 1s no such moment act-
ing on the member). It may easily be shown that this con-
dition may Ve satisfied if and only if the magnitudes r,

and r, refer to~the shear center, that 1s, when the sec-
tion twists about the shear axis, also in the case where
longitudinal stresses arise.

These longitudinal stresses arising during torsion
set up a resistance against the torsion, which we shall
now compute. We consider a member of length L, the end
of which are acted on by torsional moments M and, along
its length, is also acted on by external moments of magni

tude %% = m, The internal work of deformation isg

¢ap ¥ , LF
Ay = Ajp + Aypg = 5 of @ dx+2-ﬁ-off5bd dx af

The first term on the right-hand side gives the work
done by the shearing deformation as a result of the stresgs
es Tp while the second term is the work corresponding %a

the loagitudinal strecsses Opge The work of deformation
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corresponding to the shear stresses Typq which depend on
the variation of Cpa in the x-diregtion (see below) has
peen neglected.*

Taking account of equation (2b), we odbtain

F L L
fva=3E J W aF o 0" dx= 2 E Cp oo ax ()

where, for short, we have writtem Cypgq in place of one
integral.

We now give the deformed condition a variation §o,
where 8% may vary in any manner along the length of the
member except that we assume the boundary conditions

oM

for x=0 and x =1 8¢ = 0 and 8! =0

According to the principle of virtual velocities,
84, - 845 = 0, where A, denotes the work of the exter-

nal torsional moments, the work at the ends of the membdber,
on account of conditions (4), being zero. We thus obdbtain

L

L L
Foip [ 8e'®) ax+ 3 BOyy / 8le"®) ax - / m sy dx = O

Performing the variation and integrating partially
(taking account of equation 4) we obtain, after collecting
terms under a common integral sign,

L

of (- GJTqﬂ‘ + EdeQOa" - m) 8@ dx = 0

Since this integral must vanish for any arbitrary function
Sp, tac differential equation for the combined torsion
and bending reads

aM

E Cpg " = ¢ Jp9' =+ m=- 3= (5)
Integrating once, we obtain
- E decp"‘ + G JTQ’)' = Mpg + MT = M (53)

*uhis corresponds to the assumption usually made in the
bending theory that for a bent beam that 1s not too short,
1t 1s allowable to neglect the deformation due to shear in
comparison with the deformation due to bending.
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From this equation we see that to the longitudinsal
stresses o0pg resulting from the bending accompanyingthe

torsion there corresponds an internal torsional moment of
magnitude

- (XA}
Upa = = E COpa®
where (see equation 3)

(C,q = strength in combined bending and torsion)

Having given this purely formal derivation for de.
we shall next consider the torsional moment Mygq result-
ing from the bending accompanying the torsion. Since the
longitudinal stresses Opg Vary in general along the x-

direction, there must aris® in any cross section shear
stresses T4, which we split up into two components, Tb&ﬁ

due to variation in the mean longitudinal stress Gys3,: and

Tovdn due to the longitudinal stress Opdn®

In the same way as for the usual bent be mawe may see
from the equilibrium of a strip of width du and length
dx (see fig. 2) that, to the variable longitudinal stress-
es Oyy,+ there must correspond the shear stresses 7,. .,

whiech 1n the normal planes act in the direction of the lon-
gitudinal axis and 1n the cross section act in the direc-
tion of the u axis. We have (see equations 2 and 2D)

ooz
& (Tpgy 8) = —222 4F = B wy 4F

At any position w, therefore,
u

Tody 8 = Eo'' J wy 8 du (6a)
0

The moment taken up by the shear stresses may now de
computed as

7 U
¥pav= / Tpgu Tu 4F= of Ty 9% Tpgy ®
U u
= Eo'" f ry du f wy s du
0 (o]
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By integrating partially, taking into account equations
(1) and (1b), we obtain
F
Mpgy = = EO'" / wua dF = - EQ'" Cygu

The shearing stresses due to the varying Opan act

1n the direction of n and vary parabolically (in the same
manner as for the bent beam of rectangular cross section).
The corresponding moment may be computed in the same manner
as above and 1s equal to
T
Mpap= = EQ" S wp® dF = - EQ'" Cygp

Now Mpg = Mpgy + Mpgn and since, as 1t is easy to
prove, Oypg = Cpgy + Cpap» the results of this considera-

tion agree with equation (6). We may therefore split the
resistance Cypgq due to the bending accompanying the tor-

sion 1nto the two parts
¥ F 1 U
= = = —= 3 2
deu = f Wua aF and C'bdn = f wne aF = 12 of s rn iun

(6b)
It should gtill be mentioned that the shearing
stresses de give zero for a resultant shearing forcee.

Since the solution of differential equation (5) 1s
also well known for this special problem, we need go no
further into 1t.

TWISTING OF COMPRESSION MEMBERS

If a relatively thin-walled open section (for exam-
ple, an angle) 1s put under compression, each leg tends to
buckle 1n a direction normal to 1ts plane (fig. 3). The
part of the leg lying against the jJoining edge supports
1tself against the other leg which offers a large resist-
ance moment against these stresses and consequently hin-
ders the buckling of the first leg, and conversely.

Two modes of buckling are possible, namely, both legs
may buckle in the same direction so that the whole section
twists to one side, or the legs may buckle in opposite di-
rections, 1n which case there 1s a deformation in the
cross section and the work of deformation 1s therefore much
greater in this case, Since, where there are two possible

Mo
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modes of buckling, the one to occur first is that at which
the work of dcformation is smaller for the same work of
the external loads, the first mode of buckling will occur,
i.e., the angle will twist aside

We should now like to discuss the general case. Let
an open section which was initially straight be acted on
by a compressive and - in general - eccentric load P,
whose line of action is parallel to the axis of the member.
We shall denote the mean compressive stress by cPo = p/F

and by Op» the compressive and bending stress that va-

ries over the cross section, assuming these simply compute
ed stresses as known.

We shall assume further for our computation that the
bending due to the eccentricity of P and the angle of
twist @ are small in magnitude so that square terms,
products and their derivatives may be neglected.

We consider at any section the equilidbrium of the ex-
ternal with the internal forces. A necessary conseguence
of this consideration is that the twisting of the member
about the shear axis must take placo. (See bolow.)

Due to the twisting, longitudinal stresses Opg are
set up which give a resultant zero. (See equation 2a.)
The shear stresses arising from the twisting give as a re=

sultant a pure torsional moment of magnitude. (See equa-
tion .5a.)

Mbd+MT=-Ecdep"'+GJTq3'

The stresses ¢p are 1n the direction of the longi-

tudinal fibers of the section so that, due both to the
twisting and bending of the section, they are obliguely
inclined to the direction of the original axis. We shall
now consider more closely the horigzontal components of
these stresses. )

1. Eorizontal components of op due to the twisting.

The aggle of inclination of a fiber as a result of the
twisting 1s ro' so that the horizontal component of O0p

is Op ro' and its direction 1s normal to r. These

stresses produce a moment about the shear center of magni-
tude
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F F

Mpp = ® J r®op dF = o op, / a.—;—radr=q>'PiSPa
0

where for briefness we have set the easily evaluated inte-
gral

1 ’ Ip
a —- a
(o]

For a centrally acting force P, MPcp = op Jg where
0

J 1s the polar moment of inertia of the cross section
a%out the shear axis, The setting up of this moment MPw

1s the reason for the twisting aside of centrally com—
pressed open sections.

2. Horizontal components of op due to the bending.-

We denote the principal moments of inertia of the cross
section by Jn and Jg, and the coordinates measured

from the shear center in the direction of the axes of the
principal axis of inertia by mg and {g. The remaining

notation 1s indicated on figure 4.

We split up the bending moment due to the eccentric-—
1ty of P 1into two components about the principal axes of
inertia. The bending angle due to the bending about the
N axis 18

dy. X "%y P ¢ X
-n = - dx = - ...._..._Q.E. dx
ax I F R /

The limits of this integral we leave undetermined
since we shall later differentiate. The horizontal compo-
ay.
nents Op E;D of GP act 1n the direction of the ¢ axis,

and produce about the shear center a torsional moment of
magnitude

F 2
dy dy P2 Lop M X
n _ - "OP 'ISP
J 9 grims = gt Pgp = - g - [ dx

In a similar manner we compute the torsional moment
due the bending about the ¢ axis. For the total torsion~-
al moment due to the bending, we then odtain

s Qelee
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2 F-]
_ P (iop nsp Top f{sp\ X .. _ PB X
Mpy = - 3 - )jdx-- S ax  (8)

Jn E

where the expression in the parentheses is denoted by 3B.

Duc to the displaccment of the center of gravity of
the section as a result of the twisting about the shear
center and also due to the bending, the eccentricity of
the load P varies along length of the member and thus
additional bending moments arise. It may here be stated
without proof that no moment about the shear center is pro=-
duced by these longitudinal stresses arising from the ad-
ditional bending moments and which corrcspond to a slight
increasec in twist and bending, but that the corresponding
shear strcsses, however, produée cross forces at the shear
center which Just balance the cross forces of the horizon-
tal components discussed under paragraphs 1 and 2, so that
in every respect there is equilibrium with the external
forces, provided the condition

MT + Mbd = MPCP + MP-D
is satisfied.
We must still consider the very important case where

the section is elastically supported against twisting, so
that at every p031tﬁon there is exerted an external tor-

sional moment N = v @ proportional to the twisting at
this position and oppositely directed. Thus let % be

given and assumed constant along the entire length of the
member. Again considering the egquilibrium at a cross sec-
tion, we have the additjonal tors:ional moment

X

- My = J % @ dx

If we now set
Up + Ypg = Y¥pp * Upy - Hp

and differentiate with respect to x wc odbtain the dif-
ferential equation of the twisting:

@' E Cpg + 9% (P igp® - G Jn) + @ 3 (8)

n
P
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The solutions of this difforential cquation are well
xnown and we may therefore confine ourselves to the most
important case occurring in practice, namely, whereo the
warping of the end sections of the member is not prevented.
L et- the boundary condition be

For x=0 and x =1 ® =0 and o" =0

We neglect at first the part Mpy due to the bending of
the section, thus setting B = 0. _ If there is no elastic
support % = 0, the solution of the differential equation

1s @ = @ sin %%— (9o = angle of twist in the middle), and

we obtain by sudbstituting the buckling load P into egua-
tion (8)

1 2
P=—5 (G g+ Tz ® Cm) (9)
SP

Where there 1s elastic support the computation shows
(in a similar manner as for the usual elastically support-
ed buckling rod) that one or more waves of deformation are
formed according to the amount of elastic support and the
length of the member. If we set the length of a wave egual
to L/n, where n is an integer, so that o =

Py S1R 2%5. we obtain the buckling load

1 n® 12 :n) '
P = —= (G Im + — E Cpq + - = (9a)
15p TTOLE L

Figure 5 shows the buckling loads for different val-
ues of n and L. Since a member always buckles with a
number of waves corresponding to the minimum buckling load,
the number of waves 1ncreases with.length of memdber and for
very great lengths the dbuckling load becomes almost inde-
pendent of the length of the member, For long members we
obtain by differentiation of equation (9a) €§%§E = 05 the

wave lengths L,, corresponding to the minimum buckling
loads

EC
—-bd (10)

B

By substituting this value in equation (9a) we obtain
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the magnitude of the buckling load (or, more accurately,
the minimum buckling load) for L € IL;°

- 1 m
Pain = 02 Gup+2 [BE Crq ) (10a)

For L £ L,, only one wave 1s formed, so that
1 n? L2 m)
P = -+ (G Jp + Tz B Cpg + L B 1
ISPE- T Lg bd mT P ( Qb)

If the load acting on the membdber 1s smaller than the
buckling load given by this equation, there will be no
twisting of the member (always assuming that B * 0)., If.
however, the load does attain this value, the member col-
lapses abruptly as a result of the twisting (pure stabili-
ty problem).

If we take 1nto account the lateral bending of the
member (B *# 0) we are led to considerably more complicat-
ed solutions. We obtain, 1in fact, four forms for the so-
lution, according to whether or not the member 1s elastie-
ally supported against twisting and whether P 1is small
or already near the buckling load. These solutions show,
howvever, that @ first becomes very large when P attains
the value given by the previous equations - which value,
therefore, we may also consider in this case as the buck-
ling load. The eccentricity 1s taken into account by com—
puting the value of 1gp from equation (7).

We obtain, for example, for a nonelastically supported

member and for a large load P, the solution
P B C
P = 5 bd;g [l;cos WL sinw xtcos w x-1- Q%E(L—x)
Il
Pigp? - GJ
w2 = _-5E z (11a)

E Cpg

We see that the buckling load 1s reached for wlL = 1,
from which we obtain the value of P given i1in equation
(9). For smaller loads P, we may compute from equation
(11) the change in form and stress condition and thus deter-
mine when the yield point of the material 1s reached and
- the member actually collapses.
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We shall not consider the solutions for the other
casesS.

It should be pointed out that for centrally loaded
buckling memdbers there is no connection between the Eule-
rian buckling and the twisting, the section is to be com-
puted either for buckling (Eulerian) or twisting, according
to which phenomenon corresponds to the smaller buckling
load. TFor long members eccentrically loaded, it 1s possi-
ble for the bending due to the eccentricity to become so
large that the stress distribution in the middle of the
member is considerably different from that at the ends.
For this case we suggest that the stress distribution in
the middle of the member be first computed without taking
the twisting into account, and then this stress distridbu~
tion used as a basis for calculation of the twisting.

In order to give an idea of the magnitude of these
effects there are shown in table I the theoretical buck-
ling loads for two duralumin sections of equal cross-sec-
tional area F = 0,42 cm?® and squal width of legs 3 cm.
The sections are shown in figure 6.

TABLE I
Form of | 1000 Jp | 1000 Cypg imPa Theoretical dbuckling load
cross m_ g m_ 4
section P 5 B
cm cm® em® [1=20] 40{80 | 20 | 40| 80
r“ 0.695 0.515 { 3 65 63| 62 86 86| 86
[ﬁ . 540 35,7 4 188 73144 1218 {171 ({171

If such sections are used as spars for sheet metal
beams so that tensile forces act laterally on it (refer-
ence 5), back moments are produced during the twisfing,
the magnitude of which is proportioenal to the amount of
twisting. If, for example, these sections are loaded lat-
erally with a load of 1 kg/em, % = 3, The buckling loads

of the members are given for this value, not taking the
bending moments into account. It may be seen that now the
section with the edges turned over is more favorable for
all lengths since, according to egquation (10a), the value
6pa raises the buckling load, particularly when there 1is
elastic support.
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In order to show the large effect of eccentric load-
ing on the buckling load, there is indicated in figure 7
the ratio of the buckling loads P for an angle loaded
eccentrically in the plane of "symmetry (B = 0) to the
buckling load P, of the centrally loaded section. The

nearer to the edge of the angle the force acts, the larger
is the buckling load until finally there 1s no question of
twisting,

It should be further noted that in tests of compres-
sively loaded sections set between parallel plates, the
twisting likewise begins at the computed loads, but after
the twisting no load acts on the legs so that the line of
action of the compressive force moves toward the edge and
thus a higher compressive force may be borne. The corre-
sponding computation is relatively easy to make.

If very thin-walled angles (or sections of similar
cross section) are eccentrically loaded in such a manner
that the legs are highly loaded while the edge is less
loaded, then the phenomenon occurs of each leg buckling in
opposite direction. (The profile thus does not twist.)
This phenomenon 1s easily explained, though the necessary
computation 1s difficult. The buckling load 1s smaller
than would be the case if the section twisted.

It may be remarked, finally, that only such sections
tend to twist aside for which the value of de/ispa is

small compared to the moment of inertia of the cross sec-
tion._ (See equation 9.) For other sections, provided the
yield point, 1s not reached first, there occurs either Eu-
lerian buckling or each leg buckles individually without
the member as a whole twisting aside. If the legs of a

U section are turned over they may be considered elastic-
ally fixed, and with the aid of the preceding principles
1t is possible to compute at least approximately the twist-
ing (buckling) of the leg. For the computation of the
buckling of legs that are not turned over, the methods of
Timoschenko for rigidly fixed or entirely free plates may
be cmployed (reference 6).

Translation by S. Reiss,
National Advisory Committee
for Aeronautics.
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